
Approved for public release; distribution unlimited.

STONESOUP Phase 3

Test Generation Report

12 December 2014

This report was prepared by TASC, Inc., Ponte Technologies LLC, and i_SW LLC.
Supported by the Intelligence Advanced Research Projects Activity (IARPA), Research
Operational Support Environment (ROSE) contract number 2011-110902-00005-002.
The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation hereon.
Disclaimer: The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of IARPA or the U.S. Government.

STONESOUP

Securely Taking On Software of Uncertain Provenance

Intelligence Advanced Research Projects Activity

 IARPA STONESOUP Phase 3 Test Generation Report

ii Approved for public release; distribution unlimited. 12 December 2014

Table of Contents

1 Executive Summary ..1

2 Overview of Test Generation ..5

2.1 Select and Modify Base Programs ..5

2.2 Develop Weakness Code ...5

2.3 Inject Weakness Code ...6

2.4 Package Test Cases ...7

3 Selecting and Modifying Base Programs..9

3.1 Candidate base programs ...9

3.2 Scripting the build process ..10

4 Developing the Injection Framework ...13

4.1 Code Injection Overview ...13

4.2 Specific Injection Frameworks ..14

4.3 Atomic Barrier ...16

4.4 Other Injected Code ...18

5 Verifying the Identity Translation ..19

5.1 Modifying build process to use injection framework ..19

5.2 Modifying build process to use external libraries ...19

5.3 Performing the identity translation ..20

5.3.1 Translation issues in C ..20

5.3.2 Translation issues in Java ..21

5.4 Phase 3 base programs ..21

6 Choosing Inputs ..25

6.1 Examples of inputs ..25

6.1.1 GUI automation scripts ...26

6.2 Examples of output checks ..27

7 Identifying Injection Points ..29

8 Developing Taint Sources ...33

9 Developing Complexity Features ...35

10 Developing Weakness Snippets ..37

10.1 Initial Weakness Approach ...37

10.2 Snippet Weaknesses in Java ..37

10.3 Snippet Weaknesses in C ..37

10.4 Snippet Weakness Classes ...38

10.5 C/Binary Weaknesses ..39

10.5.1 Weaknesses not implemented in C ...41

10.6 Java Weaknesses ...41

10.6.1 Weaknesses Not Implemented in Java ..43

11 Trace data ..45

12 Corpus Specification Generation ..47

 IARPA STONESOUP Phase 3 Test Generation Report

iii Approved for public release; distribution unlimited. 12 December 2014

13 Packaging Test Cases..51

13.1 Inputs to Packager ...51

13.1.1 Test Case Name ..51

13.1.2 Base Program ..51

13.2 Outputs from Packager ..53

13.2.1 Injected Base Program ..53

13.2.2 Injected Skeleton ...53

13.2.3 Injected YAML ...53

13.2.4 Injected XML ..54

14 Debugging Test Cases in Base Programs ...57

15 Lessons Learned ...59

Appendix A: Acronyms .. A-1

 IARPA STONESOUP Phase 3 Test Generation Report

v Approved for public release; distribution unlimited. 12 December 2014

List of Figures

Figure 1 Code injected into each base program. ..7
Figure 2 Test Case Packager. ...8
Figure 3 Injection Framework Flow Chart – Single Source, Single Payload14
Figure 4 Injection Framework Flow Chart - Multiple Sources, Multiple

Payloads ...14
Figure 5 Inputs and outputs for injection system. ..16
Figure 6 Identifying Possible Injection Points ...30
Figure 7 Process for Test Corpus Generation Algorithm ...49

 IARPA STONESOUP Phase 3 Test Generation Report

vii Approved for public release; distribution unlimited. 12 December 2014

List of Tables

Table 1 Performer teams ...1
Table 2 Weakness Classes Mapped to Language and Common Weakness

Enumerations ...2
Table 3 C/Binary Base Programs ..22

Table 4 Java Base Programs ...22
Table 5 Test Programs ..23
Table 6 Number of Complexity Features ..35
Table 7 Number of Weakness Snippets ..38
Table 8 Number of choices for test case parameters, except weakness47

Table 9 Possible test cases for each weakness class ...48
Table 10 Number of test cases per weakness class ...48

Table 11 Acronym List .. A-1

 IARPA STONESOUP Phase 3 Test Generation Report

viii Approved for public release; distribution unlimited. 12 December 2014

 IARPA STONESOUP Phase 3 Test Generation Report

1 Approved for public release; distribution unlimited. 12 December 2014

1 Executive Summary

The Intelligence Advanced Research Projects Activity (IARPA) project STONESOUP

(Securely Taking On New Executable Software Of Uncertain Provenance) aimed to

eliminate the effects of vulnerabilities in software applications by (a) extending the scope

and capability of approaches for analysis, confinement, and diversification; (b) addressing a

wide range of security vulnerabilities within the same framework; and (c) integrating

approaches to leverage the strengths and weaknesses of each. The program aimed to

provide comprehensive, automated techniques for vulnerability reduction in software of

uncertain provenance.

To determine the effectiveness of the performer technology at mitigating software

vulnerabilities, the STONESOUP Test and Evaluation Team (T&E) developed an automated

system to create, run, and evaluate thousands of test cases using performer technology. In

this effort, the Test Generation Team developed thousands of programs each with a known

vulnerability that could be exploited by a user. The T&E Team developed the Test and

Evaluation eXecution and Analysis System (TEXAS) that could run these thousands of

programs with (or without) performer technology and evaluate their effectiveness at

mitigating the vulnerabilities.

This report discusses how T&E implemented the tasks described in the STONESOUP Phase

3 Test Data Generation Plan (TGP). The TGP describes the composition of test cases, and

includes the test case naming standard, which allows a user to identify the behavior of each

test case based on the name of the test case.

The TGP outlines a plan for testing the tools developed by each of the three performer

teams that were selected to enter into Phase 3 of STONESOUP. The prime contractors for

the three teams, and the operating system and language they each addressed are listed in

Table 1.

Table 1 Performer teams

Performer OS Language

Columbia CentOS 6.5 C

Grammatech Ubuntu 12.04 Binary from C source code

Kestrel Ubuntu 12.04 Java

The Test Generation Team developed systems to automatically inject vulnerabilities into

particular base programs. These vulnerabilities consisted of a taint source, 3 code

complexity features, and a weakness that corresponded to one of the Common Weakness

Enumerations (CWEs) developed by MITRE. The Test Generation Team further developed

 IARPA STONESOUP Phase 3 Test Generation Report

2 Approved for public release; distribution unlimited. 12 December 2014

a packager to create instructions for building, running, and evaluating test cases in an

automated fashion.

T&E developed the taints sources as described in Section 3.4.1 of the TGP. The TGP

indicates that socket taint source will only be used with server programs. This requirement

was found not to be necessary, and so T&E used socket taint source with all base programs.

T&E developed the control flow, data flow, and data type complexity features as described

in Section 3.4 of the TGP.

T&E developed the weaknesses as described in Section 3.2 of the TGP. However, some of

the performer teams, with the agreement of the customer, changed which weakness classes

their tools addressed. Accordingly, T&E altered which weaknesses were developed to

address these changes. In addition, some weaknesses specified in the TGP were not

developed because they were fully covered by other weaknesses, did not apply to the target

language, or could not be tested in an automated fashion. Details on these changes are

provided in Section 10.

T&E developed one or more weakness snippets that each exercised a flaw identified by a

particular Common Weakness Enumeration (CWE). Table 2 shows the number of Common

Weakness Enumerations (CWEs) for which snippets were developed for each weakness

class for each language. All weakness snippets developed by T&E were validated by the

Independent Verification & Validation Team. T&E addressed all errors and concerns raised

by IV&V regarding weakness snippets.

Table 2 Weakness Classes Mapped to Language and Common Weakness Enumerations

Weakness Class
CWEs

C/Binary Java

Number Handling 9 8

Tainted Data N/A 6

Error Handling N/A 8

Resource Drain 11 9

Injection 3 4

 Concurrency Handling 15 15

Memory Corruption 17 N/A

Null Pointer Error 1 N/A

T&E injected faults into base programs in both C and Java. The programs chosen for Phase

3 are specified in Section 5.4. At the request of the customer, T&E chose base programs for

Phase 3 to achieve an average of 500,000 lines of code. The C base programs had an

 IARPA STONESOUP Phase 3 Test Generation Report

3 Approved for public release; distribution unlimited. 12 December 2014

average of 444,429 lines of code, and the Java base programs had an average of 932,825

lines of code.

In addition, T&E injected vulnerabilities into 4 other programs to aid in testing the

injection framework, taint sources, and weaknesses. These additional programs are the

small programs C-Tree and J-Tree, and the Phase 2 programs Grep and JMeter. These

programs are discussed in Section 5.4.

In accordance with Section 4 of the TGP, T&E developed 531 test cases for each weakness

case in C, 637 for each weakness class in Binary (which are implemented in C), and 478 test

cases for each weakness class in Java. The test case specifications are drawn uniformly

from the population of possible test cases, as described in Section 0 of this report and in the

STONESOUP Phase 3 Test and Evaluation Final Report.

T&E ran each test case under two conditions – one with no performer technology present

(e.g., Stage One) and one with the performer technology under evaluation present (e.g.,

Stage Two). IV&V validated which test cases ran successfully in Stage One.

 IARPA STONESOUP Phase 3 Test Generation Report

5 Approved for public release; distribution unlimited. 12 December 2014

2 Overview of Test Generation

T&E obviously could not hand-create thousands of different large (500,000 lines of code)

programs each with a single known weakness. So T&E developed a process that relied on

existing large code bases to automatically generate test cases. This involved multiple areas

of effort:

1. Selecting and modifying base programs

2. Developing weakness code with benign and exploiting inputs

3. Injecting weakness code into the base program

4. Packaging test cases

The following sections provide an overview of these areas.

