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ABSTRACT 
 
 
These are the proceedings of a summit held in June 2006 at the National Institute of 
Standards and Technology (NIST).  This Static Analysis Summit is one of a series of 
meetings in the NIST Software Assurance Measurement and Tool Evaluation (SAMATE) 
project.  This summit convened researchers, developers, and government and industrial 
users to explore the state of the art in software static analysis tools and techniques with an 
emphasis on software security.  It is also served as a prelude to an international summit in 
Spring 2007.  This proceeding includes the ten papers presented, the keynote 
presentation, and discussion of a next summit. 
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Foreword 
 
These are the proceedings of the Static Analysis Summit held June 29, 2006, at the 
National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, USA.  
The summit was organized in part by the Software Diagnostics and Conformance Testing 
Division, in NIST's Information Technology Laboratory.  These proceedings have four 
main parts: 

• Call for Papers, 
• Summit Agenda, 
• Presentation Accompanying Keynote Address, and 
• Papers 

 
This summit is one of a series of meetings in conjunction with the NIST Software 
Assurance Measurement and Tool Evaluation (SAMATE) project http://samate.nist.gov/ 
The SAMATE project is partially funded by DHS to help identify and enhance software 
security assurance tools. Two previous workshops were conducted: first, “Defining the 
State of the Art in Software Security Tools,” held in August 2005 at NIST in 
Gaithersburg, Maryland, and second, “Software Security Assurance Tools, Techniques, 
and Metrics,” held in November 2005 in Long Beach, California, USA. 
 
The goal of this summit is to convene researchers, developers, and government and 
industrial users to explore the state of the art in software static analysis tools and 
techniques with an emphasis on software security.  It is also to serve as a prelude to an 
international summit in Spring 2007. 
 
The call for papers resulted in ten accepted papers, which were presented at the summit.  
Professor Dawson Engler, Stanford, gave a keynote address.  Sixty people attended from 
government, universities, tool vendors and service providers, research companies, and 
industry. Attendees from outside the USA came from the UK and Canada. 
 
The final session discussed future summit meetings.  The sentiment was that this summit 
is too short.  The next one should be at least two days long, possibly with breakout 
groups by language or level for more focused discussions.  The next summit should have 
more people from outside the USA.  It should also include mission critical groups, the 
safety community, and more academicians. 
 
We are especially grateful to Prof. Dawson Engler for his enlightening keynote address.  I 
thank those who worked to organize this summit, particularly my two co-chairs: Helen 
Gill, NSF and W. Bradley Martin, NSA.  We appreciate the program committee for their 
efforts in reviewing the papers.  Many thanks are due to NIST, especially the Software 
Diagnostics and Conformance Testing division, for providing the organizers' time.  On 
behalf of the program committee and the whole SAMATE team, thanks to everyone for 
taking their time and resources to join us. 
 
Dr. Paul E. Black 
18 July 2006 
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CALL FOR PAPERS 
----------------------------------------------------------------------------- 

National Institute of Standards and Technology (NIST) 
Software Assurance Metrics and Tool Evaluation (SAMATE) Project 

 
Static Analysis Summit 

 
29 June 2006 

http://samate.nist.gov/SAS 
Gaithersburg, MD, USA 

---------------------------------------------------------------------------- 
 
"Black-box" software testing cannot realistically find maliciously implanted Trojan horses or 
subtle errors which have many preconditions.  For maximum reliability and assurance, static 
analysis must be applied to all levels of software artifacts, from models to source code to byte 
code to binaries.  The goal of this workshop is to convene researchers, developers, and 
government and industrial users to explore the state of the art in software static analysis tools and 
techniques with an emphasis on software security. 
 
We solicit contributions describing basic research, novel applications, experience, and proposals 
relevant to static analysis tools, techniques, and their evaluation.  Topics of particular interest are: 
 

• What is possible with today's techniques? 
• What is feasible with today's tools? 
• What is NOT possible or feasible with current tools or techniques? 
• Where are the gaps that further research might fill? 
• What is the minimum performance bar for a source code analyzer? 
• Static analysis' contribution to software security assurance 
• Flaw catching effectiveness of methods, techniques, or tools 
• Benchmarks or reference datasets 
• Software security assurance metrics 
• How can users, developers, or researchers evaluate the performance of static analysis 

tools? 
• User experience drawing useful lessons or comparisons. 

 
SUBMISSIONS: 
 
Papers should be from 1 to 8 pages long.  Papers exceeding eight pages will not be reviewed.    
All submissions should clearly identify their novel contributions. 
 
Submit papers electronically in PDF or ASCII text by 20 May 2006 to Liz Fong 
<efong@nist.gov>.  Your submission constitutes permission for us to publish it in workshop 
proceedings. 
 
We will notify submitters of acceptance by 1 June 2006. 
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PUBLICATION: 
 
Accepted papers, along with workshop presentations where possible, will be published in the 
workshop proceedings as a NIST Special Publication. 
 
IMPORTANT DATES: 
 
20 May:  Paper submission deadline 
 1 June: Author notification 
13 June: Final camera-ready copy due 
29 June: Workshop 
 
ORANIZERS: 
Co-Chairs:  Paul Black   NIST, paul.black@nist.gov
                   Helen Gill  NSF, hgill@nsf.gov
                   W. Bradley Martin NSA, wbmarti@tycho.nsa.gov
 
PROGRAM COMMITTEE: 
 
Freeland Abbott  Georgia Tech   Paul Ammann  George Mason U. 
Paul Anderson  GrammaTech  John Anton  Kestrel 
Ira Baxter  Semantic Designs Rogier Boon  Itsec Security 
Djenana Campara KDM Analytics  Pravir Chandra  Secure Software 
Ben Chelf  Coverity  Brain Chess  Fortify 
Jack Danahy  Ounce Labs  Elizabeth Fong  NIST 
Larry Johnsen  Parasoft  Michael Kass  NIST 
Michael Koo  NIST   Robert E. Lee  GMRI 
Robert A. Martin MITRE Corp.  Vadim Okun  NIST 
Daniel J. Quinlan LLNL   Ioana Rus  Fraunhofer USA 
Ravi Sandhu  George Mason U. Robert C. Seacord  CERT/CC 
 
LOCAL ARRANGEMENTS: 
 
Elizabeth Fong   NIST,  efong@nist.gov
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Summit Agenda 
 
8:30 - 9:00 :  Registration 
 
9:00 - 9:30 :  Welcome -  Cita Furlani, Director, Information Technology Laboratory, NIST  
              * Program Presentation and Charge to Attendees - Paul E. Black  
 
9:30 - 10:20 :   
                   * Secure Coding Standards - Robert C. Seacord 
                   * Language Design for Verification - Rod Chapman and Peter Amey  
 
10:20 - 10:45 : Break 
 
10:45 - 12:00: 

*  Automated Calculation of Software Behavior with Function Extraction (FX) for 
Trustworthy and Predictable Execution - Richard C. Linger, Stacy J. Prowell, and Mark 
Pleszkoch 
* Support for Whole-Program Analysis and the Verification of the One-Definition Rule 
in C++ - Dan Quinlan, Richard Vuduc, Thomas Panas, Jochen Härdtlein, and Andreas 
Sæbjørnsen     
* Towards the Industrial Scale Development of Custom Static Analyzers - John Anton, 
Eric Bush, Allen Goldberg, Klaus Havelund, Doug Smith, and Arnaud Venet  

 
12:00 - 1:00 : Lunch 
 
1:00 - 1:30 : Keynote: Dawson Engler 
 
1:30 - 2:45 : 
 

  * Verification Tools for Software Security Bugs - Frédéric Michaud and Frédéric 
Painchaud 
* A Framework for Creating Custom Rules for Static Analysis Tools - Eric Dalci and 
John Steven 
* High Fidelity Static Analysis for Secure Enterprise Software Requires Platform 
Knowledge - Nikolai Mansourov, Djenana Campara, Norman Rajala, and Sumeet 
Malhotra  

 
2:45 - 3:10 : Break 
 
3:10 - 4:00 : 
 

* A Status Update: The Common Weakness Enumeration - Robert A. Martin and Sean 
Barnum 
 * A Source Code Analysis Tool Specification - Michael Kass and Michael Koo  

 
4:00 - 4:30 : 
 

*The next, international meeting: Where? When? Who else should be invited?  
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ABSTRACT 

Secure coding standards define rules and recommendations to 
guide the development of secure software systems.  Establishing 
secure coding standards provides a basis for secure system 
development as well as a common set of criteria that can be used 
to measure and evaluate software development efforts and 
software development tools and processes. This paper describes 
plans by the CERT/Coordination Center at the Software 
Engineering Institute at Carnegie Mellon University to establish, 
through a coordinated community effort, a set of secure coding 
standards for commonly used programming languages. 

Keywords 
Security, Standardization, Programming languages. 

1. INTRODUCTION 
Society’s increased dependency on networked software systems 
has been matched by an increase in the number of attacks aimed 
at these systems. These attacks—directed at governments, 
corporations, educational institutions, and individuals—have 
resulted in loss and compromise of sensitive data, system damage, 
lost productivity, and financial loss [19]. 
Software vulnerability reports continue to grow at an alarming 
rate [1] and a significant number of them result in technical alerts 
[2]. To address this growing threat, the introduction of software 
vulnerabilities during software development and ongoing 
maintenance must be significantly curtailed. 
An essential element of secure software development is well 
documented and enforceable coding standards. Coding standards 
encourage programmers to follow a uniform set of rules and 
guidelines determined by the requirements of the project and 
organization, rather than by the programmer’s familiarity or 
preference.  Once established, these standards can be used as a 
metric to evaluate source code (using manual or automated 
processes) to determine compliance with the standard. 
There are numerous available sources, both online and in print, 
containing coding guidelines, best practices, suggestions, and tips. 
For example, the following books have been published containing 

C/C++ programming languages rules and guidelines:  

• C++ Coding Standards: 101 Rules, Guidelines, and Best 
Practices [21] 

• Effective C++ : 55 Specific Ways to Improve Your Programs 
and Designs (3rd Edition) [10] 

• More Effective C++: 35 New Ways to Improve Your 
Programs and Designs [11] 

• Effective STL: 50 Specific Ways to Improve Your Use of the 
Standard Template Library [12] 

• C++ Programming Guidelines [16] 

• C Programming Guidelines [17] 
Industry-specific standards such as the Motor Industry Software 
Reliability Association (MISRA) Guidelines for the use of the C 
language in critical systems [13] have also been published. 
Additionally, many companies have internal coding standards.  
An example of a publicly released coding standard is the Joint 
Strike Fighter Air Vehicle C++ Coding Standards [9]. 
Many online sources of coding practices and coding rules also 
exist, including the Build Security In web site [4] sponsored by 
the U.S. Department of Homeland Security (DHS) National 
Cyber Security Division.  The SAMATE Reference Dataset 
(SRD), maintained by NIST [15], provides a set of programs with 
known weaknesses in code, design, or architecture that can lead to 
exploitable vulnerabilities. The Common Weaknesses 
Enumeration (CWE), maintained by MITRE, is a dictionary of 
known security weaknesses in code, design, and architecture that 
can lead to exploitable vulnerabilities [14].  
With all these sources of information, it might seem that a secure 
coding standard for these languages would be unnecessary. 
However, none of these sources provides a prescriptive set of 
secure coding standards that can be uniformly applied in the 
development of a software system.  This conclusion is reinforced 
by the Secure Software Assurance Common Body of Knowledge 
[18] published by the U.S. Department of Homeland Security, 
which laments the “lack of public standards as such for secure 
programming.” 

2. SCOPE 
At one extreme, a secure coding standard can be developed for a 
particular release of a compiler from a particular vendor.  At the 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page.
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other extreme, the standards can be designed to be not only 
compiler independent but also language independent.  
A coding standard for a particular compiler release has the largest 
possible benefit to the smallest group of users.  Targeting a 
particular compiler allows for the definition of rules and 
guidelines that deal specifically with the peculiarities of that 
implementation, including defects in the implementation and non-
standard extensions.  At the other extreme, a language- 
independent coding standard has the least possible benefit to the 
largest possible group of users, as the rules and guidelines 
specified at this level of abstraction are largely notional.  
The secure coding standards proposed by CERT are based on 
documented standard language versions as defined by official or 
de facto standards organizations. For example, secure coding 
standards are planned for the following languages: 

• C programming language (ISO/IEC 9899:1999) [5] 

• C++ programming language ( ISO/IEC 9899:1999) [6] 

• Sun Microsystems’ Java2 Platform Standard Edition 5.0 API 
Specification [20] 

• C# programming language (ISO/IEC 23270:2003) [7] 
Applicable technical corrigenda and documented language 
extensions such as the ISO/IEC TR 24731 extensions to the C 
library [8] will also be considered.  
The scope allows specific guidance to be provided to broad 
classes of users.  Programming language standards, like those 
created by ISO/IEC, are primarily intended for compiler 
implementers. Secure coding standards are ancillary documents 
that provide rules and guidance directly to developers who 
program languages defined by these standards. 

3. GOALS 
The goal of each coding standard is to define a set of rules that are 
necessary (but not sufficient) to ensure the security of software 
systems developing in the respective programming languages. 
A secure coding standard consists of rules and recommendations.  
Coding practices are defined to be rules when all of the following 
conditions are met 
1. Violation of the coding practice will result in a security flaw 

that may result in an exploitable vulnerability. 
2. There is an enumerable set of exceptional conditions (or no 

such conditions) where violating the coding practice is 
necessary to ensure the correct behavior for the program. 

3. Conformance to the coding practice can be verified. 
Rules must be followed to claim compliance with a standard 
unless an exceptional condition exists.  If an exceptional 
condition is claimed, the exception must correspond to a pre-
defined exceptional condition and the application of this 
exception must be documented in the source code. 
Recommendations are guidelines or suggestions. Coding practices 
are defined to be recommendations when all of the following 
conditions are met 
1. Application of the coding practice is likely to improve 

system security. 

2. One or more of the requirements necessary for a coding 
practice to be considered a rule cannot be met. 

Compliance with recommendations is not necessary to claim 
compliance with a coding standard.  It is possible, however, to 
claim compliance with one or more verifiable guidelines. The set 
of recommendations that a particular development effort adopts 
depends on the security requirements of the final software 
product.  Projects with high-security requirements can dedicate 
more resources to security, and are thus likely to adopt a larger set 
of recommendations. 

4. DEVELOPMENT PROCESS 
The development of a secure coding standard for any 
programming language is a difficult undertaking that requires 
significant community involvement. To produce standards of the 
highest possible quality, CERT is implementing the following 
development process: 
1. Rules and recommendations for a coding standard are 

solicited from the communities involved in the development 
and application of each programming language, including the 
formal or de facto standard bodies responsible for the 
documented standard. 

2. These rules and recommendations are edited by senior 
members of the CERT technical staff for content and style 
and placed in the Secure Coding area of CERT web site for 
comment and review [3].  

3. The user community may then comment on the publically 
posted content using threaded discussions and other 
communication tools.  Once a consensus develops that the 
rule or recommendation is appropriate and correct the final 
rule is incorporated into the coding standard. 

Various groups, including the ISO/IEC JTC1/SC22/WG14 
international standardization working group for the C 
programming language have expressed an interest in supporting 
this model. 

5. USAGE 
These rules may be extended with organization-specific rules.  
However, the rules contained in a standard must be obeyed to 
claim compliance with the standard.  
Training may be developed to educate software professionals 
regarding the appropriate application of secure coding standards.  
After passing an examination, these trained programmers may 
also be certified as secure coding professionals. 
Once a secure coding standard has been established, tools can be 
developed or modified to determine compliance with the standard. 
One of the conditions for a coding practice to be considered a rule 
is that conformance can be verified.  Verification can be 
performed manually or automated.  Manual verification can be 
labour intensive and error prone.  Tool verification is also 
problematic in that the ability of a static analysis tool to detect all 
violations of a rule must be proven for each product release, to 
detect regression errors. Even with these challenges, automated 
validation may be the only economically scalable solution to 
validate conformance with the coding standard. 
Software analysis tools may be certified as being able to verify 
compliance with the secure coding standard. Compliant software 
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systems may be certified as compliant by a properly authorized 
certification body by the application of certified tools. 

6. SYSTEM QUALITIES 
Security is one of many system attributes that must be considered 
in the selection and application of a coding standard. Other 
attributes of interest include safety, portability, reliability, 
availability, maintainability, readability, and performance.  
Many of these attributes are interrelated in interesting ways.  For 
example, readability is an attribute of maintainability; both are 
important for limiting the introduction of defects during 
maintenance that could result in security flaws or reliability 
issues.  Reliability and availability require proper resources 
management, which contributes also to the safety and security of 
the system.  System attributes such as performance and security 
are often in conflict requiring tradeoffs to be considered.   
The purpose of the secure coding standard is to promote software 
security.  However, because of the relationship between security 
and other system attributes, the coding standards may provide 
recommendations that deal primarily with some other system 
attribute that also has a significant impact on security.  The dual 
nature of these recommendations will be noted in the standard. 

7. CONCLUSIONS 
The development of secure coding standards is a necessary step to 
stem the ever-increasing threat from software vulnerabilities.  
Establishing secure coding standards allows for a common set of 
criteria that can be used to measure and evaluate software 
development efforts and software development tools and 
processes.  Once established, secure coding standards can be 
incrementally improved, as a common understanding of existing 
problems and solutions allows for the development of more 
advanced security solutions. 
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Language Design for Verification 

Rod Chapman, Peter Amey 

 Praxis High Integrity Systems 
20 Manvers Street, 

Bath BA1 1PX 
UK. 

sparkinfo@praxis-his.com 

Abstract. This position paper offers a brief summary of our experience in de-
signing high-integrity programming languages and their associated verification 
tools, particularly in relation to SPARK—an annotated, pure subset of Ada95. 
We also consider the fundamental features of Ada that make SPARK possible 
in the first place, and address the question why we can’t do “SPARK for X” 
(where X is one of today’s current favorite languages). Our experience suggests 
that simple, small languages can offer a depth and soundness of static verifica-
tion that is unachievable with today’s standard languages. 

1 Design goals for a program verification system 

A programming language and verification system that aim to be suitable for high-
integrity systems might have the follo wing design goals: 
• Soundness – the system must not give a false-negative result. This is the case 

where the tool says “Your program has no bugs” when actually it does – generally 
considered to be a bad thing. 

• Completeness – the system should issue as few false-positive results (aka “false 
alarms”) as possible. Too many such false alarms rapidly lead users to ignore the 
results of a tool, or to (perhaps more importantly) ignore the one really serious is-
sue buried in a torrent of warnings. 

• Depth – the verification system should be able to verify useful and non-trivial 
properties of our programs. 

• Efficiency – the system must be fast enough to enable constructive and interactive 
use. If it takes all night to verify anything useful, then no-one will use it! Ideally, 
the system should be so fast as to wean programmers away from the lure of comp i-
lation and test. 

• Composition – “separate verification” (somewhat akin to “separate compilation”) 
must be possible.  Addition of new program units must not invalidate the verifica-
tion of existing units. 

• Expressive Power – the language must be large enough for use on industrial-scale 
projects. (It’s easy to meet the first five goals for a toy language that no-one else 
uses…) 
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These six goals are in a subtle balance, and the mix that can be achieved crucially de-
pends on the programming language under analysis, for example: 
• Soundness and efficiency are often traded. In C, C++ and Ada, for example, ex-

pression evaluation order is unspecified (i.e. a compiler can choose right-to-left or 
left-to-right order at its own whim, and is under no obligation to be consistent or to 
document its behavior). A static analysis tools, for efficiency, might choose to ana-
lyze only left-to-right order. This is efficient, but possibly unsound if the tool’s 
choice disagrees with that made by the compiler. The unspecified or undefined lan-
guage features are a plague on the efforts of the static analysis tool, yet contemp o-
rary languages are riddled with them. 

• Analysis for any interesting deep property (e.g. “does my program have any buffer 
overflows?”) is always inherently incomplete to some extent. 

• Some language features require deep analysis, such as the analysis of pointers and 
aliasing, which would be too slow for constructive use. Efficiency can be achieved 
at the expense of soundness or completeness (or both…). 

2 Language design trends  

Historically, programming languages were designed as experiments in either ex-
pressive power (i.e. the addition of “OO” to C to get C++) or in compiler design. 
Languages were principally designed by compiler writers, not by people concerned 
with the provision of verification tools. 

From the perspective of verification, much of the development of programming 
languages seems to have gone the wrong way—the addition of features that are harder 
and harder to analyze, such as OO (in particular dynamic dispatch of methods), gener-
ics, templates, call-backs, threads or tasks, and so on. 

Only recently have we seen the trend reversed a little—it could be argued that Java 
and C# represent a simplification of C++, for instance, but as we will see, many of the 
central problems remain. 

