
A Benchmark Suite for Behavior-Based Security Mechanisms

Dong Ye, Micha Moffie and David Kaeli
Computer Architecture Research Laboratory
Northeastern University, Boston, MA 02115

{dye,mmoffie,kaeli}@ece.neu.edu

Abstract

This paper presents a benchmark suite for evaluating
behavior-based security mechanisms. Behavior-based mech-
anisms are used to protect computer systems from intrusion
and detect malicious code embedded in legitimate applica-
tions. They complement signature-based mechanisms (e.g.,
anti-virus software) by tackling zero-day attacks whose sig-
natures have not been added yet to the signature database,
as well as polymorphous attacks that have no stable signa-
tures.

In this work we present a benchmark suite of eight pro-
grams. All of these programs are legitimate applications,
but we have designed them to be infected by malicious soft-
ware. An evaluation framework is designed to infect, disin-
fect, build, and run the benchmark programs. This bench-
mark suite aims to help evaluate the effectiveness of various
behavior-based defense mechanisms during different devel-
opment stages, including prototyping, testing, and normal
operation. We use this benchmark suite to evaluate a sim-
ple behavior-based security mechanism and report our find-
ings.

1 Introduction

1.1 Behavior-based security mechanisms

Many host-based intrusion prevention systems [29, 34, 38]
employ behavior-based analysis to protect an application
running on a server from being hijacked. Most of these
applications are known or highly suspected to horde se-
curity vulnerabilities, such as buffer overflows and format
strings [21]. These systems use various methods to examine
the actions taken by a program by inspecting library API
activity and system calls. Actions that appear malicious,
such as attempting a buffer overflow or opening a network
connection in certain contexts, will trigger an alarm by the
monitoring agents.

Over the past few years, spyware has become a perva-
sive problem [13, 16]. Many infections occur when spy-
ware is piggybacked on top of popular software packages.

Saroiu et al. [16] found that spyware is packaged with four
of the ten most popular shareware and freeware software
titles from C|Net’s http://download.com/. Commercial
security software vendors [28, 35, 30, 37] have developed a
number of security products addressing this problem. All
of these companies have emphasized that they detect spy-
ware by observing system behavior and detecting abnormal
activity from the norm.

Signature-based intrusion detection and anti-virus solu-
tions fail to expose this class of exploitation and do not
adapt well to even small changes in an exploit. A signa-
ture is a regular expression known a priori that matches
the instruction sequence of the exploitation or the network
packets presented in a specific attack [39]. Therefore, zero-
days attacks that have not had a signature extracted yet,
as well as polymorphous attacks, pose a great danger to
these signature-based mechanisms. Behavior-based mecha-
nisms aim to overcome these shortcomings and complement
signature-based mechanisms with more adaptive and proac-
tive protection. Instead of looking for fixed signatures in in-
struction sequences and network packet payloads, behavior-
based approaches focus on detecting patterns at a higher
level of abstraction. Ideally, the patterns are the inherent
behavior associated with malicious activities and distinct
from the normal behavior of legitimate programs. Evading
a behavior-based protection mechanism normally requires a
change in the logic of the malicious activity itself.

Gao et al. [6] investigated the design space of system-
call-based program tracking, which is the technology be-
hind many host-based anomaly detection and prevention
systems. A detailed system call trace can be recorded and
characterized to better understand the typical behavior of
the program. By establishing a profile of normal behav-
ior, an intrusion into the process will be detected when the
system-call behavior deviates from this normal profile.

Edjlali et al. [4] presented a history-based access-control
mechanism to mediate accesses to system resources from
mobile code. Their idea was to maintain a selective history
of the access requests made by individual programs and to
use this history to differentiate between safe and potentially
dangerous requests. Each program is categorized into one

of several groups, whereas each of these groups contains a
different profile of resource requests. The behavior of each
program during the entire execution is also constantly mon-
itored. The decision of whether to grant a resource request
that the program makes depends on both its preassigned
identity and its historical behavior during this execution, as
well as additional criteria, such as the location where the
program was loaded or the identity of its author/provider.

1.2 Security metrics and measurement

As behavior-based mechanisms become more commonly
used, and the rules and analytics engine underlying these
mechanisms become more sophisticated, we need a method-
ology to evaluate these security mechanisms. The evalua-
tion could be (and, ideally should be) used both for testing
these mechanisms during code development, and for the val-
idation and product rankings.