2.1 Select and Modify Base Programs

One of the goals of STONESOUP was to develop mitigation strategies for large-scale, real-

world programs. It was not sufficient for T&E to create toy programs with

vulnerabilities—the performer technology had to be tested against large, complicated

programs. Accordingly, T&E searched open source software corpuses to find programs

that could be used as a base into which to inject vulnerabilities. T&E performed the

following steps to select and modify base programs:

1. Identify possible base programs

2. Create scripts to build the base programs from source

3. Modify the base programs so they could be built with the injection frameworks

4. Modify the base programs to respect library environment variables

5. Verify identity translation for the base programs

6. Inject function logging statements into each base program, producing log-injected

base programs

7. For each base program, build a skeleton directory structure, create an XML file

containing build and run instructions, and identify 10 different inputs to base

program

8. Run log-injected base programs on each of the 10 inputs

9. Determine functions used by all inputs for each base program

10. Select 10 injection points from the common set for each base program

2.2 Develop Weakness Code

T&E used the Common Weakness Enumerations (CWE) defined by MITRE as a guide in

creating 98 C weaknesses and 60 Java weaknesses that each cause unintended program

behavior. These weaknesses existed as snippets of code that could be inserted into the

Abstract Syntax Tree (AST) of the base programs.

 IARPA STONESOUP Phase 3 Test Generation Report

6 Approved for public release; distribution unlimited. 12 December 2014

For each weakness, T&E also developed inputs that resulted in benign vulnerability

behavior and inputs that resulted in exploit vulnerability behavior. Exploit inputs would

cause negative technical impacts such as program crash, thread deadlock, or private

information exposure. The benign and exploiting inputs were stored in a YAML file that

could be used by automated systems to create test cases. In addition, the YAML file stored

information about other processes that were required to run the weakness. These

processes were tightly coupled to the weakness snippet; they might set particular

environment variables or run particular scripts at particular times to trigger the

appropriate weakness behavior.

For each weakness, T&E also developed an automated test to determine whether the

exploiting input triggered the expected negative technical impact. Just as it was not

possible for T&E to hand-create thousands of large programs with a single weakness, it was

not possible for T&E to hand-verify the results of thousands of test cases. To address this

problem, T&E developed “observables” for the exploit condition of each weakness that

could be used by an automated test system to determine if the exploit had occurred.

2.3 Inject Weakness Code

T&E developed software to inject weaknesses into base programs. For C and Binary

programs, this software relied on the ROSE Compiler Infrastructure for Abstract Syntax

Tree (AST) manipulation. For Java programs, a separate system was developed that relied

on the Eclipse Java Development Toolkit (JDT) for AST manipulation.

T&E injected several separate pieces of code into the base programs to accommodate the

needs of automated testing while imitating the complexity of vulnerabilities found in the

wild. In particular, T&E developed and injected into each base program:

1. An atomic barrier to ensure that the vulnerability was run no more than once

2. A taint source that allowed the user to insert data into the program

3. Three code complexity features—one each of control flow, data flow, and data

type—to obfuscate the vulnerability

4. A weakness that acts in either a benign or exploit fashion depending upon user

input

Figure 1 shows the code injected into each base program.

 IARPA STONESOUP Phase 3 Test Generation Report

7 Approved for public release; distribution unlimited. 12 December 2014

Figure 1 Code injected into each base program

T&E performed extensive unit testing to ensure that these different components could

work together seamlessly in the automated test system. In particular, T&E tested all

possible combinations of taint sources and code complexity features, resolved bugs where

possible, and made adjustments for unavoidable incompatibilities.

2.4 Package Test Cases

T&E developed a packaging system (found in the ss_testcases repository) that took as input

a test case name and produced a compressed tar file containing a test case. Each test case

contained a base program with an injected weakness, a skeleton directory structure to use

in running the base program with the weakness, and XML that instructed TEXAS how to

run the test case. The packager also added output checks for exploit inputs and added

information about the technical impact of each weakness.

Figure 2 shows the inputs to the packager and the components of the packaged test case.

Weakness
Data
Type

Data
Flow

Control
Flow

Source
Taint

Atomic
Barrier

Complexity Features

 IARPA STONESOUP Phase 3 Test Generation Report

8 Approved for public release; distribution unlimited. 12 December 2014

Figure 2 Test Case Packager

Base Program
Skeleton

Base Program
Source Code

Weakness Snippet
Source Code

Weakness
Snippet
YAML

Packager
ss_testcases repo

Test Case
Name

Base Program
XML

Injected
XML

Test Case

Injected
Program

Source Code
Injected
Skeleton

 IARPA STONESOUP Phase 3 Test Generation Report

9 Approved for public release; distribution unlimited. 12 December 2014

3 Selecting and Modifying Base Programs

To develop test cases, T&E began by identifying candidate base programs into which to

insert weaknesses. These base programs had to have the following characteristics:

 Open source so T&E could have access to source code

 Written in the appropriate language—C or Java

 Function as a stand-alone program—not solely a library for use by other software

 Have the appropriate number of lines of code—for Phase 3, the goal was an average

of 500,000 lines of code

 For C/Binary programs, buildable with gcc (not clang), for compatibility with the

ROSE compiler used to manipulate C abstract syntax trees

 For Java programs, buildable using the Ant build system (not Maven) for

compatibility with the injection system

To ensure a variety of test situations, the group of programs chosen included:

 Client programs and server programs

 Command-line driven programs and GUI-driven programs.

3.1 Candidate base programs

Over the course of the project, T&E evaluated a large set of candidate programs as possible

base programs. For C/Binary, these included:

 Busybox – tool combining common UNIX utilities into a single small executable

 Cherokee – web server

 Claws Mail – email and news client

 D-Bus – inter-process communication system

 Diff – data comparison utility

 Exim – mail transter agent

 FFmpeg – multi-media data processor

 FTP Server – file transfer server

 GIMP – image manipulation software

 Grep – file search tool

 ImageMagick – bitmap manipulation tool

 Irssi – IRC client

 Mutt – email client

 Nginx – reverse proxy server for HTTP

 OpenSSL – cryptography

 Pidgin – chat client

 Postfix – mail transfer agent

 PostgreSQL – relational database

 IARPA STONESOUP Phase 3 Test Generation Report

10 Approved for public release; distribution unlimited. 12 December 2014

 SDCC – small device C compiler

 Subversion – version control system

 Sudo – tool for running program as a different user

 TCPDump – command-line packet analyzer

 Vim – editor

 Wget – command-line tool for retrieving files from web

 Wireshark – network protocol analyzer

 WWW –W3C browser

 Zsh – shell

For Java, these included:

 Ant – Apache Java build tool

 Barcode4J – generator for barcodes

 CoffeeMud - MUD game engine

 Derby – Apache relational database

 Elasticsearch – search and analytics engine

 FindBugs – static code analysis tool

 Google Web Toolkit – web development tool

 Hadoop – Apache big data storage and processing framework

 HTML Cleaner – HTML to XML transformation

 James – Apache mail server

 Jena – semantic web framework

 JMeter – Apache load testing application

 Jtest – automated Java software testing and static analysis

 Lenya – Apache XML content management system

 Lucene – Apache search software

 Maven – Apache Java build tool

 OpenDS – directory service

 PMD – source code analyzer

 POI – Apache tool for accessing Microsoft Office documents

 SchemaSpy – generates graphical representations of tables

 Tomcat – Apache web server

3.2 Scripting the build process

After generating a candidate set of programs, T&E then developed an automated process to

build each program on the appropriate operating systems – CentOS 6.5 and Ubuntu 12.04

for C/Binary programs, and Ubuntu 12.04 for Java programs. For C/Binary, these build

scripts required using gcc and the appropriate build system for the package (e.g., make,

cmake, imake). For Java, this required using Javac and the Ant build system.

 IARPA STONESOUP Phase 3 Test Generation Report

11 Approved for public release; distribution unlimited. 12 December 2014

For each base program, T&E identified other software on which the program depended,

downloaded the source for those dependencies, and developed scripts to build the

dependencies. This process continued until T&E reached a core set of programs from the

standard distributions, such as bash and the X windows system, that were assumed to be

already installed.

After identifying dependencies and creating build scripts for the dependencies, T&E

developed build scripts for the candidate base programs themselves, using the same basic

build process that would be used by the base program developers.

 IARPA STONESOUP Phase 3 Test Generation Report

13 Approved for public release; distribution unlimited. 12 December 2014

4 Developing the Injection Framework

The STONESOUP Phase 3 Test Generation Plan required T&E to inject weakness code into

both C and Java programs. T&E thus had to develop injection frameworks for both

languages. These injection frameworks read in source code and converted it into an

Abstract Syntax Tree (AST) in memory, performed some translation on it by adding nodes

to the AST, and then output modified source code.

4.1 Code Injection Overview

The following definitions are useful in understanding the injection frameworks:

 Abstract syntax tree: An internal representation of a programming language where

each node of the tree corresponds to a feature appearing in the source code.

Abstract syntax trees are generated by any program that acts on source code,

including compilers translating from source code to object code, integrated

development environments allowing the programmer to manipulate code, and tools

allowing manipulation of source code.

 AST generator: A tool that creates and manipulates an abstract syntax tree, either by

translating source code into an abstract syntax tree or by creating an abstract syntax

tree programmatically without pre-existing source code. T&E used the ROSE

Compiler Infrastructure as the AST generator for C. It used the Eclipse Java

Development Toolkit (JDT) as the AST generator for Java.

 AST unparser: A tool that translates an abstract syntax tree back into source code.

In practice, this was simply an API call to the AST generator that outputs the

(modified) abstract syntax tree in the original source language.

 Original software: The source code that would be modified by this system

 Payload software: The code that would be inserted into the original source code by

the system. The payload software may:

a) Exist as source code that was then translated into an abstract syntax tree, or

b) Exist as an abstract syntax tree that was generated programmatically, or

c) Be a combination of both types above.

