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1 Executive Summary 

The Intelligence Advanced Research Projects Activity (IARPA) project STONESOUP 

(Securely Taking On New Executable Software Of Uncertain Provenance) aimed to 

eliminate the effects of vulnerabilities in software applications by (a) extending the scope 

and capability of approaches for analysis, confinement, and diversification; (b) addressing a 

wide range of security vulnerabilities within the same framework; and (c) integrating 

approaches to leverage the strengths and weaknesses of each. The program aimed to 

provide comprehensive, automated techniques for vulnerability reduction in software of 

uncertain provenance.  

To determine the effectiveness of the performer technology at mitigating software 

vulnerabilities, the STONESOUP Test and Evaluation Team (T&E) developed an automated 

system to create, run, and evaluate thousands of test cases using performer technology.  In 

this effort, the Test Generation Team developed thousands of programs each with a known 

vulnerability that could be exploited by a user.  The T&E Team developed the Test and 

Evaluation eXecution and Analysis System (TEXAS) that could run these thousands of 

programs with (or without) performer technology and evaluate their effectiveness at 

mitigating the vulnerabilities. 

This report discusses how T&E implemented the tasks described in the STONESOUP Phase 

3 Test Data Generation Plan (TGP).  The TGP describes the composition of test cases, and 

includes the test case naming standard, which allows a user to identify the behavior of each 

test case based on the name of the test case.  

The TGP outlines a plan for testing the tools developed by each of the three performer 

teams that were selected to enter into Phase 3 of STONESOUP. The prime contractors for 

the three teams, and the operating system and language they each addressed are listed in 

Table 1. 

Table 1 Performer teams 

Performer  OS Language 

Columbia CentOS 6.5 C 

Grammatech Ubuntu 12.04 Binary from C source code 

Kestrel Ubuntu 12.04 Java 

 

The Test Generation Team developed systems to automatically inject vulnerabilities into 

particular base programs.  These vulnerabilities consisted of a taint source, 3 code 

complexity features, and a weakness that corresponded to one of the Common Weakness 

Enumerations (CWEs) developed by MITRE.  The Test Generation Team further developed 
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a packager to create instructions for building, running, and evaluating test cases in an 

automated fashion. 

T&E developed the taints sources as described in Section 3.4.1 of the TGP.  The TGP 

indicates that socket taint source will only be used with server programs. This requirement 

was found not to be necessary, and so T&E used socket taint source with all base programs. 

T&E developed the control flow, data flow, and data type complexity features as described 

in Section 3.4 of the TGP. 

T&E developed the weaknesses as described in Section 3.2 of the TGP.  However, some of 

the performer teams, with the agreement of the customer, changed which weakness classes 

their tools addressed.  Accordingly, T&E altered which weaknesses were developed to 

address these changes.  In addition, some weaknesses specified in the TGP were not 

developed because they were fully covered by other weaknesses, did not apply to the target 

language, or could not be tested in an automated fashion.  Details on these changes are 

provided in Section 10.  

T&E developed one or more weakness snippets that each exercised a flaw identified by a 

particular Common Weakness Enumeration (CWE).  Table 2 shows the number of Common 

Weakness Enumerations (CWEs) for which snippets were developed for each weakness 

class for each language.  All weakness snippets developed by T&E were validated by the 

Independent Verification & Validation Team.  T&E addressed all errors and concerns raised 

by IV&V regarding weakness snippets. 

Table 2 Weakness Classes Mapped to Language and Common Weakness Enumerations 

Weakness Class 
# CWEs 

C/Binary Java 

Number Handling 9 8 

Tainted Data N/A 6 

Error Handling N/A 8 

Resource Drain 11 9 

Injection 3 4 

 Concurrency Handling 15 15 

Memory Corruption 17 N/A 

Null Pointer Error 1 N/A 

 

T&E injected faults into base programs in both C and Java.  The programs chosen for Phase 

3 are specified in Section 5.4.  At the request of the customer, T&E chose base programs for 

Phase 3 to achieve an average of 500,000 lines of code.  The C base programs had an 
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average of 444,429 lines of code, and the Java base programs had an average of 932,825 

lines of code.   

In addition, T&E injected vulnerabilities into 4 other programs to aid in testing the 

injection framework, taint sources, and weaknesses.  These additional programs are the 

small programs C-Tree and J-Tree, and the Phase 2 programs Grep and JMeter.  These 

programs are discussed in Section 5.4.  

In accordance with Section 4 of the TGP, T&E developed 531 test cases for each weakness 

case in C, 637 for each weakness class in Binary (which are implemented in C), and 478 test 

cases for each weakness class in Java. The test case specifications are drawn uniformly 

from the population of possible test cases, as described in Section 0 of this report and in the 

STONESOUP Phase 3 Test and Evaluation Final Report. 

T&E ran each test case under two conditions – one with no performer technology present 

(e.g., Stage One) and one with the performer technology under evaluation present (e.g., 

Stage Two).  IV&V validated which test cases ran successfully in Stage One. 
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2 Overview of Test Generation 

T&E obviously could not hand-create thousands of different large (500,000 lines of code) 

programs each with a single known weakness.  So T&E developed a process that relied on 

existing large code bases to automatically generate test cases.  This involved multiple areas 

of effort:   

1. Selecting and modifying base programs  

2. Developing weakness code with benign and exploiting inputs 

3. Injecting weakness code into the base program 

4. Packaging test cases 

The following sections provide an overview of these areas. 

2.1 Select and Modify Base Programs 

One of the goals of STONESOUP was to develop mitigation strategies for large-scale, real-

world programs.  It was not sufficient for T&E to create toy programs with 

vulnerabilities—the performer technology had to be tested against large, complicated 

programs.  Accordingly, T&E searched open source software corpuses to find programs 

that could be used as a base into which to inject vulnerabilities.   T&E performed the 

following steps to select and modify base programs: 

1. Identify possible base programs 

2. Create scripts to build the base programs from source 

3. Modify the base programs so they could be built with the injection frameworks 

4. Modify the base programs to respect library environment variables 

5. Verify identity translation for the base programs 

6. Inject function logging statements into each base program, producing log-injected 

base programs 

7. For each base program, build a skeleton directory structure, create an XML file 

containing build and run instructions, and identify 10 different inputs to base 

program 

8. Run log-injected base programs on each of the 10 inputs 

9. Determine functions used by all inputs for each base program 

10. Select 10 injection points from the common set for each base program 

2.2 Develop Weakness Code 

T&E used the Common Weakness Enumerations (CWE) defined by MITRE as a guide in 

creating 98 C weaknesses and 60 Java weaknesses that each cause unintended program 

behavior.  These weaknesses existed as snippets of code that could be inserted into the 

Abstract Syntax Tree (AST) of the base programs. 
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For each weakness, T&E also developed inputs that resulted in benign vulnerability 

behavior and inputs that resulted in exploit vulnerability behavior.  Exploit inputs would 

cause negative technical impacts such as program crash, thread deadlock, or private 

information exposure.  The benign and exploiting inputs were stored in a YAML file that 

could be used by automated systems to create test cases.  In addition, the YAML file stored 

information about other processes that were required to run the weakness.  These 

processes were tightly coupled to the weakness snippet; they might set particular 

environment variables or run particular scripts at particular times to trigger the 

appropriate weakness behavior. 

For each weakness, T&E also developed an automated test to determine whether the 

exploiting input triggered the expected negative technical impact.  Just as it was not 

possible for T&E to hand-create thousands of large programs with a single weakness, it was 

not possible for T&E to hand-verify the results of thousands of test cases.  To address this 

problem, T&E developed “observables” for the exploit condition of each weakness that 

could be used by an automated test system to determine if the exploit had occurred. 

2.3 Inject Weakness Code 

T&E developed software to inject weaknesses into base programs.  For C and Binary 

programs, this software relied on the ROSE Compiler Infrastructure for Abstract Syntax 

Tree (AST) manipulation.  For Java programs, a separate system was developed that relied 

on the Eclipse Java Development Toolkit (JDT) for AST manipulation. 