3 High integrity languages, subset and dialects 

In the field of safety-critical systems, work on this problem has been going on since 
the mid 1980s at least. We can identify four broad approaches: 
1. Work with the “whole language”. In this approach, we try to build the “best effort” 

verification tool for a whole, unsubsetted standard language such as C, C++, or 
Ada. This is attractive to the tool vendor, because it creates a broad market for the 
tool. The costs are in efficiency, depth, soundness and completeness of the analysis. 
It is also attractive to the customer, because no real change in behavior, process or 
discipline is needed. 

2. Work with a totally new language. There have been a few attempts at this ap-
proach, including LUCOL, NewSpeak, Euclid, and Eiffel. Of these, only Eiffel has 
achieved any real industrial impact. 
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3. Work with dialects.  A “dialect” is a language with the unspecified features re-
solved by a known compiler and/or target computer – e.g. “C as compiled by Mi-
crosoft C version X.Y.X at optimization level Z”. This approach improves preci-
sion and efficiency of analysis, at the cost of “lock in” to that particular compiler 
and language.1 Significant results have been achieved, though, using this ap-
proach—examples including the Microsoft Static Driver Verifier[2], Cousot’s 
ASTREE system[3], and C0[4]. 

4. High-integrity (annotated) subsets. This approach attempts to design a pure subset 
language, based on an existing industrially accepted language, but that eliminates 
unspecified or undefined behavior, so that analyses are valid for any compiler that 
implements the parent language. Some languages add annotations to strengthen the 
language beyond that achievable by subsetting alone. This approach is illustrated 
by SPARK[1]. 

4 SPARK for X? 

We are often asked if we could do “SPARK for X” where X is C, C++, Java or what-
ever. We have to enquire further what the questioner actually means by this. If they 
are asking “can a best-effort, retrospective analysis tool be constructed for X that per-
haps uses some annotations to improve things” then the answer is “Yes, but that’s not 
our business”. There is a wide (and growing) crop of such tools already available. 

If the question is “Can you develop a verification system for a possibly-annotated 
subset of X which is sound, complete, efficient, deep, constructive and expressive 
enough for real industrial projects?” then that’s a different matter.  The answer is al-
most unavoidably “No.” 

Why is this?  What makes SPARK different?  Why is SPARK based in Ada in the 
first place? On reflection, we find three very basic features of Ada (and therefore 
SPARK) are crucial: 
• Separation of specification (contract) from body (implementation). Ada’s 

“package” mechanism strictly (and physically) separates the specification and body 
of a program unit. This was originally intended to facilitate separate compilation 
and development of large programs, but it has a huge impact on the verification 
system. Firstly, it gives us somewhere to put the contracts for a unit, such as the 
global variable list, pre-condition, post-condition and so on. Secondly, when a unit 
P references a unit Q in SPARK, only the specification of Q is ever consulted, and 
all the information we need is right there where we need it.  The body of Q is never 
consulted. This means the system achieves efficiency and composition of analysis. 
Note that such a facility has been present in nearly all “Pascal-family” languages, 
such as Modula-1,2, or 3, Oberon, Eiffel and so on. 

• Scalar subtypes. This may seem a totally innocuous feature of Ada, yet it remains 
core to SPARK’s type system and verification approach. For those unfamiliar with 
the concept, this gives the programmer the ability to specify a (sub-)range of values 

                                                                 
1 Ironically, this “language lock-in” problem was cited in about 1975 as one of the big issues in 

the “software crisis” in the DoD that led to the Steelman requirements for the language that 
became Ada… 
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for a scalar type, recognizing that the world doesn’t conveniently come in signed 2-
complement “int” quantities.  For example: 
 
type Engine_ID is range 1 .. 4; 
 
These types allow the programmer to express their intent in terms of real-world 
limits and quantities.  Secondly, such types are a form of specification information 
that can be cross-checked and used for verification.  Finally, they are used by the 
verification system to show that a program can never raise an exception resulting 
from an arithmetic overflow, range violation, buffer overflow, division by zero and 
so on. In teaching students embedded systems programming, McCormick reports 
scalar types as the single most influential language feature when comparing stu-
dents’ work completed in C versus Ada[9]. 

• Pointers (lack thereof…) SPARK manages to get by without the explicit use of 
pointer types at all. Firstly, Ada gives us parameter passing “modes” that do not 
depend on the explicit use of pointers.2 Secondly, constrained (i.e. size known at 
compile-time) arrays are first-class types in SPARK, so you can pass them around 
as parameters, return them from functions with no recourse to pointers at all. 
Thirdly, Ada gives us its “chapter 13” for low-level programming, mapping objects 
to particular memory locations and so on. Finally, we come to linked data struc-
tures, for which we simply use arrays and array index values as “references”—the 
only catch being that you need to decide how big your “heap” is in advance. The 
impact of all this is dramatic—aliasing analysis is trivial (and sound…) so that gets 
us to the point where we can implement a full-blown verification system based on 
Hoare-logic and theorem-proving. 

 
So, what about “SPARK for C, C++, C#, Java etc. etc” Considering the first two 
points above, we find the lack of separation of spec/body and the lack of scalar sub-
types in such languages to be show-stopping weaknesses. Furthermore, these are 
hardly difficulties that can be “subsetted away” or “annotated back in” to such lan-
guages. Finally, these languages are so pointer-centric that it seems unlikely that a 
usefully expressive subset could be achieved that solved the “aliasing problem” to our 
satisfaction. We actually attempted a design study for “SPADE C” in the early 
1990s—the result was so poor in expressive power and needed so much annotation 
that the project was not pursued any further. 

5 Future and on-going work 

SPARK is very much in the “raise the ceiling” mode, trying to push the high-end of 
static analysis, with the (non-trivial) catch that we require users to actually learn and 
use an entirely new language and to have the discipline and process to use it effec-
tively. SPARK has grown significantly over the years, adding OO support, Ravenscar 
tasking, modular types and so on from Ada95, without sacrificing the soundness of 
                                                                 
2 A compiler can use pass-by-reference mechanism, but that’s its business, and can’t affect the 

semantics of SPARK. 

20



the verification system.  We are currently working on the next major expansion of the 
language: the adoption of a subset of Ada’s generics facility. We may even be able to 
pick up some of the new features of Ada2005[5] if they prove useful. 

 
The “raise the floor” community has also made substantial progress—the current 

crop of “whole language” analysis tools offer a sophistication of analysis that was un-
dreamt of a few years ago, and these are having a significant impact on a much larger 
group of engineers and projects than SPARK probably ever will. 

 
There are also signs of life in the research community. The needs of the security-

critical market have prompted a real renaissance in static analysis. We find (much to 
our amusement) that “annotations” are fashionable and embodied in systems such as 
ESC/Java2, Microsoft’s PreFast and Spec#[6] and so on. Finally, new languages de-
signed from scratch are making a come-back. For example, Microsoft have Sing#[7], 
and the Coyotos project at JHU[8] is a language (BitC), verification environment and 
operating system that have been developed from scratch for high-integrity applica-
tions. 
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Abstract 

CERT STAR*Lab at the SEI is developing function 
extraction (FX) technology to compute the behavior of 
software to the maximum extent possible. FX capitalizes 
on a view of programs as mathematical functions or 
relations that illuminates methods for behavior 
calculation. While behavior calculation is a very difficult 
problem, routine availability of computed behavior could 
have substantial impact on software engineering in 
general and software assurance in particular. As a first 
application of function extraction technology, STAR*Lab 
is developing the Function Extraction for Malicious Code 
(FX/MC) system to analyze the behavior of malicious 
code expressed in the Intel instruction set. FX technology 
provides foundations for automated security attribute 
analysis, correctness verification, and component 
composition. 

1. Computing Software Behavior 

The ever-increasing complexity of software systems 
places extraordinary demands on human comprehension. 
Traditional code reading and inspection methods are 
subject to human fallibility and can be overwhelmed by 
the sheer size of programs, and software tools generally 
provide only partial views of program behavior. In 
today’s state of art, no practical means exists to answer 
the straightforward question of what programs do in all 
circumstances of use. The resulting loss of intellectual 
control has been a persistent problem in software 
development, leading to unpleasant surprises from 
unforeseen behavior despite best efforts. What is needed 
is an “all cases of behavior” view for complete analysis. 

It is well understood that the problem of computing 
program behavior is extremely difficult; however, the 
substantial value of such a capability motivates a closer 
look at what can be achieved. CERT STAR*Lab at the 
SEI is developing the emerging technology of function 
extraction (FX), with the objective of computing the 
behavior of software to the maximum extent possible. 

The starting point for behavior computation is a precise 
definition of the functional semantics of instructions in 
the language of interest, together with rules for their 
combination. Sequential logic is expressible in terms of 
fundamental control structures, namely, sequences, 
alternations, and iterations (loops), whose functional 
semantics define the rules of combination. Thus, a 
required preliminary step is automated transformation of 
programs under analysis into structured form based on the 
constructive proof of a structure theorem. This 
transformation creates an algebraic framework for 
stepwise traversal and accumulation of program behavior. 
For sequence structures, the rule of combination is 
ordinary function composition. Behavior computation for 
sequence structures thus requires composing individual 
instructions to derive their net functional effect in the 
procedure-free form of concurrent assignments of inputs 
to outputs. Behavior computation for alternation 
structures is carried out in terms of case analysis to derive 
procedure-free conditional rules that organize the effects 
of true and false branch operations in terms of concurrent 
assignments. It is fortunate that the behavior of sequence 
and alternation structures, which typically comprise the 
bulk of sequential logic, can be computed in such a 
straightforward manner. Because no general theory for 
loop behavior computation can exist, engineering 
solutions are being developed.    

2. FX Treats Programs Like Equations 

Short of an impractical expenditure of time and 
effort, programmers have no means to determine the full 
behavior of programs. Despite best efforts, programs are 
routinely fielded with unknown behavior that may contain 
errors, vulnerabilities, or malicious code. The totality of 
large program behavior is difficult to understand because 
it is distributed across a virtually infinite number of 
possible execution paths. Testing selects paths from this 
set and so cannot reveal full behavior. However, large 
programs are at the same time composed of a finite 
number of control structures, each of which makes a 
finite contribution to overall behavior.  
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The function-theoretic view focuses not on program 
paths, but rather on control structures and mathematical 
foundations for their refinement, abstraction, and 
verification [1]. In this view, control structures are treated 
as rules for mathematical functions or relations, that is, 
mappings from domains to ranges, no matter what subject 
matter they may address. In particular, function-theoretic 
foundations prescribe procedure-free equations that 
represent net effects on data of common control structures 
and provide a starting point for behavior extraction. 
These equations are expressed in terms of function 
composition, case analysis, and, for iteration structures, a 
recursive expression based on an equivalence of iteration 
and alternation structures. Representative equations are 
given below for control structures labeled P, data 
operations g and h, predicate p, and program function f. 

The program function of a sequence control structure 
(P:  g; h) can be given by 

f = [P] = [g; h] = [h] o [g] 

where square brackets denote the program function and 
“o” denotes the composition operator. That is, the 
program function of a sequence can be calculated by 
ordinary function composition of its constituent parts. 
The program function of an alternation control structure 
(P:  if p then g else h endif) can be given by 

f = [P] = [if p then g else h endif] 
  = ([p] = true  [g] | [p] = false  [h]) 

where | is the “or” symbol. That is, the program function 
is given by a case analysis of the true and false branches, 
and the possibility of abstracting them to a single case. 
The program function of a terminating iteration control 
structure (P:  while p do g enddo) can be expressed as 

f = [P] = [while p do g enddo] 
   = [if p then g; while p do g enddo endif] 
   = [if p then g; f endif] 

and f must therefore satisfy 

f = ([p] = true  [f] o [g] | [p] = false  I) 

These equations define an algebra of functions that 
can be applied bottom up to the control structure 
hierarchy of a program in a stepwise function extraction 
process. This process propagates and preserves the net 
effect of control structures through successive levels of 
abstraction while leaving behind complexities of local 
computations and data not required for expressing 
behavior at higher levels. Additional methods are 
required to simplify and reduce intermediate expressions 
and to analyze loop operations, as well as to present 
behavior catalogs to users in appropriate forms. 

In notional illustration, consider the following 
miniature sequence that operates on logical variables and 
the question of deriving its behavior, which is not 

immediately obvious (∨ represents the “exclusive or” 
operation):  

do 
      x := x ∨ z 
      z := x ∨ z 
      x := x ∨ z 
      y := x ∨ y 
      x := x ∨ y 
      y := x ∨ y 
enddo 

The behavior can be computed in a trace table that 
accumulates intermediate compositions to arrive at net 
effects the intentional variables x, y, and z (I for identity): 

 
Operation x y z 
x := x ∨ z 

 
X = x ∨ z I I 

z := x ∨ z I I z = (x∨z)∨z 
= x 

x := x ∨ z x = (x∨z)∨x
= z 

I I 

y := x ∨ y 
 

I y = z ∨ y I 

x := x ∨ y 
 

x = z∨(z∨y) 
= y 

I I 

y := x ∨ y 
 

I y = y∨(z∨y) 
= z 

I 

 
Thus, the functional behavior is given by a sequence-free 
concurrent assignment of initial values to final values  

x, y, z := y, z, x 

that is, the effect of the programmed sequence of 
operations is to rotate the truth values of the three 
variables. Such behavior computations are readily 
automated in the function extraction process. In this case, 
the calculations involve logical variables and their rules 
of combination, but any data types and structures can be 
accommodated. While the behavior of this simple 
sequence is defined by a concurrent assignment, the 
general form of behavior definitions is necessarily a non-
procedural conditional concurrent assignment (CCA)   

predicate  
  assignment 1 
  assignment 2 
  … 
  assignment n 

where if the predicate on program input values is true, the 
assignments are carried out concurrently. For larger and 
more complex programs, the function extraction process 
produces behavior catalogs containing sets of disjoint 
CCAs that together define program behavior for all cases. 
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The conditional concurrent assignment is the principal 
statement in the behavior expression language of function 
extraction.   

3. FX Improves Software Comprehension 

STAR*Lab has developed a proof-of-concept 
function extractor prototype that calculates the behavior 
of programs expressed in a small subset of the Java 
programming language and presents it to users in the 
form of behavior catalogs.  The catalogs contain 
procedure-free CCAs that define the net functional effect 
of programs from input to output in all circumstances of 
use.   

The prototype was employed in a rigorous 
experiment to compare traditional methods of program 
reading and inspection with FX-based methods. Twenty-
six experienced programmers were divided into a control 
group using traditional methods and an experimental 
group using the FX prototype.  Each group was required 
to answer questions dealing with comprehension and 
verification of three Java programs. The experiment 
produced the following results [2]: 

 
• The experimental group using the FX prototype 

reduced the time required to derive the functional 
behavior of the programs by several orders of 
magnitude compared to the control group. 

• For the most difficult program, the experimental 
group was about four times better at providing 
correct answers to the comprehension and 
verification questions, and required a fourth of the 
time to do so, a productivity improvement of a factor 
of 15 over the control group. 

• The experimental group achieved these results with 
45 minutes of instruction on use of the function 
extractor, compared to years of training and 
experience for the control group.   

4. FX Impacts the Software Lifecycle 

Function extraction technology can be applied to any 
programming language environment, and has potential to 
impact many aspects of the software engineering 
lifecycle.  To better understand this impact, STAR*Lab 
conducted a comprehensive study with a major aerospace 
corporation to determine how FX could improve 
engineering operations in activities ranging from software 
specification and design to implementation and testing 
[3]. This study produced guidance for FX evolution from 
experienced software developers:  

 
• Development of FX automation for assembly 

language should be a priority.  

• FX automation should be developed for correctness 
verification of software. 

• FX automation should be developed for high-level 
languages starting with Java.  

• Research on FX automation for specification and 
architecture should be initiated. 

5. Development of the Function Extraction for 
Malicious Code System  

CERT STAR*Lab has initiated development of the 
first application of FX technology in the Function 
Extraction for Malicious Code (FX/MC) system [4]. The 
goal of FX/MC is to compute the behavior of malicious 
code expressed in Intel assembly language, to enable 
security analysts to quickly determine intruder objectives 
and develop countermeasures. The initial version applies 
a structure theorem to transform intentionally obfuscated, 
spaghetti-logic control flow into readable structured form, 
and computes the behavior of sequence and alternation 
structures.   

In miniature illustration of FX/MC capabilities, 
consider the following assembly language fragment that 
gives the appearance of being intentionally obfuscated:  

 
    xor ebx, ebx 
    mov edx, dword [ebp+4*ebx+50] 
    xor eax, eax 
    jmp loc_800002B 
loc_800000D: 
    inc ebx 
    sub eax, edx 
    mov edx, dword [ebp+4*ebx+50] 
    sub eax, edx 
    jmp loc_8000028 
loc_800001B: 
    xor edx, edx 
    sub edx, eax 
    mov eax, edx 
    xor edx, edx 
    jmp near ptr 8000034h 
loc_8000028: 
    inc ebx 
    jmp short loc_800001B 
loc_800002B: 
    sub eax, edx 
    inc ebx 
    mov edx, dword [ebp+4*ebx+50] 
    jmp short loc_800000D 
 
The first step in FX/MC processing transforms the 

logic to function-equivalent structured form; in this case, 
the arbitrary branching (jmp instructions) is eliminated 
and the control flow reduces to a simple sequence of 
operations with no jumps present: 
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do 
   xor ebx, ebx 
   mov edx, dword [ebp+4*ebx+50] 
   xor eax, eax 
   sub eax, edx 
   inc ebx 
   mov edx, dword [ebp+4*ebx+50] 
   inc ebx 
   sub eax, edx 
   mov edx, dword [ebp+4*ebx+50] 
   sub eax, edx 
   inc ebx 
   xor edx, edx 
   sub edx, eax 
   mov eax, edx 
   xor edx, edx 
enddo 
 
The behavior is then computed, resulting in the 

following concurrent assignments to registers EAX, EBX, 
and EDX, and to the zero flag (ZF), sign flag (SF), parity 
flag (PF), carry flag (CF), overflow flag (OF), and 
auxiliary carry  flag (AF), which Intel semantics leave as 
undefined (arbitrary_value_bool). The +d symbol 
represents a doubleword addition: 

 
[ EAX := M_dword(50 +d EBP)  
      +d M_dword(54 +d EBP)  
      +d M_dword(58 +d EBP)  
: EBX := 3 
: EDX := 0 
: ZF := true 
: SF := false 
: PF := true 
: CF := false 
: OF := false 
: AF := arbitrary_value_bool() 
] 
 
Thus, the computed behavior shows that the program 

sums up three consecutive doublewords starting at 
address EBP+50 and assigns the result to EAX, behavior 
that is not immediately obvious from inspecting the 
original code. 

FX/MC is a substantial development effort; simply 
processing the Intel instruction set requires definition of 
the functional semantics of over a thousand opcodes. 
While the target of interest is malicious code, the system 
will extract the behavior of any programs expressed in 
assembly language. The technology developed for 
FX/MC can also be applied to function extractor 
development for other languages such as Java, C, and 
C++.    

6. FX for Automated Security Attribute 
Analysis 

In the current state of practice, security properties of 
software systems are typically assessed through 
subjective, labor-intensive human evaluation. STAR*Lab 
is investigating science foundations and engineering 
automation for fast and precise calculation of security 
properties both during system development and operation.  
The Computational Security Attributes (CSA) project is 
developing technology for augmenting human analysis of 
security properties with automated computational 
analysis. The emergence of function extraction 
technology, unavailable to previous researchers, provides 
the critical first step by deriving the functional behavior 
of software as a starting point for security analysis.  

Security attributes are often referred to as non-
functional properties, but they are in fact fully functional 
and dependent on the execution behavior of software. 
Desired security attributes can themselves be specified in 
functional terms, permitting software to be evaluated for 
conformance or not through comparison with the 
behavior catalogs generated by the function extraction 
process. Thus, computational security analysis requires 
defining the functional behavior required to satisfy the 
attributes of interest.  

For example, consider the non-repudiation attribute 
and its definition in functional terms. Non-repudiation of 
changes to a dataset requires ensuring that the means for 
authentication of changes cannot later be refuted, which 
can be expressed, for example, as the following 
fundamental behavioral requirement   

 
• If the dataset is changed during the execution of the 

software, a specified variable that identifies the user 
making the change is always associated with the 
dataset.  
 

from which specific requirements can be derived:   
 

• User binding: There exists a trusted function to 
identify the user making the change to the dataset 
which is invoked for every data change of interest.  

• Atomic operations: The user binding and the dataset 
change are handled as a single atomic operation 
within the boundary of the software of interest. 

• Traceability: Every change to the dataset is preceded 
by a definition of the change and identification that 
binds the change to the user, and every change is 
audited. 
 
These requirements express the non-repudiation 

attribute in terms of data items and constraints on their 
processing. The processing can be expressed in 
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appropriate forms, for example, as logical or quantified 
expressions or even conditional concurrent assignments, 
which can be mechanically checked against the FX-
generated behavior catalogs of the software of interest for 
conformance or not. 

