
 82 computer Published by the IEEE Computer Society 0018-9162/12/$31.00 © 2012 IEEE

Securit y

The Juliet 1.1 C/C++
and Java Test Suite

J uliet Test Suite 1.1 is a col-
lection of C/C++ and Java
programs with known flaws
comprising 57,099 test cases

in C/C++ and 23,957 test cases in Java.
Most of the C/C++ cases are in C; C++
is used when the flaw occurs only in
C++ . Each program or test case con-
sists of one or two pages of code, and
most include similar but unflawed
code to test discrimination.

Juliet covers 181 different kinds
of flaws documented by common
weakness enumerat ion (CWE;
ht tp://cwe.mitre.org), including
authentication and access control,
buffer handling, code quality,
control-flow management, encryption
and randomness, error handling,
file handling, information leaks,
initialization and shutdown, injection,
and pointer and reference handling.
Juliet offers examples of each flaw in
simple code as well as cases in which
the flaw is embedded in variations of
three dozen different control flow-
and data-flow patterns.

The test cases are synthetic, that
is, they were created as examples
with well-characterized weaknesses.
Each case targets only one flaw. As a
result, the cases have a much simpler
structure than most weaknesses in
production code, and users shouldn’t

extrapolate statistics, such as rate of
occurrence or severity.

Developed by the Nat iona l
Security Agency’s Center for Assured
Software, the test suite is in the public
domain and isn’t subject to copyright
protection. The test cases have
undergone limited review to verify
that each contains the weakness and
flow variation it purports to have, but
there is no guarantee. Every test case
has been successfully compiled.

The test suite includes C/C++ and
Java User Guides explaining many
of the details of the structure and
possible uses of Juliet. Users can
download the C/C++ or Java portions
of the Juliet Test Suite from the top of
the Test Suites page of the National
Institute of Standards and Technology
(NIST) Software Assurance Metrics
and Tool Evaluation (SAMATE)
Reference Dataset (SRD; http://samate.
nist.gov/SRD/testsuite.php).

BACKGROUND
Ju l iet is SRD’s tenth major

contribution (the tenth letter of
the International Radiotelephony
Spelling Alphabet is “Juliet”). The
original version, 1.0, released in
December 2010, is available in the
SRD as individual cases, which makes
browsing the cases easier. Users also

can download the full C/C++ or full
Java portions of version 1.0. The
current version, 1.1, will be added to
the SRD as individual cases.

Juliet’s development team created
test cases for selected flaws based on
several factors, including the team’s
experience, the flaw’s importance
or severity, and its frequency of
occurrence. The test cases cover 14
of the 2011 CWE/SANS (SysAdmin,
Audit, Network, Security) Top 25
Most Dangerous Programming
E r r or s (ht t p: / /c we.m i t r e .or g /
top25). The remaining 11 flaws are
design issues, such as CWE-862
Missing Authorization, and CWE-
250 Execution with Unnecessary
Privileges, which don’t fit Juliet’s test
case approach.

TEST CASE STRUCTURE
Each test case’s name follows a

specific format and its code has a
particular structure.

Name
Each test case resides in one

or more files with names such as
“CWE134_Uncontrolled_Format_
String_ _char_file_printf_22a.c.”
The file name has the following
components: a CWE number (134), a
short name (Uncontrolled_Format_

Tim Boland and Paul E. Black
National Institute of Standards and Technology

Juliet Test Suite 1.1 offers test cases for assessing the effectiveness
of static analyzers and other software-assurance tools.

 octoBer 2012 83

that don’t contain the flaw, and a
“main” function that can be used to
compile the test case as a stand-alone
program.

In some cases, the bad and
good portions are in separate files.
The good portions provide one or
more functions or methods having
behavior similar to the bad portion,
but without the flaw. Bad code is an
opportunity for a tool to identify a
flaw. Good code exercises the tool’s
ability to distinguish between flawed
and unflawed code. For C/C++ test
cases, users can choose preprocessor
directives for only the bad parts in the
code, only the good parts, or both.

Users can compile all test cases in
one huge program, all cases for one
CWE, or each test case individually.
The user guides offer instructions
on how to accomplish each of these
compilations.

Readers can access Juliet 1.0
test case examples, which are
structurally identical, at http://
samate.nist.gov/SRD. For instance,
memcpy() overflows a char array in
a struct in test case CWE121_Stack_
Based_Buffer_Overf low_ _char_
type_overrun_memcpy_01 (http://
samate.nist.gov/SRD/view_testcase.
php?tID=2716). CWE114_Process_
Control_ _basic_06, a Java example
using loadLibrary() instead of
load() and a path, is available at
http://samate.nist.gov/SRD/view_
testcase.php?tID=48995.

TEST SUITE STRUCTURE
The Juliet Test Suite focuses on

functions available on the underlying
platform, not on third-party libraries

or frameworks. Test cases generally
emphasize platform-neutral functions
but contain some Windows-specific
functions. The test cases were
developed on the Microsoft Windows
platform. Java test cases cover Java
applications and servlets, but not
applets or JavaServer Pages (JSPs).
The test cases don’t cover mobile
applications or embedded code.
They aren’t meant to be an absolute
measure of tool or software quality,
to address complex data structures, or
to address frequencies of production
code flaws.

Us i ng a cu s t om t o ol , t he
development team generated most
of the test cases from source files
with the flaw. They created test
cases for some types of weaknesses
manually. There are more variations
and types of weaknesses in C/C++
than in Java, hence the larger number
of test cases for C/C++ . The number
of test cases per weakness varies
widely, depending on the number of
variations and code complexities.