T&E injected several separate pieces of code into the base programs to accommodate the 

needs of automated testing while imitating the complexity of vulnerabilities found in the 

wild.  In particular, T&E developed and injected into each base program: 

1. An atomic barrier to ensure that the vulnerability was run no more than once 

2. A taint source that allowed the user to insert data into the program 

3. Three code complexity features—one each of control flow, data flow, and data 

type—to obfuscate the vulnerability 

4. A weakness that acts in either a benign or exploit fashion depending upon user 

input 

Figure 1 shows the code injected into each base program.  
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Figure 1 Code injected into each base program 

 

T&E performed extensive unit testing to ensure that these different components could 
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Figure 2 Test Case Packager 

Base Program 
Skeleton

Base Program
Source Code

Weakness Snippet
Source Code

Weakness 
Snippet
YAML

Packager
ss_testcases repo

Test Case 
Name

Base Program
XML

Injected 
XML

Test Case

Injected 
Program

Source Code
Injected 
Skeleton



 IARPA STONESOUP Phase 3 Test Generation Report  

9 Approved for public release; distribution unlimited. 12 December 2014 

3 Selecting and Modifying Base Programs 

To develop test cases, T&E began by identifying candidate base programs into which to 

insert weaknesses.  These base programs had to have the following characteristics: 

 Open source so T&E could have access to source code 

 Written in the appropriate language—C or Java 

 Function as a stand-alone program—not solely a library for use by other software 

 Have the appropriate number of lines of code—for Phase 3, the goal was an average 

of 500,000 lines of code 

 For C/Binary programs, buildable with gcc (not clang), for compatibility with the 

ROSE compiler used to manipulate C abstract syntax trees 

 For Java programs, buildable using the Ant build system (not Maven) for 

compatibility with the injection system 

To ensure a variety of test situations, the group of programs chosen included: 

 Client programs and server programs 

 Command-line driven programs and GUI-driven programs. 

3.1 Candidate base programs 

Over the course of the project, T&E evaluated a large set of candidate programs as possible 

base programs.  For C/Binary, these included: 

 Busybox – tool combining common UNIX utilities into a single small executable 

 Cherokee – web server 

 Claws Mail – email and news client 

 D-Bus – inter-process communication system 

 Diff – data comparison utility 

 Exim – mail transter agent 

 FFmpeg – multi-media data processor 

 FTP Server – file transfer server 

 GIMP – image manipulation software 

 Grep – file search tool 

 ImageMagick – bitmap manipulation tool 

 Irssi – IRC client 

 Mutt – email client 

 Nginx – reverse proxy server for HTTP 

 OpenSSL – cryptography 

 Pidgin – chat client 

 Postfix – mail transfer agent 

 PostgreSQL – relational database 
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 SDCC – small device C compiler 

 Subversion – version control system 

 Sudo – tool for running program as a different user 

 TCPDump – command-line packet analyzer 

 Vim – editor 

 Wget – command-line tool for retrieving files from web 

 Wireshark – network protocol analyzer 

 WWW –W3C browser 

 Zsh – shell 

For Java, these included: 

 Ant – Apache Java build tool 

 Barcode4J – generator for barcodes 

 CoffeeMud -  MUD game engine 

 Derby – Apache relational database 

 Elasticsearch – search and analytics engine 

 FindBugs – static code analysis tool 

 Google Web Toolkit – web development tool 

 Hadoop – Apache big data storage and processing framework 

 HTML Cleaner – HTML to XML transformation 

 James – Apache mail server 

 Jena – semantic web framework 

 JMeter – Apache load testing application 

 Jtest – automated Java software testing and static analysis 

 Lenya – Apache XML content management system 

 Lucene – Apache search software 

 Maven – Apache Java build tool 

 OpenDS – directory service 

 PMD – source code analyzer 

 POI – Apache tool for accessing Microsoft Office documents 

 SchemaSpy – generates graphical representations of tables 

 Tomcat – Apache web server 

3.2 Scripting the build process 

After generating a candidate set of programs, T&E then developed an automated process to 

build each program on the appropriate operating systems – CentOS 6.5 and Ubuntu 12.04 

for C/Binary programs, and Ubuntu 12.04 for Java programs.   For C/Binary, these build 

scripts required using gcc and the appropriate build system for the package (e.g., make, 

cmake, imake).  For Java, this required using Javac and the Ant build system.  
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For each base program, T&E identified other software on which the program depended, 

downloaded the source for those dependencies, and developed scripts to build the 

dependencies.  This process continued until T&E reached a core set of programs from the 

standard distributions, such as bash and the X windows system, that were assumed to be 

already installed. 

After identifying dependencies and creating build scripts for the dependencies, T&E 

developed build scripts for the candidate base programs themselves, using the same basic 

build process that would be used by the base program developers.   
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4 Developing the Injection Framework 

The STONESOUP Phase 3 Test Generation Plan required T&E to inject weakness code into 

both C and Java programs.  T&E thus had to develop injection frameworks for both 

languages.  These injection frameworks read in source code and converted it into an 

Abstract Syntax Tree (AST) in memory, performed some translation on it by adding nodes 

to the AST, and then output modified source code. 

4.1 Code Injection Overview 

The following definitions are useful in understanding the injection frameworks: 

 Abstract syntax tree: An internal representation of a programming language where 

each node of the tree corresponds to a feature appearing in the source code.  

Abstract syntax trees are generated by any program that acts on source code, 

including compilers translating from source code to object code, integrated 

development environments allowing the programmer to manipulate code, and tools 

allowing manipulation of source code.  

 AST generator: A tool that creates and manipulates an abstract syntax tree, either by 

translating source code into an abstract syntax tree or by creating an abstract syntax 

tree programmatically without pre-existing source code.  T&E used the ROSE 

Compiler Infrastructure as the AST generator for C. It used the Eclipse Java 

Development Toolkit (JDT) as the AST generator for Java. 

 AST unparser: A tool that translates an abstract syntax tree back into source code.  

In practice, this was simply an API call to the AST generator that outputs the 

(modified) abstract syntax tree in the original source language. 

 Original software: The source code that would be modified by this system 

 Payload software: The code that would be inserted into the original source code by 

the system.  The payload software may: 

a) Exist as source code that was then translated into an abstract syntax tree, or 

b) Exist as an abstract syntax tree that was generated programmatically, or 

c) Be a combination of both types above. 

 Modified software: The original software with the payload software inserted into it.  

This modified software could exist either as an abstract syntax tree, or as source 

code containing both the original source code and the inserted payload(s). 

 Injection point: The location within the original abstract syntax tree where a 

payload abstract syntax tree would be inserted 

Figure 3 shows a simple use of the injection framework, where a single payload was 

injected at a single point into a single source file. In this figure, the original source code was 

run through an AST generator to create an abstract syntax tree.  A payload abstract syntax 

tree was created either by running payload source code through an AST generator or by 
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creating an abstract syntax tree for the payload programmatically.  The original abstract 

syntax tree was combined with the payload abstract syntax tree to create a modified 

abstract syntax tree.  This modified abstract syntax tree was sent to an AST unparser to 

output modified source code that contains both the original source code and the payload. 

 

Figure 3 Injection Framework Flow Chart – Single Source, Single Payload 

 

Figure 4 shows a more complicated case, where the injection framework generated an AST 

from multiple original source files, injected multiple payloads into multiple injection points 

within that AST, and then output multiple modified files. 

 

Figure 4 Injection Framework Flow Chart - Multiple Sources, Multiple Payloads 
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used the Eclipse Java Development Tools (JDT) API.   ss_vuln_injector and ss_vinject4j read 

in a C or Java program and converted it into an AST using the appropriate backend.  They 

optionally altered the code using the AST system, and then wrote out source code reflecting 

any changes made to the AST.   

The injection frameworks ss_vuln_injector and ss_vinject4j performed the following steps 

to complete an injection: 

 Read in the base program, converting it to an AST 

 Located the injection point in the AST 

 Inserted into the AST an atomic barrier to ensure the vulnerability was run only one 

time 

 Inserted into the AST a taint source, allowing the user to provide input to the 

vulnerability 

 Inserted one or more code complexity features to obfuscate the data and control 

flows 

 Inserted a weakness that can have either benign or exploit behavior, depending 

upon the user input 

 Read in the YAML file specifying benign and exploit inputs for the weakness 

 Output the injected AST as source code 

 Output the injected YAML file, containing details about how to create inputs for this 

particular combination of taint source and weakness 

Figure 5 indicates the inputs and outputs of the injection systems for C and Java.  
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Figure 5 Inputs and outputs for injection system 
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1 otherwise.  If the mkdir call was successful, the weakness would run, but otherwise it 

would be skipped.  The mkdir operation was attempted only if the atomic built-in 

succeeded to reduce the number of times the code accesses the file system.  The mkdir 

command was atomic so long as it occurred on a local file system, which was the case for 

the system T&E used.  If it is later desired to use a non-local file system, alternative 

approaches should be considered.  

For Java programs, T&E injected a call to 

java.util.concurrent.atomic.AtomicReference.compareAndSet.  This operation behaves 

identically to the gcc built-in __sync_bool_compare_and_swap.  It atomically sets a variable 

to a given updated value if the current value equals the expected value, and returns true if 

the operation was successful. 