7. FX for Automated Correctness Verification  

In functional terms, software should do what it is 
designed to do and nothing more. In security terms, 
defective software cannot be secure. These quality and 
trustworthiness properties are essential but often 
problematic in software systems. The function extraction 
process derives the as-built specification of software, that 
is, the behavior that has actually been implemented. This 
derived behavior can be compared to requirements and 
specifications to determine if the software is indeed a 
correct implementation. This comparison is based on a 
Correctness Theorem that defines conditions required for 
correctness [1]. In addition, FX technology prescribes 
effective means to create and record specifications, with 
the corresponding specification task itself amenable to 
automated support. Automated correctness verification 
would be especially valuable during system development, 
to check on the behavior of partial implementations and 
find and fix errors and vulnerabilities along the way. It 
would also permit a new level of rigor in acquisition and 
acceptance of systems by requiring provision of behavior 
catalogs for all delivered code.    

8. FX for Automated Component Composition  

Function extractors must provide substantial 
composition capabilities because behavior calculation is 
essentially a compositional task. Creating function 
extractors to compose software components in systems is 
thus a question of scale, not of method. Given behavior 
catalogs for each component and the intended structure of 
their interaction, the composition process requires 
calculating the net functional effects of the combined 
component behaviors. As a step in this direction,  
STAR*Lab has conducted research on flow structures, 
which provide mathematical foundations and engineering 
techniques for analyzing and designing component 
compositions to satisfy mission objectives at the network 
architecture level [5,6,7]. Capabilities for automated 
composition would provide support for construction and 
integration of entire systems. Significant research will be 
required in interface ontologies and subject-matter 
abstractions to augment the component composition 
process. 
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Abstract

We present a compact and accurate representation of
a whole-program abstract syntax tree, and use it to
detect a specific security vulnerability in C++ pro-
grams known as a One-Definition Rule (ODR) viola-
tion. The ODR states that types and functions ap-
pearing in multiple compilation units must be de-
fined identically. However, no current compiler can
enforce ODR because doing so requires the ability to
see the full application source at once; where ODR
is violated, the program is incorrect. Moreover, a
lack of ODR enforcement makes a program vulnera-
ble to the so-called VPTR exploit, in which an object’s
virtual function table is replaced by malicious code.
Our representation of the whole program preserves
all features of the source for analysis and transfor-
mation, and permits a million-line application to fit
entirely in the memory of a workstation with 1 GB
of RAM.

1 Introduction

Most whole-program analyses use some form of
summarization, at the loss of analysis precision,
since analysis time complexity is often super-linear.
The traditional unit to analyze and summarize is a
procedure since it does not require the compiler to
see the full source at once [33]. However, suppose
we provide the compiler with a complete view of
the entire program. Then, the compiler may freely
choose any convenient unit regardless of procedure
or module boundaries, and thereby control the size,
contents, and context of the program fragment to an-
alyze [19, 35, 24]. Such techniques permit focused
and efficient analyses of customizable precision. For
software security assurance, improvements in preci-
sion raise the level of assurance we can guarantee.

We describe a scalable whole-program analysis
that requires the full source to verify a fundamen-
tal assumption that all C++ compilers make but no
compiler checks. This assumption is the One Defi-
nition Rule (ODR) [4], which essentially states that
a C++ program is only legal if type and function
definitions appearing in multiple source files are de-
fined identically (Section 2). Code violating ODR is
not legal and may not be translated to a correct exe-
cutable. Nevertheless, no compiler verifies ODR be-
cause each compiles only a subset of an entire pro-
gram at one time, under separate compilation; as it
happens, only a whole-program analysis of the full
source can be used to verify ODR.

A lack of ODR enforcement enables the VPTR ex-
ploit, a virtual function table attack [31]. Though not
yet widely used, this exploit can be implemented as
a simple insider attack, particularly in collaborative
or open-source projects [29] (Section 3). Its use is ex-
pected to grow as defenses against stack smashing
techniques mature [28]. Checking ODR is an essen-
tial preventative measure.

We implement basic support for whole-program
analysis in the form of a compact and accurate
abstract-syntax tree representation of an entire pro-
gram (Section 4). We can store a million-line appli-
cation in the memory of a single workstation having
1 GB of RAM without losing any of the information
present in the original source. We achieve memory-
efficiency for C and C++ programs by merging
common declarations (typically appearing in header
files) that might otherwise be stored redundantly
for each source file. Our representation comple-
ments existing whole-program analyses by provid-
ing a simple, high-level view of the complete source
from which those analyses can be derived.

We are developing this work using ROSE, an open
infrastructure for building compiler-based source-
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to-source analysis and transformation tools [32]
(Section 4). For C and C++, ROSE fully supports
all language features, preserves all source informa-
tion for use in analysis, and permits arbitrarily com-
plex source-level translation via its rewrite system.
Although research in the ROSE project emphasizes
performance optimization, ROSE contains many of
the components common to any compiler infrastruc-
ture, and thus supports the development of gen-
eral source-based analysis and transformation tools.
This paper summarizes aspects of ROSE especially
relevant to security analysis research (Section 5).

2 One-Definition Rule (ODR)

This section summarizes the essential features of the
one-definition rule (ODR). The ODR states that tem-
plates, types, functions, and certain entities can only
be defined “once,” in a sense made precise in the
ANSI/ISO C++ Standard [4, Sec. 3.2, pp. 23–24].
Three of the main conditions of the ODR are:

1. Within a single translation unit (a source file
and its headers), there may be at most one defi-
nition of any variable, function, class type, enu-
meration type, or template.1 All compilers ver-
ify this condition.

2. Within the entire program, there may only be
one definition of every non-inline function or ob-
ject; an inline function must be defined in every
translation unit in which it is used, with all such
definitions being identical as described in Con-
dition 3 below. Because compilers typically pro-
cess only one translation unit at a time, the C++
standard does not require that compilers check
this condition.

3. Some entities, including class types, enumera-
tion types, inline functions with external link-
age, and various template entities, may be de-
fined in more than one translation unit pro-
vided the definitions are “identical.” The C++
standard lays out the meaning of identical pre-
cisely; one notable property is that two defi-
nitions must “consist of the same sequence of
tokens” to be considered the same [4, p. 24].
We use this token-based property in our ODR
checker. Like Condition 2 above, compilers typ-
ically do not or cannot verify whether multiple
definitions are identical as laid out by the C++
standard.

1There may, however, be multiple non-defining declarations,
such as function prototypes, “extern” variable declarations, for-
ward class declarations.

Listing 1: main.cc–A simple program
1 int main () {

extern void runModule (void); // Module to call
3 runModule ();

return 0;
5 }

A legal C++ program must obey the ODR. How-
ever, because the standard assumes that a compiler
will see only one translation unit at a time (Condi-
tion 1), it does not require that a compiler detects
violations across translation units.

The linker can partially verify ODR by detecting,
for instance, multiple definitions of non-inline func-
tions and global variables (Condition 2). However,
inline function ODR violations cannot be detected;
these violations require a whole-program analysis.

3 VPTR Exploit

The VPTR exploit replaces an object’s virtual func-
tion table pointer (“VPTR”) with one containing ma-
licious code [31]. The simplest technique redefines
the existing definition of an inline virtual function;
since a typical compiler does not see the whole pro-
gram, it cannot enforce the ODR to catch instances
of this exploit. This form is most easily imple-
mented as an insider attack, which could occur in
a collaborative software development environment
as demonstrated by the 2003 Linux kernel back-
door [29]. Moreover, the exploit is an instance of
more general pointer subterfuge attacks [28].

Listings 1–3 show a program containing the vul-
nerability. In Listing 1 at line 3, the program executes
a routine defined in an external module. That rou-
tine creates two stack-allocated objects, a and b, both
of type Derived, at line 13 of Listing 3. The Derived
type inherits from an abstract base class (Base), im-
plements the virtual method, Derived::run , at line
7, and declares a 1-byte datum at line 8. How-
ever, because the run method is virtual and defined
as (implicitly) inline, we must redefine the method
in every translation unit in which it is used, albeit
with the same definition (see Condition 3 in Sec-
tion 2). If the compiler cannot enforce this condition,
an attacker can re-implement the method in another
translation unit to execute arbitrarily different code.

We implement a basic VPTR exploit in Listing 4.
This code is a separate module that defines another
malicious version of Derived::run() in lines 6–9.
Most compilers, including GCC, assume ODR holds
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Listing 2: Base.hh–An abstract base class
1 class Base {
public:

3 virtual ˜Base (void) {}
virtual void run (void) = 0;

5 };

Listing 3: Module.cc–An innocuous module
1 #include "Base.hh"

3 // Derived class, intended to be private to this module.
class Derived : public Base {

5 public:
Derived (void) { buf [0] = ’a’ ; }

7 void run (void) { buf [0] = ’z’ ; }
char buf [1];

9 };

11 // Public interface to this module.
void runModule (void) {

13 Derived a, b; // Two instances on the stack
Base ∗pa = &a, ∗pb = &b;

15 pb−>run (); // Expect b.buf [0] == ’z’
pa−>run (); // Expect a.buf [0] == ’z’

17 }

and simply choose the first one encountered at link-
time. That is, when compiling with

g++ main.o Module.o ViolateODR.o ...

the compiler chooses Derived::run() from List-
ing 3, whereas in

g++ main.o ViolateODR.o Module.o ...

it chooses the implementation from Listing 4. More-
over, if the application uses shared or dynamically-
loaded libraries, the malicious module need only ap-
pear first in the shared library path to be executed.

VPTR exploits have more sophisticated forms, as
shown in Listing 5. This example builds on the basic
exploit in Listing 4 by violating ODR and then us-
ing buffer-overrun techniques to rewrite the VPTR
directly. The first step on line 15 of this alternative
Derived::run() has the same behavior as Listing 3
at line 7, perhaps to make the code appear to behave
safely. However, it then executes additional mali-
cious code in lines 16–17.

These additional lines use the fact that a derived
object often stores not just its data, but the VPTR ap-
propriate for that object’s type. For example, the a
and b stack-allocated instances of Derived declared

Listing 4: ViolateODR.cc–Basic VPTR exploit
1 #include <iostream>

#include "Base.hh"
3

class Derived : public Base { // Class violating ODR
5 public:

void run (void) {
7 std :: cout << "*** Hostile takeover ***"

<< std::endl;
9 }
};

11

Derived d; // Instantiate to get malicious ’Derived’

on line 13 of Listing 3 might appear on the stack
as shown in the left-half of Figure 1. Each object
has its 1-byte datum, buf [0] , plus a hidden 4-byte
VPTR. When line 15 of Listing 3 invokes our mali-
cious run() , it does so on data allocated and laid
out according to the definition of Derived in List-
ing 3. Lines 16–17 of Listing 5 use platform-specific
knowledge of how this data is laid out to write be-
yond the bounds of the data and, in this case, into the
VPTR of the next object on the stack, as illustrated in
the right-half of Figure 1. The new VPTR is simply
the address of a compatible VPTR for the Attacker
class defined in Listing 5. The Attacker class con-
tains another malicious implementation of run() .
This additional form of the VPTR exploit builds on
the ODR violation, so checking ODR helps defend
against VPTR exploits generally.

...

VPTR

VPTR

...

Stack

Derived a;

Derived b;

buf_[0]

buf_[12] Malicious overwrite

buf_[0]

buf_[0]

Figure 1: VPTR exploit. The attacker implements
the alternative version of Derived::run() shown
in Listing 5 such that executing b.run() overwrites
a’s VPTR.
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Listing 5: Attacker.cc–A malicious module
#include <iostream>

2 #include "Base.hh"

4 class Attacker : public Base { // More malicious code
public: void run (void) {

6 std :: cout << "*** vtable overwritten! ***"
<< std::endl;

8 // ... Do malicious things here ...
}

10 };

12 class Derived : public Base { // Class violating ODR
public:

14 void run (void) {
buf [0] = ’z’ ; // Looks normal, but see below...

16 Attacker x; // Instantiate to get a vtable to inject
∗((unsigned ∗)(buf +12)) = ∗((const unsigned ∗)(&x));

18 }
char buf [16]; // Buffer used to overwrite vtable

20 } d; // Instantiate to get malicious ’Derived’

4 A Whole-Program Analysis to
Detect ODR Violations

Whole-program analysis is typically implemented
using procedure summaries or by embedding infor-
mation into the object files to use whole-program
context at link-time. Summarization is necessary
to mitigate the impact of super-linear analysis time
costs, and procedures are a convenient unit. How-
ever, a compiler or analysis tool should be free to
analyze any useful, arbitrarily partitioned unit of the
program, given a complete and accurate view of pro-
gram context [35, 36, 24]. This need motivates our
whole-program abstract syntax tree representation.

Below, we describe this representation as imple-
mented in ROSE, an open and extensible infrastruc-
ture for building customized source-to-source anal-
ysis and transformation tools. A typical ROSE-based
tool looks like a traditional compiler, with a front-
end that generates an object-oriented abstract syntax
tree (AST), a “mid-end” performing custom analy-
ses and/or transformations to the AST, and a back-
end to unparse the possibly modified AST back into
source code. This section outlines recent work to ex-
tend the AST to allow the creation of a single, com-
pact AST for the entire program. ODR violations
appear during the construction of such a whole-
program AST. For more information on the complete
ROSE architecture, including features relevant to se-
curity analysis, see Section 5.

4.1 Overview of the whole-program rep-
resentation and ODR test

ROSE’s intermediate representation (IR), SAGEIII,
stores all high-level information from the source
code, sufficient to reproduce the original source code
completely. The IR is space-efficient by design since
we target large-scale physics applications of 100
KLOC per file and up. Current workstation mem-
ory capacities are also quite large (commonly 2–4 GB
and greater), and so are better able to support repre-
sentations of applications consisting of hundreds of
files. For greater space savings, we share parts of the
AST (subtrees) that are determined to be identical.
This test for matching subtrees is where we check
ODR, since identical definitions will by construction
be shared across multiple files in the AST.

ROSE routinely compiles million-line applications
file-by-file. In round numbers, these applications
have on the order of 1000 files containing 75K lines
contributed from header files and 1K lines of source
code in the source file. The effective 76K lines of
code generates an AST with about 500K IR nodes.
Merging the 75K lines over each of the 1000 files
thus saves 75 million lines of code from being rep-
resented redundantly in the AST. Using a 250 KLOC
program, we have estimated that a million-line ap-
plication will fit into approximately 400 MB of mem-
ory after merging header files. The AST holding
the million-line application can also be saved to and
loaded from disk using a custom ROSE-specific bi-
nary file format; on current single-processor desktop
machines, writing one of these binary files to disk
takes roughly 30 sec and reading less than a minute.
Simple traversals of the whole AST in memory take
only a few seconds. Thus, the representation is com-
pact and efficient to operate on once constructed.

We perform the ODR test by unparsing candidate
subtrees and verifying an exact match. Since ROSE
can optionally normalize whitespace and optionally
strip comments and preprocessor directives, simple
string matching verifies token-by-token equivalence
of the original code as required by ODR.

4.2 Whole-program AST construction

Given the ASTs from separate translation units, we
merge them as follows:

1. Build an extended mangled name map
The matching process is based on an extended
form of name mangling that is common for
handling C++ types, variables, and functions.
In short, we traverse all declarations in the
global scope and all namespace scopes, and for
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each declaration, generate and store each dec-
laration’s unique name (i.e., extended mangled
name) into an STL map. The map’s key is the
unique name, and its value is a pointer to the
associated IR node. (There are a number of de-
tails that we omit for simplicity.)

2. Build a replacement multimap
The AST is traversed a second time to match the
unique names generated from declarations with
keys in the mangled name map. All matches are
recorded, and a map of pairs of IR node pointers
is generated (the IR node of the match and the
IR node associated with the matching key from
the mangled name map). The ODR test (see end
of Section 4.1) is applied and must pass to be
included in the replacement multimap.

3. Fixup AST and build the subtree delete list
Using the replacement mutimap we traverse the
AST again and find all pointers to IR nodes and
using the pointer to the IR node as a key we
look them up in the replacement multimap. If
found, we replace the pointer to the key with
the pointer to the value obtained from the mul-
timap using the key and the replaced pointer
value is added to the subtree delete list. All IR
nodes that are shared via the merge process are
explicitly marked as shared in the AST.

4. Delete redundant subtrees
To save space we cannot remove redundant
subtrees in the modified AST; we iterate over
the delete list (which points to redundant sub-
trees) and remove all the nodes in each subtree.

4.3 Merged AST example

Figure 2 (top) shows the AST for the three source
files shown in Listings 1, 3, and 5, with AST sub-
trees colored by file. The ASTs from the files are not
shared. Figure 2 (middle) shows the AST after the
merge process, here the diamond shaped IR nodes
of the AST indicate that those IR nodes are shared.
To be shared, the declaration at the root of the sub-
trees had to generate the same internal name (in C++
this includes standard name mangling plus a num-
ber of other language specific details) and the sub-
trees had to pass the ODR test of equivalence. Fig-
ure 2 (bottom) shows the parts of the AST which had
the same internal name, but which failed the ODR
test. These pairs of subtrees represent the ODR vio-
lation that enables a successful VPTR exploit.

5 The ROSE Infrastructure

We are implementing our security analysis work
within ROSE, a U.S. Department of Energy (DOE)
project to develop an open-source compiler infras-
tructure for optimizing large-scale (1 MLOC or
more) DOE applications [32]. The ROSE framework
enables tool builders who do not necessarily have a
compiler background to build their own source-to-
source translators. The current ROSE infrastructure
can process C and C++ applications, and we are ex-
tending it to support Fortran90.

ROSE provides several components to build
source code analyzers and source-to-source trans-
lators. The C++ front-end generates an object-
oriented abstract syntax tree (AST) as an intermedi-
ate representation. The AST preserves the high-level
C++ language representation so that no information
about the structure of the original application (in-
cluding comments and templates) is lost. This fea-
ture permits accurate analysis and the ability to re-
generate the original source from the AST. The back-
end unparses the AST into source code. The ROSE
tool builder creates a “mid-end” to analyze or trans-
form the AST; ROSE assists by providing a number of
mid-end components, including graph visualization
tools, a predefined traversal mechanism, an attribute
evaluation mechanism, transformation operators to
restructure the AST, program analysis support, and
a number of performance optimizing transforma-
tions. ROSE also provides support for annotations
whether they be contained in pragmas, comments,
or separate annotation files.

Though the traditional emphasis in the ROSE
project is on performance optimization, these basic
components are well-suited to building software se-
curity analysis tools. A recent position paper dis-
cusses how ROSE supports the related area of auto-
mated program testing and debugging [30].

5.1 Front-end

We use the Edison Design Group C++ front-end
(EDG) [13] to parse C and C++ programs. EDG
generates an AST and fully evaluates all types. We
translate the EDG AST into our own object-oriented
AST, SAGEIII, based on Sage II and Sage++ [7].
SAGEIII is used by the mid-end as an intermedi-
ate representation. Full template support permits
all templates to be instantiated in the AST. The AST
passed to the mid-end represents the program and
all the included header files. SAGEIII has 240 types
of IR nodes, as required to represent the original
structure of the application fully.
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Figure 2: (Top) The AST before merging Listings 1 (right-most subtree in light green), 3 (left-most subtree
in red), and 5 (middle subtree in blue). (Middle) The AST after merging. The Base class definition, included
by Listings 3 and 5, is shared, as indicated by the magenta subtree with double-edges between diamond-
shaped nodes. (Bottom) The merged AST, with the two Derived class definitions that violate the ODR
shown by the subtrees with black circular nodes.
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5.2 Mid-end

The mid-end permits analysis and arbitrary restruc-
turing of the AST. Results of program analysis are
accessible from AST nodes. The AST processing
mechanism computes inherited and synthesized at-
tributes on the AST. An AST restructuring operation
specifies a location in the AST where code should be
inserted, deleted, or replaced. Transformation oper-
ators can be built using the AST processing mecha-
nism with AST restructuring operations.

ROSE internally implements a number of forms
of procedural and inter-procedural analysis, withm
uch of this work in current development. ROSE cur-
rently includes support for dependence, call graph,
and control flow analysis. In collaboration with aca-
demic groups, we are extending the analysis infras-
tructure to interface with general analysis tools, in-
cluding PAG [2] OpenAnalysis [34], as well as anal-
ysis tools specifically for automated debugging and
security, such as Osprey for measurement unit val-
idation [22], MOPS for finite state machine-based
temporal specification checking [9], and coverage
analysis tools [12].

To support whole-program analysis, ROSE has ad-
ditional mechanisms to store analysis results persis-
tently in a database (e.g., SQLite), to store ASTs in
binary files, and to merge multiple ASTs from the
compilation of different source files into a single AST
(without losing project, file and directory structure).

ROSE also provides debugging facilities, such as
AST traversals and coloring, and may be used with
visualization tools to aid reverse-engineering [25].

