

Special Publication 500-268 v1.1

Source Code Security Analysis Tool
Functional Specification Version 1.1

Paul E. Black
Michael Kass
Michael Koo

Elizabeth Fong

Software and Systems Division
Information Technology Laboratory

National Institute of Standards and Technology
Gaithersburg, MD 20899

February 2011

U.S. Department of Commerce
Gary Locke, Secretary

National Institute of Standards and Technology
Dr. Patrick D. Gallagher, Director

NIST SP 500-268 v1.1 Page 2 of 14

Abstract:

Software assurance tools are a fundamental resource to improve quality in today’s software
applications. Some tools analyze software requirements or design models to help determine if an
application is secure. Others analyze source code or executables. This document specifies the
behavior of one class of software assurance tool: the source code security analyzer. Because
many software security weaknesses are introduced at the implementation phase, using a source
code security analyzer should help reduce the number of security vulnerabilities in software. This
specification defines a minimum capability to help software professionals understand how a tool
can help meet their software security assurance needs.

Keywords:
Homeland security; software assurance tools; source code analysis; vulnerability.

Changes to this version:
This version 1.1 updates version 1.0 by adding the SPARK language in Annex A and improving
explanations.

Any commercial product mentioned is for information only. It does not imply recommendation or
endorsement by NIST nor does it imply that the products mentioned are necessarily the best available for
the purpose.

NIST SP 500-268 v1.1 Page 3 of 14

Table of Contents

1.0 Introduction ... 4

1.1 Purpose ... 4
1.2 Scope .. 4
1.3 Audience ... 4
1.4 Technical Background ... 5
1.5 Glossary of Terms .. 6

2.0 Functional Requirements .. 8
2.1 High Level View .. 8
2.2 Requirements for Mandatory Features ... 8
2.3 Requirements for Optional Features .. 8

3.0 References .. 9
Annex A Source Code Weaknesses ... 10
Annex B Code Complexity Variations .. 13

1.0 Introduction
1.1 Purpose
The National Institute of Standards and Technology (NIST) is working with the U.S. Department of
Homeland Security’s National Cybersecurity Division to improve the state of the practice in software
assurance. Through the development of tool functional specifications, test suites and tool metrics, the
NIST Software Assurance Metrics and Tool Evaluation, or SAMATE, project aims to better characterize
the state of the art for different classes of software security assurance tools.

Source code security analysis tools scan a textual (human readable) version of source files that comprise
a portion or all of an application program. These files may contain inadvertent or deliberate weaknesses
that could lead to security vulnerabilities in the executable versions of the application program. This
document specifies a set of functional feature requirements for a source code security analysis tool or set
of tools, including a list of common code weaknesses that account for many of today’s vulnerabilities.

This specification, together with the corresponding test plan and test suite, serves as a guide to
understanding the capability of source code security analysis tools against this set of weaknesses. Many
useful tools do not attempt to identify all of the weaknesses listed in this specification. The goal of this
specification is not to prescribe the features and functions that all source code security analysis tools
must have. The goal is to identify code weaknesses that significantly affect the security of software
applications today and provide a user of such tools with a way to determine if, and how well a tool, or
combination of tools, identifies these particular weaknesses.

Use of a tool or toolkit that complies with this specification does not guarantee the code will be free of
weaknesses. It does however provide a tool user with knowledge that their tool solution covers some of
the most prevalent and highly exploitable security weaknesses.

1.2 Scope
This specification is limited to software tools that examine source code files for security weaknesses and
potential vulnerabilities. Tools that scan other artifacts, like requirements, bytecode or binary code, and
tools that dynamically execute code are outside the scope. Annex A of this document, Source Code
Weaknesses, specifically addresses C, C++, Java, and SPARK [Barnes] source code.

We started with C, C++, and Java because they are the languages in which most of today’s vulnerabilities
have been identified and on which most source code security analysis tools focus. These weaknesses
may exist in other languages as well.

There are languages that are, by design, more suitable for secure programming. We added SPARK as an
example of one. Such languages entirely preclude many common weaknesses and minimize or expose
others. Choosing such languages mitigates many security risks.

This document specifies core functionality only. Critical production tools should have capabilities far
beyond those indicated here. Many important attributes, like compatibility with integrated development
environments or IDEs and ease of use, are not addressed.

The misuse or proper use of a tool is outside the scope of this specification.

The issues and challenges in engineering secure systems and their software are outside the scope of this
specification.