It was not necessary to use the file system barrier for the Java programs, since the Java 

Virtual Machine (JVM) itself does not fork new processes unless directed to do so by an 

exec command.  None of the selected Java base programs created child JVMs running the 

same code, so the atomic barrier within the single JVM was sufficient to ensure single 

execution.  It would be straightforward to add a file system check to the Java injection 

process if a new base program required it. 
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4.4 Other Injected Code 

All other injected code is discussed in detail in later sections: 

 Taint sources are discussed in Section 8 

 Code Complexity Features are discussed in Section 9 

 Weaknesses are discussed in Section 10 
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5 Verifying the Identity Translation 

After selecting candidate base programs, T&E attempted to perform an identity translation 

on each candidate program using the injection system.  This required modifications to the 

build process for each candidate base program.  For some programs, the build process was 

sufficiently incompatible with the injection framework that the programs could not be 

modified to allow an identity translation.  These programs were dropped from 

consideration as Phase 3 base programs. 

5.1 Modifying build process to use injection framework 

T&E modified the build process for each candidate base program to replace the compiler 

used by the base program (gcc or javac) with the appropriate injection framework 

(ss_vuln_injector using ROSE for C, and ss_vinject4j using the Eclipse JDT for Java).  In some 

programs, this was an easy task, involving simply changing an environment variable.  

However, in most programs, this required hand altering the build process to replace all 

references to the compiler with calls to the appropriate injection system. 

In C, the replacement of the compiler with the injection framework was complicated by the 

fact that two different compilers are widely used: gcc and clang.  The ROSE Injection 

Framework was built around gcc, and T&E found that it was not possible to replace calls to 

the clang compiler with calls to the C injection system.   As a result of this incompatibility, 

T&E did not consider programs that were built with clang as candidates for base program 

injection. 

In Java, the replace of javac with the injection framework was complicated by the fact that 

there are two different build systems: ant and maven.  The Java injection tool was written 

for ant build systems, so a base program that used maven could not be run with it.  T&E 

attempted to use automated tools to convert programs using maven to use ant.  However, 

the automated tools were error-prone and required significant hand-alteration after the 

fact.  Given the size of the base programs and the complexity of their build processes, T&E 

found it was not possible to convert maven build processes to ant.  

5.2 Modifying build process to use external libraries 

T&E further modified the build process for each candidate base program to allow arbitrary 

libraries to be linked to the base program.  This modification was necessary because T&E 

needed to inject into the base programs code that required various external libraries.  For 

example, all weaknesses in both C and Java required access to the Linux Trace Toolkit Next 

Generation (LTTng) libraries for outputting trace information.  Moreover, individual test 

cases sometimes required other specific libraries.  For instance, if a C test case used the 

socket taint source, the base program would need to link to libmongoose to access the 

socket functionality.  If a C test case used PostgreSQL for a SQL injection weakness, the base 
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program would need to link to the PostgreSQL library, libpq.  If a Java test case used the 

socket taint source, the base program would need access to the NanoHTTPd Java archive.  If 

a Java test case used PostgreSQL, the base program would need to link to the JDBC4 

PostgreSQL Java archive.   

Since different test cases needed different libraries, T&E altered the build process for each 

candidate base program to allow new libraries to be linked as needed.  For some base 

programs, this change was straightforward, as their build process used an environment 

variable such as LIBS throughout the build process.  In these cases, T&E could simply add 

the new libraries to the appropriate environment variable.  However, many base programs 

did not use standardized environment variables, or used them only for part of their build 

process.  For the majority of base programs, T&E had to debug and alter the build 

processes to respect LIBS and related variables throughout the code base.  

5.3 Performing the identity translation 

After altering the build process to use the injection framework and to allow new libraries to 

be linked in, T&E performed an identity translation on each candidate base program using 

the injection framework.  For this identity translation, no modifications were made to the 

AST.  The code was read in by ss_vuln_injector or ss_vinject4j, converted into an AST, and 

then output again as source code.   Ideally, the code that was output by the injection system 

should be identical to the code that was input to it, with the exception of whitespace 

differences.  After the identity translation, T&E ran the program again, expecting to see 

identical behavior to the original code.   

In practice, the AST systems do not always accurately perform the identity translation, 

resulting in various issues that must be addressed. 

5.3.1 Translation issues in C 

For C/Binary programs, multiple problems arose because of difficulties handling pre-

processor directives.  In a normal C build process, gcc first pre-processes the code, then 

compiles it, and then links it.  When using the ROSE Compiler Infrastructure to parse the 

source code, ROSE first pre-processes the code, and then uses the compiler to convert the 

pre-processed code into an AST.  However, for clarity reasons, ROSE does not want to 

output the pre-processed code.  Such code could be hundreds of times as long as the 

original code and far less readable.  ROSE goes to some lengths to try to restore the original 

code as it appeared before pre-processing.  However, if the pre-processor statements were 

sufficiently complex, ROSE cannot successfully resolve them. 

For the C programs, T&E attempted to hand-alter pre-processor directives to accommodate 

ROSE limitations where possible.  However, given the number and complexity of the pre-

processor directives, T&E added to the ss_vuln_injector system the capability to skip 
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transformation of certain problematic files.  If the injection system could not successfully 

transform a file, no point within that file could be used as an injection point for 

vulnerabilities.  This reduced the number of possible injection points, so T&E made every 

effort to limit the number of skipped files.  

5.3.2 Translation issues in Java 

Because Java does not use a preprocessor, there were fewer translation issues with the Java 

injection tool than with the C injection tool.  The main translation issues arose from the fact 

that the Eclipse JDT used a different sequence of operations than the normal Java compiler 

for type promotion involving the ternary operator.  For example, when using the java 

compiler javac, the following code was valid: 

String s = String(test_value ? 0 : “not_valid” ); 

However, this same code was not valid while using the Eclipse JDT API.  Instead, the 

promotion from int to String must occur before the ternary operator evaluation.  For the 

Eclipse JDT API, the following was required: 

String s = test_value ? Integer.toString(0) : “not_valid” ; 

T&E had to identify and fix this problem and other similar problems within the Java base 

programs in order to successfully process the base programs with the ss_vinject4j injection 

system. 

5.4 Phase 3 base programs 

The base programs selected for Phase 3 are listed in the Test Data Generation Plan, in 

Section B-4.   We repeat the list here to add information about where to obtain the source 

code.  Note that the base programs typically have to be modified to work with the injection 

framework.  The modified code is available in the ss_base_programs repository. 

These programs were selected because they had sufficient lines of code, represented a 

variety of program types, and identity translation with the injection framework could be 

made to work for them.  

Methods for counting lines of code are inherently controversial—a perfect method does not 

exist. For STONESOUP, the number of lines of code was determined using the CLOC tool 

(http://cloc.sourceforge.net/, v1.60).  This tool counts actual lines of code, not including 

blank lines or comment-only lines.  For Phase 3, T&E aimed to have base programs with an 

average of 500,000 lines of code.  For the programs actually chosen for Phase 3, the C base 

programs had an average of 444,429 lines of code, and the Java base programs had an 

average of 932,825 lines of code.   
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Table 3 C/Binary Base Programs 

Identifier Base Program Category  Version Repository LOC 

ELAS Elastic Search Service  1.0.0 http://www.elasticsearch.org/ 297,491 

CMUD Coffee MUD Service  5.8 http://www.coffeemud.org/ 537,199 

LENY Apache Lenya Service/GUI 2.0.4 http://lenya.apache.org/ 358,003 

LUCE Apache Lucene Console 4.5.0 http://lucene.apache.org/ 440,299 

JENA Jena Console 2.11.0 https://jena.apache.org/ 377,160 

GWTX Google Web Tookit GUI 2.6.0-rc3 http://www.gwtproject.org/ 656,421 

 

Table 4 Java Base Programs 

Identifier Base Program  Category Version Repository LOC 

FFMP FFMpeg Console 1.2.2 https://www.ffmpeg.org/ 566,908 

GIMP Gimp GUI 2.8.8 http://www.gimp.org/ 711,339 

OSSL OpenSSL Console  1.0.1e https://www.openssl.org/ 274,204 

PSQL PostgreSQL Service  9.2.4 http://www.postgresql.org/ 731,469 

SUBV Subversion Console/Service  1.8.3 https://subversion.apache.org/ 798,636 

WIRE Wireshark GUI 1.10.2 https://www.wireshark.org/ 2,523,396 

 

In addition, T&E used four small base programs, 2 each in C and Java, for testing the 

injection system, the taint sources, and the weakness variants. These programs were much 

smaller than the Phase 3 base programs and provided a simpler system for debugging 

purposes.  They are listed in Table 5. 
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Table 5 Test Programs 

Identifier Base 

Program 

 Category Version Repository LOC 

CTREE C-Tree Console 1.7.0 http://mama.indstate.edu/users/ice/tree/ 2,751 

JTREE J-Tree Console  - Written by T&E 284 

GREP Grep Console 2.14 http://www.gnu.org/software/grep/ 47,741 

JMET JMeter Console 2.8 http://jmeter.apache.org/ 103,105 

 

C-Tree (Linux tree utility) and J-Tree (created by the T&E Team) are considered micro-

programs because of their small size.  Grep and JMeter were selected from the base 

programs used in Phase 2.  
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6 Choosing Inputs 

After selecting appropriate base programs, T&E developed 10 inputs for each program.  It 

was desired to have the 10 inputs exercise code paths that were as distinct as possible, so 

that the performer code would have to handle many different cases.  To develop these 

inputs, T&E examined user documentation for the programs, and identified inputs that 

would exercise as wide a range as possible of user functionality.  