 Modified software: The original software with the payload software inserted into it.

This modified software could exist either as an abstract syntax tree, or as source

code containing both the original source code and the inserted payload(s).

 Injection point: The location within the original abstract syntax tree where a

payload abstract syntax tree would be inserted

Figure 3 shows a simple use of the injection framework, where a single payload was

injected at a single point into a single source file. In this figure, the original source code was

run through an AST generator to create an abstract syntax tree. A payload abstract syntax

tree was created either by running payload source code through an AST generator or by

 IARPA STONESOUP Phase 3 Test Generation Report

14 Approved for public release; distribution unlimited. 12 December 2014

creating an abstract syntax tree for the payload programmatically. The original abstract

syntax tree was combined with the payload abstract syntax tree to create a modified

abstract syntax tree. This modified abstract syntax tree was sent to an AST unparser to

output modified source code that contains both the original source code and the payload.

Figure 3 Injection Framework Flow Chart – Single Source, Single Payload

Figure 4 shows a more complicated case, where the injection framework generated an AST

from multiple original source files, injected multiple payloads into multiple injection points

within that AST, and then output multiple modified files.

Figure 4 Injection Framework Flow Chart - Multiple Sources, Multiple Payloads

4.2 Specific Injection Frameworks

For C and Binary programs, T&E developed a tool called ss_vuln_injector that used the

ROSE Compiler Infrastructure from Lawrence Livermore National Laboratory to create and

manipulate abstract syntax trees. For Java, T&E developed a tool called ss_vinject4j that

Payload
Abstract

Syntax Tree

Payload
Abstract

Syntax Tree

Payload
Abstract

Syntax Tree

Payload
Abstract

Syntax Tree

Original
Abstract

Syntax Tree
Modified
Abstract

Syntax Tree

Modified
Source
Code

Original
Source
Code

Original
Source
Code

Original
Source
Code

AST
Generator

AST
Unparser

Modified
Source
Code

Modified
Source
Code

 IARPA STONESOUP Phase 3 Test Generation Report

15 Approved for public release; distribution unlimited. 12 December 2014

used the Eclipse Java Development Tools (JDT) API. ss_vuln_injector and ss_vinject4j read

in a C or Java program and converted it into an AST using the appropriate backend. They

optionally altered the code using the AST system, and then wrote out source code reflecting

any changes made to the AST.

The injection frameworks ss_vuln_injector and ss_vinject4j performed the following steps

to complete an injection:

 Read in the base program, converting it to an AST

 Located the injection point in the AST

 Inserted into the AST an atomic barrier to ensure the vulnerability was run only one

time

 Inserted into the AST a taint source, allowing the user to provide input to the

vulnerability

 Inserted one or more code complexity features to obfuscate the data and control

flows

 Inserted a weakness that can have either benign or exploit behavior, depending

upon the user input

 Read in the YAML file specifying benign and exploit inputs for the weakness

 Output the injected AST as source code

 Output the injected YAML file, containing details about how to create inputs for this

particular combination of taint source and weakness

Figure 5 indicates the inputs and outputs of the injection systems for C and Java.

 IARPA STONESOUP Phase 3 Test Generation Report

16 Approved for public release; distribution unlimited. 12 December 2014

Figure 5 Inputs and outputs for injection system

4.3 Atomic Barrier

For accurate test results, vulnerabilities injected into a base program must run only one

time. This presented a problem, because code might be injected into frequently-used utility

functions such as IP address format functions. These functions could potentially be called

millions of times per second, creating obvious problems for the performance of the injected

code, in addition to uncertainties about exploit behavior due to differing numbers of

executions.

To resolve these problems, T&E used atomic barriers to ensure the vulnerability code was

run no more than once. For C programs, T&E injected a call to the gcc built-in

__sync_bool_compare_and_swap. This built-in atomically sets a variable to a given updated

value if the current value equals the expected value, and returns true if the operation was

successful.

For C programs, T&E injected a further barrier using the file system. Some of the C server

programs (PostgreSQL and Subversion’s svnserve) used forking to create multiple

processes. If the fork occurred before the atomic synchronization operation, each forked

process attempted to independently run the vulnerability. To address this problem, inside

the atomic built-in barrier, T&E injected a call to mkdir. The mkdir call attempted to

atomically create a directory with a given name. It returned 0 if the call was successful and

Base Program
Source Code

Weakness Snippet
Source Code

Weakness
YAML

ss_vuln_injector or
ss_vinject4j

Injected Program
Source Code

Command-line
flags

Injected YAML

 IARPA STONESOUP Phase 3 Test Generation Report

17 Approved for public release; distribution unlimited. 12 December 2014

1 otherwise. If the mkdir call was successful, the weakness would run, but otherwise it

would be skipped. The mkdir operation was attempted only if the atomic built-in

succeeded to reduce the number of times the code accesses the file system. The mkdir

command was atomic so long as it occurred on a local file system, which was the case for

the system T&E used. If it is later desired to use a non-local file system, alternative

approaches should be considered.

For Java programs, T&E injected a call to

java.util.concurrent.atomic.AtomicReference.compareAndSet. This operation behaves

identically to the gcc built-in __sync_bool_compare_and_swap. It atomically sets a variable

to a given updated value if the current value equals the expected value, and returns true if

the operation was successful.

It was not necessary to use the file system barrier for the Java programs, since the Java

Virtual Machine (JVM) itself does not fork new processes unless directed to do so by an

exec command. None of the selected Java base programs created child JVMs running the

same code, so the atomic barrier within the single JVM was sufficient to ensure single

execution. It would be straightforward to add a file system check to the Java injection

process if a new base program required it.

 IARPA STONESOUP Phase 3 Test Generation Report

18 Approved for public release; distribution unlimited. 12 December 2014

4.4 Other Injected Code

All other injected code is discussed in detail in later sections:

 Taint sources are discussed in Section 8

 Code Complexity Features are discussed in Section 9

 Weaknesses are discussed in Section 10

 IARPA STONESOUP Phase 3 Test Generation Report

19 Approved for public release; distribution unlimited. 12 December 2014

5 Verifying the Identity Translation

After selecting candidate base programs, T&E attempted to perform an identity translation

on each candidate program using the injection system. This required modifications to the

build process for each candidate base program. For some programs, the build process was

sufficiently incompatible with the injection framework that the programs could not be

modified to allow an identity translation. These programs were dropped from

consideration as Phase 3 base programs.

5.1 Modifying build process to use injection framework

T&E modified the build process for each candidate base program to replace the compiler

used by the base program (gcc or javac) with the appropriate injection framework

(ss_vuln_injector using ROSE for C, and ss_vinject4j using the Eclipse JDT for Java). In some

programs, this was an easy task, involving simply changing an environment variable.

However, in most programs, this required hand altering the build process to replace all

references to the compiler with calls to the appropriate injection system.

In C, the replacement of the compiler with the injection framework was complicated by the

fact that two different compilers are widely used: gcc and clang. The ROSE Injection

Framework was built around gcc, and T&E found that it was not possible to replace calls to

the clang compiler with calls to the C injection system. As a result of this incompatibility,

T&E did not consider programs that were built with clang as candidates for base program

injection.

In Java, the replace of javac with the injection framework was complicated by the fact that

there are two different build systems: ant and maven. The Java injection tool was written

for ant build systems, so a base program that used maven could not be run with it. T&E

attempted to use automated tools to convert programs using maven to use ant. However,

the automated tools were error-prone and required significant hand-alteration after the

fact. Given the size of the base programs and the complexity of their build processes, T&E

found it was not possible to convert maven build processes to ant.

5.2 Modifying build process to use external libraries

T&E further modified the build process for each candidate base program to allow arbitrary

libraries to be linked to the base program. This modification was necessary because T&E

needed to inject into the base programs code that required various external libraries. For

example, all weaknesses in both C and Java required access to the Linux Trace Toolkit Next

Generation (LTTng) libraries for outputting trace information. Moreover, individual test

cases sometimes required other specific libraries. For instance, if a C test case used the

socket taint source, the base program would need to link to libmongoose to access the

socket functionality. If a C test case used PostgreSQL for a SQL injection weakness, the base

 IARPA STONESOUP Phase 3 Test Generation Report

20 Approved for public release; distribution unlimited. 12 December 2014

program would need to link to the PostgreSQL library, libpq. If a Java test case used the

socket taint source, the base program would need access to the NanoHTTPd Java archive. If

a Java test case used PostgreSQL, the base program would need to link to the JDBC4

PostgreSQL Java archive.

Since different test cases needed different libraries, T&E altered the build process for each

candidate base program to allow new libraries to be linked as needed. For some base

programs, this change was straightforward, as their build process used an environment

variable such as LIBS throughout the build process. In these cases, T&E could simply add

the new libraries to the appropriate environment variable. However, many base programs

did not use standardized environment variables, or used them only for part of their build

process. For the majority of base programs, T&E had to debug and alter the build

processes to respect LIBS and related variables throughout the code base.

5.3 Performing the identity translation

After altering the build process to use the injection framework and to allow new libraries to

be linked in, T&E performed an identity translation on each candidate base program using

the injection framework. For this identity translation, no modifications were made to the

AST. The code was read in by ss_vuln_injector or ss_vinject4j, converted into an AST, and

then output again as source code. Ideally, the code that was output by the injection system

should be identical to the code that was input to it, with the exception of whitespace

differences. After the identity translation, T&E ran the program again, expecting to see

identical behavior to the original code.

In practice, the AST systems do not always accurately perform the identity translation,

resulting in various issues that must be addressed.

5.3.1 Translation issues in C

For C/Binary programs, multiple problems arose because of difficulties handling pre-

processor directives. In a normal C build process, gcc first pre-processes the code, then

compiles it, and then links it. When using the ROSE Compiler Infrastructure to parse the

source code, ROSE first pre-processes the code, and then uses the compiler to convert the

pre-processed code into an AST. However, for clarity reasons, ROSE does not want to

output the pre-processed code. Such code could be hundreds of times as long as the

original code and far less readable. ROSE goes to some lengths to try to restore the original

code as it appeared before pre-processing. However, if the pre-processor statements were

sufficiently complex, ROSE cannot successfully resolve them.