1.3 Audience
The target audiences for this specification are users and evaluators of source code security analysis
tools. It may also be useful to software assurance researchers, and developers of source code security
analysis tools.

1.4 Technical Background
This section gives some technical background, defines terms we use in this specification, explains how
concepts designated by those terms are related, and details some challenges in source code analysis for
security assurance.

The Role of Source Code Analysis in Software Assurance
No amount of analysis and patching can imbue software with high levels of security, quality, correctness,
or other important properties. Such properties must be designed in and built in. Good choices of
language, platform, and discipline are worth orders of magnitude more than reactive efforts. Nevertheless
testing or examination of code has benefits.

For instance, to determine how different methods or processes affect the quality of the resultant code, the
code can be examined. If the origin of code has limited visibility, testing or static analysis are the only
ways to gain higher assurance. Existing, legacy code must be examined to assess its quality and
determine what, if any, remediation is needed.

Testing, or dynamic analysis, has the advantage of examining the behavior of software in operation. In
contrast, only static analysis can be expected to find malicious trapdoors. Analysis of binary or executable
code, including bytecode, avoids assumptions about compilation or source code semantics. Only the
binary may be available for libraries or purchased software. However, source code security analysis can
give developers feedback on better practices.

Remediation is often done in source code. Analysis of higher-level constructs, such as models, designs,
use cases, or requirements documents, is possible, too. However, these higher-level artifacts often lack
rigor and rarely reflect all the critical detail in source code implementations. Thus static analysis of source
code is a reasonable place to work for higher software assurance.

Terms Used in This Specification
Often, different terms are used to refer to the same concept in the software assurance and security
literature. Different authors may use the same term to refer to different concepts. For the purposes of this
document, the following terms and definitions apply. To begin, any event that is a violation of a particular
system's explicit (or implicit) security policy is a security failure, or simply, failure. For example, if an
unauthorized person gains "root" or "admin" privileges, security has failed. Similarly, if unauthorized
people can read Social Security numbers from your web site, security has failed.

A vulnerability is a property of system security requirements, design, implementation, or operation that
could be accidentally triggered or intentionally exploited and result in a security failure. (After [SP800-27])
In our model, the source of any failure is a latent vulnerability. In other words, if there is a failure, there
must have been a vulnerability. A vulnerability is the result of one or more weaknesses in requirements,
design, implementation, or operation.

In the unauthorized privileges example above, the combination of the two weaknesses of allowing weak
passwords and of not locking out an account after repeated password mismatches constitute the
vulnerability. This vulnerability can be exploited by a brute force attack to cause the failure of an
unauthorized person gaining elevated privileges. An SQL injection vulnerability might be exploited several
different ways to produce different failures, such as dropping a table or revealing all its contents. If
spyware can steal a user's password, it is a vulnerability. But it may be hard to attribute the vulnerability to
a few lines of code that can be "fixed." Spyware typically exploits system weaknesses, which require
changes at the system level.

Sometimes a weakness can never result in a failure, in which case it is not exploitable and not a
vulnerability. Such a weakness might be masked by another part of the software or might only cause a
failure in combination with another weakness. Thus we use the term "weakness" instead of "flaw" or
"defect."

For several reasons no tool can correctly determine in every conceivable case whether or not a piece of
code has a vulnerability. First, a weakness may result in a vulnerability in one environment, but not in
another. Second, Rice proved [Rice] that no algorithm can correctly decide in every case whether or not a

piece of code has a property, such as a weakness. Third, practical analysis algorithms have limits
because of performance, approximations, and intellectual investment. Some vulnerabilities can only be
identified if a tool performs inter-file, inter-procedural, or flow-sensitive analysis of the code. Each different
code complexity, such as fixed or variable loops, memory indexing nested within indexing, local vs. global
scope, and others listed in Annex B, may require additional analytical capabilities. Deliberate obfuscation
with convoluted code structures makes the analysis even harder. Fourth, a tool may not have "rules" to
find all known vulnerabilities. Worse, new exploits are being invented and new vulnerabilities recognized
all the time.