Developing metrics to define security properties remains
an ongoing research topic [5]. A number of approaches have
been proposed to measure the value of a security product
or technology, and to assess the level of security attained by
the whole system [20, 32].

Kajava et al. [11] considered a range of criteria to qualify
and quantify the degree of security attained. They summa-
rized three major classes:

• Risk analysis is the process of estimating the possibility
of individual exploitations, their impact on the system,
and as well as the cost to mitigate the risk. Risk anal-
ysis considers the trade-off between cost and the level
of protection, and is thought to be a good basis for any
security evaluation [3].

• Certification involves decomposing the system into dif-
ferent classes based on design characteristics and se-
curity mechanisms. Standards organizations and com-
mercial companies provide certification services to mea-
sure the level of confidence that can be assigned to the
security features offered by a product [41, 31], or the
degree of conformance of a security process to the es-
tablished guidelines (e.g., ITIL [14], CMM [10] and CO-
BIT [1]).

• Penetration testing provides statistics about the proba-
bility that an intrusion attack will be successful. For ex-
ample, the WAVES project [42] standardizes the prac-
tice of penetration testing for Web applications.

There have also been efforts to employ multiple orthogo-
nal criteria to quantify the value of the perceived security
enhancement, and the cost associated with the enhance-
ment. Gordon et al. [7] proposed a framework to use the
concept of insurance to manage the risk of doing business in
the Internet era. They also described how to evaluate and

justify security-related investments. The criteria they used
for their security evaluation includes the three elements just
discussed.

There still remains no widely accepted way to measure
and rank security properties. The difficulty of finding a
common ground for evaluating various security mechanisms
suggests that further work is needed before we can adopt
an unified evaluation methodology for different categories
of security mechanisms.

The goal of this paper is to describe a new benchmark-
ing methodology to evaluate behavior-based security mech-
anisms. We present a benchmark suite composed of eight
applications that are typically found in workstation/desktop
environments. These applications are infected with a vari-
ety of malicious codes, that in turn, represent a broad spec-
trum of exploits. We demonstrate the utility of our bench-
mark suite by applying it to a simple behavior-based secu-
rity mechanism. The rest of paper is organized as follows.
We discuss the rationale of our benchmarking methodology
for evaluating behavior-based security mechanisms in sec-
tion 2. We then describe the suite of benchmarks we have
created in section 3. In section 4, we use this benchmark
suite to evaluate a simple behavior-based security mecha-
nism and analyze the results. In section 5, we summarize
the paper and discuss future directions for our work.

2 A Case for Benchmarking
Behavior-Based Security Mecha-
nisms

Benchmarking has been used widely in the field of computer
architecture and system software development to evaluate
the performance of a particular design or implementation.
The basic idea behind benchmarking is to create a common
ground of comparison for a certain category of targets. Nor-
mally a suite of applications is constructed to serve as this
common ground. These applications reflect typical work-
loads running on a selected category of computer systems
(e.g., servers) or a selected category of application software
(e.g., database). The value of different design mechanisms
is measured by obtaining performance metrics while run-
ning the suite. Benchmarking promotes the practice of
quantitative analysis [8]. There have also been efforts to
use benchmarking to evaluate properties other than perfor-
mance, such as dependability [12].

One of the key challenges addressed by most security-
related mechanisms is that they need to address a moving
target. The activities and scenarios that may do harm to
the system are unpredictable, and tend to change their form.
It would seem that a benchmarking methodology might not
be a good choice for evaluating security mechanisms, since
there is no stable workload that can be used.

In spite of the differences between their various ap-
proaches, all the behavior-based mechanisms make a com-
mon claim that they can differentiate the behavior of the
malicious code from the normal behavior of the program.
Malicious behaviors are limited to several general categories,
such as resource abuse, information tampering, and infor-
mation leakage [16]. More and more of these attacks are
being motivated to obtain financial gains [17]. This indi-
cates that the malicious behavior that these mechanisms
are trying to single out is limited, and is relatively stable.
For these cases, benchmarking can be very useful. A bench-
mark suite that consists of representative workloads infected
with representative malicious activities can provide a good
test of behavior-based security mechanisms.