As an example, for the relational database PostgreSQL, the 10 inputs performed the 

following tasks: 

1. Initialize a Postgres database 

2. Select rows from a table in an existing database 

3. Insert a row into a table 

4. Create a table 

5. Delete a row from a table 

6. Drop a table 

7. Run a psql script on a database 

8. Alter a table by changing the type of a column in a table  

9. Select specific columns from a table 

10. Select rows from a table using regular expressions 

These inputs were specified in the XML file for the PostgreSQL base program.    

For details on the inputs used for the other base programs, examine the XML files for those 

base programs within the ss_base_programs repository.  Inputs are often quite 

complicated, and may require additional data files found in the skeleton directory for the 

program, especially in the testData and scripts directories. 

For each base program input, T&E developed an automated test to detect whether that 

input had executed successfully.  These automated tests were called output checks and 

were also included in the XML file for the base program. 

For 3 of the test programs (C-Tree, J-Tree, and JMeter), T&E developed only 5 inputs.  For 

the remaining test program (Grep), T&E developed 10 inputs.  Since these programs were 

used only for testing the system, and not for inclusion in the test corpus, T&E did not 

require them to have the full 10 inputs that a base program had. 

6.1 Examples of inputs 

In the simplest case, an input to a program consisted of command line arguments used 

when running that program.  However, inputs could be far more complicated.  If the base 

program was a server, for example, the server would be started with appropriate 

arguments, then a separate co-process would be started to make requests to that server.   If 
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the program used a Graphical User Interface (GUI), T&E developed GUI automation scripts 

to interact with the program. 

6.1.1 GUI automation scripts 

T&E had to develop a GUI automation solution that: 

 Worked on Linux (Ubuntu 12.04, and CentOS 6.5) 

 Emulated mouse and keyboard without directly using back-end libraries—this 

helped integration with performer technology 

 Had the ability to tell if a button or screen was available to click on, rather than 

blindly relying on timing 

 Used scripts that could be provided to performer teams 

T&E considered the following solutions: 

 Xmacro (http://xmacro.sourceforge.net/) 

o Pros: Allowed an X session to be recorded and replayed 

o Cons:  

 Old program, last updated in 2000 

 Written for Ubuntu not CentOS 

 AutoKey (https://code.google.com/p/autokey/) 

o Pros: Scripts written in Python 

o Cons: 

 Poor examples when doing complex tasks such as mouse control 

 Crashed on system with no error message, difficult to debug scripts 

 No updates in 2 years 

 Sikuli (http://www.sikulix.com/) 

o Pros:  

 Easy scripting, possible to determine if a button existed before 

attempting to click 

 Used OCR and jython 

 Used java.awt.Robot, which created native mouse and keyboard 

inputs 

o Cons: Used Java 

T&E settled on Sikuli v. 1.1 as the best choice for GUI automation.  The programmer would 

write python scripts that used the Sikuli library to interact with the graphical user 

interface.  The Sikuli library provided functions to check the contents of the screen, identify 

if a button or window existed before attempting to click on it, provide native mouse clicks 

and keyboard inputs, and capture screen images.  Since the Sikuli scripts were embedded in 

Python, the programmer had access to the full suite of Python features, and could create 

relatively robust scripts. 
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GUI automation was a difficult task, especially when the automation needed to provide 

repeatable results over tens of thousands of runs.  For instance, T&E discovered problems 

with Ubuntu placing notification windows on the screen as part of standard update 

management.  These notification windows pulled focus to themselves, causing Sikuli mouse 

clicks and keyboard inputs to be directed away from the intended application.  

Furthermore, the notification windows altered the appearance of the screen, causing 

failures in screen content checks.  T&E was able to resolve problems as they arose, but the 

unexpected behavior of GUIs made it difficult to identify all possible problems. 

6.2 Examples of output checks 

In the simplest case, an output check involved checking the return code of the base 

program.  More complicated checks looked for a particular string (or regular expression) in 

standard out or standard error when the program was run.   Other output checks looked 

for particular files with particular contents to be created in known locations, or for the base 

program to complete execution within the timeout window (or not to complete within the 

timeout window).   

The output checks for base programs were specified in the XML file for the base program.  

These output checks could be arbitrarily nested Boolean expressions, combining the results 

of multiple different simple output checks. 
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7 Identifying Injection Points 

T&E needed to identify points within the base programs that would execute every time the 

base program was run on any of the 10 chosen base program inputs.  To identify such 

points, T&E used the injection systems (ss_vuln_injector for C/Binary and ss_vinject4j for 

Java) to alter the base programs to log every time a function or method was entered.  

Because of the limitations of the injection frameworks described in Section 1, it was not 

possible to inject function logging into every file.  However, the vast majority of files were 

injected with these logging methods.  After a base program had been injected with a logging 

method in all (or almost all) functions, the base program was called “log-injected”.    

T&E then ran each log-injected base program on all 10 base program inputs to generate a 

list of every function called by each input.  Figure 6 provides a simplified graphical 

depiction (using only 3 base program inputs) of how possible injection points were 

identified.   For each input, T&E generated a log file of all functions called by the base 

program on that input.  These log files correspond to the circles in Figure 6.  T&E then took 

the intersection of these lists of function to obtain the central part of the diagram: the 

functions executed by every input to the base program.  There were typically 10s to 1000s 

of functions called by every input to the base program. 
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Figure 6 Identifying Possible Injection Points 

From this intersected set of functions, 10 functions were chosen to be injection points.  

When executing the base program on each of the 10 base program inputs, each injection 

point was called at least one time.  

For servers, the injection point could be called before the server loop was established or 

after.  There was no guarantee that the server loop was already running when the injection 

point was called.  It would be possible to add such a guarantee, but it would require 

additional instrumentation.  In particular, code would have to be added to the server loop 

to set a global flag when the loop has been established and unset the flag when the server 

loop was exited.  The logging functions would have to be changed to only log entries into 

functions when the global server-loop flag was set.  Later, when the base programs run 

with injected weakness code, the weakness should not fire unless the server-loop flag was 

set. 

After selecting 10 injection points, T&E ran automated tests to further verify that the 

injection points were actually being executed at run-time.  T&E created dummy 

weaknesses in both C (C-C101B) and Java (J-C101B) that output a special value to standard 

error when the dummy weakness was run.  T&E then altered the packager to have special 
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behavior when injecting these particular weaknesses.  In this case only, the packager would 

remove any output checks normally used for the base programs, and in their place put a 

single output check for the special value output by C-C101B and J-C101B.  T&E then ran all 

10 injection points for all 12 base programs for all 10 input values, and checked that the 

single specialized output check was satisfied.  T&E was thus able to verify that each 

injection point ran successfully every time it should. 

For the test programs (C-Tree, J-Tree, Grep, and JMeter), only one injection point was used, 

to simplify testing.  Since the test programs had a small number of inputs and only a single 

injection point, T&E verified by hand that the injection point was executed for each of the 

inputs. 
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8 Developing Taint Sources 

In accordance with the Test Case Generation Plan, T&E developed four different taint 

sources: 

 Environment Variable 

 File Read 

 Socket 

 Shared Memory (C only) 

In C, these taint sources existed as snippets that were injected into the base program.  In 

Java, these taint sources were created using the Eclipse JDT backend.  The code that created 

the taint sources also provided output functions to be used by the weaknesses.  

T&E needed to keep weaknesses from sending output to standard out or standard error, so 

as not to interfere with the output naturally created by the base program.  This was 

especially important since many output checks for normal base program operation rely on 

examining the contents of standard out or standard error.  Accordingly, T&E developed 

special output functions for both C and Java that would send output to a known location 

based on the type of the taint source.    For taint sources environment variable, file read, 

and shared memory, any output from the weakness was sent to a log file at a known 

location. For socket taint source, however, any output from the weakness was sent back 

along the socket, and the receiving socket output the returned data to a log file at a known 

location. 