5.3 Back-end

The back-end unparses the AST and generates C++
source code. Either all included (header) files or only
source files may be unparsed; this feature is impor-
tant when transforming user-defined data types, for
example, when adding generated methods. Com-
ments are attached to AST nodes (within the ROSE
front-end) and unparsed by the back-end. Full tem-
plate handling is included with any transformed
templates output in the generated source code.

6 Related Work

Whole-program analysis has traditionally been ap-
plied in performance optimization contexts [5, 35],
but has recently also been used to find bugs and
detect security flaws using global dataflow analy-
ses [6, 18, 20, 14]. Our techniques complement ear-
lier work by providing the basic infrastructure for

accurately representing the source of an entire pro-
gram, from which we could implement these other
analyses. In the case of C++, this representation al-
lows us to verify compliance with ODR, an impor-
tant but never fully-enforced correctness condition.

Our whole-program AST is closest in spirit to the
whole-program control flow graph representation
proposed by Triantafyllis, et al. [35]. However, we
essentially unify the source itself; a whole-program
CFG could be easily constructed from this represen-
tation.

Atkinson and Griswold advocate on-demand gen-
eration of any representations needed for a particu-
lar analysis [5]. By contrast, we assume the exponen-
tial trends in workstation memory capacity [1] and
the need for source-to-source transformation to jus-
tify generating and storing the whole-program AST.

A number of compiler infrastructures can or do
perform whole-program analyses. GCC develop-
ers are adding unified cross-module representations
and precompiled header support in order to pro-
vide inter-module analysis, particularly for C pro-
grams [23, 8]. Our AST merge and file I/O mecha-
nisms are similar in spirit, though we currently pro-
vide full support for C and C++, as well as an in-
termediate representation that accurately represents
the source. Among other open C or C++ infras-
tructures [16, 3, 10] and C++ static analysis infras-
tructures [37, 17], our complete source-level whole-
program representation is unique.

7 Conclusions and Future Work

Our basic support for whole-program analysis en-
ables any number of security analyses with complete
context. The analysis we present for checking com-
pliance with ODR to avoid VPTR exploits is just one
example; the basic mechanisms permit any number
of other global analyses, including whole-program
pattern matching [15], region formation [35], and
hybrid static/dynamic whole-program path analy-
ses [24], among others. We will develop analyses for
additional problems in collaboration with other re-
search groups (e.g., the SAMATE project [26]).

An important issue in software security analysis is
how to present analysis results to users [21]. A sim-
ple textual representation of security issues is often
insufficient because it is difficult to understand the
context to the problem under investigation. We are
investigating this problem using flexible and unique
visualization techniques [27, 25].

We show an example of a program visualization
in Figure 3. The program is an 80 KLOC scien-
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Figure 3: Visualizing security problems in source code.

tific C code, and we plot each function (shown by
a sphere) according to its mathematical operations
complexity, i.e., the number of floating-point oper-
ations along the y-axis and the number of integer
operations along the x-axis. The size of each func-
tion is equivalent to the relative size of each sphere.
Furthermore, the McCabe’s Cyclomatic complexity
measure [11] is represented on the z-axis.

The application-specific vulnerabilities are shown
by green boxes, which indicate possible program
overflow problems. These vulnerable functions do
not appear along either the x- or y-axis. Thus, we
can infer that these vulnerable functions do not oc-
cur within the essential scientific kernels, i.e., within
functions that make heavy use of floating-point or
integer calculations. Indeed, the problem areas
for this program occur entirely within the program
setup. We are pursuing this and other techniques
to help users better understand security analysis re-
sults.
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Abstract— This paper presents a high level overview of a tech-
nology called CodeHawk whose purpose is to support verifi-
cation of software properties. Today’s commercially available
static analysis tools identify potential runtime and vulnerability
problems based on properties described in the semantics of
the programming language. While CodeHawk will detect those
classes of problems, it is distinguished by the user’s ability to
generate high performance static analyzers for the verification
of application-specific properties. Today’s static analyzers may
also trade off assurance and flexibility for speed in handling
very large code sets. Our goal with CodeHawk is to handle
industrial sized code sets with the highest speed in the industry
among those offering 100% verification assurance. CodeHawk’s
customizability opens up additional uses of the core technology
beyond detecting runtime or vulnerability exposures. In this
paper we describe one such use, namely static analysis in support
of optimized dynamic analysis.

I. I NTRODUCTION

In this paper we present our approach to static analysis of large
software systems using a platform enabling the rapid devel-
opment of custom static analyzers: CodeHawk. Unlike some
static analysis approaches that are optimized to identify bugs,
but not prove the absence of bugs, our objective is to achieve
full code coverage so that there are no false negatives with
respect to a set of well-defined properties. This is appropriate
for high assurance systems, particularly those that must pass
a rigorous certification process. In particular CodeHawk can
prove properties of a C program’s memory accesses that are
sufficient for 100% assurance of the absence of buffer overflow
errors. Insuring there are no false negatives together withan
acceptably low rate of false positives raises a challenging
scaling problem. Our approach to achieving scalability is to
customize the analysis to the application domain, and to use
algorithms engineered for high performance.

CodeHawk is a component of a larger system that combines
static analysis with dynamic analysis. Dynamic analysis refers
to monitoring the execution of a program for conformance
with a set of properties. Static and dynamic analysis interact
in two ways. First, static analysis can either establish that a
property holds, establish that it does not, or fail to come to
any conclusion. Dynamic checks may be inserted in the code
to assist this process. Second, checking of dynamic properties

may be optimized by static analysis. Within our framework
dynamic properties are complex temporal properties expressed
in a rich specification notation and the validity of such a
property may depend on establishing relatedsub-properties
at many different program points. Static analysis may verify
these sub-properties.

The remainder of this paper is organized as follows. The
next section overviews abstract interpretation, the theory on
which CodeHawk is based. This is followed by an overview
of CodeHawk. The next section describes how domain-specific
properties are incorporated into CodeHawk through motivating
examples. Then we discuss dynamic analysis and its integra-
tion with static analysis. The final section states conclusions.

II. A BSTRACT INTERPRETATION

Static analysis is a generic term encompassing a variety
of techniques that vary greatly in scope and nature (type
checking, coding style analysis, model checking, dataflow
analysis, statistical pattern inference, pointer analysis, etc.).
Abstract Interpretation [5], [6] is a theoretical framework
enabling the systematic construction ofsoundstatic analyzers.
By soundness, we mean thatall possible execution paths are
taken into account in the analysis. Hence, the properties of
the program discovered by such an analyzer are guaranteed to
hold in any configuration of the program. Formal verification
of program properties can thus be achieved by Abstract
Interpretation. A precise description of Abstract Interpretation
is beyond the scope of this paper. We rather give the main
intuitions underpinning the theory.

The behavior of a program is described by the set of its
execution traces under all possible inputs. Execution traces
can be formally described using a mathematical modeling
technique calledoperational semantics[3]. Abstract Interpre-
tation allows us to build a finite machine-computable model
of the operational semantics of a program using two tools:
partitioning andabstraction. Partitioning consists of grouping
program configurations into a finite number of disjoint sets as
illustrated in Fig. 1. For example, we can partition program
configurations with respect to program control points, i.e., two
configurations are in the same partition iff they reach the same
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Execution Traces Abstract Interpretation

Fig. 1. Partitioning of program configurations

statement in the program. Abstraction consists of defining a
single finite representation of all configurations in a partition.
For example, if all the program variables are integer-valued, a
possible abstraction consists of assigning an interval to each
variable that contains all possible values of the variable in any
configuration of the partition [4].

The abstraction process may cause the representation to denote
program configurations that never occur in real executions.For
example, if we have two configurations in a partition where
i = 2 andi = 4, variablei is represented by the interval
[2, 4], denoting the spurious configuration wherei = 3.
This explains the existence offalse positivesin program veri-
fication by Abstract Interpretation. A property may very well
hold for all program executions, however the static analyzer
cannot verify this is true, because it is violated for spurious
configurations resulting from the abstraction employed. Note
that we cannot havefalse negatives, i.e., a property cannot
deemed true by the analyzer, even though it is violated in
some executions. This is becauseall program configurations
are covered by the abstraction.

Without entering in too much detail, we will just say that Ab-
stract Interpretation provides a methodology and a collection
of techniques that allow us to construct anabstract semantic
model M of the program, that is a machine-representable
structure representing the program dynamics on the abstract
partitioning of configurations. The abstract semantic model is
usually defined by induction on the syntax of the program
and can be automatically generated by a proper translator. The
envelope ofM, denoting the set of all possible configurations
of the program, can be computed iteratively using well-
studied fixpoint algorithms [2]. This structure can then be
used to conduct automatic verification of the desired program
properties.

We illustrate the abstract interpretation process on a small ex-
ample. Consider the following piece of C code that initializes
an array of double-precision floating point numbers:

1: double a[10];
2: int i;
3:

4: for(i = 0; i < 10; i++) {
5: a[i] = 1.0;
6: }
7: a[i] = 3.0;

Now, assume that we are interested in assessing the correctness
of all array accesses. In the example, this translates into
verifying the property0 ≤ i < 10 at lines5 and7. The ab-
stract semantic model defines the level of abstraction at which
the analysis algorithms will operate. For example, one can
choose to ignore all information stored in data structures.This
makes sense for applications like embedded systems where
the control structure is essentially driven by local variables,
as described in [10]. This abstraction may be inappropriate
for other families of programs. Once the abstract semantic
model has been determined, abstract interpretation algorithms
compute an envelope of all possible values for the program
variables. If we choose an abstraction of numerical variables
based on intervals, the analysis will automatically infer that the
range of variablei is [0, 9] at program point5, and [10, 10]
at program point7. Then, the computed ranges are used to
check the safety properties for array access.

III. C ODEHAWK TECHNOLOGY

The Abstract Interpretation approach to static analysis looks
attractive, but it presents major hurdles. Building a static
analyzer based on Abstract Interpretation is a complex en-
gineering task that can require substantial domain expertise.
Designing the abstract semantic modelM and writing the
translator that takes the program text and producesM is
the most time-consuming part of the process. Moreover, the
abstract semantic model is specially designed to support the
verification of a small number of program properties (usually
one). Scaling to large code-bases has been proven possible
by tailoring the abstract semantic model toward the particular
structure of the software analyzed [10], [7]. All these factors
lead to large, complex, monolithic static analyzers that are
able to deal only with a handful of program properties. This
approach is impractical for all but a few critical applications,
and then only those blessed with a large V&V budget.
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The purpose of the CodeHawk technology precisely con-
sists of bringing the Abstract Interpretation approach to a
practical production level. CodeHawk is built on top of the
Specware [8] formal specification environment developed by
Kestrel Institute. The main capability offered by CodeHawkis
that of building a fully functional and efficient static analyzer
by assembling components drawn from a library of prede-
fined abstractions. The Specware environment is particularly
supportive of that activity. In particular, the code of the
whole analysis engine can be automatically generated from
the specification of the analyzer. A static analyzer checking
for a certain class of properties and tailored for a specific
class of software can be rapidly specified and generated using
CodeHawk.

CodeHawk’s precursor, CGS [10] is a static array-bound
checker tailored for NASA’s flight mission software. It can
scale up to half a million lines of C code, with a false
positive rate< 20%. CGS is written in C and has a mono-
lithic architecture. Modifying the tool in order to have it
analyze specific constructs of flight software more precisely
is a complex and time consuming task. We found that the
remaining20% false positives were essentially due to array
bounds transmitted between threads through message queues.
Modifying the abstract semantic model in order to track this
information precisely was not difficult in theory, but the impact
on the implementation was enormous. This basically stopped
us from further specializing the analyzer. CodeHawk aims at
simplifying this specialization process by generating analyzers
that have a flexible and tunable architecture.

Building an abstract semantic model from scratch is facilitated
by CodeHawk, but still remains the job of an expert. We
are currently working toward a specification environment built
on top of CodeHawk that offers the capability of specifying
custom program properties to verify and generate the corre-
sponding analyzer. This specification environment will provide
a high-level interface to CodeHawk that is accessible to the
non-specialist and enable the construction of static analyzers
for a broad spectrum of properties. The SAMATE database [9]
will provide the basis for studying the specification language.

IV. STATIC ANALYSIS FROM NUMERICAL SPECIFICATIONS

In this section we illustrate the concept of a specification
environment men- tioned above on two examples: a string copy
function and a communication application using ”nonces”.
These examples rely on the core capability currently imple-
mented in CodeHawk: the analysis of numerical computations.
They show analyzers for vulnerable use of the programmming
language itself, resp. an application-specific property.

A. Buffer Overflow Violations

Consider the functiontest defined below:

void test(char *str){
char buf[10];

memccpy(buf, str, 0, 10);
printf("results: %s\n", buf);

}

which is an extract of example 000-001-314 in [9]. The
function takes as argument a string and prints it out, although
in an unnecessarily complicated, and subsequently unsafe,
manner, that embodies a potential for a buffer overflow. The
function declares an arraybuf of size10. This array is then
filled up with the text string. This is done by a call of the
function:

void *memccpy(void *s1, const void *s2,
int c, size_t n);

the description of which is:

memccpy copies bytes from memory area s2 into
s1, stopping after the first occurrence of c has been
copied, or after n bytes have been copied, whichever
comes first.

The problem occurs whenstrlen(str) (the length of the
string) is bigger than or equal to the size of the array it is
copied to (here10), since in this case a final ’0’ is not copied
into buf, and hence ifbuf is now used as a string the end
of this string will not be clearly marked. We want to enforce
the policy that the length of the copied string is strictly less
than the size of the array. Then are we sure that a final ’0’ is
copied in.

In order to detect such an error statically, a specialized
algorithm can be programmed that performs a numerical
abstraction of the program and analyzes this abstraction with
respect to a desired property. In this specific case the ab-
straction keeps track of sizes of arrays and sizes of strings,
and the specification states that any call ofmemccpy should
copy a string with a smaller size than the size of the target
array. The alternative to hard coding a static analyzer for
this specific problem is to apply our generic approach and
synthesize a static analyzer from an abstraction specification
and a property specification stating a property to be checked
over the abstraction.

Theproperty specificationnow states the desired property, i.e.,
that calls ofmemccpy copy fitting strings:

check NoBufferOverflow =
always(memccpy(arr, str, 0, N)

-> size(str) < size(arr))

Of course this property can also be checked dynamically
during program execution, and this might be a solution in
case the property cannot be checked statically.

B. Nonce Repetition Violations

The above example illustrated the detection of runtime errors
in the form of buffer overflows. The following example
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illustrates a security problem concerned with uniqueness of
authentification keys callednonces. Nonces are used for ex-
ample in authentication protocols as a means of preventing
replay attacks. A nonce is a “number used once”. That is, the
creator of the nonce should insure that it has not been used in
previous runs of the protocol and that it is not guessable by
an attacker.

Typically, randomly generated numbers are used as nonces.
The SAMATE database [9] includes test cases (for example
example test case 000-000-054) asserting that nonces should
be used for the present occasion and only once. Here we
consider how static and dynamic analysis can be used to assure
correct uses on nonces. We assume a protocol is implemented
by a collection of procedure calls, and that if a step in the
protocol requires a nonce it is a parameter to a specific
proceduresendNonce.

The abstraction specification would in this case define an
abstract state that maps each nonce to an integer indicating
how many times it has been used. It will also state how this
abstract state is updated as a result of execution of program
statements. The property specification will state that the integer
associated to a nonce should never go beyond 1. Static analysis
can also be used to check that the source of the value of the
nonce parameter is a random variable library function.

However, if that cannot be statically validated, dynamic analy-
sis can check that the nonce parameter is distinct at each
invocation. This property can be expressed in our EAGLE

monitoring language [1] as:

monitor NonceOnlyOnce =
always(sendNonce(x) -> NonceNotSeen(x))

rule NonceNotSeen(int x) =
previously(sendNonce(y) -> x != y)

V. COMBINING STATIC AND DYNAMIC ANALYSIS

Above it was mentioned that properties can be specified in
a formal specification language and then checked statically.
In case the static analysis cannot demonstrate the property,
the whole property, or the part of the property that cannot
be checked statically, can be checked dynamically during
program execution using runtime monitoring techniques. A
different way of thinking about this is to regard static analy-
sis as a technique to optimize runtime monitoring: given
a property to be monitored during execution, optimize the
monitoring as much as possible in order to minimize the
impact on execution time and memory consumption. In reality
these are two views of the same problem, but from different
perspectives.

These ideas can be brought even further by observing a
current trend within Aspect Oriented Programming (AOP):
the extension of pointcut languages with tracecuts (predicates
on execution traces). In a traditional AOP language such as
AspectJ an aspect contains advices of the form: “when this

piece of code is encountered, execute this other piece of code”.
With tracecuts it is possible to state properties even more
succinctly: “when thistemporal property is true about the
execution trace, execute this other piece of code”. Such a
framework can furthermore be supported by static analysis in
the sense that static analysis statically attempts to determine
when the tracecuts are true in the program and hence the new
code can be inserted. In case it cannot be determined, monitors
must be inserted in the code, which trigger the new code when
reaching specific states.

The MODE system currently under development at Kestrel
Technology combines static and dynamic analysis in such
an AOP framework with tracecuts, in MODE called policies.
MODE focuses on (1) a policy language based on state ma-
chines for expressing system safety and information assurance
constraints, (2) static analysis mechanisms for detectingpolicy
applicability in a program, and (3) enforcement mechanisms
and associated assurance arguments and evidence. An over-
arching objective is to lower the cost of producing certified
software.

MODE uses fast static analysis algorithms provided by Code-
Hawk to match each policy against the program. The engineer
can specify whether to check a policy or enforce a policy. For
each location in the program where static analysis determines
that a policy applies, MODE either checks that it holds
(generating a diagnostic message when it fails to hold) or
automatically generates enforcement code for insertion atthat
location. MODE outputs a program that is consistent with the
original program and that is guaranteed to satisfy the enforced
policy.

VI. CONCLUSION

Static analysis for 100% verification of runtime, safety and
security properties, is important. But to be practical, it must
satisfy two requirements. First, it must scale to application
code sizes used in industry. Second, it must support verifica-
tion of properties that include those better defined in terms
of the application’s objectives, in addition to today’s focus on
those defined in terms of a programming language’s usage.
We have introduced a technology platform called CodeHawk
that can meet those requirements.
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Abstract

We investigated errors and vulnerabilities that emerge from software defects in C/C++ and Java
programs. This allowed us to create a meaningful testbench in order to evaluate best-of-breed automatic
source code verification tools. Our results show that current static tools cannot significantly reduce the
risk associated with confidential data processing in a military context. Dynamic tools should be used in
conjunction in order to provide the necessary assurance level.

1 Introduction

Developing reliable and secure software has become a very challenging task, mainly because of the unmanage-
able complexity of the software systems we build today. Software flaws have many causes but our observations
show that they mostly come from two broad sources: design (e.g., a backdoor) and implementation (e.g., a
buffer overflow).

To address these problems, our research group at DRDC Valcartier first worked on design issues. A
prototype of a UML design verifier was built [1]. Our approach was successful, but we faced two difficulties:
specifying interesting security properties at the design level and scalability of the verification process. Building
on this experience, we studied design patterns for the implementation of security mechanisms [3]. The output
was a security design pattern catalog that can help software architects choose mature and proven designs
instead of constantly trying to reinvent the wheel [4].

This paper addresses the implementation issues. We have evaluated automatic source code verifiers that
search for program sanity and security bugs. After section 2 that specifies the context of our study, section
3 defines the terminology that we use. Then, section 4 gives the major language design shortcomings that
make C/C++ programs so prone to security problems. Finally, sections 5 and 6 present an overview of the
evaluated tools and the results of this evaluation, respectively.

2 Context

The assurance level required for executing applications depends on their execution context. Our context is
military, in which confidential data is processed by sensitive applications running on widespread operating
systems, such as Windows and Linux, and programmed in C/C++ and Java.

Our primary goal was to get rid of common security problems using automated source code verification
tools for C++ and Java. To do so, we first investigated errors and vulnerabilities emerging from software
defects. This allowed us to create meaningful tests in order to evaluate the detection performance and
usability of these tools.

3 Defects, Errors, and Vulnerabilities

In our investigation of common software security problems, we observed that most of them do not come
from the failure of security mechanisms but from failures at a lower level, which we call program sanity
problems. Security mechanisms ensure high level properties, such as confidentiality, integrity, and availability,
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and are mostly related to design. Access control frameworks, intrusion prevention systems, and firewalls are
all examples of security mechanisms. Program sanity problems are related to protected memory, valid control
and data flow, and correct management of resources like memory, files, and network connections. Because
these problems are many-sorted, a terminology is necessary to classify them.

The following definitions are based on [2]. An error is closely related to the execution of a program. It
occurs when the behavior of a program diverges from “what it should be”, from its specification. A defect lies
in the code, it is a set of program instructions that causes an error. It can also be the lack of something, such
as the lack of data validation. Finally, a vulnerability is a defect that causes an error that can be triggered
by a malicious user to corrupt program execution.