Our benchmarking approach diverges from the penetra-
tion testing either performed by third-party auditors and
certification service providers [41, 31], or embodied in soft-
ware packages which are composed of a set of penetration
cases [42]. These differences include:

• The main purpose of penetration testing is to find se-
curity vulnerabilities in the targeted programs, while
the goal of our benchmarking technology is to find out
whether the analytics and rules behind behavior-based
mechanisms are sufficient.

• Penetration testing can be very implementation spe-
cific. Whenever a exploit of a newly discovered vulner-
ability appears, this new penetration scenario must be
added to the set of test cases. On the contrary, the col-
lection of malicious behavior included in our benchmark
suite is much less dependent upon individual exploits.
Unless the entire strategy behind an exploit is different
from those included in the benchmark suite, there is no
need to update the benchmark suite with every newly
discovered exploit.

• Last, our benchmarking methodology is complemen-
tary to commonly used audit and certification services.
Designers and developers can benefit from our bench-
mark suite because it is more cost-effective and conve-
nient to use to test new ideas and prototype products
during the entire development cycle.

The anti-virus community has already tested the idea of
benchmarking. Basically they combine the signatures of all
the known (and some not widely known) exploits and see
how many of them different anti-virus products can find.
In a test performed by Virus Bulletin [40], 100% of their
signatures were detected by all the tested anti-virus soft-
ware. It should be apparent that it would be difficult to
produce a meaningful comparison here. A 100% detection
rate suggests that benchmarking may not be a good way to
evaluate detection accuracy (i.e., effectiveness) of anti-virus
technology.

Using our approach, we emphasize that it is behavior-
based mechanisms that we propose to evaluate using bench-
marking. Different types of security mechanisms may need
different methods to be properly evaluated.

3 The SecSpec Behavioral Bench-
mark Suite

3.1 Components of the benchmark suite

We have developed a benchmark suite called SecSpec. The
benchmark programs included in the suite, as well as the
malicious code, are written in Java. The choice of language
should not limit the scope of applying the benchmarking
methodology, though the implementations of malicious be-
havior may need to be ported to another language and a
new set of benchmark programs may need to selected.

We target a typical workstation/desktop computing en-
vironment when choosing the component programs for the
benchmark suite. We include four types of applications and
consider two particular programs from type.

Browsers: Jbrowser [24] and JXWB [26] are two simple
and functional web browsers. They are simple because
they do not possess elaborate features such as client-
side plug-ins.

Editors: Jedit [33] and Jexit [25] are two full-blown editors.
The feature richness of these two applications pose a
great challenge to behavior-based security mechanisms.

Instant Messengers: BIM [23] and SimpleAIM [27] are
two simple AOL instant messaging clients. SimpleAIM
is console-based and BIM is GUI-based. Instant Mes-
saging (IM) has become a serious application in both
enterprise and personal desktop environments, and is
also a favorite medium for spyware distribution [15].

Games: Computer games are a major channel for viruses
to infect both enterprise and home desktops. Even
games developed for mobile phones can be be in-
fected with viruses [2]. We include two simple games,
Tetris [36] and AntiChess [22], to cover this category of
applications.

In our suite, we cover five categories of malicious code.
We arrive at this categorization based on the behaviors they
present. Each category of malicious behavior includes one
or more implementations. Table 1 lists our categorization
of these malicious behaviors.

We have placed the implementations of the malicious be-
havior inside a single source file for easy maintenance. Dif-
ferent types of malicious behavior are implemented in sep-
arate functions. The execution of a particular malicious
behavior is simply a call to the corresponding function(s).

Specially-formatted comments are placed in the source code
of the benchmark programs. These special comments are
placeholders for the invocation of malicious behavior. To
infect (or disinfect) the benchmark programs, we simply un-
comment (or comment) these placeholders.

Malicious be-
havior type

Implementation(s)

1. Direct informa-
tion leakage

Read local file and email out.

2. Indirect
information
leakage

Copy local file to user’s webpage
directory.
Copy local file to /tmp.
Change file permission bits.

3. Information
tampering

Update .hosts file in home direc-
tory.

4. Direct
resource abuse

Write a huge file to current direc-
tory.
Crash a process.

5. Indirect re-
source abuse

Download remote code, put in
the system startup folder or up-
date system startup script.