For the C programs, T&E attempted to hand-alter pre-processor directives to accommodate

ROSE limitations where possible. However, given the number and complexity of the pre-

processor directives, T&E added to the ss_vuln_injector system the capability to skip

 IARPA STONESOUP Phase 3 Test Generation Report

21 Approved for public release; distribution unlimited. 12 December 2014

transformation of certain problematic files. If the injection system could not successfully

transform a file, no point within that file could be used as an injection point for

vulnerabilities. This reduced the number of possible injection points, so T&E made every

effort to limit the number of skipped files.

5.3.2 Translation issues in Java

Because Java does not use a preprocessor, there were fewer translation issues with the Java

injection tool than with the C injection tool. The main translation issues arose from the fact

that the Eclipse JDT used a different sequence of operations than the normal Java compiler

for type promotion involving the ternary operator. For example, when using the java

compiler javac, the following code was valid:

String s = String(test_value ? 0 : “not_valid”);

However, this same code was not valid while using the Eclipse JDT API. Instead, the

promotion from int to String must occur before the ternary operator evaluation. For the

Eclipse JDT API, the following was required:

String s = test_value ? Integer.toString(0) : “not_valid” ;

T&E had to identify and fix this problem and other similar problems within the Java base

programs in order to successfully process the base programs with the ss_vinject4j injection

system.

5.4 Phase 3 base programs

The base programs selected for Phase 3 are listed in the Test Data Generation Plan, in

Section B-4. We repeat the list here to add information about where to obtain the source

code. Note that the base programs typically have to be modified to work with the injection

framework. The modified code is available in the ss_base_programs repository.

These programs were selected because they had sufficient lines of code, represented a

variety of program types, and identity translation with the injection framework could be

made to work for them.

Methods for counting lines of code are inherently controversial—a perfect method does not

exist. For STONESOUP, the number of lines of code was determined using the CLOC tool

(http://cloc.sourceforge.net/, v1.60). This tool counts actual lines of code, not including

blank lines or comment-only lines. For Phase 3, T&E aimed to have base programs with an

average of 500,000 lines of code. For the programs actually chosen for Phase 3, the C base

programs had an average of 444,429 lines of code, and the Java base programs had an

average of 932,825 lines of code.

 IARPA STONESOUP Phase 3 Test Generation Report

22 Approved for public release; distribution unlimited. 12 December 2014

Table 3 C/Binary Base Programs

Identifier Base Program Category Version Repository LOC

ELAS Elastic Search Service 1.0.0 http://www.elasticsearch.org/ 297,491

CMUD Coffee MUD Service 5.8 http://www.coffeemud.org/ 537,199

LENY Apache Lenya Service/GUI 2.0.4 http://lenya.apache.org/ 358,003

LUCE Apache Lucene Console 4.5.0 http://lucene.apache.org/ 440,299

JENA Jena Console 2.11.0 https://jena.apache.org/ 377,160

GWTX Google Web Tookit GUI 2.6.0-rc3 http://www.gwtproject.org/ 656,421

Table 4 Java Base Programs

Identifier Base Program Category Version Repository LOC

FFMP FFMpeg Console 1.2.2 https://www.ffmpeg.org/ 566,908

GIMP Gimp GUI 2.8.8 http://www.gimp.org/ 711,339

OSSL OpenSSL Console 1.0.1e https://www.openssl.org/ 274,204

PSQL PostgreSQL Service 9.2.4 http://www.postgresql.org/ 731,469

SUBV Subversion Console/Service 1.8.3 https://subversion.apache.org/ 798,636

WIRE Wireshark GUI 1.10.2 https://www.wireshark.org/ 2,523,396

In addition, T&E used four small base programs, 2 each in C and Java, for testing the

injection system, the taint sources, and the weakness variants. These programs were much

smaller than the Phase 3 base programs and provided a simpler system for debugging

purposes. They are listed in Table 5.

 IARPA STONESOUP Phase 3 Test Generation Report

23 Approved for public release; distribution unlimited. 12 December 2014

Table 5 Test Programs

Identifier Base

Program

 Category Version Repository LOC

CTREE C-Tree Console 1.7.0 http://mama.indstate.edu/users/ice/tree/ 2,751

JTREE J-Tree Console - Written by T&E 284

GREP Grep Console 2.14 http://www.gnu.org/software/grep/ 47,741

JMET JMeter Console 2.8 http://jmeter.apache.org/ 103,105

C-Tree (Linux tree utility) and J-Tree (created by the T&E Team) are considered micro-

programs because of their small size. Grep and JMeter were selected from the base

programs used in Phase 2.

 IARPA STONESOUP Phase 3 Test Generation Report

25 Approved for public release; distribution unlimited. 12 December 2014

6 Choosing Inputs

After selecting appropriate base programs, T&E developed 10 inputs for each program. It

was desired to have the 10 inputs exercise code paths that were as distinct as possible, so

that the performer code would have to handle many different cases. To develop these

inputs, T&E examined user documentation for the programs, and identified inputs that

would exercise as wide a range as possible of user functionality.

As an example, for the relational database PostgreSQL, the 10 inputs performed the

following tasks:

1. Initialize a Postgres database

2. Select rows from a table in an existing database

3. Insert a row into a table

4. Create a table

5. Delete a row from a table

6. Drop a table

7. Run a psql script on a database

8. Alter a table by changing the type of a column in a table

9. Select specific columns from a table

10. Select rows from a table using regular expressions

These inputs were specified in the XML file for the PostgreSQL base program.

For details on the inputs used for the other base programs, examine the XML files for those

base programs within the ss_base_programs repository. Inputs are often quite

complicated, and may require additional data files found in the skeleton directory for the

program, especially in the testData and scripts directories.

For each base program input, T&E developed an automated test to detect whether that

input had executed successfully. These automated tests were called output checks and

were also included in the XML file for the base program.

For 3 of the test programs (C-Tree, J-Tree, and JMeter), T&E developed only 5 inputs. For

the remaining test program (Grep), T&E developed 10 inputs. Since these programs were

used only for testing the system, and not for inclusion in the test corpus, T&E did not

require them to have the full 10 inputs that a base program had.

6.1 Examples of inputs

In the simplest case, an input to a program consisted of command line arguments used

when running that program. However, inputs could be far more complicated. If the base

program was a server, for example, the server would be started with appropriate

arguments, then a separate co-process would be started to make requests to that server. If

 IARPA STONESOUP Phase 3 Test Generation Report

26 Approved for public release; distribution unlimited. 12 December 2014

the program used a Graphical User Interface (GUI), T&E developed GUI automation scripts

to interact with the program.

6.1.1 GUI automation scripts

T&E had to develop a GUI automation solution that:

 Worked on Linux (Ubuntu 12.04, and CentOS 6.5)

 Emulated mouse and keyboard without directly using back-end libraries—this

helped integration with performer technology

 Had the ability to tell if a button or screen was available to click on, rather than

blindly relying on timing

 Used scripts that could be provided to performer teams

T&E considered the following solutions:

 Xmacro (http://xmacro.sourceforge.net/)

o Pros: Allowed an X session to be recorded and replayed

o Cons:

 Old program, last updated in 2000

 Written for Ubuntu not CentOS

 AutoKey (https://code.google.com/p/autokey/)

o Pros: Scripts written in Python

o Cons:

 Poor examples when doing complex tasks such as mouse control

 Crashed on system with no error message, difficult to debug scripts

 No updates in 2 years

 Sikuli (http://www.sikulix.com/)

o Pros:

 Easy scripting, possible to determine if a button existed before

attempting to click

 Used OCR and jython

 Used java.awt.Robot, which created native mouse and keyboard

inputs

o Cons: Used Java

T&E settled on Sikuli v. 1.1 as the best choice for GUI automation. The programmer would

write python scripts that used the Sikuli library to interact with the graphical user

interface. The Sikuli library provided functions to check the contents of the screen, identify

if a button or window existed before attempting to click on it, provide native mouse clicks

and keyboard inputs, and capture screen images. Since the Sikuli scripts were embedded in

Python, the programmer had access to the full suite of Python features, and could create

relatively robust scripts.

 IARPA STONESOUP Phase 3 Test Generation Report

27 Approved for public release; distribution unlimited. 12 December 2014

GUI automation was a difficult task, especially when the automation needed to provide

repeatable results over tens of thousands of runs. For instance, T&E discovered problems

with Ubuntu placing notification windows on the screen as part of standard update

management. These notification windows pulled focus to themselves, causing Sikuli mouse

clicks and keyboard inputs to be directed away from the intended application.

Furthermore, the notification windows altered the appearance of the screen, causing

failures in screen content checks. T&E was able to resolve problems as they arose, but the

unexpected behavior of GUIs made it difficult to identify all possible problems.

6.2 Examples of output checks

In the simplest case, an output check involved checking the return code of the base

program. More complicated checks looked for a particular string (or regular expression) in

standard out or standard error when the program was run. Other output checks looked

for particular files with particular contents to be created in known locations, or for the base

program to complete execution within the timeout window (or not to complete within the

timeout window).

The output checks for base programs were specified in the XML file for the base program.

These output checks could be arbitrarily nested Boolean expressions, combining the results

of multiple different simple output checks.

 IARPA STONESOUP Phase 3 Test Generation Report

29 Approved for public release; distribution unlimited. 12 December 2014

7 Identifying Injection Points

T&E needed to identify points within the base programs that would execute every time the

base program was run on any of the 10 chosen base program inputs. To identify such

points, T&E used the injection systems (ss_vuln_injector for C/Binary and ss_vinject4j for

Java) to alter the base programs to log every time a function or method was entered.