Socket taint source provided an additional complication, because using a socket in this 

fashion turned any base program into a server.  When a base program had a socket taint 

source, it started a server loop looking for data on that socket.  If the data sent to the socket 

had a specified format, the socket taint source passed the data on to the weakness code. If 

the data sent to the socket did not have the specified format, the socket taint source echoed 

the data directly back along the socket. Performer technology was not allowed to simply 

exit from a server program, regardless of whether the server was intrinsic to the base 

program (like PostgreSQL or Subversion svnserve) or was inserted as a socket taint source.  

Exiting from a server program in response to a weakness results in a Denial of Service. 





 IARPA STONESOUP Phase 3 Test Generation Report  

35 Approved for public release; distribution unlimited. 12 December 2014 

9 Developing Complexity Features 

In accordance with the Test Case Generation Plan, T&E developed three different classes of 

complexity features: 

 Control flow 

 Data flow 

 Data type 

These terms are defined in the Test Data Generation Plan, but we summarize the 

information here. 

Control flow refers to the order in which individual instructions are executed.  An example 

of a control flow feature is RECURSIVE, in which a function invokes itself recursively.  In 

this control flow, the data that triggers the weakness is provided before the recursive call, 

and the vulnerability is triggered inside the recursive call. 

Data flow refers to how code passes a source input through the program.  An example of a 

data flow feature is INDEX_ALIAS_1, in which a pointer to the user data is placed into an 

element of a larger array.  The weakness code subsequently extracts the user data from the 

appropriate index of the array, and uses it to trigger the vulnerability. 

Data type refers to how data moves through different types before it is used.  An example of 

a data type feature is VOID_POINTER, in which a pointer to user data is placed into a 

variable with type void*.  The data is later extracted from the void* and used to trigger the 

vulnerability. 

The complexity features developed by T&E were injected directly into the AST using API 

calls into ROSE (for C) or the Eclipse JDT (for Java).  In Phase 2, T&E injected only one 

complexity feature into each test case, but the injection systems provided the ability to 

inject multiple complexity features.  For Phase 3, T&E settled on adding three complexity 

features, one from each class: first control flow, then data flow, then data type.  This 

resulted in a large number of possible combined complexity features, as shown in Table 6. 

Table 6 Number of Complexity Features 

Complexity Feature C Java 

Control Flow 13 17 

Data Flow 17 6 

Data Type 7 3 

Total Phase 3 Complexity Feature 

Permutations 

13 x 17 x 7 = 1547 17 x 6 x 3 = 306 
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The Callback control flow feature causes some issues when it interacted with the Socket 

taint source, the Array data type, and with any data flow.  In particular: 

 In C, the socket taint source could not be used with the callback control flow feature, 

because both of them rely on callbacks.  If the user requested this combination, the 

callback control flow feature was replaced with a dummy callback, because a 

callback already existed in the socket taint source. 

 If the user requested a Callback control flow, the callback must occur before any 

data-flow features and it must also occur before an Array data type feature, in order 

to pass information correctly to the weakness.  If the user requested either of these 

combinations, the injection system re-ordered the features to place the callback 

control flow before any data-flow features.  In practice, this re-ordering did not 

occur, since T&E always ordered the complexity features as shown in the table 

above (control flow, then data flow, then data type).  This means that any Callback 

control flow happened before any data flow or data type, and so there was no need 

for re-ordering. 

For C, there were 1547 possible complexity feature combinations, and since there were 4 

taint sources, there were 1547 x 4 = 6188 possible taint source/complexity feature 

combinations.  For Java, there were 306 possible complexity feature combinations and 3 

taint sources, resulting in 306 x 3 = 918 possible taint source/complexity feature 

combinations.  

T&E developed unit tests to validate the behavior of the combined complexity features and 

taint sources, so as to resolve compatibility problems before injecting into base programs. 
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10 Developing Weakness Snippets 

10.1 Initial Weakness Approach 

T&E began developing weaknesses for C using the ROSE Compiler Infrastructure.  For each 

weakness, T&E wrote code in C that would execute the weakness.  T&E then wrote C++ 

code that would use the ROSE Compiler Infrastructure to add those C statements to the 

Abstract Syntax Tree (AST) of the base program.  There was a factor of 10 blow-up in lines 

of code from the C code to the C++ code that generated it.  In addition, because the C++ 

code that actually generated the weakness was one stage removed from the desired C 

weakness code, it was difficult to maintain and update the weaknesses.  Making subsequent 

changes to the weakness was a slow and error-prone task because of the abstracted nature 

of the C++ code generating the C code.   

10.2 Snippet Weaknesses in Java 

T&E initially hoped to use the ROSE Compiler Infrastructure to inject Java weaknesses as 

well as C weaknesses.  However, the Java portion of the ROSE compiler was not as fully 

developed as the C portion and was buggy, error-prone, slow, and limited in its 

functionality.  Consequently, T&E explored using the Eclipse JDT to inject Java weaknesses.  

Because Eclipse was a commercial tool with a large installed user base, the interface was 

much cleaner, and the functionality was more complete.   

The Eclipse JDT provided the ability to read in code from two separate files, attach portions 

of the AST from one file to the AST from the other, and then output the modified AST.  This 

meant that it was possible to write weakness snippet code that would be directly translated 

into an AST, without a programmer having to hand-construct the AST nodes.  This sped up 

weakness development considerably, and also allowed the weaknesses to be much easier 

to maintain, understand, and alter. 

10.3 Snippet Weaknesses in C 

Building on the success of the snippet weakness approach in the Eclipse JDT, T&E tested a 

snippet weakness functionality provided by the ROSE compiler infrastructure for C.  This 

functionality allowed T&E to write weakness snippets directly in C, have the ROSE compiler 

turn the snippets directly into ASTs, and then attach those ASTs to the AST for the base 

program, and output the modified AST.   

However, the ROSE C snippet functionality did not have a substantial existing user base, 

and so the snippet functionality was not as robust as that provided by the Eclipse JDT.  Also, 

the difficulties arising from C preprocessor commands affected the snippet functionality, 

especially when the snippets used external header files with complicated preprocessor 

directives.  These issues were so pervasive that T&E could not implement all the required 

snippets using the ROSE compiler snippet functionality. 
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To resolve these problems while still taking advantage of snippets, T&E then modified the C 

injection system (ss_vuln_injector) to have a pre-processor driven snippet injection tool.  

This snippet injection tool read in code from a file and modified necessary variable names 

by using pre-processor directives.  It then attached that code to a node in the ROSE 

compiler AST using ROSE’s ability to attach arbitrary text to a node.  This allowed code 

from the snippet to be inserted into the base program, without having to convert it fully to 

an AST, thereby bypassing the pre-processor issues.  With this solution, T&E was able to 

implement all C weakness snippets directly in C, without having to hand-construct AST 

nodes with the ROSE Compiler Infrastructure. 

10.4 Snippet Weakness Classes 

T&E developed weakness snippets for 6 different weakness classes for C and Java.  Each 

weakness snippet corresponded to a Common Weakness Enumeration (CWE), but there 

was often more than one algorithmic variant of weakness for a particular CWE.  T&E 

developed the weakness snippets summarized in Table 7. 

Table 7 Number of Weakness Snippets 

Weakness Class 
C Java 

CWEs Snippets CWEs Snippets 

Concurrency Handling 15 16 15 15 

Error Handling - - 8 9 

Injection 3 8 4 8 

Memory Corruption 17 43 - - 

Null Pointer 1 7 - - 

Number Handling 9 11 8 9 

Resource Drains 11 13 9 11 

Tainted Data - - 6 8 

Total 56 98 50 60 

 

For each weakness snippet, T&E developed benign input values that would not cause any 

technical impact, and exploit input values that caused some kind of technical impact (denial 

of service, information leakage, etc.)  For C weaknesses, T&E developed 3 benign inputs and 

2 exploit inputs.  For Java weaknesses, T&E developed either 2 or 3 benign inputs and 2 

exploit inputs. 

T&E developed unit tests to verify that each weakness could be injected successfully with 

any possible taint source.  These tests verified that the injected code could be compiled and 

that the YAML was well-formed.  However, these tests did not run the injected code or 

check that inputs were actually benign or exploiting, because such tests would require the 

significant overhead of a system like TEXAS. 
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The weaknesses are described in detail in the STONESOUP Test and Evaluation Weakness 

Documentation.  All weakness snippets were validated by the Independent Verification and 

Validation (IV&V) Team.  T&E addressed all issues raised by IV&V regarding the snippets. 

10.5 C/Binary Weaknesses 

T&E developed the following CWEs for C.  Some weaknesses have more than one snippet. 

 Number Handling 

o CWE-190: Integer Overflow or Wraparound 

o CWE-191: Integer Underflow (Wrap or Wraparound) 

o CWE-194: Unexpected Sign Extension 

o CWE-195: Signed to Unsigned Conversion Error 

o CWE-196: Unsigned to Signed Conversion Error 

o CWE-197: Numeric Truncation Error 

o CWE-369: Divide By Zero 

o CWE-682: Incorrect Calculation 

o CWE-839: Numeric Range Comparison without Minimum Check. 