Since no tool can be omniscient, a tool may be written to be cautious and report questionable constructs.
Some of those reports may turn out to be false alarms or false positives. To reduce wasting users’ time on
false alarms, a tool may be written to only report constructs that are (almost) certainly vulnerabilities. In
this case it may miss some vulnerabilities. A missed vulnerability is called a false negative. A tool may do
a more detailed or precise analysis, which is computationally intensive, to reduce both false alarms and
missed vulnerabilities. The ideal is a tool that reports all real vulnerabilities (no false negatives) with no
false alarms. Although this is impossible even in theory, tools may use a combination of approaches to
balance performance, false alarms, and missed vulnerabilities. Since a failure only takes one
vulnerability, the requirements have a tone of catching all weaknesses. Practical considerations require
the false positive rate [Fleiss] to be acceptably low for the domain.

A tool may grade weaknesses according to severity, potential for exploit, certainty that they are
vulnerabilities, etc. Ultimately people must analyze the tool’s report and the code then decide

• which reported items are not true vulnerabilities,

• which items are acceptable risks and will not be mitigated, and

• which items to mitigate, and how to mitigate them.

To save analysis time in later runs, some tools allow the user to suppress weakness instances so they
are not reported again.

1.5 Glossary of Terms
This glossary provides descriptions for terms used in this document.

Name Description
false negative When a tool does not report a weakness where one is present. If

the tool does not claim to identify a certain class of weakness, not
reporting a weakness of that class is not a false negative.

false positive When a tool reports a weakness where no weakness is present.

false positive rate The number of false positives divided by the sum of the number of
false positives and the number of true positives.

flow-sensitive analysis Analysis of a computer program that takes into account the flow of
control.

inter-file analysis Analysis of code residing in different files that have procedural,
data, or other interdependencies.

inter-procedural analysis Analysis between calling and called procedures within a computer
program.

security failure Any event that is a violation of a particular system's explicit or
implicit security policy.

security vulnerability A property of system requirements, design, implementation, or
operation that could be accidentally triggered or intentionally

exploited and result in a security failure.

source code A series of statements written in a human-readable computer
programming language.

true positive When a tool reports a weakness where one is present.

weakness A piece of code that may lead to a vulnerability.

weakness suppression system A feature that permits the user to flag a line of code not to be
reported by the tool in subsequent scans.

2.0 Functional Requirements

2.1 High Level View
Informally, what does a source code security analysis tool or tool set do? At a minimum the tool(s) should:

• Identify a select set of classes of software security weaknesses in source code.
• Report the security weaknesses that it identifies, what kind of weakness each one is, and

where each one is located.
• Not report too many false positives.

Optionally a tool should:

• Produce a report compatible with other tools, for instance in the Software Assurance Findings
Expression Schema (SAFES) format [Barnum].

• Allow the user to suppress reporting of selected weaknesses.
• Use standard names for weakness classes.

2.2 Requirements for Mandatory Features
To meet a core capability, a source code security analysis tool or set of tools must be able to accomplish
the tasks described below. The tool(s) shall:

SCSA-RM-1: Identify all of the classes of weaknesses listed in Annex A.
SCSA-RM-2: Textually report any weaknesses that it identifies.
SCSA-RM-3: For any identified weaknesses in the classes listed in Annex A, report the class using a
semantically equivalent name.
SCSA-RM-4: For any identified weaknesses, report at least one location by providing the directory path,
file name and line number.
SCSA-RM-5: Identify weaknesses despite the presence of the coding complexities listed in Annex B.
SCSA-RM-6: Have an acceptably low false positive rate.

2.3 Requirements for Optional Features
The following requirements apply to optional tool features. If the tool supports an optional feature, then
the requirement for that feature applies, and the tool can be tested against it. A specific tool might
optionally provide none, some, or all of the features described by these requirements. Optionally, the
tool(s) shall:

SCSA-RO-1: Produce an XML-formatted report.
SCSA-RO-2: Not report a weakness instance that has been suppressed.
SCSA-RO-3: Use the Common Weakness Enumeration [CWE] number and name of the weakness class
it reports.

3.0 References

[Barnes] Barnes, John, High Integrity Software: The SPARK Approach to Safety and Security,
Addison-Wesley, 2003.

[Barnum] Barnum, Sean, Taming the Tower of Babel: Software Assurance Findings Expression
Schema (SAFES) Framework, 12th Semi-Annual Software Assurance Forum, March 2010,
https://buildsecurityin.us-cert.gov/swa/forum_march_2010.html

[CVE] Common Vulnerability and Exposures, the MITRE Corporation, http://cve.mitre.org/

[CWE] Common Weakness Enumeration, the MITRE Corporation, http://cwe.mitre.org/

[Fleiss] Fleiss, Joseph L. (1981). Statistical Methods for Rates and Proportions, 2nd ed., John Wiley and
Sons, New York, pp 4-8.