The main C and Java directories
contain utilities and miscellaneous
files, including Python scripts for
different compilations. Test cases
are organized by weakness—C/
testcases and Java/src/testcases
have a subdirectory for each
weakness containing source code
files for test cases as well as a few
auxiliary files for compiling. Some
weakness subdirectories also contain
supplemental files with extensions
such as .so, .dll, and .project. A
handful of auxiliary files, which reside
in subdirectories C/testcasesupport
or Java/src/testcasesupport, provide
common functions.

The test cases strive to use the
most specific CWE entry for the flaw
of focus. For example, there are no
test cases for CWE-119 Improper
Restriction of Operations within the
Bounds of a Memory Buffer; instead,
the more specific CWE-121 Stack-
Based Buffer Overflow is used. When
the flaw doesn’t correspond exactly
to any CWE, the closest CWE is used.

String), a functional variant (char_
file_printf), a two-digit flow structure
number (22), an optional subfile
indicator (a), and the appropriate
extension (.c).

Functional variants might name
data types, library functions, or
structures. Java servlets have “Servlet”
in the functional variant. Windows-
specific test cases contain “w32” in
the functional variant.

Flow structure numbers indicate
the type of data or control flow used,
for example, loop; data flow; local
control flow; constant in conditional;
data passing involving functions,
methods, or classes; data type; con-
tainer; or combined control and data
flow. Test cases with the same flow
structure number have the same type
of data or control flow. Flow structure
“01” indicates baseline or the simplest
instance.

A test case can comprise one
source code file or multiple files. For
example, test case CWE476_NULL_
Pointer_Dereference_ _char_01 is
contained in one source code file,
whereas test case CWE23_Relative_
Path_Traversal_ _wchar_t_connect_
socket_w32CreateFile_54 has five
files—…_54a.c, …_54b.c, through
…_54e.c—that constitute one test
case. Some cases use “bad” or “good”
as subfile indicators for flawed or
unflawed code.

Code
Although each test case targets

only one flaw, other incidental flaws
might be present. For example,
CWE489_Leftover_Debug_Code_ _
Servlet_01.java focuses on leftover
debug code, but it also includes
a CWE-259 Hardcoded Password
weakness. Many cases have infeasible
(unreachable or “dead”) code with or
without flaws.

Each source file begins with a
block of comments with the test case’s
name, the basis, and the variants
in the file. Following the comments
is a “bad” portion containing the
flaw, one or more good portions

The Juliet test suite
focuses on functions
available on the under-
lying platform, not on
third-party libraries or
frameworks.

 84 computer

Securit y

U sers can improve their
security by finding and
removing—or at least miti-

gating—program flaws. With Juliet,
users can ask which static-analysis
tools are most effective at finding
flaws that are important to them.
Other questions include how well do
techniques such as memory layout
randomization mitigate flaws in prac-
tice and what is wrong with calling
thread run instead of start?

The Juliet Test Suite is a rich, struc-
tured resource to help users gauge
the effectiveness of their software-
and system-assurance methodology,
bringing us one step closer to being
able to measure security.

Disclaimer
The Juliet Test Suite is an experi-
mental system. NIST assumes no
responsibility whatsoever for its use
by other parties and makes no guar-
anties, expressed or implied, about
its quality, reliability, or any other
characteristic.
Certain commercial equipment or
materials are identified in this article
to specify the experimental procedure
adequately. Such identification is not
intended to imply recommendation
or endorsement by NIST, nor is it
intended to imply that the materials
or equipment identified are necssar-
ily the best available for the purpose.

Tim Boland is a computer scientist at
the National Institute of Standards and
Technology. Contact him at t.boland@
nist.gov.

Paul E. Black is a computer scientist
at the National Institute of Standards
and Technology. Contact him at paul.
black@nist.gov.

Because the test cases indicate
where f laws occur, users can
evaluate the reports’ appropriateness
semiautomatically. When users run
a source code analysis tool on a test
case, the desired result is for the tool to
report one or more flaws of the target
type in a function or method with
“bad” in its name. A report of this type
might be considered a true positive.
If the tool doesn’t report a flaw of the
target type in a bad method, it might
be considered a false negative. Ideally,
the tool won’t report flaws of the target
type in a method with “good” in its
name; a report of this type might be
considered a false positive. Because
flawed and similar unflawed code
might be in infeasible code, users’
policies on warnings about infeasible
code must be taken into account.

Because test cases might contain
flaws of nontarget types, users can
ignore reports of flaws other than the
target type.

POSSIBLE USES
There are several ways users

can apply the Juliet Test Suite to
help understand their software-
assurance tools’ capabilities. One
use is analyzing the test cases as
a single, large program, which
indicates how a software-assurance
tool performs on such programs.
Because of the number of files
and LOC, some tools might not be
able to analyze all these test cases
as a single program. Another use
is to analyze separate test cases
individually or in groups.

Because Juliet has thousands
of separate test cases, users can
select a particularly important set
of flaws to examine; hence, studying
a wide range of tools’ capabilities is
possible. Finally, users can select
certain subsets of data and control
f lows to consider and compare
across flaws to study the depth of
the tools’ analysis.

editor: Jeffrey Voas, National Institute
of Standards and technology;
jeffrey.m.voas@gmail.com

 Selected CS articles and columns
 are available for free at
http://ComputingNow.computer.org.