Table 1: Categorization and implementation of malicious
behavior

3.2 Placement of malicious code inside
benchmark programs

The location of malicious behavior inside a benchmark im-
pacts the accuracy of behavior-based security mechanisms.
When invoking malicious code at different locations, the
malicious behavior will appear in different contexts. If
we place the invocation of the malicious code such that
it presents a similar library API call or system call profile
as in the original application, the behavior-based mecha-
nism will face a bigger challenge to do its job well. Pre-
vious studies [18, 43, 6] have demonstrated the viability of
the mimicry attacks against host-based intrusion prevention
systems. They engineered the attack code to confuse the
detection agent by limiting the usage of library APIs and
system calls to those that are also used by the application.

This could lead to a practice of choosing the location of
the placeholders inside the benchmark program according to
the similarity between the malicious code and the context
of the benchmark program around the placeholders. How-
ever, we have focused on capturing more general application
behavior instead of worrying about mimicing a specific low-
level library API and system call profile. Our goal is not to
defeat these security mechanisms, but instead, to evaluate
their effectiveness. We want to measure the robustness of
the logic and rules sets underlying these mechanisms when
encountering potentially confusing information. We call this

practice orthogonality-directed placement. The less orthog-
onal the malicious behavior and the surrounding context
of benchmark are relative to one another, the larger the
challenge that this benchmark suite poses to behavior-based
mechanisms.

Different placement schemes demand different levels of
understanding of benchmark programs. The minimum level
of understanding is to make sure the insertion of placehold-
ers does not break the original code. We have experimented
with two placement schemes:

Random placement: Beyond the minimum requirement
of not breaking benchmark programs, our random
placement makes sure that the malicious code will ap-
pear in at least two types of locations: at a location
where it will definitely appear on the execution path;
and at a location where it may or may not appear on the
execution path, depending on some particular run time
events. We position the placeholders in the startup or
termination section to emulate the first scenario and in
the user interface event handling section to emulate the
second scenario.

Orthogonality-directed placement: This requires us to
compute the degree of similarity of the program be-
havior and the malicious behavior. Our approach is to
classify both the benchmark programs and malicious
code to obtain four general categories of behavior: net-
work oriented, file system oriented, mixed or neither.
We then mix them together according to the extent of
overlap between behaviors in these four categories.

Among the four types of benchmark programs, we
classify IM clients as network-oriented, editors as file
system-oriented, browsers as mixed, and games as nei-
ther. Among the five types of malicious behaviors, we
classify indirect information leakage, information tam-
pering, and direct resource abuse as file system ori-
ented, direct information leakage and indirect resource
abuse as mixed.

Malicious behavior
Benchmark programs 1 2 3 4 5

Browsers Jbrowser [24] ∆
JXWB [26] ∆

Editors Jedit [33] ∆ ∆ ∆
Jext [25] ∆ ∆ ∆

IMs BIM [23] ∆
SimpleAIM [27] ∆

Games AntiChess [22] ∆ ∆ ∆ ∆ ∆
Tetris [36] ∆ ∆ ∆ ∆ ∆

Table 2: Placement of malicious code in applications

An example of an orthogonality-directed placement would

look like Table 2. Note that the numbering of the malicious
behavior corresponds to the numbering given in Table 1. All
of the placeholders are inserted manually.

3.3 User interface of the benchmark suite

The user interface to the benchmark suite is provided via the
Apache Ant build tool [19]. We provide four build targets
for each benchmark program:

1. Infect: Insert malicious code into a benchmark program
by uncommenting the placeholders in the source code.

2. Disinfect: Restore a benchmark program to the clean
version by commenting out these placeholders.

3. Jar: Build a single jar file of a benchmark program,
including all the class files, supporting files, as well as
the library package that implements the malicious be-
havior.

4. Run: Run a benchmark program, generating the com-
mand line and running the benchmark program.

4 Experimentation

4.1 A History-Based Access Control

To test our benchmark suite, we have implemented a
history-based access control mechanism based on the work
done in [4]. This is an example of a behavior-based security
mechanism.

The basic idea of this mechanism is that a running pro-
gram is constantly categorized into a series of contexts ac-
cording to the resource requests it makes during execution.
Each context includes a number of Java permissions [9]
which could permit access to the guarded resource. This
series of contexts is the historical profile of the program and
determines whether the future resource request should be
granted or rejected.

The relationship between different contexts are either co-
operative or non-cooperative. A policy file explicitly spec-
ifies the cooperative relationship. Permission to a new re-
source request can be granted only under one of the follow-
ing two scenarios:

• The program’s historical profile already includes a con-
text that contains this permission,

• The context that needs to be added to grant this per-
mission must be held in a cooperative relationship with
the program’s historical profile.