 Resource Drains 

o CWE-400: Uncontrolled Resource Consumption (‘Resource Exhaustion’) 

o CWE-401: Failure to Release Memory Before Removing Last Reference  

(‘Memory Leak’) 

o CWE-459: Incomplete Cleanup 

o CWE-674: Uncontrolled Recursion 

o CWE-771: Missing Reference to Active Allocated Resource 

o CWE-773: Missing Reference to Active File Descriptor or Handle 

o CWE-774: Allocation of File Descriptors or Handles Without Limits or 

Throttling 

o CWE-775: Missing Release of File Descriptor or Handle after Effective 

Lifetime 

o CWE-789: Uncontrolled Memory Allocation 

o CWE-834: Excessive Iteration  

o CWE-835: Infinite Loop 

 Injection 

o CWE-78: Improper Neutralization of Special Elements used in an OS 

Command (‘OS Command Injection’) 

o CWE-88: Argument Injection or Modification 

o CWE-89: Improper Neutralization of Special Elements used in an SQL 

Command (‘SQL Injection’) 

 Concurrency Handling 

o CWE-363: Race Condition Enabling Link Following 

o CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition 
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o CWE-412: Unrestricted Externally Accessible Lock 

o CWE-414: Missing Lock Check 

o CWE-479: Signal Handler Use of a Non-reentrant Function 

o CWE-543: Use of Singleton Pattern Without Synchronization in a 

Multithreaded Context 

o CWE-609: Double-Checked Locking 

o CWE-663: Use of a Non-reentrant Function in an Unsynchronized Context 

o CWE-764: Multiple Locks of a Critical Resource 

o CWE-765: Multiple Unlocks of a Critical Resource 

o CWE-820: Missing Synchronization 

o CWE-821: Incorrect Synchronization 

o CWE-828: Signal Handler with Functionality that is not Asynchronous-Safe 

o CWE-831: Signal Handler Function Associated with Multiple Signals 

o CWE-833: Deadlock 

 Memory Corruption 

o CWE-120: Buffer Copy without Checking Size of Input (‘Classic Buffer 

Overflow’) 

o CWE-124: Buffer Underwrite (‘Buffer Underflow’) 

o CWE-126: Buffer Over-read 

o CWE-127: Buffer Under-read 

o CWE-129: Improper Validation of Array Index 

o CWE-134: Uncontrolled Format String 

o CWE-170: Improper Null Termination 

o CWE-415: Double Free 

o CWE-416: Use After Free 

o CWE-590: Free of Invalid Pointer Not on the Heap 

o CWE-761: Free of Pointer not at Start of Buffer 

o CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer 

o CWE-805: Buffer Access with Incorrect Length Value 

o CWE-806: Buffer Access Using Size of Source Buffer 

o CWE-822: Untrusted Pointer Dereference 

o CWE-824: Access of Uninitialized Pointer 

o CWE-843 Access of Resource Using Incompatible Type (‘Type Confusion’) 

 Null Pointer Errors 

o CWE-476: NULL Pointer Dereference 
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10.5.1 Weaknesses not implemented in C 

Some CWEs were called for in the TGP, but were not implemented in C for one or more of 

the following reasons: 

 Entirely covered by other CWEs 

 Not possible to implement this CWE in C 

 Not possible to automate testing for this CWE 

 Cannot mitigate this CWE without application-specific knowledge 

The following CWEs were not implemented in C: 

 Resource Drains 

o CWE-404: Improper Resource Shutdown or Release 

o CWE-762: Mismatched Memory Management Routines 

o CWE-770: Allocation of Resources Without Limits or Throttling 

 Injection 

o CWE-564: SQL Injection: Hibernate. 

 Concurrency Handling 

o CWE-362: Race Condition 

o CWE-364: Signal Handler Race Condition 

o CWE-365: Race Condition in Switch 

o CWE-366: Race Condition within a Thread 

o CWE-558: Use of getlogin() in Multithreaded Application 

o CWE-567: Unsynchronized Access to Shared Data in a Multithreaded Context 

o CWE-572: Call to Thread run() instead of start() 

o CWE-832: Unlock of a Resource that is not Locked 

 Memory Corruption 

o CWE-762: Mismatched Memory Management Routines 

10.6 Java Weaknesses 

T&E developed the following CWEs for Java.  Some weaknesses have more than one 

snippet. 

 Number Handling 

o CWE-190: Integer Overflow or Wraparound 

o CWE-191: Integer Underflow (Wrap or Wraparound) 

o CWE-194: Unexpected Sign Extension 

o CWE-195: Signed to Unsigned Conversion Error 

o CWE-196: Unsigned to Signed Conversion Error 

o CWE-197: Numeric Truncation Error 

o CWE-369: Divide By Zero 

o CWE-839: Numeric Range Comparison without Minimum Check 
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 Tainted Data 

o CWE-15: External Control of System or Configuration Setting 

o CWE-23: Relative Path Traversal 

o CWE-36: Absolute Path Traversal 

o CWE-41: Improper Resolution of Path Equivalence 

o CWE-239: Failure to Handle Incomplete Element 

o CWE-606: Unchecked Input for Loop Condition. 

 Error Handling 

o CWE-209: Information Exposure Through an Error Message 

o CWE-248: Uncaught Exception 

o CWE-252: Unchecked Return Value 

o CWE-253: Incorrect Check of Function Return Value 

o CWE-390: Detection of Error Condition Without Action 

o CWE-391: Unchecked Error Condition 

o CWE-460: Improper Cleanup on Thrown Exception 

o CWE-584: Return Inside Finally Block 

 Resource Drain 

o CWE-400: Uncontrolled Resource Consumption (‘Resource Exhaustion’) 

o CWE-459: Incomplete Cleanup 

o CWE-674: Uncontrolled Recursion 

o CWE-773: Missing Reference to Active File Descriptor or Handle 

o CWE-774: Allocation of File Descriptors or Handles Without Limits or 

Throttling 

o CWE-775: Missing Release of File Descriptor or Handle after Effective 

Lifetime 

o CWE-789: Uncontrolled Memory Allocation 

o CWE-834: Excessive Iteration 

o CWE-835: Infinite Loop 

 Injection 

o CWE-78: Improper Neutralization of Special Elements used in an OS 

Command (‘OS Command Injection’) 

o CWE-88: Argument Injection or Modification 

o CWE-89: Improper Neutralization of Special Elements used in an SQL 

Command (‘SQL Injection’) 

o CWE-564: SQL Injection: Hibernate. 

 Concurrency Handling 

o CWE-363: Race Condition Enabling Link Following 

o CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition 

o CWE-412: Unrestricted Externally Accessible Lock 
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o CWE-414: Missing Lock Check 

o CWE-543: Use of Singleton Pattern Without Synchronization in a 

Multithreaded Context 

o CWE-567: Unsynchronized Access to Shared Data in a Multithreaded Context 

o CWE-572: Call to Thread run() instead of start() 

o CWE-609: Double-Checked Locking 

o CWE-663: Use of a Non-reentrant Function in an Unsynchronized Context 

o CWE-764: Multiple Locks of a Critical Resource 

o CWE-765: Multiple Unlocks of a Critical Resource 

o CWE-820: Missing Synchronization 

o CWE-821: Incorrect Synchronization 

o CWE-832: Unlock of a Resource that is not Locked 

o CWE-833: Deadlock 

10.6.1 Weaknesses Not Implemented in Java 

Some CWEs were called for in the TGP, but were not implemented in Java for one or more 

of the following reasons: 

 Entirely covered by other CWEs 

 Not possible to implement this CWE in Java 

 Not possible to automate testing for this CWE 

 Cannot mitigate this CWE without application-specific knowledge 

The following CWEs were not implemented in Java: 

 Number Handling 

o CWE-682: Incorrect Calculation 

 Error Handling 

o CWE-273: Improper Check for Dropped Privileges 

o CWE-274: Improper Handling of Insufficient Privileges 

o CWE-280: Improper Handling of Insufficient Permissions or Privileges 

o CWE-394: Unexpected Status Code or Return Value 

o CWE-395: Use of Null Pointer Exception Catch to Detect NULL Pointer 

Dereference 

o CWE-396: Declaration of Catch for Generic Exception 

o CWE-397: Declaration of Throws for Generic Exception 

o CWE-600: Failure to Catch All Exceptions in Servlet 

o CWE-617: Reachable Assertion. 

o CWE-698 Redirect without Exit. 