Because of the limitations of the injection frameworks described in Section 1, it was not

possible to inject function logging into every file. However, the vast majority of files were

injected with these logging methods. After a base program had been injected with a logging

method in all (or almost all) functions, the base program was called “log-injected”.

T&E then ran each log-injected base program on all 10 base program inputs to generate a

list of every function called by each input. Figure 6 provides a simplified graphical

depiction (using only 3 base program inputs) of how possible injection points were

identified. For each input, T&E generated a log file of all functions called by the base

program on that input. These log files correspond to the circles in Figure 6. T&E then took

the intersection of these lists of function to obtain the central part of the diagram: the

functions executed by every input to the base program. There were typically 10s to 1000s

of functions called by every input to the base program.

 IARPA STONESOUP Phase 3 Test Generation Report

30 Approved for public release; distribution unlimited. 12 December 2014

Figure 6 Identifying Possible Injection Points

From this intersected set of functions, 10 functions were chosen to be injection points.

When executing the base program on each of the 10 base program inputs, each injection

point was called at least one time.

For servers, the injection point could be called before the server loop was established or

after. There was no guarantee that the server loop was already running when the injection

point was called. It would be possible to add such a guarantee, but it would require

additional instrumentation. In particular, code would have to be added to the server loop

to set a global flag when the loop has been established and unset the flag when the server

loop was exited. The logging functions would have to be changed to only log entries into

functions when the global server-loop flag was set. Later, when the base programs run

with injected weakness code, the weakness should not fire unless the server-loop flag was

set.

After selecting 10 injection points, T&E ran automated tests to further verify that the

injection points were actually being executed at run-time. T&E created dummy

weaknesses in both C (C-C101B) and Java (J-C101B) that output a special value to standard

error when the dummy weakness was run. T&E then altered the packager to have special

 IARPA STONESOUP Phase 3 Test Generation Report

31 Approved for public release; distribution unlimited. 12 December 2014

behavior when injecting these particular weaknesses. In this case only, the packager would

remove any output checks normally used for the base programs, and in their place put a

single output check for the special value output by C-C101B and J-C101B. T&E then ran all

10 injection points for all 12 base programs for all 10 input values, and checked that the

single specialized output check was satisfied. T&E was thus able to verify that each

injection point ran successfully every time it should.

For the test programs (C-Tree, J-Tree, Grep, and JMeter), only one injection point was used,

to simplify testing. Since the test programs had a small number of inputs and only a single

injection point, T&E verified by hand that the injection point was executed for each of the

inputs.

 IARPA STONESOUP Phase 3 Test Generation Report

33 Approved for public release; distribution unlimited. 12 December 2014

8 Developing Taint Sources

In accordance with the Test Case Generation Plan, T&E developed four different taint

sources:

 Environment Variable

 File Read

 Socket

 Shared Memory (C only)

In C, these taint sources existed as snippets that were injected into the base program. In

Java, these taint sources were created using the Eclipse JDT backend. The code that created

the taint sources also provided output functions to be used by the weaknesses.

T&E needed to keep weaknesses from sending output to standard out or standard error, so

as not to interfere with the output naturally created by the base program. This was

especially important since many output checks for normal base program operation rely on

examining the contents of standard out or standard error. Accordingly, T&E developed

special output functions for both C and Java that would send output to a known location

based on the type of the taint source. For taint sources environment variable, file read,

and shared memory, any output from the weakness was sent to a log file at a known

location. For socket taint source, however, any output from the weakness was sent back

along the socket, and the receiving socket output the returned data to a log file at a known

location.

Socket taint source provided an additional complication, because using a socket in this

fashion turned any base program into a server. When a base program had a socket taint

source, it started a server loop looking for data on that socket. If the data sent to the socket

had a specified format, the socket taint source passed the data on to the weakness code. If

the data sent to the socket did not have the specified format, the socket taint source echoed

the data directly back along the socket. Performer technology was not allowed to simply

exit from a server program, regardless of whether the server was intrinsic to the base

program (like PostgreSQL or Subversion svnserve) or was inserted as a socket taint source.

Exiting from a server program in response to a weakness results in a Denial of Service.

 IARPA STONESOUP Phase 3 Test Generation Report

35 Approved for public release; distribution unlimited. 12 December 2014

9 Developing Complexity Features

In accordance with the Test Case Generation Plan, T&E developed three different classes of

complexity features:

 Control flow

 Data flow

 Data type

These terms are defined in the Test Data Generation Plan, but we summarize the

information here.

Control flow refers to the order in which individual instructions are executed. An example

of a control flow feature is RECURSIVE, in which a function invokes itself recursively. In

this control flow, the data that triggers the weakness is provided before the recursive call,

and the vulnerability is triggered inside the recursive call.

Data flow refers to how code passes a source input through the program. An example of a

data flow feature is INDEX_ALIAS_1, in which a pointer to the user data is placed into an

element of a larger array. The weakness code subsequently extracts the user data from the

appropriate index of the array, and uses it to trigger the vulnerability.

Data type refers to how data moves through different types before it is used. An example of

a data type feature is VOID_POINTER, in which a pointer to user data is placed into a

variable with type void*. The data is later extracted from the void* and used to trigger the

vulnerability.

The complexity features developed by T&E were injected directly into the AST using API

calls into ROSE (for C) or the Eclipse JDT (for Java). In Phase 2, T&E injected only one

complexity feature into each test case, but the injection systems provided the ability to

inject multiple complexity features. For Phase 3, T&E settled on adding three complexity

features, one from each class: first control flow, then data flow, then data type. This

resulted in a large number of possible combined complexity features, as shown in Table 6.

Table 6 Number of Complexity Features

Complexity Feature C Java

Control Flow 13 17

Data Flow 17 6

Data Type 7 3

Total Phase 3 Complexity Feature

Permutations

13 x 17 x 7 = 1547 17 x 6 x 3 = 306

 IARPA STONESOUP Phase 3 Test Generation Report

36 Approved for public release; distribution unlimited. 12 December 2014

The Callback control flow feature causes some issues when it interacted with the Socket

taint source, the Array data type, and with any data flow. In particular:

 In C, the socket taint source could not be used with the callback control flow feature,

because both of them rely on callbacks. If the user requested this combination, the

callback control flow feature was replaced with a dummy callback, because a

callback already existed in the socket taint source.

 If the user requested a Callback control flow, the callback must occur before any

data-flow features and it must also occur before an Array data type feature, in order

to pass information correctly to the weakness. If the user requested either of these

combinations, the injection system re-ordered the features to place the callback

control flow before any data-flow features. In practice, this re-ordering did not

occur, since T&E always ordered the complexity features as shown in the table

above (control flow, then data flow, then data type). This means that any Callback

control flow happened before any data flow or data type, and so there was no need

for re-ordering.

For C, there were 1547 possible complexity feature combinations, and since there were 4

taint sources, there were 1547 x 4 = 6188 possible taint source/complexity feature

combinations. For Java, there were 306 possible complexity feature combinations and 3

taint sources, resulting in 306 x 3 = 918 possible taint source/complexity feature

combinations.

T&E developed unit tests to validate the behavior of the combined complexity features and

taint sources, so as to resolve compatibility problems before injecting into base programs.

 IARPA STONESOUP Phase 3 Test Generation Report

37 Approved for public release; distribution unlimited. 12 December 2014

10 Developing Weakness Snippets

10.1 Initial Weakness Approach

T&E began developing weaknesses for C using the ROSE Compiler Infrastructure. For each

weakness, T&E wrote code in C that would execute the weakness. T&E then wrote C++

code that would use the ROSE Compiler Infrastructure to add those C statements to the

Abstract Syntax Tree (AST) of the base program. There was a factor of 10 blow-up in lines

of code from the C code to the C++ code that generated it. In addition, because the C++

code that actually generated the weakness was one stage removed from the desired C

weakness code, it was difficult to maintain and update the weaknesses. Making subsequent

changes to the weakness was a slow and error-prone task because of the abstracted nature

of the C++ code generating the C code.

10.2 Snippet Weaknesses in Java

T&E initially hoped to use the ROSE Compiler Infrastructure to inject Java weaknesses as

well as C weaknesses. However, the Java portion of the ROSE compiler was not as fully

developed as the C portion and was buggy, error-prone, slow, and limited in its

functionality. Consequently, T&E explored using the Eclipse JDT to inject Java weaknesses.

Because Eclipse was a commercial tool with a large installed user base, the interface was

much cleaner, and the functionality was more complete.

The Eclipse JDT provided the ability to read in code from two separate files, attach portions

of the AST from one file to the AST from the other, and then output the modified AST. This

meant that it was possible to write weakness snippet code that would be directly translated

into an AST, without a programmer having to hand-construct the AST nodes. This sped up

weakness development considerably, and also allowed the weaknesses to be much easier

to maintain, understand, and alter.

10.3 Snippet Weaknesses in C

Building on the success of the snippet weakness approach in the Eclipse JDT, T&E tested a

snippet weakness functionality provided by the ROSE compiler infrastructure for C. This

functionality allowed T&E to write weakness snippets directly in C, have the ROSE compiler

turn the snippets directly into ASTs, and then attach those ASTs to the AST for the base

program, and output the modified AST.

However, the ROSE C snippet functionality did not have a substantial existing user base,

and so the snippet functionality was not as robust as that provided by the Eclipse JDT. Also,

the difficulties arising from C preprocessor commands affected the snippet functionality,

especially when the snippets used external header files with complicated preprocessor

directives. These issues were so pervasive that T&E could not implement all the required

snippets using the ROSE compiler snippet functionality.

 IARPA STONESOUP Phase 3 Test Generation Report

38 Approved for public release; distribution unlimited. 12 December 2014

To resolve these problems while still taking advantage of snippets, T&E then modified the C

injection system (ss_vuln_injector) to have a pre-processor driven snippet injection tool.