We have implemented a simple version of the history-
based access control. More sophisticated mechanisms can be

base

network file system

Figure 1: Contexts provided in a history-based access con-
trol mechanism.

implemented in a similar way. However, this simple mech-
anism helps us to locate where the problem is when this it
succumbs to an exploit.

The mechanism we implemented has three contexts: base,
network, and file system, as shown in Figure 1. The base
context includes the most restrictive permissions, network
and file system grant all network-related and all file system-
related permissions, respectively, which are thought of as
resources susceptible to attack.

When a resource access request is made, the base context
is searched first for permissions that could imply allowing
this access. Whenever a permission in the base context can
service the need, two things will happen: the base context
will be added to this program’s historical profile; and the
search process stops, even if permission in either the network
or the file system context may also allow this access.

Figure 2 shows an outline of the policy file for this simple
history-based access control mechanism. Note the priority
of the base context over the network and file system con-
texts is indicated by the fact that the specification of the
base context precedes the other two in the policy file.

4.2 Evaluation

We carried out our experiment in two stages: (1) first pro-
filing clean benchmarks; (2) testing the security mechanism
against infected benchmarks.

During the profiling stage, a clean version of each bench-
mark is run once. We have modified the security manager
to intercept all resource requests. Permissions that are re-
quired to run a clean benchmark are granted and recorded.
We then create the policy file for the history-based access
control mechanism. We organize the gathered permissions
into the base context, and try to make some too permis-
sive permission more fine-grained, in order to minimize the
risk exposure of the base context. We make sure the clean
version of each benchmark can run without having to be
categorized into either a network or file system context.

During the testing stage, we run the infected version of
each benchmark. The security manager is loaded upon the
startup of the JVM and uses the policy file established from
the profiling stage to apply history-based access control.

};

context network

{

 permission java.net.SocketPermission "*", "connect,listen,accept,resolve";

};

CooperatingContexts

{

 permission java.io.FilePermission "<<ALL FILES>>", "read,write,execute,delete";

{

context file_system

 file_system

 base

};

CooperatingContexts
{
 network

 base

};

{

 permission java.net.SocketPermission "vanders.ece.neu.edu", "resolve";

 permission java.net.SocketPermission "localhost:*", "connect,listen, resolve";

 permission java.net.NetPermission "specifyStreamHandler", "";

 permission java.lang.reflect.ReflectPermission "*", "";

 permission java.lang.RuntimePermission "*", "";

 permission java.util.PropertyPermission "*", "read,write";

 permission java.awt.AWTPermission "*", "";

context base

 permission java.io.FilePermission "/home/student/dye/.jedit/−", "read,write,delete";

 permission java.util.logging.LoggingPermission "control", "";

....

};

Figure 2: Skeleton of the policy file for the history-based access control mechanism.

Table 3 shows our experimental results. In this experi-
ment, we randomly placed the five types of malicious be-
havior inside each benchmark program.

Before running this experiment, we anticipated that holes
in Java permission could cause trouble for our security
mechanism. Also, we suspected that the permissions gath-
ered in the profiling stage are not fine-grained enough (i.e.,
we may be too permissive). The analysis of our testing re-
sults confirmed our suspicions. In addition, we uncovered
an instance of sloppy coding practices in terms of security.

1. The permissions inside the contexts of this history-
based mechanism are not sufficiently fine-grained.

In the two games, the security mechanism stopped
all network-based attacks, yet failed to detect any file
system-based attacks. The problem is that the base
context cannot identify all of the file system access re-
quests during the testing stage. Therefore, the program
has to be categorized as file system context to continue

Attack stopped
√

/missed× Malicious behavior
Benchmark programs 1 2 3 4 5

Browsers Jbrowser [24] × × × × ×
JXWB [26] × × × × ×

Editors Jedit [33] × × × × ×
Jext [25] × × × × ×

IMs BIM [23]
√ √ √ √ √

SimpleAIM [27]
√ √ √ √ √

Games AntiChess [22]
√

× × ×
√

Tetris [36]
√

× × ×
√

Table 3: Malicious behaviors inside the benchmark suite
stopped or missed by the history-based access control. A√

indicates the failure of this instance of attack (being
stopped); A × indicates the success of this attack (being
missed).

running. Once the file system context is added into the
historical profile of the program, any file system-based
attack can succeed in this program.

