

Sticking to the Facts II:
Scientific Study of Static Analysis

Tools

Center for Assured Software

National Security Agency

cas@nsa.gov

 SATE IV

Workshop

March 29, 2012

Agenda

• Background and Purpose

• NSA CAS Methodology Review

• 2011 Results/Trends

– Data Analysis and Visualizations

2

Center for Assured
Software

 Mission: To positively influence the design,
implementation, and acquisition of Department of
Defense (DoD) systems to increase the degree of
confidence that software used within the DoD’s
critical systems is free from intentional and
unintentional exploitable vulnerabilities

3

NSA CAS Methodology – A Review

4

Study Process
Overview

1. Generate test cases (Juliet Test Suite)

2. Analyze test cases per tool

3. Score results

4. Group test cases into Weakness Classes

5. Calculate statistics by each Weakness Class

5

CAS Test Cases

• Artificial pieces of code developed to test software
analysis tools

• Mapped to CWEs

• In general, each test case contains:

– One flawed construct – “bad”

– One or more non-flawed constructs that “fix” the flawed
construct – “good”

6

void CWE467_Use_of_sizeof_on_Pointer_Type__double_01_bad()
{
 double * data;
 ...
 /* FLAW: Using sizeof the pointer and not the data type in
malloc() */
 data = (double *)malloc(sizeof(data));

}

static void goodG2B()
{
 double * data;
 ...
 /* FIX: Using sizeof the data type in malloc() */
 data = (double *)malloc(sizeof(*data));

}

Example of a Test
Case

7

Advantages /
Limitations of Test

Cases

• Advantages

– Control over the breadth of flaws and non-flaws covered

– Control over where flaws and non-flaws occur

– Control over data and control flows used

• Limitations

– Simpler than natural code

– All flaws represented equally

– Ratio of flaws and non-flaws likely much different than in
natural code

8

Weakness Classes

Weakness Class Example Weakness (CWE Entry)

Authentication and Access Control CWE-620: Unverified Password Change

Buffer Handling CWE-121: Stack-based Buffer Overflow

Code Quality CWE-561: Dead Code

Control Flow Management CWE-362: Race Condition

Encryption and Randomness CWE-328: Reversible One-Way Hash

Error Handling CWE-252: Unchecked Return Value

File Handling CWE-23: Relative Path Traversal

Information Leaks CWE-534: Information Leak Through Debug Log Files

Initialization and Shutdown CWE-415: Double Free

Injection CWE-89: SQL Injection

Miscellaneous CWE-480: Use of Incorrect Operator

Number Handling CWE-369: Divide by Zero

Pointer and Reference Handling CWE-476: Null Pointer Dereference

9

Scoring

• CAS is concerned with two things:

– What flaws does the tool report? (Recall)

– What non-flaws does the tool incorrectly report as a
flaw? (Precision)

10

Precision

• Fraction of results from tool that were “correct”

• Same as “True Positive Rate”

• Complement of “False Positive Rate”

FPTP

TP
Precision

##

#

11

Recall

• Fraction of flaws that a tool correctly reported

• Also known as “Sensitivity” or “Soundness”

FNTP

TP
Recall

##

#

12

Precision-Recall
Graph

13

Precision and Recall
Are Not Enough

• Precision and Recall don’t tell whole story

• Unsophisticated “grep-like” tool can get:

– Recall: 1

– Precision: 0.5

– Doesn’t accurately reflect that tool is noisy

• Limitation of CAS test cases

– Typically 1 or 2 non-flaws for each flaw

14

Discrimination

• A “Discrimination” occurs when a tool:

– Correctly reports the flaw

– Does not report the non-flaw

• Each tool gets 0 or 1 discrimination for each test
case

15

Discrimination Rate

• Discrimination Rate is the fraction of test cases
where a tool reported discriminations

• Discrimination Rate ≤ Recall

– Every True Positive “counts” toward Recall, but not
necessarily toward Discrimination Rate

Flaws

tionsDiscrimina
RatetionDiscrimina

#

#

16

2011 Methodology
Changes

• New flaws as well as data and control flow variants
were added

– Java Test Cases increased by 74%

– C/C++ Test Cases increased by 26%

• Test cases were enhanced

• Analysis was improved

– Recall calculation

– Test case weighting

• Tool configurations

17

2011 Methodology
Changes (cont.)

Weakness Class Example Weakness (CWE Entry)