This snippet injection tool read in code from a file and modified necessary variable names

by using pre-processor directives. It then attached that code to a node in the ROSE

compiler AST using ROSE’s ability to attach arbitrary text to a node. This allowed code

from the snippet to be inserted into the base program, without having to convert it fully to

an AST, thereby bypassing the pre-processor issues. With this solution, T&E was able to

implement all C weakness snippets directly in C, without having to hand-construct AST

nodes with the ROSE Compiler Infrastructure.

10.4 Snippet Weakness Classes

T&E developed weakness snippets for 6 different weakness classes for C and Java. Each

weakness snippet corresponded to a Common Weakness Enumeration (CWE), but there

was often more than one algorithmic variant of weakness for a particular CWE. T&E

developed the weakness snippets summarized in Table 7.

Table 7 Number of Weakness Snippets

Weakness Class
C Java

CWEs Snippets CWEs Snippets

Concurrency Handling 15 16 15 15

Error Handling - - 8 9

Injection 3 8 4 8

Memory Corruption 17 43 - -

Null Pointer 1 7 - -

Number Handling 9 11 8 9

Resource Drains 11 13 9 11

Tainted Data - - 6 8

Total 56 98 50 60

For each weakness snippet, T&E developed benign input values that would not cause any

technical impact, and exploit input values that caused some kind of technical impact (denial

of service, information leakage, etc.) For C weaknesses, T&E developed 3 benign inputs and

2 exploit inputs. For Java weaknesses, T&E developed either 2 or 3 benign inputs and 2

exploit inputs.

T&E developed unit tests to verify that each weakness could be injected successfully with

any possible taint source. These tests verified that the injected code could be compiled and

that the YAML was well-formed. However, these tests did not run the injected code or

check that inputs were actually benign or exploiting, because such tests would require the

significant overhead of a system like TEXAS.

 IARPA STONESOUP Phase 3 Test Generation Report

39 Approved for public release; distribution unlimited. 12 December 2014

The weaknesses are described in detail in the STONESOUP Test and Evaluation Weakness

Documentation. All weakness snippets were validated by the Independent Verification and

Validation (IV&V) Team. T&E addressed all issues raised by IV&V regarding the snippets.

10.5 C/Binary Weaknesses

T&E developed the following CWEs for C. Some weaknesses have more than one snippet.

 Number Handling

o CWE-190: Integer Overflow or Wraparound

o CWE-191: Integer Underflow (Wrap or Wraparound)

o CWE-194: Unexpected Sign Extension

o CWE-195: Signed to Unsigned Conversion Error

o CWE-196: Unsigned to Signed Conversion Error

o CWE-197: Numeric Truncation Error

o CWE-369: Divide By Zero

o CWE-682: Incorrect Calculation

o CWE-839: Numeric Range Comparison without Minimum Check.

 Resource Drains

o CWE-400: Uncontrolled Resource Consumption (‘Resource Exhaustion’)

o CWE-401: Failure to Release Memory Before Removing Last Reference

(‘Memory Leak’)

o CWE-459: Incomplete Cleanup

o CWE-674: Uncontrolled Recursion

o CWE-771: Missing Reference to Active Allocated Resource

o CWE-773: Missing Reference to Active File Descriptor or Handle

o CWE-774: Allocation of File Descriptors or Handles Without Limits or

Throttling

o CWE-775: Missing Release of File Descriptor or Handle after Effective

Lifetime

o CWE-789: Uncontrolled Memory Allocation

o CWE-834: Excessive Iteration

o CWE-835: Infinite Loop

 Injection

o CWE-78: Improper Neutralization of Special Elements used in an OS

Command (‘OS Command Injection’)

o CWE-88: Argument Injection or Modification

o CWE-89: Improper Neutralization of Special Elements used in an SQL

Command (‘SQL Injection’)

 Concurrency Handling

o CWE-363: Race Condition Enabling Link Following

o CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition

 IARPA STONESOUP Phase 3 Test Generation Report

40 Approved for public release; distribution unlimited. 12 December 2014

o CWE-412: Unrestricted Externally Accessible Lock

o CWE-414: Missing Lock Check

o CWE-479: Signal Handler Use of a Non-reentrant Function

o CWE-543: Use of Singleton Pattern Without Synchronization in a

Multithreaded Context

o CWE-609: Double-Checked Locking

o CWE-663: Use of a Non-reentrant Function in an Unsynchronized Context

o CWE-764: Multiple Locks of a Critical Resource

o CWE-765: Multiple Unlocks of a Critical Resource

o CWE-820: Missing Synchronization

o CWE-821: Incorrect Synchronization

o CWE-828: Signal Handler with Functionality that is not Asynchronous-Safe

o CWE-831: Signal Handler Function Associated with Multiple Signals

o CWE-833: Deadlock

 Memory Corruption

o CWE-120: Buffer Copy without Checking Size of Input (‘Classic Buffer

Overflow’)

o CWE-124: Buffer Underwrite (‘Buffer Underflow’)

o CWE-126: Buffer Over-read

o CWE-127: Buffer Under-read

o CWE-129: Improper Validation of Array Index

o CWE-134: Uncontrolled Format String

o CWE-170: Improper Null Termination

o CWE-415: Double Free

o CWE-416: Use After Free

o CWE-590: Free of Invalid Pointer Not on the Heap

o CWE-761: Free of Pointer not at Start of Buffer

o CWE-785: Use of Path Manipulation Function without Maximum-sized Buffer

o CWE-805: Buffer Access with Incorrect Length Value

o CWE-806: Buffer Access Using Size of Source Buffer

o CWE-822: Untrusted Pointer Dereference

o CWE-824: Access of Uninitialized Pointer

o CWE-843 Access of Resource Using Incompatible Type (‘Type Confusion’)

 Null Pointer Errors

o CWE-476: NULL Pointer Dereference

 IARPA STONESOUP Phase 3 Test Generation Report

41 Approved for public release; distribution unlimited. 12 December 2014

10.5.1 Weaknesses not implemented in C

Some CWEs were called for in the TGP, but were not implemented in C for one or more of

the following reasons:

 Entirely covered by other CWEs

 Not possible to implement this CWE in C

 Not possible to automate testing for this CWE

 Cannot mitigate this CWE without application-specific knowledge

The following CWEs were not implemented in C:

 Resource Drains

o CWE-404: Improper Resource Shutdown or Release

o CWE-762: Mismatched Memory Management Routines

o CWE-770: Allocation of Resources Without Limits or Throttling

 Injection

o CWE-564: SQL Injection: Hibernate.

 Concurrency Handling

o CWE-362: Race Condition

o CWE-364: Signal Handler Race Condition

o CWE-365: Race Condition in Switch

o CWE-366: Race Condition within a Thread

o CWE-558: Use of getlogin() in Multithreaded Application

o CWE-567: Unsynchronized Access to Shared Data in a Multithreaded Context

o CWE-572: Call to Thread run() instead of start()

o CWE-832: Unlock of a Resource that is not Locked

 Memory Corruption

o CWE-762: Mismatched Memory Management Routines

10.6 Java Weaknesses

T&E developed the following CWEs for Java. Some weaknesses have more than one

snippet.

 Number Handling

o CWE-190: Integer Overflow or Wraparound

o CWE-191: Integer Underflow (Wrap or Wraparound)

o CWE-194: Unexpected Sign Extension

o CWE-195: Signed to Unsigned Conversion Error

o CWE-196: Unsigned to Signed Conversion Error

o CWE-197: Numeric Truncation Error

o CWE-369: Divide By Zero

o CWE-839: Numeric Range Comparison without Minimum Check

 IARPA STONESOUP Phase 3 Test Generation Report

42 Approved for public release; distribution unlimited. 12 December 2014

 Tainted Data

o CWE-15: External Control of System or Configuration Setting

o CWE-23: Relative Path Traversal

o CWE-36: Absolute Path Traversal

o CWE-41: Improper Resolution of Path Equivalence

o CWE-239: Failure to Handle Incomplete Element

o CWE-606: Unchecked Input for Loop Condition.

 Error Handling

o CWE-209: Information Exposure Through an Error Message

o CWE-248: Uncaught Exception

o CWE-252: Unchecked Return Value

o CWE-253: Incorrect Check of Function Return Value

o CWE-390: Detection of Error Condition Without Action

o CWE-391: Unchecked Error Condition

o CWE-460: Improper Cleanup on Thrown Exception

o CWE-584: Return Inside Finally Block

 Resource Drain

o CWE-400: Uncontrolled Resource Consumption (‘Resource Exhaustion’)

o CWE-459: Incomplete Cleanup

o CWE-674: Uncontrolled Recursion

o CWE-773: Missing Reference to Active File Descriptor or Handle

o CWE-774: Allocation of File Descriptors or Handles Without Limits or

Throttling

o CWE-775: Missing Release of File Descriptor or Handle after Effective

Lifetime

o CWE-789: Uncontrolled Memory Allocation

o CWE-834: Excessive Iteration

o CWE-835: Infinite Loop

 Injection

o CWE-78: Improper Neutralization of Special Elements used in an OS

Command (‘OS Command Injection’)

o CWE-88: Argument Injection or Modification

o CWE-89: Improper Neutralization of Special Elements used in an SQL

Command (‘SQL Injection’)

o CWE-564: SQL Injection: Hibernate.