One possible remedy would be to add a fine-grained file
system permission into the file system context. Another
choice would be to profile the program more extensively
so that every possible file system access permission re-
quired by the clean version of the program could be
added into the base context. However, this second ap-
proach has two shortcomings: Complete coverage dur-
ing profiling is not always realistic; and we may not be
able to to profile every program before deployment.

The two browsers are wide open to any attack. The
network-related and file system-related permissions in-
cluded in the base context are sufficient for all the at-
tacks to succeed.

Although we characterized editors as file system ori-
ented, the Jext program needs network access to pro-
vide the functionality of viewing a URL and editing the
file denoted by the URL. The execution of this func-
tionality during the profiling stage has already granted
some network access permissions to the base context.
As such, all network-based attacks in our benchmark
suite can also succeed.

2. The information provided by Java is insufficient. It
appears that the history-based access control mecha-
nism did a perfect job in protecting the two IM clients.
However the interpretation of the logging messages in-
dicates these two mixed attacks (i.e., direct information
leakage and indirect resource abuse) were stopped only
because of the portion that needs file system access.
The portions of these two attacks that have access to
the network were not stopped by the mechanism.

This time we do not believe the problem lies in the
coarseness of the network access permissions. After all,
it is impossible to specify every possible instance of a
network connection. This suggests other information,
such as the producer of the destination address of a
network connection (binary or console input)) should
be collected and analyzed to detect potential malicious
behavior.

3. It may not be wise to count on other programs to
fully appreciate and correctly utilize the security ca-
pabilities of a high-level system like Java. Java pro-
vides a good interface to mediate access to various re-
sources: permission-based capabilities, as well as a se-
curity manager mechanism that intercepts each request
to a resource to check granted capabilities. New secu-
rity mechanisms such as this history-based access con-
trol mechanism can be readily implemented in this in-
frastructure. However, this mechanism can be rendered

powerless if the application is not well-formed. For in-
stance, a library function call inside Jedit simply re-
quests java.security.AllPermission upon program
startup. Once this permission is granted, our security
mechanism (based on Java permissions and Java secu-
rity manager) cannot offer any help. This is the real
reason why our security mechanism cannot protect this
program against any attack, even though the case looks
exactly the same as in the cases of the two browsers and
the Jext.

This suggests that when we have little confidence in the
code quality of an application, behavior-based security
mechanisms may have to gather lower-level information
to discern the behavior, even though a more convenient
higher-level infrastructure is available.

We should note that these problems all apply to a wider
range of security mechanisms. We expect to expose more
design problems if similar benchmarking processes are ap-
plied to more sophisticated mechanisms.

5 Conclusion and Future Work

In this paper, we have presented a benchmarking methodol-
ogy to evaluate the effectiveness of behavior-based security
mechanisms. We have developed a benchmark suite and de-
signed an evaluation framework. We exercised our suite by
applying it to a simple history-based access control mech-
anism. We discussed the findings of our experiment. The
experience and the results suggest that benchmarking is a
viable approach to evaluate the effectiveness of behavior-
based security mechanisms.

In the future, we plan to implement a set of benchmarks
using other mainstream languages such as C and C++. This
will allow us to evaluate some commercial behavior-based
security mechanisms. In the long term, we plan to explore
more sophisticated algorithms for malicious code placement.
We also plan to look into whether we can use binary instru-
mentation to insert malicious code in binary form directly
into an application.

References

[1] Information Systems Audit and Control Association.
Control Objectives for Information and Related Tech-
nology (COBIT).

[2] BBC. Game Virus Bites Mobile Phones. http://news.
bbc.co.uk/1/hi/technology/3554514.stm.

[3] Jeff Crume. Inside Internet Security: What Hackers
Don’t Want You to Know, chapter 4, pages 38–50.
Addison-Wesley, 2000.

[4] Guy Edjlali, Anurag Acharya, and Vipin Chaudhary.
History-based Access Control for Mobile Code. In Pro-
ceedings of the 5th Conference on Computer & Com-
munications Security, pages 103–118, 1998.

[5] Marshall D. Abrams et al. Position Papers. In Pro-
ceedings of the 1st Workshop on Information-Security-
System Rating and Ranking, pages 35–40, 2001.