 Resource Drain 

o CWE-401: Failure to Release Memory Before Removing Last Reference  

(‘Memory Leak’) 
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o CWE-404: Improper Resource Shutdown or Release 

o CWE-762: Mismatched Memory Management Routines 

o CWE-770: Allocation of Resources Without Limits or Throttling 

o CWE-771: Missing Reference to Active Allocated Resource 

 Concurrency Handling 

o CWE-362: Race Condition 

o CWE-364: Signal Handler Race Condition 

o CWE-365: Race Condition in Switch 

o CWE-366: Race Condition within a Thread 

o CWE-479: Signal Handler Use of a Non-reentrant Function 

o CWE-558: Use of getlogin() in Multithreaded Application 

o CWE-828: Signal Handler with Functionality that is not Asynchronous-Safe 

o CWE-831: Signal Handler Function Associated with Multiple Signals 
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11 Trace data 

To aid in debugging weaknesses and in evaluating the performance characteristics of the 

performer technology, T&E added trace statements using the Linux Trace Toolkit Next 

Generation (LTTng), available at https://lttng.org/.  This was a lightweight tracing solution 

that allows tracing to be activated or not at run-time, and that outputs time stamps and 

specified data (include memory addresses and return pointer contents) to a trace file for 

later analysis. 

T&E added trace statements at the beginning and end of the program, at the beginning and 

end of each weakness, and at points throughout the weakness.  Within the weakness, T&E 

added trace statements before and after the crossover point, which was the point at which 

the system enters an unintended state, and before and after the trigger point, which was 

the point at which the system experiences a negative technical impact.  It was not always 

possible to place a trace statement after the trigger point.  For instance, if the trigger 

happened upon return from the weakness stack frame, there was no way to inject a trace 

statement after that return occurred, because that code location was not available at 

compile-time.  In addition, if the weakness triggered a system crash, any trace statement 

placed after the trigger would not be executed.   

T&E additionally placed trace statements at locations that would help a reviewer 

understand the behavior of the weakness code, including at the beginning of most function 

bodies within the weakness.  Trace statements were omitted from function bodies that 

were called hundreds of times (or more), to keep the size of the trace logs manageable.  

The trace statements within the weakness allowed T&E to verify test cases were running as 

expected.  This was especially useful for test cases that were multi-threaded, such as 

concurrency-handling weaknesses.  It was also useful for post-hoc analysis of failing test 

cases.  

For more details on LTTng trace data, and its use in performance analysis, see the 

STONESOUP Phase 3 Test and Evaluation Final Report. 
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12 Corpus Specification Generation 

The automated injection system allowed the generation of a large number of test cases to 

use in evaluating performer technology.  To construct a test case, the user must select 

values for the following: 

 Weakness and algorithmic variant 

 Base program 

 Injection point 

 Taint source 

 Control flow complexity feature 

 Data flow complexity feature 

 Data type complexity feature 

Weakness classes have different numbers of algorithmic variants, so the number of 

different possible test cases is different for each weakness class. 

Table 8 indicates the number of choices for each of the parameters except weakness and 

algorithmic variant in C and in Java.   

Table 8 Number of choices for test case parameters, except weakness 

Test Case Parameter C/Binary Java 

Base Program 6 6 

Injection Points 10 10 

Taint Source 4 3 

Control Flow Complexity Features 10 12 

Data Flow Complexity Features 11 6 

Data Type Complexity Features 7 3 

 

These parameters could all be set independently, so for each weakness algorithmic variant, 

the number of possible combinations of other parameters is: 

 6 x 10 x 4 x 10 x 11 x 7 = 184,800 combinations for C/Binary 

 6 x 10 x 3 x 12 x 6 x 3 = 38,800 combinations for Java 

Table 9 shows the number of snippets and the number of possible test cases for each 

weakness class.   
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Table 9 Possible test cases for each weakness class 

Weakness Class 

C/Binary Java 

Snippets Possible Test 

Cases 

Snippets Possible Test 

Cases 

Concurrency Handling 16 2,956,800 15 582,000 

Error Handling - - 9 349.200 

Injection 8 1,478,400 8 310,400 

Memory Corruption 43 7,946,400 - - 

Null Pointer 7 1,293,600 - - 

Number Handling 11 2,032,800 9 349.200 

Resource Drains 13 2,402,400 11 426,800 

Tainted Data - - 8 310,400 

Because of constraints of time and processing power, it was not possible to run every single 

one of these test cases.  Accordingly, T&E developed a test corpus consisting of a subset of 

these test cases. 

For each performer, T&E selected test cases at random from each appropriate weakness 

class, subject to constraints on the outcome distribution.  Table 10 shows the number of 

test cases selected from each weakness class for each performer. 

Table 10 Number of test cases per weakness class 

Performer Language Number of test cases  chosen per weakness class 

Columbia C 531 

Grammatech Binary 637 

Kestrel Java 478 

 

To develop the corpus specification, T&E wrote a program that generated possible test case 

names and then validated each test case name for uniformity on various axes.   Uniformity 

was defined as the lowest possible delta between the counts of each of the possible values.   

The algorithm selected values for axes in the following order: 

 Language 

 Weakness class 

 Weakness and algorithmic variant within weakness class 

 Base program 

 Injection point within base program 

 Taint source 

 Control flow 

 Data flow 

 Data type 
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Figure 7 illustrates the process used to generate a test corpus specification.  For each axis 

in order, the algorithm picked a value for that axis that had been used the least in the 

previously accepted test case names.  It then checked that the new value, in combination 

with the values chosen for the previous axes, passed all required uniformity checks.  If any 

uniformity check failed, the algorithm chose a different least-used value for the axis and 

tried again.  If no choice of value for the axis satisfied all uniformity checks, the algorithm 

recursively fell back to the previous axis, and tried again. 

 

Figure 7 Process for Test Corpus Generation Algorithm 

 

The test corpus developed by T&E was as uniform as possible on several specified subsets 

of the test case parameters.  In particular, T&E tested for uniformity on the following 

individual parameters: 

 Weakness Class 

 Weakness within Weakness Class 

 Base Program  

 Injection Point 

 Taint Source 

 Control Flow 

 Data Flow 

 Data Type 

In addition, T&E tested for uniformity on the following combinations of parameters: 

 Base Program/Injection Point 

 Base Program/Taint Source 

 Base Program/Control Flow 

 Base Program/Data Flow 

 Base Program/Data Type 

 Taint Source/Control Flow 

 Taint Source/Data Flow 
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 Taint Source/Data Type 

 Data Flow/Control Flow 

 Data Type/Control Flow 

 Data Type/Data Flow 

 Weakness/Base Program 

 Weakness/Taint Source 

 Weakness/Control Flow 

 Weakness/Data Flow 

 Weakness/Data Type 

 Taint Source/Data Type/Control Flow 

 Taint Source/Data Type/Data Flow 

 Taint Source/Data Flow/Control Flow 

 Taint Source/Data Type/Data Flow/Control Flow 

 Weakness/Base Program/Injection Point 

Each of these checks was required to be separately as uniform as possible with the entire 

collection of checks providing optimum uniformity.    

A full discussion of corpus specification generation, including the tests used to measure 

uniformity and the statistical metrics of the final specification corpus is included in the 

STONESOUP Phase 3 Test and Evaluation Final Report. 
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13 Packaging Test Cases 

The packager was contained in the ss_testcases repository.  This tool combined all the 

necessary components into a test case that could be run by TEXAS. Figure 2 in Section 2.4 

shows the inputs and outputs for the packager. 

13.1 Inputs to Packager 

The packager took as input the following items: 

 Test case name 

 Base program information 

 Weakness information 

13.1.1 Test Case Name 

The test case name provided the following information: 

 Base program 

 Injection point for the base program 

 Taint source type 

 Control flow complexity feature 

 Data flow complexity feature 

 Data type complexity feature 

13.1.2 Base Program 

The packager required the following information for the base program: 

 Source code, modified to respect library environment variables and to be able to be 

processed by the injection system 

 Skeleton, which was the directory structure used by base program inputs 

 XML containing: 

o Instructions for building base program 

o For each of the 10 different inputs: 

 Instructions for running base program for this input 

 Pre-processes required to run before the base program was run, e.g.: 

 Setting environment variables 

 Creating files with particular contents in particular directories 

 Running scripts to make sure that the system was in the 

correct state for the test case 

 Co-processes required to run at the same time the base program was 

run, e.g: 

 Running a client program for a server program 

 Running a script to provide automated GUI input 

 Post-processes required to run after the base program was run, e.g.: 
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 Shutting down a server operating during the test case 

 Output checks to verify that the input ran as expected.  These could be 

arbitrarily nested Boolean expressions, and could include such tests 

as: 

 Looking in a particular location for a particular string  

 Looking in a particular location for a specified regular 

expression 

 Checking that a particular file was created with particular 

contents 

 Checking that the test case did (or did not) time out.  