 Concurrency Handling

o CWE-363: Race Condition Enabling Link Following

o CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition

o CWE-412: Unrestricted Externally Accessible Lock

 IARPA STONESOUP Phase 3 Test Generation Report

43 Approved for public release; distribution unlimited. 12 December 2014

o CWE-414: Missing Lock Check

o CWE-543: Use of Singleton Pattern Without Synchronization in a

Multithreaded Context

o CWE-567: Unsynchronized Access to Shared Data in a Multithreaded Context

o CWE-572: Call to Thread run() instead of start()

o CWE-609: Double-Checked Locking

o CWE-663: Use of a Non-reentrant Function in an Unsynchronized Context

o CWE-764: Multiple Locks of a Critical Resource

o CWE-765: Multiple Unlocks of a Critical Resource

o CWE-820: Missing Synchronization

o CWE-821: Incorrect Synchronization

o CWE-832: Unlock of a Resource that is not Locked

o CWE-833: Deadlock

10.6.1 Weaknesses Not Implemented in Java

Some CWEs were called for in the TGP, but were not implemented in Java for one or more

of the following reasons:

 Entirely covered by other CWEs

 Not possible to implement this CWE in Java

 Not possible to automate testing for this CWE

 Cannot mitigate this CWE without application-specific knowledge

The following CWEs were not implemented in Java:

 Number Handling

o CWE-682: Incorrect Calculation

 Error Handling

o CWE-273: Improper Check for Dropped Privileges

o CWE-274: Improper Handling of Insufficient Privileges

o CWE-280: Improper Handling of Insufficient Permissions or Privileges

o CWE-394: Unexpected Status Code or Return Value

o CWE-395: Use of Null Pointer Exception Catch to Detect NULL Pointer

Dereference

o CWE-396: Declaration of Catch for Generic Exception

o CWE-397: Declaration of Throws for Generic Exception

o CWE-600: Failure to Catch All Exceptions in Servlet

o CWE-617: Reachable Assertion.

o CWE-698 Redirect without Exit.

 Resource Drain

o CWE-401: Failure to Release Memory Before Removing Last Reference

(‘Memory Leak’)

 IARPA STONESOUP Phase 3 Test Generation Report

44 Approved for public release; distribution unlimited. 12 December 2014

o CWE-404: Improper Resource Shutdown or Release

o CWE-762: Mismatched Memory Management Routines

o CWE-770: Allocation of Resources Without Limits or Throttling

o CWE-771: Missing Reference to Active Allocated Resource

 Concurrency Handling

o CWE-362: Race Condition

o CWE-364: Signal Handler Race Condition

o CWE-365: Race Condition in Switch

o CWE-366: Race Condition within a Thread

o CWE-479: Signal Handler Use of a Non-reentrant Function

o CWE-558: Use of getlogin() in Multithreaded Application

o CWE-828: Signal Handler with Functionality that is not Asynchronous-Safe

o CWE-831: Signal Handler Function Associated with Multiple Signals

 IARPA STONESOUP Phase 3 Test Generation Report

45 Approved for public release; distribution unlimited. 12 December 2014

11 Trace data

To aid in debugging weaknesses and in evaluating the performance characteristics of the

performer technology, T&E added trace statements using the Linux Trace Toolkit Next

Generation (LTTng), available at https://lttng.org/. This was a lightweight tracing solution

that allows tracing to be activated or not at run-time, and that outputs time stamps and

specified data (include memory addresses and return pointer contents) to a trace file for

later analysis.

T&E added trace statements at the beginning and end of the program, at the beginning and

end of each weakness, and at points throughout the weakness. Within the weakness, T&E

added trace statements before and after the crossover point, which was the point at which

the system enters an unintended state, and before and after the trigger point, which was

the point at which the system experiences a negative technical impact. It was not always

possible to place a trace statement after the trigger point. For instance, if the trigger

happened upon return from the weakness stack frame, there was no way to inject a trace

statement after that return occurred, because that code location was not available at

compile-time. In addition, if the weakness triggered a system crash, any trace statement

placed after the trigger would not be executed.

T&E additionally placed trace statements at locations that would help a reviewer

understand the behavior of the weakness code, including at the beginning of most function

bodies within the weakness. Trace statements were omitted from function bodies that

were called hundreds of times (or more), to keep the size of the trace logs manageable.

The trace statements within the weakness allowed T&E to verify test cases were running as

expected. This was especially useful for test cases that were multi-threaded, such as

concurrency-handling weaknesses. It was also useful for post-hoc analysis of failing test

cases.

For more details on LTTng trace data, and its use in performance analysis, see the

STONESOUP Phase 3 Test and Evaluation Final Report.

 IARPA STONESOUP Phase 3 Test Generation Report

47 Approved for public release; distribution unlimited. 12 December 2014

12 Corpus Specification Generation

The automated injection system allowed the generation of a large number of test cases to

use in evaluating performer technology. To construct a test case, the user must select

values for the following:

 Weakness and algorithmic variant

 Base program

 Injection point

 Taint source

 Control flow complexity feature

 Data flow complexity feature

 Data type complexity feature

Weakness classes have different numbers of algorithmic variants, so the number of

different possible test cases is different for each weakness class.

Table 8 indicates the number of choices for each of the parameters except weakness and

algorithmic variant in C and in Java.

Table 8 Number of choices for test case parameters, except weakness

Test Case Parameter C/Binary Java

Base Program 6 6

Injection Points 10 10

Taint Source 4 3

Control Flow Complexity Features 10 12

Data Flow Complexity Features 11 6

Data Type Complexity Features 7 3

These parameters could all be set independently, so for each weakness algorithmic variant,

the number of possible combinations of other parameters is:

 6 x 10 x 4 x 10 x 11 x 7 = 184,800 combinations for C/Binary

 6 x 10 x 3 x 12 x 6 x 3 = 38,800 combinations for Java

Table 9 shows the number of snippets and the number of possible test cases for each

weakness class.

 IARPA STONESOUP Phase 3 Test Generation Report

48 Approved for public release; distribution unlimited. 12 December 2014

Table 9 Possible test cases for each weakness class

Weakness Class

C/Binary Java

Snippets Possible Test

Cases

Snippets Possible Test

Cases

Concurrency Handling 16 2,956,800 15 582,000

Error Handling - - 9 349.200

Injection 8 1,478,400 8 310,400

Memory Corruption 43 7,946,400 - -

Null Pointer 7 1,293,600 - -

Number Handling 11 2,032,800 9 349.200

Resource Drains 13 2,402,400 11 426,800

Tainted Data - - 8 310,400

Because of constraints of time and processing power, it was not possible to run every single

one of these test cases. Accordingly, T&E developed a test corpus consisting of a subset of

these test cases.

For each performer, T&E selected test cases at random from each appropriate weakness

class, subject to constraints on the outcome distribution. Table 10 shows the number of

test cases selected from each weakness class for each performer.

Table 10 Number of test cases per weakness class

Performer Language Number of test cases chosen per weakness class

Columbia C 531

Grammatech Binary 637

Kestrel Java 478

To develop the corpus specification, T&E wrote a program that generated possible test case

names and then validated each test case name for uniformity on various axes. Uniformity

was defined as the lowest possible delta between the counts of each of the possible values.

The algorithm selected values for axes in the following order:

 Language

 Weakness class

 Weakness and algorithmic variant within weakness class

 Base program

 Injection point within base program

 Taint source

 Control flow

 Data flow

 Data type

 IARPA STONESOUP Phase 3 Test Generation Report

49 Approved for public release; distribution unlimited. 12 December 2014

Figure 7 illustrates the process used to generate a test corpus specification. For each axis

in order, the algorithm picked a value for that axis that had been used the least in the

previously accepted test case names. It then checked that the new value, in combination

with the values chosen for the previous axes, passed all required uniformity checks. If any

uniformity check failed, the algorithm chose a different least-used value for the axis and

tried again. If no choice of value for the axis satisfied all uniformity checks, the algorithm

recursively fell back to the previous axis, and tried again.

Figure 7 Process for Test Corpus Generation Algorithm

The test corpus developed by T&E was as uniform as possible on several specified subsets

of the test case parameters. In particular, T&E tested for uniformity on the following

individual parameters:

 Weakness Class

 Weakness within Weakness Class

 Base Program

 Injection Point

 Taint Source

 Control Flow

 Data Flow

 Data Type

In addition, T&E tested for uniformity on the following combinations of parameters:

 Base Program/Injection Point

 Base Program/Taint Source

 Base Program/Control Flow

 Base Program/Data Flow

 Base Program/Data Type

 Taint Source/Control Flow

 Taint Source/Data Flow

Process
Select value

from Axis Previously

Selected

Values

Uniformity

CheckUniformity

CheckUniformity

CheckUniformity

Check

Selected Value

Selection Valid?

Select Axes

of Variation?

Yes

No

 IARPA STONESOUP Phase 3 Test Generation Report

50 Approved for public release; distribution unlimited. 12 December 2014

 Taint Source/Data Type

 Data Flow/Control Flow

 Data Type/Control Flow

 Data Type/Data Flow

 Weakness/Base Program

 Weakness/Taint Source

 Weakness/Control Flow

 Weakness/Data Flow

 Weakness/Data Type

 Taint Source/Data Type/Control Flow

 Taint Source/Data Type/Data Flow

 Taint Source/Data Flow/Control Flow

 Taint Source/Data Type/Data Flow/Control Flow

 Weakness/Base Program/Injection Point

Each of these checks was required to be separately as uniform as possible with the entire

collection of checks providing optimum uniformity.

A full discussion of corpus specification generation, including the tests used to measure

uniformity and the statistical metrics of the final specification corpus is included in the

STONESOUP Phase 3 Test and Evaluation Final Report.

 IARPA STONESOUP Phase 3 Test Generation Report

51 Approved for public release; distribution unlimited. 12 December 2014

13 Packaging Test Cases

The packager was contained in the ss_testcases repository. This tool combined all the

necessary components into a test case that could be run by TEXAS. Figure 2 in Section 2.4

shows the inputs and outputs for the packager.