We focused on defects, errors, and vulnerabilities that can have an impact on security. To be as general
as possible, we wanted them to be application-independent. We defined 25 kinds of defects (6 categories), 5
errors, and 3 vulnerabilities, as shown in figure 1.

Memory Write
Out of Bounds

Memory Read Out 
of Bounds Resource Leak Program Crash Program Hang

Denial of ServiceUnauthorized 
Access

Arbitrary Code 
Execution

Memory 
Management 

Faults

Overrun and 
Underrun 

Faults

Pointer 
Faults

Cast 
Faults

Incorrect 
Arithmetic 

Faults
Misc. Faults

Defects

Errors

Vulnerabilities

Figure 1: Defects, Errors, and Vulnerabilities

3.1 Defects

Most defects are not always “on”; they will not always generate errors for every execution of the program.
Complex conditions have to be met for the error to happen and input values play an important role. Fur-
thermore, many defects are composite and cannot be attributed to only one program instruction.

The following is a list of all defects we used to create our tests.

Memory Management Faults: Problems related to memory allocation, deallocation, and copy from one
buffer to another.

1. Reading freed memory

2. Underallocated memory for a given type

3. Call of free () with an invalid pointer

4. Incorrect C++ array deletion

5. Call of memcpy() with overlapping memory regions

6. Reading uninitialized variables

7. Omitting to call non-virtual destructor of derived class

Overrun and Underrun Faults: Problems related to the overrun or underrun of an array or a C++
iterator.

1. Overrun or underrun of an array

2. Dereferencing a C++ iterator that is past the end
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3. Dereferencing an erased C++ iterator

4. Incorrect size parameter to a buffer function

5. Using negative array index or size

6. Reading a string of arbitrary length without limit

7. Reading a non null-terminated string

Pointer Faults: Problems related to incorrect pointer usage.

1. Return of a pointer to a local variable

2. Incorrect pointer arithmetic

3. Dereferencing a null pointer

4. Losing resource reference

Incorrect Arithmetic Faults: Problems related to incorrect arithmetic computations.

1. Division by zero

2. Integer overflow or underflow

3. Bit shift bigger than integral type or negative

Cast Faults: Problems related to the incorrect cast of one type into another.

1. Integer sign lost because of implicit unsigned cast

2. Integer precision lost because of bad cast

Miscellaneous Faults: Problems that do not fit into any other category.

1. Unspecified format string

2. Endless loop

3.2 Errors

The list of possible low-level errors that can happen when a program is executed is very long. Since we had
no interest in the correctness of computations with respect to specifications, we focused on errors that can
interfere with correct memory management, control flow, and resource allocation.

Memory Write Out of Bounds A valid region of memory is overwritten. Impacts depend on what is
overwritten, but this kind of error can lead to the most serious vulnerabilities since it can allow an
attacker to modify the program state. The causes are generally bad pointer arithmetic and array
walking with a bad index value.

Memory Read Out of Bounds A region of invalid memory is read. Impacts will mostly be errors in
computations, but sensitive values could be read. The main causes are reading of a string not terminated
by a null and array walking with a bad index.

Resource Leak A discardable resource (e.g., memory, file handle, network connection) is not returned to
the available pool. Of course, impacts depend on the kind of resource. However, this will generally lead
to a slowdown or crash of the resource-starved program. The main causes are losing a reference to a
resource because of pointer reuse and the programmer simply forgetting to free the resource.

Program Hang The program is in an infinite loop or wait state, which generally lead to a denial of service.
The main causes of this kind of error are never reaching a condition to exit a loop and threads in a
deadlock state.

Program Crash An unrecoverable error condition happens and the execution of the program is stopped.
Of course, this leads to a denial of service. The main causes are dereferencing an invalid pointer (e.g.,
page fault), an uncaught exception, and a division by zero.
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3.3 Vulnerabilities

Errors in general are undesirable, but the real problem is vulnerabilities, especially remotely-exploitable ones.
We observed that almost all dangerous vulnerabilities are associated with memory reads or writes out of
bounds.

Denial of Service Allows an attacker to prevent users from getting appropriate service. It is usually done
by creating an unrecoverable error condition or by exploiting a resource leak.

Unauthorized Access Allows an attacker to access functionalities or data without the required authoriza-
tion. It is usually done by bypassing the control mechanism by modifying it in memory or by reading
sensitive values in memory and using them to get access.

Arbitrary Code Execution Allows an attacker to take control of a process by redirecting its execution to
a given instruction. It is usually done via a buffer overflow that overwrites a function pointer with the
address of the injected code to execute. The return address on the execution stack is a frequent target,
but any function pointer that will be called in the future is could work.

4 Why Are C/C++ Programs So Prone to Security Problems?

Many defects and errors are possible because of bad design choices made when C and C++ were created. These
languages require too much “micro-management” of the program’s behavior (e.g., memory management), are
error-prone (e.g., pointer arithmetic), and induce serious consequences to seemingly benign errors (e.g., buffer
overflows). A short list of the major C/C++ design shortcomings follows.

Lack of Type Safety: Type safety helps enforce the execution model by ensuring values assigned to vari-
ables are sound with respect to operations performed on them. Because of this, type-safe programs are
fail-fast ; their execution is stopped immediately when an error occurs. Non type-safe languages like C
and C++ let the execution of erratic programs continue and many security exploits use this fact (e.g.,
buffer overflows).

Pointer Arithmetic: Gives the ability to a programmer to change the value of a pointer without restriction.
It is then possible to read and write anywhere in the process memory space, which often lead to very
obscure bugs. Furthermore, pointer arithmetic makes program verification a lot more difficult.

Static Buffers: Buffers in C/C++ cannot grow to accommodate data, buffer accesses are not checked for
bounds, and overflows can overwrite memory.

C Lack of Robust String Type: C has no native type for character strings. Static buffers with overflow
problems are used instead. Besides, the size of a string is indicated by a null character at the end. This
is very fragile: if the null is not there, an overflow is likely to occur. C++ programs can use the string
type in the Standard Template Library, but our observations show that this is rarely the case.

Creators of modern languages, such as Java, had these problems in mind and got rid of them. Indeed,
Java is immune to C/C++ program sanity problems because runtime checks throw an exception if an error
occurs (e.g., array access out of bounds). However, many program sanity checks throw unchecked exceptions
and these are rarely caught by programmers. Many problems become denial-of-service vulnerabilities since
uncaught exceptions crash the program.

5 Tools Overview

We evaluated 27 tools for C/C++ and 37 for Java. All these tools were categorized into 3 families: program
conformance checkers, runtime testers, and advanced static analyzers.

Program conformance checkers perform a lightweight analysis based on syntax to find common defects.
Because of this unsophisticated analysis, they perform poorly, except for a few defects that can be detected
by simple syntax analysis (e.g., format string vulnerabilities). Many free tools were in this category.

Runtime testers look for errors while the program is running by instrumenting the code with various checks.
This provides a fine-grained analysis with excellent scalability that can be very helpful when the program’s
behavior cannot be computed statically (e.g., because of values that are not known before runtime).
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Advanced static analyzers work on program semantics instead of syntax. They generally use formal
methods, such as abstract interpretation or model-checking, which often lead to scalability problems. The
code must be compiled into a model and this is usually a lot more complex than it seems with C/C++
because of code portability problems between compilers (e.g., makefiles).

For C/C++, commercial tools are by far the best. For Java, however, there are many good free tools.
Since Java is immune to most program sanity problems that plague C/C++, there are no exact equivalents
to C/C++ tools in Java. The focus of Java tools is on good practices and high level (design) problems, such
as deadlock detection. Since our goal was to detect program sanity problems, we focused on tools for C/C++
during our evaluation.

For our evaluation, our criteria were precision (flaws detected vs. false positives), scalability (small to
large programs), coverage (inspection of every possible execution), and the quality of the diagnostic (report
usefulness for problem correction).

6 Tools Evaluation

Preliminary tests showed that only 3 tools for C/C++ had the potential to help us achieve our goal: Coverity
Prevent, PolySpace for C++, and Parasoft Insure++. We tested these tools in two ways. First, over real
code in production that, to the best of our knowledge, worked well but was a bit buggy and then over many
small ad-hoc pieces of code containing specific programming defects (synthetic tests).

Some tools detect errors (Insure++) and others, defects (Coverity and PolySpace). To be able to compare
these tools, all results had to be converted to errors or defects. For synthetic tests, defects and the errors they
cause were known in advance so it was easy to convert everything to defects. However, for code in production,
nothing was known in advance, so we decided to use the best result as a baseline. Since Insure++ was the
best performer, all results were converted to errors.

6.1 Synthetic Tests

A test framework with a C++ class for every kind of defect was created and integrated into a small, high-
quality open-source application built with the Microsoft Foundation Classes (MFC) framework. Defects were
called from the main() of the application, after initialization but before the program started to answer user
queries. Defects that would lead to program crash or hang were deactivated for Insure++, since we wanted
to run all tests in a single pass.

Applications built with MFC do not have a concrete main(). Instead, the program starts when the
application object is created. This is a problem for PolySpace, which cannot handle that kind of main().
Therefore, it had to be used in a class-by-class analysis mode instead of a whole-program analysis. Our
defects were thus designed to be detectable even without full inter-procedural analysis.

6.1.1 Results

The results of our synthetic tests are shown in figures 2, 3, and 4. No tool is totally complete and tries to
detect every kind of defect or error. However, all together, tools detected all but four problems. There were
no false positives, except for PolySpace that only had a few. Coverity and Insure++ focus more or less on
the same kind of problems, but PolySpace, with its thorough analysis, was able to detect arithmetic and cast
faults.

6.2 Code in Production Tests

The code used was a numerical analysis application of about 10K lines of code that had been in production
for many years. The code was functional but a bit buggy and not very well designed (e.g., a “C+” design). As
an example, we found many cut-and-pasted segments of code that could have been refactored into a method.

6.2.1 Results

The results are shown in table 1. We can clearly see that static analysis tools need good quality code to
perform well. Furthermore, pointer arithmetic used to read from and write to complex data structures renders
static analysis extremely difficult.
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Figure 2: Coverity Prevent Results
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Figure 3: PolySpace for C++ Results

8

2

0

6

3

0

3

2

0

1

4

0

0

2

0

0

2

0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Memory
Management

Faults

Overrun and
Underrun Faults

Pointer Faults Incorrect
Arithmetic

Faults

Cast Faults Miscellaneous
Faults

False Positives
False Negatives
Faults Found

Figure 4: Parasoft Insure++ Results
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Errors Coverity Insure++ PolySpace*
Memory Write Out of Bounds 0 42 2
Memory Read Out of Bounds 1 114 0
Resource Leak 2 10 0
Program Crash 2 0 0

Table 1: Code in Production Results
* Over 300 false positives after 16 hours of computation.

6.3 Code Portability and Makefile Problems

Static verification tools abstract programs by computing a model. From a user point of view, they can be
seen as special compilers. However, making these compilers work on C/C++ code is not as easy as it sounds
because C/C++ suffers from the classic code portability problem. Many C/C++ programs are compiled
using makefiles, which are scripts for the make utility. We found that makefiles are often show-stoppers
for many reasons. First, buggy makefiles are everywhere and to debug them can be a very tedious task.
Furthermore, makefiles for large programs are often complex and depend on many utilities which must be
configured in a very specific way. One little mistake there and nothing works. Also, when verifying large
programs, one often wants to analyze only a single module or class. However, most makefiles do not offer
this granularity.

Another big problem are compiler-specific extensions to C/C++. Almost all compilers support some
non-standard extensions to the language and these are used a lot. The best tools have a partial support for
some of them, but often, tools cannot even parse the program when these extensions are used.

When a makefile is not working properly, there is the possibility of simulating its execution. However,
knowing exactly what is given to the compiler can be very hard for many reasons. First, conditional compila-
tion using preprocessor directives is used a lot and directives often come from a mix of environment variables,
configuration files, parameters to make, and so on. In this case, the probability of verifying a different pro-
gram than the one that will be used is very high. Then, there are header file (.h) problems. Many of these
files are created or moved by the makefile while it is running (e.g., .h files created by the IDL compiler on
Windows). Finally, there are often many different header files with the same name, but at different locations.
Knowing which one to use and when is not trivial.

We found that having the verification tool parse the program correctly is by far the biggest part of the
job, and often a show-stopper unless one has unlimited time on his hands. Java is not problematic because
it has no preprocessor and no conditional compilation. It has been designed to be standard and portable.

6.4 Tool Limitations and Best Usage Scenario

We found that current static verification tools suffer from what we have called the “black box problem”.
Indeed, for reactive applications and heterogenous systems, execution does not always take place in available
application code. For instance, in reaction to a mouse click, a reactive application can start executing in
kernel code to pass the event over and around the operating system. This part of its execution can rarely be
analyzed and therefore, static analysis tools can hardly determine what type of data comes out of these calls.
Thus, this prevents true inter-procedural analysis.

Scalability is also a problem for static tools that have to consider all possible executions (path coverage).
Dynamic tools have the opposite problem: very scalable but poor coverage. However, if you consider the
number of tests needed to cover all possible executions with dynamic tools, scalability is still a problem.

6.4.1 Coverity Prevent

The best usage scenario for Coverity Prevent is when the whole application needs to be analyzed and it
is compiled using a working makefile. The application code size can be over 500K lines of C++ without
problems. Coverity has many good points: very good integration with makefiles, uses the Edison compiler
front-end that can read code that contains compiler-specific extensions from almost every big compiler in the
industry (it even simulates compiler bugs!), very scalable, excellent diagnostic with execution traces that are
easy to understand and very helpful to correct problems, and uses an innovative, but proprietary analysis
based on statistical code analysis and heuristics. Its down sides are its primitive web interface that can be
slow and the fact that it has no integration with Visual Studio projects on Windows.
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6.4.2 PolySpace for C++

The best usage scenario for PolySpace for C++ is to analyze small segments of critical code in applications
where runtime exceptions should never happen. The application code size must stay under 20K lines of C++.
It uses a very thorough analysis based on abstract interpretation, with which it can detect runtime errors
statically. It has a nice graphical interface, especially the Viewer module which is used to analyze the report
and navigate in the source code. However, it lacks a good diagnostic because sometimes, it is impossible to
understand the defect found. Moreover, it is sometimes necessary to modify the analyzed source code to have
a correct model (e.g., reactive applications wait for user inputs so you have to simulate them to analyze the
reactions). Its analysis stops after critical errors and the command to override this behavior is undocumented,
and finally, it is slow and memory hungry, but this is expected with such a thorough analysis.

6.4.3 Parasoft Insure++

The best usage scenario for Parasoft Insure++ is to test hybrid systems based on many heterogeneous
components. To consider code coverage, it should always be integrated into test case harnesses. Since
Insure++ is a dynamic tool, there is no limit to the application code size and bad quality code has no effect
on detection performance. Insure++ has a very good diagnostic with call stack and memory diagrams that
show exactly what was overwritten. However, test cases have to be carefully specified with a good coverage
strategy.

7 Conclusion

Security problems generally do not come from the failure of security mechanisms. The failure occurs at a lower
level, because of program sanity problems. C/C++ are especially problematic because they enforce almost
no restriction on the execution of programs and they are prone to vulnerabilities with serious consequences,
such as buffer overflows. However, modern languages, such as Java, are immune to C/C++ problems and
are not prone to any serious vulnerability.

Verifying C/C++ programs is a huge challenge. These languages are very difficult to analyze because of
many undefined or non-standard semantics, pointer arithmetic, compiler-specific extensions to the language,
etc. We have found no currently-available verification tool that can reduce the risk significantly enough for
sensitive applications (please refer to section 2). We highly recommend the use of modern programming
languages such as Java or C#, which nullify program sanity problems. However, if the use of C/C++ is
mandatory, we recommend to restrict its usage (e.g., no pointer arithmetic, use of robust string type only,
etc.) and of course to do serious test cases and use verification tools.
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Abstract 
 
Code analysis tools have only a limited standard set 
of rule they enforce out of the box. Some code 
analysis tools have built in extension capabilities in 
the form of rule customization. Companies adopting 
code analysis tools gain their full benefit only 
through customization. This paper describes 
experiences with custom rules written for the Fortify 
Software Source Code Analyzer [1]. We explain a 
process that we followed to achieve reasonable 
accuracy and coverage. The process we describe is 
�tool agnostic;� we believe that it can be adopted for 
other code analysis tools as long as they offer a 
customization mechanism. 
 
1- Introduction  
 
Code analysis tools scan source code for 
implementation bugs without actually executing the 
source code, unlike penetration testing tools. In 
addition to enforcing a set of core rules out of the box 
some code analysis tools offer the capability to look 
for additional security vulnerabilities by writing 
custom rules. Every organization has its own specific 
corporate security standards. Every organization also 
possesses a wealth of incident data in its operations 
department. Both corporate standards and incident 
data represent essential custom rules to be created. 
Because of how organization-specific these data 
points are, tool vendors are very unlikely to create 
these rules as they iterate their tool. This paper 
introduces a testing framework for custom rules that 
we have created and used during a custom rule 
creation process for Java source code. This 
framework possesses three benefits. First, it improves 
the instances of a particular vulnerability a rule 
identifies, since a rule violation may appear with 
different code constructs within a source code�
increasing true positive results. Second, the 

framework improves the accuracy of the rules�
reducing false positives. Finally, this framework 
helps identify the limitations of the tool and provide 
new insights for the code reviews�identifying false 
negatives. 

 
2- The need for custom rules 

 
The majority of code analysis tools are based on rules 
that describe desirable or undesirable characteristics 
for a piece of software. Tool vendors will likely 
continue to provide updates to their set of predefined 
rules over time. For example the new rules may test 
for newly discovered software vulnerabilities. A 
company�s own penetration testing and incident 
response data may be an excellent place to look for 
such new vulnerabilities. These breaches are pulled 
from one�s own systems. There is automatically an 
applicability, feasibility, and high priority to 
detecting these same findings earlier. 
  
As the tools� analysis capabilities become more 
mature, organizations expect more from them. 
Central to that expectation is customization and 
extension. Custom rules may be used to enforce 
corporate standards�which like incidents are to a 
certain extent necessarily different from organization 
to organization. Every organization seems to have a 
corporate standard for use and configuration of a 
particular set of strong cryptographic algorithms. It is 
unlikely that tool vendors will ever include such rules 
in their core set because they are not in the business 
of taking a stance on what is sufficient�like 
corporate security groups are. 
 
3- Creating the rule, from the idea to the battle 

field 
 
This section describes, step by step, our test-driven 
framework for creating custom code analysis rules.  
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Rules can be expressed at different levels of 
abstraction.  They can be made so specific that they 
contain the exact code that constitutes a violation, but 
highly specific rules can be cumbersome and they 
may not even work well since the same vulnerability 
may manifest itself in many different ways, 
depending on who wrote the code. 
 
At the opposite end of the spectrum, highly general 
rules may be violated by any suspicious use of a 
method. The typical example of this is a semantic 
rule flagging any occurrence of a potentially 
dangerous method, but without having constraints on 
the input and output parameters. An overly general 
rule typically causes an unmanageable number of 
false alarms (i.e., signaling security vulnerabilities 
where none exist). Such rules still require extensive 
human effort to ferret out the genuine issues and 
separate them from the false alarms.  
 
In addition to that, there are different types of rules. 
Some rules simply look at simple semantics, and 
define a C function such �gets()� as unsafe. Other 
rules demand analysis of data flow, control flow, or 
configuration files.  More complex code analysis 
tools can express rules as state machines and some 
can even create �partial models� of how code might 
execute that allow for more powerful and accurate 
statements about vulnerability. 
 
Step one of rule creation involves documenting a 
vulnerability that can found statically. It greatly helps 
this first step if the performer is familiar with the 
custom rule creation features of the code analysis tool 
because there are limits to what�s feasibly identified 
statically by each code analysis tool. 
 
The rule can originate from multiple sources such as 
programmers' bug repository, corporate coding 
standards, incident�s, published best practices, and 
other sources. A cryptographic rule defined in step 
(a) is used to illustrate our step by step process. 
 
a. Scoping the rule. 
 
The first step is to define and scope the rule that we 
want the tool to enforce. This first definition will be 
conceptual and not tied to a particular code construct. 
However the rule should be specific enough to check 
itself against a source code implementation. 
For instance a security policy may mandate the use of 
strong cryptographic algorithms for secure data 
transmission. At the implementation level, we want 
to enforce the use of AES (CBC mode) and 3DES 
(CBC-EDE3 mode) regardless of the language, 
toolkit, or platform being used. Any use of 
unapproved algorithms would violate our rule. 

 
b.  Drafting high level axioms (optional) 

 
The second step is to express the rule using a high 
level description language. Our previous 
cryptographic rule (described in step (a)) can be 
expressed with axioms that cover the different 
implementations that a programmer may write. The 
high level axioms for our rule might be as in Listing 
1. 
 