Authentication and Access Control CWE-620: Unverified Password Change

Buffer Handling CWE-121: Stack-based Buffer Overflow

Code Quality CWE-561: Dead Code

Control Flow Management CWE-362: Race Condition

Encryption and Randomness CWE-328: Reversible One-Way Hash

Error Handling CWE-252: Unchecked Return Value

File Handling CWE-23: Relative Path Traversal

Information Leaks CWE-534: Information Leak Through Debug Log Files

Initialization and Shutdown CWE-415: Double Free

Injection CWE-89: SQL Injection

Malicious Logic CWE-506: Embedded Malicious Code

Miscellaneous CWE-480: Use of Incorrect Operator

Number Handling CWE-369: Divide by Zero

Pointer and Reference Handling CWE-476: Null Pointer Dereference 18

2011 Study Results and Trends

19

C/C++

CWEs Covered Flaw Types Test Cases Lines of Code

2010 116 1,432 45,324 6,338,548

2011 119 1,489 57,099 8,375,604

Diff + 2.6% + 4.0 % + 26.0% + 32.1%

20

• Tools Studied

– 8 commercial

– 1 open source

Test Case Coverage
C/C++

C/C++ Test Cases (2010) C/C++ Test Cases (2011)

21

• Seven tools

• 45,324 Test Cases

• Nine tools

• 57,099 Test Cases

Test Case
Discriminated – C/C++

C/C++ Test Cases (2010) C/C++ Test Cases (2011)

22

Test Case Coverage
and DR – C/C++

2011

23

Improved Precision –
C/C++

24

Improved Recall –
C/C++

25

Precision and Recall
Less - C/C++

26

Precision and Recall
Improved -

C/C++

27

Tool Combination –
C/C++

Tool #1 Tool #2

D
is

c
.
R

a
te

R
e
c
a
ll

D
is

c
.
R

a
te

R
e
c
a
ll

Tool #1 .24 .40 .51 .67

Tool #2 .51 .67 .38 .57

28

2011 C/C++
Conclusions

• Tools Strongest in:

– Pointer and Reference Handling

– Initialization and Shutdown

– Buffer Handling

• Tools Weakest in:

– Information Leaks

– Authentication and Access Control

– Error Handling

29

2011 C/C++
Conclusions (cont.)

• Reported flaws in approximately 11 of the 14 (79%)
Weakness Classes

• Reported approximately 22% of the flaws on
Weakness Classes they covered

• Flaws in approximately 21% of the test cases were
not reported by any of the tools

• There were 18 test cases in which all of the tools
correctly found the flaw

30

Open Source vs.
Commercial Tools –

C/C++

• Did not perform the strongest in any of the
Weakness Classes

• Stronger than at least 1 commercial tool in 6
Weakness Classes

• In 4 Weakness Classes, was the weakest tool

31

Java

CWEs Covered Flaw Types Test Cases Lines of Code

2010 106 527 13,801 3,238,667

2011 113 751 23,957 4,712,718

Diff + 6.6% + 42.5% + 73.6% + 45.4%

32

• Tools Studied

– 7 commercial

– 2 open source

Test Case Coverage
Java

Java Test Cases (2010) Java Test Cases (2011)

33

• Seven tools

• 13,801 Test Cases

• Nine tools

• 23,957 Test Cases

Test Case
Discriminated – Java

Java Test Cases (2010) Java Test Cases (2011)

34

Test Case Coverage
and DR – Java

2011

35

Precision Improved -
Java

36

Precision and Recall
Improved –

Java

37

Tool Combination –
Java

38

Tool #1 Tool #2

D
is

c
.
R

a
te

R
e
c
a
ll

D
is

c
.
R

a
te

R
e
c
a
ll

Tool #1 .30 .57 .45 .68

Tool #2 .45 .68 .27 .43

Java Conclusions

• Tools Strongest in:

– File Handling

– Pointer and Reference Handling

• Tools Weakest in:

– Number Handling

– Malicious Logic

– Initialization and Shutdown

39

Java Conclusions
(cont.)

• Reported flaws in approximately 10 of the 13 (77%)
Weakness Classes

• Reported approximately 28% of the flaws on
Weakness Classes they covered

• Flaws in approximately 27% of the test cases were
not reported by any of the tools

• There were no test cases in which all of the tools
correctly found the flaw

40

Open Source vs.
Commercial Tools

Java

• None of the open source tools performed the
strongest in any of the Weakness Classes

• At least 1 open source tool was stronger than at
least 1 commercial tool in 7 Weakness Classes

• In 3 Weakness Classes, 1 open source tool was
ranked in the top 3

• In four Weakness Classes, the open source tools
were the weakest tools

41

2011 Study
Conclusions

• Tools are not interchangeable

• Different tools had different strengths, even
different by language

• None of the tools performed well across all
Weakness Classes

• Complementary tools can be combined to achieve
better results

42

Can Tools Be
Improved?

• Goodness of code

– Report proper coding techniques

– Aids in overall analysis of code

• Standardized Output

– Flaw location

– Results format

– Flaw Naming convention

43

Questions?

• Juliet Test Suite v1.1 and Methodology Report (will
be) located at
http://samate.nist.gov/SRD/testsuite.php

• Contact Center for Assured Software at
CAS@nsa.gov

44

http://samate.nist.gov/SRD/testsuite.php
mailto:CAS@nsa.gov