13.1 Inputs to Packager

The packager took as input the following items:

 Test case name

 Base program information

 Weakness information

13.1.1 Test Case Name

The test case name provided the following information:

 Base program

 Injection point for the base program

 Taint source type

 Control flow complexity feature

 Data flow complexity feature

 Data type complexity feature

13.1.2 Base Program

The packager required the following information for the base program:

 Source code, modified to respect library environment variables and to be able to be

processed by the injection system

 Skeleton, which was the directory structure used by base program inputs

 XML containing:

o Instructions for building base program

o For each of the 10 different inputs:

 Instructions for running base program for this input

 Pre-processes required to run before the base program was run, e.g.:

 Setting environment variables

 Creating files with particular contents in particular directories

 Running scripts to make sure that the system was in the

correct state for the test case

 Co-processes required to run at the same time the base program was

run, e.g:

 Running a client program for a server program

 Running a script to provide automated GUI input

 Post-processes required to run after the base program was run, e.g.:

 IARPA STONESOUP Phase 3 Test Generation Report

52 Approved for public release; distribution unlimited. 12 December 2014

 Shutting down a server operating during the test case

 Output checks to verify that the input ran as expected. These could be

arbitrarily nested Boolean expressions, and could include such tests

as:

 Looking in a particular location for a particular string

 Looking in a particular location for a specified regular

expression

 Checking that a particular file was created with particular

contents

 Checking that the test case did (or did not) time out.

The pre-, co-, and post-processes were a general interface allowing any script to be run to

support the test case. The processes could be run sequentially or in parallel, and a

collection of processes (run sequentially or in parallel) could be nested arbitrarily.

The packager required the following information for the weakness snippet:

 Snippet source code

 Snippet YAML, containing:

o 2 or 3 benign inputs that would exercise the weakness without having a

technical impact.

o 2 exploit inputs that would cause some kind of technical impact, such as

denial of service or information exposure

For each benign or exploit input, the snippet YAML file provided the value that would be

provided to the program through the taint source. In addition, for each benign or exploit

input, the snippet YAML file could specify other pre-, co-, or post-processes that needed to

run to support the snippet. These processes were a generalized structure to run any kind

of script. They could do things like set up particular environment variables or files, run co-

processes to coordinate actions of concurrency weaknesses, or run post-processes to clean

up large files generated by the weakness.

The snippet YAML file did not contain output checks or technical impacts for the exploit

inputs. Due to schedule constraints, the technical impact and output checks for exploit

inputs were contained in the code of the packager. Given more programming resources, it

would make sense to move these checks to the snippet YAML files themselves, but this

would require a significant effort.

 IARPA STONESOUP Phase 3 Test Generation Report

53 Approved for public release; distribution unlimited. 12 December 2014

13.2 Outputs from Packager

The packager produced a test case tarball suitable for running in TEXAS. This tarball

contains:

 The injected base program

 The injected skeleton

 The injected YAML

 The inject XML

13.2.1 Injected Base Program

The injected base program was created when the injection system (ss_vuln_injector for

C/Binary or ss_vinject4j for Java) processed a base program. The injection system began by

reading in a base program that had been appropriately modified by T&E to respect library

environment variables and to allow processing by the injection system. The injection

system inserted the atomic barrier, and within that inserted the taint source, complexity

features, and weakness specified by the test case name. The injection system then output

the source code for use in the test case tarball.

13.2.2 Injected Skeleton

The packager created the injected skeleton beginning with the base program skeleton,

which provided necessary files for running the base program. It then added to that

skeleton files that were required for the chosen weakness. For instance, if the test case

name specified the socket taint, then the skeleton would need to have access to the

service_mon.sh script, which checked whether a service was up or not. This script was

placed into the skeleton’s scripts directory, and instructions were added to the injected

XML file to run this script as a co-process. Similarly, if the test case name specified the

shared memory taint, then the skeleton would need scripts to establish and tear down the

shared memory, and the injected XML file would need instructions to run those scripts

when appropriate. If the weakness required a common script such as the runFifos.py script

used by concurrency weaknesses, that script would also be downloaded into the skeleton’s

scripts folder.

13.2.3 Injected YAML

The packager created the injected YAML beginning with the YAML for the chosen

weakness. It added details about the injection point, the taint source, and the code

complexity features used in the test case. It provided input details for 2 or 3 inputs that

result in benign behavior by the weakness, and 2 inputs that result in exploit behavior by

the weakness.

 IARPA STONESOUP Phase 3 Test Generation Report

54 Approved for public release; distribution unlimited. 12 December 2014

13.2.4 Injected XML

The packager created the injected XML from the base program XML and the injected YAML.

The base program XML provided the necessary instructions for building and running the

base program. The injected YAML provided the necessary inputs for running the weakness,

either in a benign fashion or an exploit fashion.

The injected XML file had 10 good IO pairs and 2 bad IO pairs. Each IO pair had:

 Inputs for the base program, and

 Inputs for the weakness

The 10 good IO pairs each had:

 One of the 10 possible inputs for the base program, selected in order

 One of the 2 or 3 benign inputs for the weakness, chosen by cycling deterministically

through the available benign inputs

The 2 bad IO pairs each had:

 One of the 10 possible inputs for the base program, selected at random with

replacement

 One of the 2 exploit inputs for the weakness, selected in order

In constructing the injected XML for each IO pair, the packager created:

 Collection of pre-processes from:

o Pre-processes for the appropriate base program input

o Pre-processes for appropriate taint source

o Pre-processes for appropriate weakness input

 Run-command - Uses the run command for the appropriate base program input

 Collection of co-processes from:

o Co-processes for the appropriate base program input

o Co-processes for appropriate taint source

o Co-processes for appropriate weakness input

 Collection of post-processes from:

o Post-processes for the appropriate base program input

o Post-processes for appropriate taint source

o Post-processes for appropriate weakness input

 Set of output checks:

o For good IO pairs, used the output check for the appropriate input from the

base program. These output checks were specified in the base program XML

file

 IARPA STONESOUP Phase 3 Test Generation Report

55 Approved for public release; distribution unlimited. 12 December 2014

o For bad IO pairs, used the output check for the appropriate exploit input

from the weakness. These output checks were specified in the packager

source code.

 Technical impact of weakness – NONE for benign inputs, and an explanation of the

technical impact for exploit inputs. The technical impact for each weakness exploit

input was specified in the packager source code.

The collections of pre-, co-, and post-processes were each an ordered group of actions.

Processes could be run either sequentially or in parallel, and a process could consist of a

sub-collection of processes that were themselves run either sequentially or in parallel.

Collections of processes could be nested arbitrarily.

The output checks consisted of a Boolean formula (with arbitrary nesting) of checks on

return codes, checks for particular strings in particular locations, checks of script outputs,

and checks of timeout (or not).

 IARPA STONESOUP Phase 3 Test Generation Report

57 Approved for public release; distribution unlimited. 12 December 2014

14 Debugging Test Cases in Base Programs

Upon packaging test cases, T&E ran them through TEXAS to validate them. IV&V validated

which test cases ran successfully through TEXAS under Stage One (without performer

technology) and which had errors.

TEXAS took as input a tarball for the test case. It built the test case, using the instructions

in the XML file to generate an analyze tarball. Then it ran the test case on each of the 12 IO

pairs (10 good and 2 bad), and generated an execute tarball for each IO pair.

If a test case failed, T&E debugged the problem using the results of the analyze or execute

tarball. This tarball contained:

 The injected base program, with any modifications made by the build or run process

 The injected skeleton, with any modifications made by the run process, including

information written by the weakness to the designated log file

 The injected YAML

 The injected XML

 Log data including:

o LTTng trace data

o Standard out and standard error for the build commands, and for each pre-

process, co-process, post-process, and run command

To debug a test case, T&E generally began by examining the log files created by the various

processes, and proceeded to look at the modifications made to the base program and the

skeleton. From there, T&E re-constructed the actions taken by the analyze or execute run

to find the problem.

 IARPA STONESOUP Phase 3 Test Generation Report

59 Approved for public release; distribution unlimited. 12 December 2014

15 Lessons Learned

Automated test generation is a difficult task. T&E notes the following lessons from this

project:

 Snippet functionality was absolutely essentially to writing and maintaining a large

library of injectable code. It was extremely difficult to maintain or update code that

generated other code. It was not a scalable process to write code that generated

AST nodes that were then output as code.

 GUI automation was a difficult and time-consuming task. GUIs can utilize a wide

variety of appearances and actions, because the entity interacting with them is

usually a human being with robust error-correcting capability. GUIs are not

designed to interact with automated systems that do not have such robust error-

correcting capability. In addition GUIs may take an alternate path only a small

percentage of the time, making recognizing and debugging issues more difficult still.

Significant time must be allotted for multiple runs of GUI applications to observe

and remove all bugs.

 Dynamically loaded libraries would make it easier to add code to base programs.

Having to alter a base program’s build processes to respect library environment

variables requires a significant input of programmer time. It may be more efficient

to use dynamically loaded libraries to access outside functionality, though such

dynamic loading may create difficulties for performer technology.

 Multi-level output checks were difficult to get right, because of their abstract nature

and obtuse syntax. They require hand-checking and careful thought to iron out

problems.

 IARPA STONESOUP Phase 3 Test Generation Report

60 Approved for public release; distribution unlimited. 12 December 2014

 IARPA STONESOUP Phase 3 Test Generation Report

A-1 Approved for public release; distribution unlimited. 12 December 2014

Appendix A: Acronyms
Table 11 Acronym List

Acronym Acronym Definition

API Application Programming Interface

AST Abstract Syntax Tree

CWE MITRE Common Weakness Enumeration

Eclipse JDT Eclipse Java Development Toolkit

GUI Graphical User Interface

IARPA Intelligence Advanced Research Projects Activity

IV&V STONESOUP Independent Verification and Validation Team

JVM Java Virtual Machine

LTTng Linux Trace Toolkit Next Generation

STONESOUP Securely Taking On New Executable Software Of Uncertain Provenance

T&E STONESOUP Phase 3 Test and Evaluation Team

TGP STONESOUP Phase 3 Test Case Generation Plan

TEXAS STONESOUP Phase 3 Test and Evaluation eXecution and Analysis System

XML eXtensible Markup Language

YAML YAML Ain’t Markup Language