 
If [Cipher.instance]  
and  ( 

[used_Cipher != AES(CBC mode)] and  
[used_Cipher != 3DES(CBC-EDE3 mode)] 
) 

Then 
 Issue_Alarm(“CipherMisused”); 
 

 
Listing 1 

 
The rules created in this stage are just preliminary 
drafts; writing complete and well defined axioms will 
require some further exploratory work. In particular, 
these rules will need to be revisited after writing a 
first set of test cases. In fact, it may be difficult or 
impossible to write any axioms at all without having 
some test cases on hand already. In such cases, the 
first step may have to be omitted entirely. 
 
c. Packaging of the test cases 
 
To test a code analysis rule, we use code fragments 
which either contain rule violations (to test detection 
ability) or correct code (to test for false alarms). The 
test cases need to be organized consistently. We 
package the test cases within an Abstract Class or an 
Interface containing the java methods illustrated in 
Listing 2. 
 

 
void trueNegativeExamples(); 
void truePositiveExamples(); 
void falsePositiveExamples(); 
void falseNegativeExamples(); 
 

 

Listing 2 
 
The method trueNegativeExamples() will host the 
true negatives test cases. The method 
truePositiveExamples() will host the true positive 
test cases. Before the first round of testing, the 
content of these two first methods are hypothetical. 
For example, when testing a rule that scans for 
unauthorized cryptographic methods 
trueNegativeExamples() might contain uses of 
authorized cryptographic algorithms, which should 
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not generate any violations. At the same time, 
truePositiveExamples()   might contain uses of 
unauthorized algorithms which should lead to 
violations if the rule is working correctly.. The last 
two methods, falsePositiveExamples() and 
falseNegativeExamples(), are initially empty 
because their content is tool dependent and therefore 
not predictable before a code scan. Indeed, two 
different code analysis tools may not report the same 
false positives and false negatives. Identifying false 
negatives can be a difficult subtle game, but it is an 
important one. Actually catching vulnerabilities 
classified in our test suite, as false negatives will 
require manual code review, dynamic testing, or 
some combination. Failing to identify false negatives 
means you are missing vulnerabilities present in the 
code. 
 
d. Writing test cases 
 
The next step is to write test cases which will 
implement the correct and incorrect way to 
implement the rule. If an axiom has been written in 
the previous step, the test cases writing will be 
facilitated. To illustrate this step we wrote test cases 
for our previous example in step (a). In Java, there 
are many possible source code constructs to 
implement the use of allowed cryptographic 
algorithm. Therefore we can start to list all the 
possible correct ways to implement the use of the 
permissible algorithms. In the Java Cryptographic 
Extension (JCE) framework [2], in order to use 
cryptographic algorithm we should get an instance of 
the Cipher Object. The following code samples in 
Listing 3 are all valid implementations. 
 
 
public void trueNegativeExamples() 
{ 
// true negative #1  
// Use of AES (CBC mode) 
Cipher.getInstance("AES/CBC/PKCS5Padding"); 

 
// true negative #2  
// Use of 3DES (CBC-EDE3 mode) 
Cipher.getInstance("DESede/CBC/PKCS5Padding"); 

 
// true negative #3  
// Use of String parameters 
String cipherSpec1="DESede/CBC/PKCS5Padding"; 
Cipher.getInstance(cipherSpec1); 

 
// true negative #4  
// Load the algorithm name from a property file 
which has an authorized algorithm 
Properties p = new Properties(); 
p.loadFromXML(new 
FileInputStream(PROPERTIES_FILE)); 

 
cipherSpec2 = p.getProperty("cipherSpec"); 
Cipher.getInstance(cipherSpec2); 

 
// true negative #5  

String cipherSpec3="DESede/CBC/PKCS5Padding"; 
 

if (cipherSpec1.startsWith("DES")) 
{ 
cipherSpec3 = cipherSpec1.replaceFirst("DES", 
"DESede"); 
} 
Cipher.getInstance(cipherSpec3); 

 
// true negative #N  
// etc. 
} 
 

 
Listing 3 

 
From a static analysis perspective (with Fortify�s 
Source Analyzer), the previous examples are 
considered true negatives. The code analysis tool 
should not report them as findings because they are 
all valid implementation respecting the corporate 
mandate on cryptographic algorithm. 
 
Similarly, we have to list all the possible violations of 
the rule that we are trying to enforce. That list will be 
our list of true positives, the ones that the tool should 
recognize as violating our authorized algorithms rule. 
 
Writing these two lists may require imagination and 
experience. Most of the time programmers are 
thinking about the right way to program things. 
Almost oppositely, writing test cases requires to 
come up with, not strictly speaking abuse case, but 
data (in this case source code) that will cause the 
code analysis tool to fail. In essence, we are stress-
testing the tool. For instance, the use of an 
unauthorized algorithm would violate the rule as 
illustrated by the following code Listing 4. 
 
  
private String cipherSpec1; 
 
void init() 
{ 
//unauthorized algorithm 
cipherSpec1 = "DES/CBC/PKCS5Padding"; 
} 
… 
public void truePositiveExamples() 
{ 
String cipherSpec2 = "AES/ECB/PKCS5Padding"; 
 
// true positive #1  
// interprocedural 
Cipher.getInstance(cipherSpec1); 
 
// true positive #2  
Cipher.getInstance(cipherSpec2); 
     
// true positive #3  
// concatenating Strings 
StringBuffer cipherSpec3 = new 
StringBuffer("IDEA"); 
cipherSpec3.append("/CBC/ISO10126Padding"); 
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Cipher.getInstance(cipherSpec3.toString()); 
 
// true positive #4  
// from a system property which has an   
// unauthorized algorithm value. 
cipherSpec3 = System.getProperty("cipherSpec"); 
 
// true positive #N  
// etc. 
} 
 
  

Listing 4 
 
The goal of having multiple test cases with similar 
effects is to try to cover all the different 
implementation variants. It bears clarifying: here we 
are talking about variations in syntax that might trick 
the code analysis tool rather than purely alternative 
implementations of a code construct. For instance the 
true positive test case #1 and #2 have the same result, 
their Cipher Object take an unauthorized algorithm as 
parameter, but the parameter passing is done 
differently. Specifically, one tests the tool�s 
interprocedural parameter modeling. 
 
Some of the test cases are intentionally too complex 
for the tool to recognize as true positives or true 
negatives, but they represent control or data flow that 
might occur in real application�s source code in a less 
contrived form. For instance true positive #4 takes an 
environment variable which has an unauthorized 
algorithm as value. Static analysis tools face 
tremendous difficulty identifying examples like #4 
because an environment variable can be resolved 
deterministically only at runtime. This test case can 
have its true negative counterpart which would take 
an authorized algorithm as environment variable, but 
again it is unlikely for the tool to be accurate unless 
the tool�s user can provide it hints during analysis. 
While some vendors� tools allow such �hints�, 
Fortify�s product does not currently.  
 
Maturity of test cases gradually elevates as the tester 
can define more complex code constructs that define 
the tool�s limits. We did not use a quantitative scale 
for evaluating the complexity of the test case. 
Instead, we relied on several years of static analysis 
experience. For instance we know that some code 
analysis tools have no inter-procedural analysis 
checks.  Therefore we can add a test case that hides a 
vulnerability using an inter-procedural call.  
 
The list of false negatives and false positives should 
now permit us to write well defined axioms 
specifying the rule at the source code level.  
 
e. Writing/Revisiting the source code level axioms.  
 

Iterating test cases allows us to iteratively refine the 
accuracy of axioms that will specify what code 
constructs would violate our custom rule. An 
accurate axiom would typically describe the rule 
constraints so the rate of false positives is reduced. In 
order to expedite rule writing, we used a common 
grammar for axiom writing. We defined the syntax of 
this common grammar as pseudo code similar to the 
specification language through which one writes 
certain types of custom rules for the Fortify product 
to facilitate translation. But ideally we would want to 
have larger common grammar that could cleanly 
express rules that rely heavily on other analysis such 
as control flow, data flow, or state machine 
specification. The axiom corresponding to the 
cryptographic rule in step (a) is mapping to the code 
construct in Listing 5. 
 
 
// true negative #1  
// Use of AES (CBC mode) 
Cipher.getInstance("AES/CBC/PKCS5Padding"); 
 

 
Listing 5 

 
For our cryptographic example, the Java source code 
axiom would look like the following Listing 6. 
 
 
FunctionCall:  
 
function.name == "getInstance"  
and  
function.parameters.length != 0  
and 
function.enclosingClass.supers contains [Class 
name == "javax.crypto.Cipher"] 
and  
function parameters[0].type=="java.lang.String"  
and  
not( 
arguments[0].constantValue is [String: 
startsWith "AES/CBC"] or  
 
arguments[0].constantValue is [String: 
startsWith "DESede/CBC"] 
) 
 

 
Listing 6 

 
Translation into axioms crucially maps the high level 
requirements of a security standard to possible 
implementations in a particular language�s source 
code. It is necessary to ensure that all the rule 
constraints are captured properly and no constraints 
are lost during this translation phase. 
 
f. Implementing the axioms using the tool extension 

mechanism 
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Next, the rule writer implements a rule by translating 
axioms into whatever form the tool-specific 
extension mechanism requires. Some code analysis 
tools use a proprietary rule description language; 
others use programming languages as extension 
mechanism (C++, python, etc.) 
 
g. Running the static analysis tool against the test 

cases. 
 
The code analysis tool should take the new custom 
rules as input and be run against all the true positives 
and true negatives that we have constructed. In our 
experiments, this was done in a loop, iteratively, and 
we used our test cases as well as code �from the 
wild� to collect measurements on our ability to find 
additional true positive results and increase a rule�s 
accuracy through reducing false positives. We 
believe it is reasonable to expect a 100% increase in 
both measures when customizing a tool�s existing 
core rule. 
 
h. Analyzing the results 
 
The test scan creates two new expected categories of 
test cases: the false negatives and false positives (see  
Figure 1). One of the goals of code analysis is to 
minimize the number of findings in those two new 
categories. False positives create noise and require 
time consuming verification. This is only tolerable if 
the number of false positives is low. But on the 
opposite we want to avoid false negatives. In this 
case, false negatives are true rule violations that the 
tool missed.  
 

True Positives
+ + + + + + + +

True Negatives
- - - - - - - - - - -

True Positives
+ + + + +

True Negatives
- - - - - - - -

False Negatives
- - -

False Posit ives
+ + +

Static Analysis Tool Scan

 
Figure 1 

 
We can therefore reclassify the test cases according 
to the tool�s findings. We move those test cases 
belonging to the new categories to their respective 
methods falsePositiveExamples() and 

falseNegativeExamples() from the true negatives 
and true positives methods. 
 
At this point it is useful to try to understand what 
confused the tool. Why did the tool report the false 
positives? Why did it not catch the false negatives? 
Errors may be caused by the tool itself or by the 
implementation of the custom rule. The tool has 
limitations, for instance in our previous example the 
tool may not be capable of recognizing the value of 
the String input parameter which represents an 
authorized algorithm. Usually the tool user does not 
have much control of the tool�s implementation 
limitations (this applies to commercial tools, where 
source code is not available). However, the user has 
control of the custom rule implementation which uses 
the tool�s extension mechanism.  Problems caused by 
faulty rules can be fixed, and fixing them is the 
purpose of the next step. 
 
i. Feedback loop, return to step one (axioms) and 

stop when low false positive and false negative 
residuals   

 
One of the goals of this framework is to have the 
static analysis tool reporting all true positives and 
have a low rate of false positives and false negatives. 
Therefore after the first iteration, the scan result may 
not be satisfactory. At a higher level the axioms can 
be incorrect and may need to be revised. The process 
may need multiple iterations before being accepted 
by the user with tolerable error levels.   
 
It is useful to note that some code constructs are more 
frequently used than others, and reporting the most 
frequently used code constructs first will lead to the 
fastest results. This property is illustrated in the 
following Java code (Listing 7). 
 
 
private String cipherSpec1; 
 
void init() 
{ 
//unauthorized algorithm 
cipherSpec1 = "DES/CBC/PKCS5Padding"; 
} 
… 
public void truePositiveExamples() 
{ 
String cipherSpec2 = "AES/ECB/PKCS5Padding"; 
 
// true positive #1  
// interprocedural 
Cipher.getInstance(cipherSpec1); 
 
// true positive #2  
Cipher.getInstance(cipherSpec2); 
     
} 
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Listing 7 
 
The previous Listing 7 demonstrates that there are 
many ways to violate the rule. The tool is supposed to 
catch all true positives, but the test cases that we 
really care about are the first two test cases (#1 and 
#2). The remaining true positives test cases (Listing 
4) are less a concern because they are unlikely to 
occur but we still desire that the tool covers them. We 
assume here that most of the programmers would use 
the case #1 and #2 in a real application. Trying to 
cover the most likely code constructs for a rule 
violation can be a wise choice when the possible code 
constructs are too numerous.  
   
j. Integration with other process 
 
As mentioned earlier, false negatives provide 
valuable insight into other security activities. False 
negatives represent what the tool does not find as rule 
violation, but should ideally. Other techniques can be 
used to find those false negatives depending on their 
severity. False negatives should feed manual code 
review standards, security testing efforts, and in some 
cases, may guide application deployment or 
penetration testing efforts.  
   
Custom rules can be further tested by running them 
against wild code to find out if they behave as 
predicted in the test framework. The rules can be 
continually fine-tuned to achieve greater efficiency. 
     
 
Conclusion 
 
We have described a step by step test methodology 
that we have used to write efficient custom rules for 
automated software scanning. This test-driven 
approach has several benefits. It can expand the state 
of the art of static tool analysis. Identifying the 
undesired residual results such as false negatives and 
false positives can be used to improve the accuracy 
and coverage of existing tools. The false negatives 
test the tool�s limits and create new technical 
challenges for tool providers. Being able to isolate 
the false negatives and positives is also crucial 
knowledge for the scan results reviews and manual 
reviews. 
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Abstract. Static analysis methods and automatic tools that scan for security vulnerabilities offer significant advan-
tages over manual reviews and audits. However, there are several common misconceptions about the nature and the 
scope of static analysis that limits its usability in certain contexts. We demonstrate that in order to perform high fidel-
ity security analysis of entire enterprise systems the scope of static analysis needs to be increased. Lack of knowledge 
of the operating environment of the software may result in significant amount of false positive reports produced by a 
static analysis tool. This paper defines high-fidelity static analysis, discusses its limiting factors, the need to extend 
static analysis models with the representation of the operating environment of software and gives a brief overview of 
the Object Management Group (OMG) approach to a common representation suitable for high fidelity static analysis 
for security of entire enterprise systems. 

1. Introduction 

Automatic static analysis is positioned as an alternative to a manual code review [1]. Indeed, static analysis methods 
supported by automatic tools that scan for security vulnerabilities offer significant advantages over manual audits. Ad-
vantages of tool supported security analysis include consistency of a scanning tool (a scanning tool uses a certain for-
malization of security vulnerability patterns, and can be trusted to systematically explore all known possibilities), poten-
tially broad coverage of vulnerability patterns (security scanner tool can use a library of vulnerability patterns created 
by security experts, which can in many cases exceed the expertise of an auditor), potentially broad coverage of the code, 
and speed of the analysis.  

However, it is a well-known fact that in practice the fidelity of automatic static analysis is still quite low. This paper 
attempts to define high-fidelity static analysis, examines its limiting factors, and offers some insight as to why fidelity 
of a static analysis tool depends on the type of application. We discuss requirements for high fidelity security analysis 
or enterprise systems. The objective of this paper is to demonstrate that high fidelity static analysis of enterprise systems 
requires extensions to traditional program representations, inspired by compilers. At the end we give a brief introduc-
tion into the new Object Management Group (OMG) foundation for high-fidelity static analysis of entire enterprise sys-
tems, the Knowledge Discovery Metamodel (KDM) [2]. 

2. High fidelity static analysis and its limiting factors 

Fidelity (of something copied or reported) is defined as truthfulness, closeness in sound, facts, color, etc. to the origi-
nal1. Fidelity of the automatic static analysis is therefore directly related to its accuracy. Accuracy can be defined as the 
degree of absence of false positives reports and the soundness of the analysis, or the absence of false negative reports. 
On the other hand, the power of the automatic static analysis is directly related to the set of security vulnerability pat-
terns, the thoroughness and the speed of the analysis. So far, this distinction allows us to separate high power but low 
fidelity tools (broad coverage of vulnerability patterns, but large number of false positives), and low power high fidelity 
tools (accurately reporting a limited number of vulnerabilities). 

However, the definition of fidelity includes more than just accuracy. Fidelity of static analysis is related to how the 
reports that are produced by the automatic static analysis tool are close to the intended model used by developers. 
Therefore, fidelity is related to the representation used by the tool for analysis, and the differences of this representation 
from the model used by developers. In other words, fidelity of a static analysis tool is how close are the results to the 
ones that can be potentially produced during the manual inspection. This introduces a new distinction between an 
“bluntly“ inaccurate report (one that is not likely to be produced during a manual review, but can be produced in large 
numbers by an automatic tool), and an “interesting” report, that was considered worth investigating, even if it was con-
sidered false at the end. The first is a characteristic of a low fidelity static analysis, where there is a significant discon-
nect between the model used by the tool, and the model used by the developers. 

                                                           
1 Longman Dictionary of Contemporary English  
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Let’s look at the limitations to high fidelity static analysis. Firstly, application code is not self-contained, and is sel-
dom determined by a programming language alone. On the surface, all source code artifacts are expressed in a certain 
programming language. However, application code is developed for a certain technical platform, which significantly 
determines both the architecture and the control and data flow structures of the code. As the result, in most cases it is 
not sufficient to understand the particular programming language in order to understand the code. Consider the follow-
ing simple example [3]. 

 

 
Figure 1. Example of the application code involving a technical platform 

This code is written in C. The example above consists of two files, each of which defines a function called “main”. 
The first function defines a static buffer, copies a string “ABC” into this buffer, and then uses a macro “EXEC CICS 
LINK” and returns. The second function defines a pointer to a buffer, then uses macro “EXEC CICS ADDRESS” and 
checks if the buffer contains the string “ABC”. Function “main” is usually known to be the entry point into a program. 
However, this alone is not sufficient to understand this code. In fact, the snippet is taken from the CICS programming 
manual. To fully understand the behavior of this code (in order to perform high fidelity vulnerability detection), it is 
important to extend the model. In addition to such concepts as “file”, “function”, “main” function, “buffer”, “usage of a 
macro definition” and “system call”, and the capability to analyze control and data flows through statements within one 
procedure as well as interprocedurally, a high fidelity model for this example should also include the following con-
cepts: 

•  CICS transaction 
•  CICS commarea 
•  CICS configuration 
 

In addition to building an internal representation determined by the C language, a high fidelity static analyzer capable 
of processing the above example should include the capability to parse CICS configuration files, and the capability to 
analyze control and data flows in the extended model, where the second program is registered with CICS as a transac-
tion with name “PROG2”, and the first program invokes the second program through CICS by performing an “EXEC 
CICS LINK” command, and that the contents of the “field” buffer defined in the first program are made available to the 
second program (via the CICS commarea mechanism). 

Static analysis that does not take such information into account will be low fidelity. 
 
Related factors that may limit fidelity of static analysis (in no particular order), include the following: 

•  Dynamic structures (processes, threads, etc.) 
•  Calls via pointers 
•  Virtual functions 
•  Application frameworks 
•  Event-driven systems 
•  Reflexion 
•  Dynamically linked modules 
 

Specific challenge of high fidelity static analysis is to utilize additional information about the technical platform of 
the software in order to complete control- and data flow paths. This is illustrated at Figure 2. It shows an execution path 
that consists of three segments: {1,2,3}. The path spans two components and involves control- and data flow, deter-
mined by the technical platform (segment 2). Segment 1 of the execution path starts at function “a”, goes into function 
“b” of the same component, and returns to function “a”. Segment 3 starts at function “c”, goes into function “d”, then 
into function “e”, returns to function “d”, goes into function “e”, returns to “d”, then to “c” and finishes. Let’s assume 
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that a certain security vulnerability (for example, an unchecked access to a buffer) is detected at function “c” in compo-
nent B, and the data flow required to validate this vulnerability involves function “b” in component The technical plat-
form determines control- and data flow, by providing some function “X” (for example, an event manager,) that calls 
function “a” of component A, then calls function “c” of component B. This information is not explicitly present in the 
source code of either component. At Figure 2 the missing information is represented by dashed lines. 

 Traditional representations focus on components A and B as they are determined by the programming language. 
Therefore they are not sufficient for high-fidelity static analysis of this example. As a side note, segments 1 and 3 in iso-
lation involve different binding times than segment 2. Segments 1 and 3 involve the so-called compile- and link- time 
binding, while segment 2 is provided by the technical platform which involves at least deployment time binding, or ini-
tialization time binding or in some cases even a pure runtime binding. By definition, language processing tools only 
deal with compile time bindings. Further discussion of binding times is outside of the scope of this paper. High fidelity 
static analysis will increase the scope of analysis to include the knowledge of the technical platform in order to com-
plete the execution path {1,2,3} and analyze an entire application. 