The pre-, co-, and post-processes were a general interface allowing any script to be run to 

support the test case.  The processes could be run sequentially or in parallel, and a 

collection of processes (run sequentially or in parallel) could be nested arbitrarily. 

The packager required the following information for the weakness snippet: 

 Snippet source code 

 Snippet YAML, containing: 

o 2 or 3 benign inputs that would exercise the weakness without having a 

technical impact.  

o 2 exploit inputs that would cause some kind of technical impact, such as 

denial of service or information exposure 

For each benign or exploit input, the snippet YAML file provided the value that would be 

provided to the program through the taint source.  In addition, for each benign or exploit 

input, the snippet YAML file could specify other pre-, co-, or post-processes that needed to 

run to support the snippet.  These processes were a generalized structure to run any kind 

of script.  They could do things like set up particular environment variables or files, run co-

processes to coordinate actions of concurrency weaknesses, or run post-processes to clean 

up large files generated by the weakness. 

The snippet YAML file did not contain output checks or technical impacts for the exploit 

inputs.  Due to schedule constraints, the technical impact and output checks for exploit 

inputs were contained in the code of the packager.  Given more programming resources, it 

would make sense to move these checks to the snippet YAML files themselves, but this 

would require a significant effort. 
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13.2 Outputs from Packager 

The packager produced a test case tarball suitable for running in TEXAS.  This tarball 

contains: 

 The injected base program 

 The injected skeleton 

 The injected YAML 

 The inject XML 

13.2.1 Injected Base Program 

The injected base program was created when the injection system (ss_vuln_injector for 

C/Binary or ss_vinject4j for Java) processed a base program.  The injection system began by 

reading in a base program that had been appropriately modified by T&E to respect library 

environment variables and to allow processing by the injection system.  The injection 

system inserted the atomic barrier, and within that inserted the taint source, complexity 

features, and weakness specified by the test case name.  The injection system then output 

the source code for use in the test case tarball. 

13.2.2 Injected Skeleton 

The packager created the injected skeleton beginning with the base program skeleton, 

which provided necessary files for running the base program.  It then added to that 

skeleton files that were required for the chosen weakness.   For instance, if the test case 

name specified the socket taint, then the skeleton would need to have access to the 

service_mon.sh script, which checked whether a service was up or not.  This script was 

placed into the skeleton’s scripts directory, and instructions were added to the injected 

XML file to run this script as a co-process.   Similarly, if the test case name specified the 

shared memory taint, then the skeleton would need scripts to establish and tear down the 

shared memory, and the injected XML file would need instructions to run those scripts 

when appropriate.  If the weakness required a common script such as the runFifos.py script 

used by concurrency weaknesses, that script would also be downloaded into the skeleton’s 

scripts folder. 

13.2.3 Injected YAML 

The packager created the injected YAML beginning with the YAML for the chosen 

weakness.  It added details about the injection point, the taint source, and the code 

complexity features used in the test case.  It provided input details for 2 or 3 inputs that 

result in benign behavior by the weakness, and 2 inputs that result in exploit behavior by 

the weakness.   
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13.2.4 Injected XML 

The packager created the injected XML from the base program XML and the injected YAML.  

The base program XML provided the necessary instructions for building and running the 

base program.  The injected YAML provided the necessary inputs for running the weakness, 

either in a benign fashion or an exploit fashion.  

The injected XML file had 10 good IO pairs and 2 bad IO pairs.  Each IO pair had: 

 Inputs for the base program, and  

 Inputs for the weakness 

The 10 good IO pairs each had: 

 One of the 10 possible inputs for the base program, selected in order 

 One of the 2 or 3 benign inputs for the weakness, chosen by cycling deterministically 

through the available benign inputs 

The 2 bad IO pairs each had:  

 One of the 10 possible inputs for the base program, selected at random with 

replacement 

 One of the 2 exploit inputs for the weakness, selected in order 

In constructing the injected XML for each IO pair, the packager created: 

 Collection of pre-processes from: 

o Pre-processes for the appropriate base program input  

o Pre-processes for appropriate taint source 

o Pre-processes for appropriate weakness input 

 Run-command - Uses the run command for the appropriate base program input 

 Collection of co-processes from: 

o Co-processes for the appropriate base program input  

o Co-processes for appropriate taint source 

o Co-processes for appropriate weakness input 

 Collection of post-processes from: 

o Post-processes for the appropriate base program input  

o Post-processes for appropriate taint source 

o Post-processes for appropriate weakness input 

 Set of output checks: 

o For good IO pairs, used the output check for the appropriate input from the 

base program.  These output checks were specified in the base program XML 

file 
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o For bad IO pairs, used the output check for the appropriate exploit input 

from the weakness.  These output checks were specified in the packager 

source code. 

 Technical impact of weakness – NONE for benign inputs, and an explanation of the 

technical impact for exploit inputs.  The technical impact for each weakness exploit 

input was specified in the packager source code.  

The collections of pre-, co-, and post-processes were each an ordered group of actions.  

Processes could be run either sequentially or in parallel, and a process could consist of a 

sub-collection of processes that were themselves run either sequentially or in parallel.  

Collections of processes could be nested arbitrarily. 

The output checks consisted of a Boolean formula (with arbitrary nesting) of checks on 

return codes, checks for particular strings in particular locations, checks of script outputs, 

and checks of timeout (or not). 
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14 Debugging Test Cases in Base Programs 

Upon packaging test cases, T&E ran them through TEXAS to validate them. IV&V validated 

which test cases ran successfully through TEXAS under Stage One (without performer 

technology) and which had errors. 

TEXAS took as input a tarball for the test case.  It built the test case, using the instructions 

in the XML file to generate an analyze tarball.  Then it ran the test case on each of the 12 IO 

pairs (10 good and 2 bad), and generated an execute tarball for each IO pair.   

If a test case failed, T&E debugged the problem using the results of the analyze or execute 

tarball. This tarball contained: 

 The injected base program, with any modifications made by the build or run process 

 The injected skeleton, with any modifications made by the run process, including 

information written by the weakness to the designated log file 

 The injected YAML 

 The injected XML 

 Log data including: 

o LTTng trace data 

o Standard out and standard error for the build commands, and for each pre-

process, co-process, post-process, and run command 

To debug a test case, T&E generally began by examining the log files created by the various 

processes, and proceeded to look at the modifications made to the base program and the 

skeleton.  From there, T&E re-constructed the actions taken by the analyze or execute run 

to find the problem.  

 





 IARPA STONESOUP Phase 3 Test Generation Report  

59 Approved for public release; distribution unlimited. 12 December 2014 

15 Lessons Learned 

Automated test generation is a difficult task.  T&E notes the following lessons from this 

project: 

 Snippet functionality was absolutely essentially to writing and maintaining a large 

library of injectable code.  It was extremely difficult to maintain or update code that 

generated other code.  It was not a scalable process to write code that generated 

AST nodes that were then output as code.   

 GUI automation was a difficult and time-consuming task.  GUIs can utilize a wide 

variety of appearances and actions, because the entity interacting with them is 

usually a human being with robust error-correcting capability. GUIs are not 

designed to interact with automated systems that do not have such robust error-

correcting capability.  In addition GUIs may take an alternate path only a small 

percentage of the time, making recognizing and debugging issues more difficult still.  

Significant time must be allotted for multiple runs of GUI applications to observe 

and remove all bugs.  

 Dynamically loaded libraries would make it easier to add code to base programs.  

Having to alter a base program’s build processes to respect library environment 

variables requires a significant input of programmer time. It may be more efficient 

to use dynamically loaded libraries to access outside functionality, though such 

dynamic loading may create difficulties for performer technology. 

 Multi-level output checks were difficult to get right, because of their abstract nature 

and obtuse syntax.  They require hand-checking and careful thought to iron out 

problems. 
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Appendix A: Acronyms 
Table 11 Acronym List 

Acronym Acronym Definition 

API Application Programming Interface 

AST Abstract Syntax Tree 

CWE MITRE Common Weakness Enumeration 

Eclipse JDT Eclipse Java Development Toolkit 

GUI Graphical User Interface 

IARPA Intelligence Advanced Research Projects Activity 

IV&V STONESOUP Independent Verification and Validation Team 

JVM Java Virtual Machine 

LTTng Linux Trace Toolkit Next Generation 

STONESOUP Securely Taking On New Executable Software Of Uncertain Provenance 

T&E STONESOUP Phase 3 Test and Evaluation Team 

TGP STONESOUP Phase 3 Test Case Generation Plan 

TEXAS STONESOUP Phase 3 Test and Evaluation eXecution and Analysis System 

XML eXtensible Markup Language 

YAML YAML Ain’t Markup Language 

 