[6] Debin Gao, Michael K. Reiter, and Dawn Song. On
Gray-Box Program Tracking for Anomaly Detection. In
Proceedings of the 13th USENIX Security Symposium,
pages 103–118, 2004.

[7] Lawrence A. Gordon, Martin P. Loeb, and Tashfeen Sa-
hail. A Framework for Using Insurance for Cyber-Risk
Management. Communications of the ACM, 46(3),
March 2003.

[8] John L. Hennessy and David A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan Kauf-
mann, 2002.

[9] Permissins in the JavaTM 2 SDK. http://java.sun.
com/j2se/1.4.2/docs/guide/security/.

[10] Information Technology—Systems Security
Engineering—Capability Maturity Model (SSE-
CMM). ISO/IEC 21827.

[11] Jorma Kajava and Reijo Savola. Towards Better Infor-
mation Security Management by Understanding Secu-
rity Metrics and Measuring Processes. In Proceedings
of the European University Information Systems (EU-
NIS) Conference, Manchester, U.K., 2005.

[12] Philip Koopman and Henrique Madeira. Papers. In
Proceedings of Workshop on Dependability Benchmark-
ing, 2002.

[13] David Moll. Testimony on Spyware in Congress.
http://commerce.senate.gov/hearings/
testimony.cfm?id=1496&wit_id=4255.

[14] U.K. Office of Government Commerce. IT Infrastruc-
ture Library (ITIL).

[15] Paul F. Roberts. Instant Messaging: A New Front in
the Malware War. http://www.eweek.com/article2/
0,1759,1818611,00.asp.

[16] Stefan Saroiu, Steven D. Gibble, and Henry M. Levey.
Measurement and Analysis of Spyware in a University
Environment. In Proceedings of the 1st ACM/USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 29–31, San Francisco, CA,
USA, 2004.

[17] Bruce Schneier. Attack Trends: 2004 and 2005. ACM
Queue, Special Issue on Security: A War Without End,
3(5), June 2005.

[18] Kymie M. C. Tan, John McHugh, and Kevin S. Kil-
lourhy. Hiding Intrusions: From the Abnormal to the
Normal and Beyond. In IH ’02: Revised Papers from
the 5th International Workshop on Information Hiding,

pages 1–17, London, UK, 2003. Springer-Verlag.
[19] Apache Ant. http://ant.apache.org/.
[20] Common Criteria Evaluation & Validation

Scheme (CCEVS). http://niap.nist.gov/
cc-scheme. National Institute of Standards and
Technology.

[21] National Vulnerability Database. http://nvd.nist.
gov/.

[22] AntiChess. http://sourceforge.net/projects/
antichess/.

[23] BIM. http://sourceforge.net/projects/bim-im/.
[24] Jbrowser. http://sourceforge.net/projects/

jbrowser/.
[25] Jext. http://sourceforge.net/projects/jext/.
[26] JXWB. http://sourceforge.net/projects/jxwb/.
[27] SimpleAIM. http://sourceforge.net/projects/

simpleaim/.
[28] WebSense. http://ww2.websense.com/.
[29] Cisco Security Agent 4.5. http://www.cisco.com/.
[30] NOD32. http://www.eset.com/.
[31] ICSA Labs. http://www.icsalabs.com/.
[32] Information Technology Security Evaluation Crite-

ria (ITSEC). http://www.itsec.gov.uk/. Commis-
sion for the European Communities.

[33] Jedit. http://www.jedit.org/.
[34] McAfee Entercept 5.1. http://www.

networkassociates.com/.
[35] PC Tools. http://www.pctools.com/.
[36] Tetris. http://www.percederberg.net/home/java/

tetris/tetris.html.
[37] QRadar. http://www.q1labs.com/.
[38] Sana Security Primary Response 3.0. http://www.

sanasecurity.com/.
[39] Snort. http://www.snort.com/.
[40] Virus Bulletin. http://www.virusbtn.com/.
[41] Checkmark. http://www.westcoastlabs.org/.
[42] WAVES (Web Application Vulnerability and Er-

ror Scanner). http://www.openwaves.net/.
[43] David Wagner and Paolo Soto. Mimicry Attacks on

Host-Based Intrusion Detection Systems. In CCS ’02:
Proceedings of the 9th ACM Conference on Computer
and Communications Security, pages 255–264, New
York, NY, USA, 2002. ACM Press.