 
There are further limitations to high-fidelity static analysis. Let’s consider the differences in representations used by 

the tool and by developers in more detail.  
The starting point is the source code as it is written by the application programmer. During the application building 

and integration this code undergoes multiple transformations to produce the product, which usually involves several bi-
nary deployable components. The product is then deployed (or installed). Then the product runs on the target technical 
platform. At runtime, it may be beneficial to distinguish between the initialization phase during which the semi-
permanent dynamic structures are created, and the execution phase, which may involve creation of more on-demand 
dynamic structures, for example, using reflexion, dynamic process creation, virtual function, callbacks, etc. Some of 
these techniques may be entirely user-driven. By “structures” we mean certain entities and relations between them (fol-
lowing the terminology recommended in [2]). Control flow and data flow relations are fully determined by these struc-
tures. Static analysis examines these structures, applies security vulnerability patterns to detect potential vulnerabilities 
and validates control and data flow to either confirm of reject the vulnerability. Usually, when vulnerability is con-
firmed, a static analysis tool is capable of identifying some sort of an execution path leading to the vulnerability. In 
some cases, the information produced by a static analysis tool may be sufficient to figure out the actual exploit (from 
the black box testing perspective). 

At this level, several additional mismatches with the intended models used by developers can occur. A typical exam-
ple involves the usage of the preprocessor (macrodefinitions, conditional compilation, include files). Representation for 
static analysis usually involves preprocessed code, however the developer works with the original code before the pre-
processing. Loss of fidelity can occur in this situation, since, for example, a buffer overflow is reported only for a cer-
tain configuration (as determined by conditional compilation settings), but is not reported for other configurations. A 
more dramatic loss of fidelity may occur when different compilation settings are used for building the product then for 
static analysis. 

 
The loss of fidelity in current tools may be caused by several common misconceptions about the scope of static 

analysis. Traditionally static analysis has been developed as an extension of compiler construction techniques.  There-
fore, typical representations used by static analysis tools focus on artifacts that are located in source files, and that are 
determined by a programming language. The representations may include text, lexical tokens, syntax trees, abstract syn-
tax trees, abstract syntax graphs, and specialized program analysis representations (in the order of increasing fidelity). 
Analysis may involve different scope: local, module-level, or global. Indeed, these are the representations that have 
been proven useful in the area of compiler construction. The goal of the compiler is to translate these entities into some 
sort of binary representation. Therefore, the compiler does not involve any models of the operating environment of each 

Figure 2. Platform knowledge is required to complete the execution path 
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module. However, the need to represent entire enterprise systems, as well as other mismatches with the models used by 
developers, require more information to available to the static analyzer, going beyond traditional compiler models. 

3. Enterprise systems and their operating environments 

 In this section we will consider the landscape of applications and discuss the reasons why the same static 
analysis tool may provide high fidelity results in some situations and low fidelity results in others.  

Let’s first define the term “platform”. The history of computing can be characterized by the invention of more 
and more powerful programming platforms for developing applications. First applications were programmed for a 
physical machine. Then an operating system was invented, and applications were programmed for a particular operating 
system. A virtual machine was invented, which added another layer in the technical platform. Further, business applica-
tions involved the usage of network systems, database management systems, and transaction systems. Further, the tech-
nical platform involved middleware and component based environments. Traditional business applications are pro-
grammed for a technical platform that involves most of the above elements (see Figure 3). Often, a business application 
will also involve a specific application framework.  

Enterprise systems involve enterprise application integration (EAI) layer. A composite enterprise application 
uses application platform, rather than a technical platform.  Modern business applications use the Service-Oriented Ar-
chitecture (SOA) to define a service enablement layer. The motivation for using powerful platforms is to close the gap 
between the physical machine and the business process domain of the application. We use the term “operating environ-
ment” to refer to the entire business process platform of an enterprise application [4] (see Figure 3).  
 

 

A typical scenario through an enterprise application crosses the boundaries of composite application code, “service” 
applications in the application platform, and parts of the technical platform of each “service” application. In a low-
fidelity code-centric approach, the explicitly visible portions of an interesting scenario may be fragmented (see Figure 
3).  

Enterprise systems usually integrate multiple “service” applications, which involve multiple technologies as parts of 
the technical platform[5]. “Service” applications usually involve multiple programming languages as well as various 
configuration files for describing integration, deployment, and installation. In order to perform high-fidelity analysis of 
enterprise applications, knowledge representations should extend well beyond specific programming languages to in-
clude the entire business process platform, while still performing control- and data flow analysis determined by the pro-
gramming language statements. Pragmatically, this means that the challenge of high-fidelity static analysis of entire en-

Figure 3. Operating environments of modern enterprise applications 
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terprise applications is best addressed by multiple static analysis tools, some of which specialize in extracting language 
specific models for particular programming languages, others specialize in extracting platform-specific information. 
Coordination between static analysis tools requires exchange of information based on a common representation. The 
rest of the paper will introduce the work done in OMG to standardize such common representation [2]. 

In the overall landscape of applications (for example, each box at Figure 3), some applications are more self-
contained then others. For example, system programming applications, like the implementation of a DBMS, operating 
system code, or a network driver will only use few parts of the overall technical platform. Therefore, a static analysis 
tool, when applied to a system programming type of application, such as Linux kernel code, may appear high fidelity, 
while the same tool may show lower fidelity results for a traditional business application, and will be perceived as low 
fidelity for higher-end applications that use an application-specific frameworks and enterprise application integration. 

4. Common representation of platform knowledge for high-fidelity static analysis 

This section provides an overview of a common representation of platform knowledge that can facilitate exchange of 
information between different static analysis tools and can lead to high-fidelity static analysis involving entire enterprise 
systems. 

What are the commonalities between various technical platforms? 
•  platform provides resources to application code 
•  platform provides services that are related to resources 
•  application code invokes platform services to  manage the life-cycle of resources 
•  platform provides component deployment mechanism 
•  platform defines control and data  flow between application components 
•  platform provides error handling across application components 
•  platform provides integration of application components 

 
The purpose of a platform is to simplify application development by closing the gap between the application domain 
and the facilities that are available to application programmers. These facilities are referred to as platform resources. 
Examples of platform resources include the following: Posix File, Posix IO Stream, Posix socket, Posix Process, Posix 
thread, AWT widget, CICS File, CICS transaction, UNIX semaphore, UNIX shared memory segment, OS/390 VSAM 
file, JDBC connection, HTTP session, HTTP request, UNIX memory block, CICS commarea, COBOL file. 

 
Usually, major platforms provide a mechanism for deploying functionality. A unit of deployment for a particular plat-
form is further referred to as deployment component. Deployment component is a replaceable unit of an application. 
Packaging and deployment scheme usually includes configuration facility that supports assembling systems from de-
ployment components. Configuration can occur at Deployment time, Initialization time, or at Run time. Examples of  
application unit include the following: DLL, shared library, COM component, Ecipse plugin, Executable,, Jar file, War 
file for Tomcat, SQL Stored procedure, CORBA module, EJB, JavaBean, Jakarta Struts Action, Jakarta Struts Form, 
Event handler, Interrupt handler. 

Major platform elements support componentization by “reversing” some of the control flows. “Reversed” control 
flows reduce coupling between components (but not necessarily eliminate it). Deployment components are usually 
plugins into the platform. Control flow starts from inside of the platform. Platform activates application components 
through various kinds of call-back mechanisms. Knowledge of platform-specific activations is essential for understand-
ing an enterprise software system. Examples of platform-specific activations include the following: CICS program link-
ing, CICS transaction flow (RETURN), Unix interrupt handling, Eclipse plugin invocation, AWT event listner, CORBA 
method invocation, UNIX main(), WINDOWS winmain(), Servlet invocation, Jakarta Struts action::run(), Java thread 
run() method. 

Error handling may be considered as part of inter-component control flow supported by the platform, but this is such 
an important aspect of application development, that it deserves a special category. Examples of platform-specific error 
handling includes the following: Java exception mechanism, C++ exception mechanism, COM HRESULT, CICS 
ABEND. 

Some resources are designed to be shared between application components so that components can exchange infor-
mation (data and events). Interprocess communication aspects of runtime platforms are related both to data resources, 
and to control-flow, as inter-component communication usually implies an indirect flow of control between components 
(invocation of the receiver component by the platform as the result of initiating communication by the sender compo-
nent). Examples of interprocess communication mechanisms include the following: CICS commarea, CORBA message, 
Java RMI message, MQSeries message, HTTP request parameters, Windows event, UNIX message queue , Database 
notification via callback, UNIX semaphore, UNIX shared memory segment 

When separation of concerns between application code and runtime platform is considered, it is important to be clear 
about the so-called bindings and various mechanisms to achieve a binding (or delay it). A binding is a common way of 
referring to a certain irrevocable implementation decision. Too much binding is often referred to as “hardcoding”. This 
often results in systems that are difficult to maintain and reuse. They are often also difficult to understand. Too little 
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binding leads to dynamic systems, where everything is resolved at run time (as late as possible). This often results in 
systems that are difficult to understand and error-prone. Modern platforms excel in ingenious ways to manage binding 
time. Usually binding is managed at deployment time. Large number of software development methodologies support 
efficient management of binding time, for example, portable adaptors, code generation, and model-driven architecture. 
Efficient management of binding time is often referred to as “platform independence”. 

5. The new OMG foundation for high fidelity static analysis of enterprise systems 

The Object Management Group (OMG) has specified the new foundation for high-fidelity static analysis of entire en-
terprise representations called the Knowledge Discovery Metamodel (KDM) [2]. KDM is designed as the OMG founda-
tion for software assurance and modernization. KDM provides a common standard way of representing and exchanging 
models of existing enterprise systems and their operating environments. KDM is designed as a common language and 
platform independent model with a powerful extension mechanism that can address language-, platform- and vendor-
specific requirements. KDM is a metamodel defined in OMG Meta Object Facility (MOF). KDM specifies the common 
repository format, an XML-based standard exchange format (KDM XMI), and a complete API to KDM models. 

KDM is aligned with a well-known architecture view approach [6]. It follows the separation of concerns principle to 
provide a collection of models each of which defines a common language and platform independent view of an enter-
prise system. The basis of KDM includes high-fidelity Code Model that represents common program elements such as 
procedure, variable, etc., and the Action Model that represents execution statements, and thus can be used for basic con-
trol and data flow analysis. The second level of KDM includes several models that use the primitive information cap-
tured in the Code and Action Models and represent additional information, which is not explicitly present in the source 
code. This level includes the Platforms & Runtime Models that provide a common way of representing the platform 
knowledge, according to the outline given in the previous section.  

The second level of KDM also includes the following models: 
•  Data Model, that captures persistent data management aspects of enterprise systems,  
•  Build Model that captures engineering view and engineering supply chain,  
•  Structure Model that captures subsystems and layers of the system 
•  UI and Event Model that capture the user interface and presentation aspects 
•  Conceptual and Behaviour Models that capture domain-specific information and can be used for example 

for business rules mining, for representing meaningful scenarios across the system, etc. 
 

 

 
 

Figure 4 KDM facilitates the new ecosystem of software assurance and modernization tools 
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KDM leverages the collective experience of building static analysis, program understanding and modernization tools 
from such companies, like IBM, EDS, Unisys, ASG, and others [2]. There already exist a large industry of software 
tools for software assurance and modernization. However, until recently each tool is build as a stand-alone “silo”, with a 
proprietary extractor that determines the programming language “footprint” of the tool, a proprietary analysis engine, 
some visualization, etc. (Figure 4, left side). Some proprietary extractors may include hardcoded knowledge of some 
specific platforms. Each tool includes a proprietary model with different degrees of fidelity. Currently, the exchange of 
information between static analysis and modernization tools is ad hoc and point-to-point, usually driven by larger soft-
ware integrator companies that use these tools to perform assessment and modernization of enterprise systems (Figure 
4, left side). 

KDM facilitates information exchange between existing static analysis and modernization tools, as well as develop-
ment of the next generation high fidelity static analysis tools. Integration between existing static analysis tools can be 
done by providing KDM adaptors to existing models, performing export and import of models using the standard KDM 
XMI representation. Next generation software assurance and modernization tools can leverage KDM API, defined in 
the OMG KDM standard, and the corresponding framework, SDK, and repository.  

KDM facilitates the new ecosystem of software assurance and modernization tools, which emphasizes specialization 
in high-fidelity components that can be easily integrated into the overall framework as well as standard-based exchange 
of information between tools (Figure 4, right side). 

6. Conclusions 

High fidelity static analysis of entire enterprise systems requires significant improvements in internal representations 
used by traditional static analysis tools. Enterprise systems usually integrate multiple applications, involve multiple 
technologies that collectively comprise the business process platform. An enterprise system usually involves multiple 
programming languages as well as various configuration files for describing integration, deployment, and installation. 
In order to perform high-fidelity analysis of enterprise software, knowledge representation should extend well beyond 
specific programming languages to include business process platforms as well as business domain concerns, while still 
performing control- and data flow analysis determined by the programming language statements. Pragmatically, this 
means that the challenge of high-fidelity static analysis of entire enterprise software is best addressed by a consortium 
of multiple static analysis tools, some of which specialize in extracting  language specific models for a particular pro-
gramming languages, others specialize in extracting platform-specific information, yet other tools specialize in perform-
ing control and data flow analysis, and others – in security vulnerability patterns. Coordination between static analysis 
tools requires exchange of information based on a common representation.  

The Object Management Group (OMG) has recently standardized such common representation, called Knowledge 
Discovery Metamodel (KDM) designed as the common language-, platform- independent and vendor-neutral founda-
tion for high fidelity static analysis of enterprise systems. KDM includes two levels of models: the traditional compiler-
like internal representation, and derivative layer, representing information that is essential for correct understanding of 
an entire enterprise system, but that is not explicitly available in source code. In particular, the KDM model involves a 
common representation of platform knowledge related to business process platforms, which is required for high fidelity 
static analysis of entire enterprise systems. 
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ABSTRACT 
This paper is a status update on the Common Weaknesses 
Enumeration (CWE) initiative, one of the efforts focused on 
improving the utility and effectiveness of code-based security 
assessment technology.  It is hoped that the CWE initiative will 
help to dramatically accelerate the use of tool-based assurance 
arguments in reviewing software systems for security issues.  

1. INTRODUCTION 
More and more organizations want assurance that the software 
products they acquire and develop are free of known types of 
security weaknesses. High quality tools and services for finding 
security weaknesses in code are new.  The question of which 
tool/service is appropriate/better for a particular job is hard to 
answer given the lack of structure and definition in the software 
product assessment industry.  

There are several efforts currently ongoing to begin to resolve 
some of these shortcomings including the Department of 
Homeland Security (DHS) National Cyber Security Division 
(NCSD) sponsored Software Assurance Metrics and Tool 
Evaluation (SAMATE) project [1] being led by the National 
Institute of Standards and Technology (NIST), and the Object 
Management Group (OMG) Software Assurance (SwA) Special 
Interest Group (SIG) [2], among others. While these efforts are 
well placed, timely in their objectives and will surely yield high 
value in the end, they both require a common description of the 
underlying security weaknesses that can lead to exploitable 
vulnerabilities in software that they are targeted to resolve. 
Without such a common description, many of these efforts cannot 
move forward in a meaningful fashion or be aligned and 
integrated with each other to provide strategic value.   

As part of their participation in the SAMATE project, MITRE has 
helped lead the creation of a community of partners from industry, 
academia, and government to develop, review, use, and support a 
common weaknesses dictionary/encyclopedia that can be used by 
those looking for weaknesses in code, design, or architecture as 
well as those teaching and training software developers about the 
code, design, or architecture weaknesses that they should avoid 
due to the security problems they can have on applications, 
systems, and networks.   

2. FIRST STEPS 
The initial steps of the CWE work entailed collecting and re-
viewing past efforts in organizing and itemizing security weak-
nesses and identifying those concepts, constructs and lessons that 
could be used to create the CWE dictionary. Lauren Davis, from 
the Johns Hopkins University Applied Physics Laboratory, facili-
tated this work. At the same time we started establishing the foun-

dations of a web site design to hold the materials, ideas, and 
documents that would come out of the CWE initiative.  An im-
portant element of the CWE initiative is to be transparent to all on 
what we are doing, how we are doing it, and what we used to 
develop the CWE List.  We believe this transparency is important 
both during the initial creation of the CWE List so that all of the 
participants in the CWE Community will feel comfortable with 
the end result and won’t be hesitant about incorporating CWE into 
what they do.  However, the transparency must also include those 
that will come after the CWE creation activities are complete and 
should be provided the opportunity to review and learn about how 
the CWE List was created.  To this end we will be making sure 
that copies of all of the source documents of publicly available 
information used in creating CWE List are available on the web 
site [3]. 

3. PRIMING THE PUMP 
To start the creation of the CWE List we brought together as 
much public content as possible, using three primary sources:  

• the Preliminary List of Vulnerability Examples for 
Researchers (PLOVER) collection [4] which identified 
over 300 weakness types created by determining the 
root issues behind 1,400 of the vulnerabilities in 
Common Vulnerabilities and Exposures (CVE) List [5];  

• the Comprehensive, Lightweight Application Security 
Process (CLASP) from Secure Software. which yielded 
over 90 weakness concepts [6], and 

• the issues contained in Fortify’s Seven Pernicious 
Kingdoms papers, which contributed over 110 weakness 
concepts [7] 

Working from these collections as well as those contained in the 
other thirteen information sources listed on the CWE web site 
“Sources” page we developed the current draft of the CWE List, 
which entails almost 500 separate weaknesses.  

The CWE List content is provided in several formats and will 
have additional formats and views into its contents added as the 
CWE initiative proceeds.  Currently one pane of the main CWE 
page contains an expanding/contracting hierarchical 
“taxonometric” view along with an alphabetic dictionary pane.  
The end items in the hierarchical view are hyper-linked to their 
respective dictionary entries in the second pane. Graphical 
depictions of CWE content, as well as the contributing sources, 
are also available on the site.  Finally, the xml and xsd for the 
CWE List are provided for those who wish to do their own 
analysis/review with other tools.  Dot notation representations of 
this material will be added in the future. 
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4. EXPANDING CWE 
With the current draft of CWE List as a baseline/reference point, 
we are now gathering in the specific details and descriptions of 13 
organizations that have agreed to contribute their intellectual 
property to the CWE initative.  Under Non-Disclosure 
Agreements with MITRE, which allow the merged collection of 
their individual contributions to be publicly shared in the CWE 
List, Cenzec, Core Security, Coverity, Fortify, Interoperability 
Clearinghouse, Klocwork, Ounce Labs, Parasoft, proServices 
Corporation, Secure Software, SPI Dynamics, Veracode, and 
Watchfire are all contributing. 

In addition to these sources, we will also leverage the work, ideas, 
and contributions of researchers at Carnegie Mellon’s CERT/CC, 
IBM, KDM Analytics, Kestrel Technology, MIT Lincoln Labs, 
North Carolina State University, Oracle, the Open Web Applica-
tion Security Project (OWASP), Security Institute, UNISYS, the 
Web Application Security Consortium (WASC), Whitehat 
Security, and any other interested parties that wish to contribute. 

We expect the merging and combining of the contributed 
materials will take most of the summer and result in an updated 
CWE List that will be ready for community comments and 
refinement as we move forward. A major part of this will be 
refining and defining the required attributes of CWE elements into 
a more formal schema defining the metadata structure necessary 
to support the various uses of CWE List. This schema will also be 
driven by our need to align with and support the SAMATE and 
OMG SwA SIG efforts that are developing software metrics, 
software security tool metrics, the software security tool survey, 
the methodology for validating software security tool claims, and 
the reference datasets. 

5. CURRENT THOUGHTS ON IMPACT 
AND TRANSITION OPPORTUNITIES 
As stated in the concept paper that laid out the case for developing 
the CWE List [8], the completion of this effort will yield 
consequences of three types: direct impact and value, alignment 
with and support of other existing efforts, and enabling of new 
follow-on efforts to provide value that is not currently being 
pursued. 

Following is a list of the direct impacts this effort will yield. Each 
impact could be the topic of much deeper and ongoing discussion. 

1. Provide a common language of discourse for discussing, 
finding and dealing with the causes of software security 
vulnerabilities as they are manifested in code, design, or 
architecture. 

2. Allow software security tool vendors and service providers to 
make clear and consistent claims of the security weaknesses 
that they cover to their potential user communities in terms 
of the CWEs that they look for in a particular code language. 
Additionally, a new “CWE Compatibility” will be developed 
to allow security tool and service providers to publicly 
declare their capability's coverage of CWEs. 

3. Allow purchasers to compare, evaluate and select software 
security tools and services that are most appropriate to their 
needs including having some level of assurance of the level 
of CWEs that a given tool would find. Software purchasers 
would be able to compare coverage of tool and service 

offerings against the list of CWEs and the programming 
languages that are used in the software they are acquiring. 

4. Enable the verification of coverage claims made by software 
security tool vendors and service providers (this is supported 
through CWE metadata and alignment with the SAMATE 
reference dataset). 

5. Enable government and industry to leverage this 
standardization in the contractual terms and conditions. 

Following is a list of alignment opportunities with existing efforts 
that are provided by the results of this effort. Again, each of these 
items could be the topic of much deeper ongoing discussion. 

1. Mapping of CWEs to CVEs. This mapping will help bridge 
the gap between the potential sources of vulnerabilities and 
examples of their observed instances providing concrete 
information for better understanding the CWEs and 
providing some validation of the CWEs themselves.  

2. Bidirectional alignment between the common weaknesses 
enumeration and the SAMATE metrics effort. 

3. Any tool/service capability measurement framework that 
uses the tests provided by the SAMATE Reference Dataset 
would be able to leverage this common weakness dictionary 
as the core layer of the framework. This framework effort is 
not an explicitly called out item in the SAMATE charter but 
is implied as necessary to meet the project’s other objectives. 

4. The SAMATE software security tool and services survey 
effort would be able to leverage this common weaknesses 
dictionary as part of the capability framework to effectively 
and unambiguously describe various tools and services in a 
consistent apples-to-apples fashion. 

5. There should be bidirectional alignment between this source 
of common weaknesses and the SAMATE reference dataset 
effort such that CWEs could reference supporting reference 
dataset entries as code examples of that particular CWE for 
explanatory purposes and reference dataset entries could 
reference the associated CWEs that they are intended to 
demonstrate for validation purposes. Further, by working 
with industry, an appropriate method could be developed for 
collecting, abstracting, and sharing code samples from the 
code of the products that the CVE names are assigned to with 
the goal of gathering these code samples from industry 
researchers and academia so that they could be shared as part 
of the reference dataset and aligned with the vulnerability 
taxonomy.  These samples would then be available as 
tailoring and enhancement aides to the developers of 
software assessment security tools. We could actively engage 
closed source and open source development organizations 
that work with the CVE initiative to assign CVE names to 
vulnerabilities to identify an approach that would protect the 
source of the samples while still allowing us to share them 
with others.  By using the CVE-based relationships with 
these organizations, we should be able to create a high-
quality collection of samples while also improving the 
accuracy of the software product security assessment tools 
that are available to the software development groups to use 
in vetting their own product's code. 

6. Any validation framework for tool/service vendor claims, 
whether used by the purchasers themselves or through a 3rd 
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party validation service, would rely heavily on this common 
weakness dictionary as its basis of analysis. To support this, 
we would work with researchers to define the mechanisms 
used to exploit the various CWEs for the purposes of helping 
to clarify the CWE groupings and as a possible verification 
method for validating the effectiveness of the tools that 
identify the presence of CWEs in code by exploring the use 
of several testing approaches on the executable version of the 
reviewed code.  The effectiveness of these test approaches 
could be explored with the goal of identifying a method or 
methods that are effective and economical to apply to the 
validation process. 

7. Bidirectional mapping between CWEs and Coding Rules, 
such as those deployed as part of the DHS NCSD “Build 
Security In” (BSI) website [9], used by tools and in manual 
code inspections to identify common weaknesses in software. 

8. Leveraging of the OMG technologies to articulate formal, 
machine parsable definitions of the CWEs to support analysis 
of applications within the OMG standards-based tools and 
models. 

Following is a list of new, unpursued follow-on opportunities for 
creating added value to the software security industry. 

1. Expansion of the Coding Rules Catalog on the DHS BSI 
website to include full mapping against the CWEs for all 
relevant technical domains. 

2. Identification and definition of specific domains (language, 
platform, functionality, etc.) and relevant protection profiles 
based on coverage of CWEs. These domains and profiles 
could provide a valuable tool to security testing strategy and 
planning efforts. 

With this fairly quick research and refinement effort, this work 
should be able to help shape and mature this new code security 
assessment industry, and dramatically accelerate the use and 

utility of these capabilities for organizations and the software 
systems they acquire, develop, and use. 
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Abstract: 
 
Software assurance tools are a fundamental resource for providing an assurance argument 
for today’s software applications throughout the software development lifecycle (SDLC).  
Software requirements, design models, implementation code and executable code are 
analyzed by tools to determine if an application is truly secure. This document specifies 
the functional behavior of one class of software assurance tool:  the source code analyzer.  
Because the majority of software weaknesses today are introduced at implementation, a 
specification that defines a “baseline” source code analysis tool capability can help 
software professionals select a tool that will meet their software assurance needs.  
 
1. Introduction:  
 
This section gives some technical background, defines terms we use in this specification, 
explains how concepts designated by those terms are related, and details some challenges 
in source code analysis for security assurance. 
 
No amount of analysis and patching can imbue software with high levels of security or 
quality or correctness or other important properties.  Such properties must be designed in 
and built in.  Good choice of language, platform, and discipline are worth orders of 
magnitude more than reactive efforts.  Nevertheless testing or examination of code has 
benefits in some situations. 
 
Code must be analyzed to determine how different methods or processes affect the 
quality of the resultant code.  If the origin of code has limited visibility, testing or static 
analysis are the only ways to gain higher assurance.  Existing, legacy code must be 
examined to assess its quality and determine what, if any, remediation is needed. 
 
Testing, or dynamic analysis, has the advantage of examining the behavior of software in 
operation.  In contrast, only static analysis can be expected to find malicious trapdoors.  
Analysis of binary or executable code, including "bytecode," avoids assumptions about 
compilation or source code semantics.  Only the binary may be available for libraries or 
purchased software.  However, source code analysis can give developers feedback on 
better practices. Remediation is often done in source code.  Analysis of higher level 
constructs, such as models, designs, use cases, or requirements documents, is possible, 
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too.  However, these higher level artifacts often lack rigor and rarely reflect all the critical 
detail in source code implementations.  Thus static analysis of source code is a reasonable 
place to work for higher software assurance. 
 
Often, different terms are used to refer to the same concept in software assurance and 
security literature.  Different authors may use the same term to refer to different 
concepts.  For clarity we give our definitions.  To begin any event which is a violation of 
a particular system's explicit (or implicit) security policy is a security failure, or simply, 
failure.  For example, if an unauthorized person gains "root" or "admin" privileges or if 
Social Security numbers can be read through the World Wide Web by unauthorized 
people, security has failed. 
 
A vulnerability is a property of system security requirements, design, implementation, or 
operation that could be accidentally triggered or intentionally exploited and result in a 
security failure. (After [NIST SP 800-27])  In our model the source of any failure is a 
latent vulnerability.  If there is a failure, there must have been a vulnerability.  A 
vulnerability is the result of one or more weaknesses in requirements, design, 
implementation, or operation. 
 
In the unauthorized privileges example above, the combination of the two weaknesses of 
allowing weak passwords and of not locking out an account after repeated password 
mismatches allow the vulnerability. This vulnerability can be exploited by a brute force 
attack to cause the failure of an unauthorized person gaining elevated privileges.  An 
SQL injection vulnerability might be exploited several different ways to produce 
different failures, such as dropping a table or revealing all its contents.  If spyware can 
steal a user's password, it is a vulnerability.  But it may be hard to attribute the 
vulnerability to particular weaknesses in software that can be "fixed."  Spyware typically 
exploits system weaknesses, which require changes at the system level. 
 
Sometimes a weakness cannot result in a failure, in which case it is not exploitable and 
not a vulnerability.  Such a weakness may be masked by another part of the software or it 
may only cause a failure in combination with another weakness.  Thus we use the term 
"weakness" instead of "flaw" or "defect." 
 
A source code analysis tool examines software and reports weaknesses or vulnerabilities 
it finds.  They may be graded according to severity, potential for exploit, certainty that 
they are result in vulnerabilities, etc.  Ultimately people must use the reports to decide 
 

• which reported items are not true vulnerabilities, 
• which items are acceptable risks and will not be mitigated, and 
• which items to mitigate, and how to mitigate them. 

 
The report may even lead the user to reject a piece of software altogether as insufficiently  
secure to use or as needing to be discarded and written from scratch. 
 
For several reasons no tool can correctly determine in every conceivable case whether or 
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not a piece of code has a vulnerability. First, a weakness may result in a vulnerability in 
one environment, but not in another.  Second, Rice proved that no algorithm can correctly 
decide whether or not a piece of code has a property, such as a weakness, in every case.  
Third, practical analysis algorithms have limits because of performance and intellectual 
investment.  Some vulnerabilities can only be identified if a tool performs inter-file, inter-
procedural, or flow-sensitive analysis of the code.  Deliberate obfuscation with complex 
code structures make the analysis even harder.  Fourth, a tool may not have "rules" to 
find all known vulnerabilities.  This is even harder since new exploits and vulnerabilities 
are being invented all the time. 
 
Since no tool can be perfect, a tool may be biased on the side of caution and report 
questionable constructs.  Some of those may turn out to be false alarms or false positives.  
To reduce time wasted on false alarms, a tool may be biased on the side of certainty and 
only report constructs which are (almost) certainly vulnerabilities.  In this case it may 
miss some vulnerabilities.  A missed vulnerability is called a false negative.  Changing 
the threshold of certainty to report a construct as a vulnerability trades fewer false 
negatives for more false alarms and vice versa.  The ideal would be a tool that reports 
every real vulnerability (no false negatives) with no false alarms.  Even though this is 
theoretically impossible, utility requires some metric for the tradeoff between false 
alarms and false negatives. 
 
2. Functional Requirements for Source Code Analysis Tools 
 
In this section we first give a high-level description of the functional requirements for 
source code analysis tools, and then detail the mandatory and optional requirements. 
 
High Level View 
 
A baseline level of functionality is required in order for a source code analysis tool to be 
considered compliant with this specification.  In its “simplest” sense, a source code 
analysis tool must be able to (at a minimum): 
 
• Identify a select set of software security weaknesses in source code. 
• Generate a text report of the security weaknesses that it finds, indicating the source 

file name and line number(s) where those weaknesses are located.  
  
Requirements for Mandatory Features 
 
In order to meet this baseline capability, all source code analysis tools must be able to 
accomplish the tasks described in the mandatory requirements listed below. If the tool 
under test supports the applicable feature, then optional requirements can be tested as 
well. If a specific tool does not provide the capabilities of a particular optional 
requirement, then the tool is not tested for that optional requirement. This means that a 
specific tool might provide none of the capabilities described under optional 
requirements. The following requirements are mandatory and shall be met by all source 
code analysis tools. 
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SCA-RM-1: The tool shall identify any code security weakness that is listed in appendix 
A. 
SCA-RM-2: The tool shall generate a text report identifying all security weaknesses that 
it finds. 
SCA-RM-3: The tool shall identify a weakness by its proper Common Weakness 
Enumeration [CWE] identifier. 
SCA-RM-4: The tool shall specify the location of a weakness by providing the directory 
path, file name and line number. 
SCA-RM-5: The tool shall be capable of detecting weaknesses within the coding 
constructs listed in appendix B. 
SCA-RM-6: The tool shall generate an acceptably low “false-positive” ratio. 
 
Requirements for Optional Features 
 
The following requirements define optional tool features. If a tool provides the capability 
defined, the tool is tested as if the requirement were mandatory. If the tool does not 
provide the capability defined, the requirement does not apply. 
 
SCA-RO-1: The tool shall produce an XML-formatted report.  
SCA-RO-2: The tool shall have a “suppression system” that permits the user to identify 
and flag lines of code such that subsequent scans of the same (or modified) code will not 
generate the same report of a weakness. 
 
Appendix A:  Source Code Weaknesses 
 
The source code weaknesses listed in this table represent a “base set” of code weaknesses 
that a source code analysis tool (or combination of source code analysis tools) should be 
able to identify if they support the analysis of the language in which the weakness exists.  
Criteria for selection of weaknesses include: 
 
Found in real code today – The weaknesses listed below are found in real software 
applications. 
Recognized by tools today - Tools today are able to identify these weaknesses in source 
code and identify their associated file names and line numbers. 
Likelihood of exploit is medium to high – The weakness is fairly easy for a malicious 
user to recognize and to exploit. 
 
Because the body of known software weaknesses is evolving (with new ones discovered 
every day), this list will grow.  Additionally, as source code analysis tools mature in their 
capabilities and are able to identify more software weaknesses, those weaknesses will be 
added to this list. The names and descriptions in this list are found in [CWE].   
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Name Description Language(s)  
Data Handling.Input Validation.Pathname Traversal and Equivalence Errors. Path 
Equivalence. 

Path Manipulation 
Allowing user input to control paths used by 
the application may enable an attacker to 
access otherwise protected files. 

C, C++, Java, other 

Data Handling.Input Validation.Injection. 

Command Injection 

Command injection problems are a subset of 
injection problem, in which the process is 
tricked into calling external processes of the 
attacker’s choice through the injection of 
control-plane data into the data plane. 

C, C++, Java, other 

Cross Site 
Scripting.Basic XSS 

'Basic' XSS involves a complete lack of 
cleansing of any special characters, including 
the most fundamental XSS elements such as 
"<", ">", and "&". 

C,C++, Java, other 

Resource Injection 

 Allowing user input to control resource 
identifiers might enable an attacker to access 
or modify otherwise protected system 
resources. 

C, C++, Java, other 

Data Handling.Input Validation.Injection.Command Injection. 

OS Command 
Injection 

Command injection problems are a subset of 
injection problem, in which the process is 
tricked into calling external processes of the 
attacker’s choice through the injection of 
control-plane data into the data plane. Also 
called “shell injection”. 

C, C++, Java, other 

SQL Injection 

SQL injection attacks are another instantiation 
of injection attack, in which SQL commands 
are injected into data-plane input in order to 
effect the execution of predefined SQL 
commands. 

C, C++, Java, other 

Data Handling.Range Errors.Buffer Errors.Unbounded Transfer ('classic overflow'). 

Stack overflow 

A stack overflow condition is a buffer 
overflow condition, where the buffer being 
overwritten is allocated on the stack (i.e., is a 
local variable or, rarely, a parameter to a 
function). 

C, C++ 

Heap overflow 

A heap overflow condition is a buffer 
overflow, where the buffer that can be 
overwritten is allocated in the heap portion of 
memory, generally meaning that the buffer 

C, C++ 
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was allocated using a routine such as the 
POSIX malloc() call. 

Write-what-where 
condition 

Any condition where the attacker has the 
ability to write an arbitrary value to an 
arbitrary location, often as the result of a 
buffer overflow. 

C, C++ 

Format string 
vulnerability 

Format string problems occur when a user has 
the ability to control or write completely the 
format string used to format data in the printf 
style family of C/C++ functions. 

C, C++ 

Improper Null 
Termination 

The product does not properly terminate a 
string or array with a null character or 
equivalent terminator. Null termination errors 
frequently occur in two different ways. An 
off-by-one error could cause a null to be 
written out of bounds, leading to an overflow. 
Or, a program could use a strncpy() function 
call incorrectly, which prevents a null 
terminator from being added at all. Other 
scenarios are possible. 

C, C++ 

API Abuse. 

Heap Inspection 

Using realloc() to resize buffers that store 
sensitive information can leave the sensitive 
information exposed to attack because it is not 
removed from memory. 

C, C++ 

Often Misused: 
String Management 

Functions that manipulate strings encourage 
buffer overflows. 

C, C++ 

Security Features.Password Management. 
Hard-Coded 
Password 

Storing a password in plaintext may result in 
a system compromise. 

C/C++, Java 

Time and State.Race Conditions. 

Time-of-check Time-
of-use race condition 

Time-of-check, time-of-use race conditions 
occur when between the time in which a 
given resource (or its reference) is checked, 
and the time that resource is used, a change 
occurs in the resource to invalidate the results 
of the check. 

C, C++, Java, other 

Error Handling. 

Unchecked Error 
Condition 

Ignoring exceptions and other error conditions 
may allow an attacker to induce unexpected 
behavior unnoticed. 

C, C++, Java, other 

Code Quality. 
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Memory leak 

Most memory leaks result in general software 
reliability problems, but if an attacker can 
intentionally trigger a memory leak, the 
attacker might be able to launch a denial of 
service attack (by crashing the program) or 
take advantage of other unexpected program 
behavior resulting from a low memory 
condition . 

C, C++ 

Unrestricted Critical 
Resource Lock 

A critical resource can be locked or controlled 
by an attacker, indefinitely, in a way that 
prevents access to that resource by others, e.g. 
by obtaining an exclusive lock or mutex, or 
modifying the permissions of a shared 
resource. Inconsistent locking discipline can 
lead to deadlock. 

C, C++, Java, other 

Double Free Calling free() twice on the same value can 
lead to a buffer overflow. 

C, C++ 

Use After Free Use after free errors sometimes have no effect 
and other times cause a program to crash. 

C, C++ 

Code Quality.Channel and Path Errors.Untrusted Search Path. 

Uninitialized variable 

Most uninitialized variable issues result in 
general software reliability problems, but if 
attackers can intentionally trigger the use of 
an uninitialized variable, they might be able 
to launch a denial of service attack by 
crashing the program. 

C, C++ 

Illegal Pointer Value 

This function can return a pointer to memory 
outside of the buffer to be searched. 
Subsequent operations on the pointer may 
have unintended consequences. 

C, C++ 

Use of sizeof() on a 
pointer type 

Running sizeof() on a malloced pointer type 
will always return the wordsize/8. 

C, C++ 

Unintentional pointer 
scaling 

In C and C++, one may often accidentally 
refer to the wrong memory due to the 
semantics of when math operations are 
implicitly scaled. 

C, C++ 

Improper pointer 
subtraction 

The subtraction of one pointer from another in 
order to determine size is dependant on the 
assumption that both pointers exist in the 
same memory chunk. 

C, C++ 

Unsafe Reflection 
By leveraging reflection capabilities, an 
attacker may be able to create unexpected 
control flow paths through the application, 

Java 
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potentially bypassing security checks. 

Null Dereference 
Using the NULL value of a dereferenced 
pointer as though it were a valid memory 
address 

C, C++ 

Encapsulation. 
Private Array-Typed 
Field Returned From 
A Public Method 

The contents of a private array may be altered 
unexpectedly through a reference returned 
from a public method. 

Java, C++ 

Public Data Assigned 
to Private Array-
Typed Field 

Assigning public data to a private array is 
equivalent giving public access to the array. 

Java, C++ 

Overflow of static 
internal buffer 

A non-final static field can be viewed and 
edited in dangerous ways. 

Java, C++ 

Leftover Debug Code Debug code can create unintended entry 
points in an application. 

C, C++, Java, other 

 
 
Appendix B: Code Complexity Variations  
 
In addition to having the capability to locate and identify source code weaknesses listed 
in appendix A, a source code analysis tool must be able to find those weaknesses within 
complex coding structures.  A general list of these types of structures, adopted and 
modified from [MIT] is provided below.  Some of the enumerated values are language 
specific (e.g. the use of pointers in C, C++), however, most are general types of 
constructs that exist across C/C++ and Java.  Equivalent constructs in other languages 
will be added as tools for those languages are included in this specification. 
 
  

Complexity Description Enumeration  
address alias level level of “indirection”  of buffer 

alias using variable(s) 
containing the address 

1,2 

array address complexity level of complexity of the 
address value of an array buffer 

constant, variable, linear expression, 
nonlinear expression, function return 
value, array content value 

array index complexity level of complexity of the index 
value of an array buffer using 
variable assignment 

constant, variable, linear expression, 
nonlinear expression, function return 
value, array content value 

array length/limit 
complexity 

level of complexity of array 
length or limit value 

constant, variable, linear expression, 
nonlinear expression, function return 
value, array content value 

container containing data structure array, struct, union, array of structs, 
array of unions, class 
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local control flow  type of control flow around 
weakness 

if,switch,cond,goto/label,setjmp,longj
mp, function pointer, recursion 

data type type of data read or written character,integer,floating point,wide 
character,pointer,unsigned 
character,unsigned integer 

asynchronous asynchronous coding construct threads, forked process, signal 
handler 

index alias level level of buffer index alias 
indirection 

1,2 

loop structure type of loop construct in which 
weakness is embedded 

standard for,standard do while, 
standard while, non standard for, non 
standard do while, non standard while
 

loop complexity component of loop that is 
complex 

initialization, test, increment  

memory access type of memory access related 
to weakness 

read, write 

memory location type of memory location related 
to weakness 

heap, stack, data region, BSS, shared 
memory 

pointer pointer used for a buffer address yes,no 
scope scope of control flow related to 

weakness 
same, inter-procedural, global,inter-
file/inter-procedural, inter-file/global  

taint type of tainting to input data argc/argv, environment variables, file 
or stdin, socket, process environment 
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