 [Kratkiewicz] Kratkiewicz, Kendra. (2005). Evaluating Static Analysis Tools for Detecting
Buffer Overflows in C Code, Master's Thesis, Harvard University, Cambridge,
MA, 285 pages. http://www.ll.mit.edu/IST/pubs/KratkiewiczThesis.pdf

[Rice] Rice, Henry Gordon, Classes of Recursively Enumerable Sets and Their Decision
Problems, Transactions of the American Mathematical Society, 74(2):358-366, March 1953.

[SP800-27] Engineering Principles for Information Technology Security (A Baseline for Achieving
Security), NIST SP 800-27, Revision A, June 2004. http://csrc.nist.gov/publications/nistpubs/

 [Tokar] Tokar, Joyce L, Jones, F. David, Black, Paul E., and Duplika, Chris E., Software
Vulnerabilities Precluded by SPARK, (to be published)Paul.

[XML] Extensible Markup Language, World Wide Web Consortium (W3C), http://www.w3.org/XML/

http://www.ll.mit.edu/IST/pubs/KratkiewiczThesis.pdf
http://csrc.nist.gov/publications/nistpubs/

Annex A Source Code Weaknesses
The classes of source code weaknesses listed in this table represent a “base set” of code weaknesses.
Criteria for selection of weaknesses include:

• Found in existing code today – Corresponding vulnerabilities are found in existing software
applications.

• Recognized by tools today - Tools today are able to identify these weaknesses in source code
and identify their associated file names and line numbers.

• Likelihood of exploit is medium to high – The vulnerability is fairly easy for a malicious user to
recognize and to exploit.

For each weakness, this table contains the CWE name and identifier number, a short description, the
relevant language(s) in which it might occur, and the code complexities that apply. For other relevant
information, such as likelihood of exploitation, instances in the common vulnerability and exposures list
[CVE], background, consequences, and remediation; please see [CWE]. For SPARK, some weaknesses
cannot occur depending upon the toolset used; please see [Barnes, Tokar].

Name CWE ID Description Language(s) Relevant Complexities

Input Validation

Basic XSS 80 Inadequately filtered input,
allows a malicious script to
be passed to a web
application that in turn
passes it to another client.

C,C++, Java,
SPARK

taint, scope, address alias level,
container, local control flow, loop
structure, buffer address type

Resource
Injection

99 Inadequately filtered input
is used in an argument to a
resource operation
function.

C, C++, Java,
SPARK

taint, scope, address alias level,
container, local control flow, loop
structure, buffer address type

OS Command
Injection

78 Inadequately filtered input
is used in an argument to a
system operation
execution function.

C, C++, Java,
SPARK

taint, scope, address alias level,
container, local control flow, loop
structure, buffer address type

SQL Injection 89 Inadequately filtered input
is used in an argument to a
SQL command calling
function.

C, C++, Java,
SPARK

taint, scope, address alias level,
container, local control flow, loop
structure, buffer address type

Range Errors

Stack overflow 121 Input is used in an
argument to create or copy
data beyond the fixed
memory boundary of a
buffer on the stack.

C, C++ All

Heap overflow 122 Input is used in an
argument to create or copy
beyond the fixed memory
boundary of a buffer in the
heap portion of memory.

C, C++ All

Format string
vulnerability

134 Inadequately filtered input
is used to format data in
printf() style C/C++
functions.

C, C++ taint, scope, address alias level,
container, local control flow, loop
structure, buffer address type

Improper Null
Termination

170 The software does not
properly terminate a string.

C, C++ taint, scope, address alias level,
container, local control flow, loop
structure, buffer address type

API Abuse

Heap Inspection 244 Using realloc() to resize
buffers that store sensitive
information can leave the
information exposed
because it is not removed.

C, C++ taint, scope, address alias level,
container, local control flow, loop
structure, buffer address type

Often Misused:
String
Management

251 Some string manipulation
functions can be exploited
through their input to
produce buffer overflows.

C, C++ taint, scope, address alias level,
container, local control flow, loop
structure, buffer address type

Security Features

Hard-Coded
Password

259 Hard-coded data is used to
authenticate or passed to a
login function.

C/C++, Java,
SPARK

scope, address alias level,
container, local control flow, loop
structure, buffer address type

Time and State

Time-of-check
Time-of-use race
condition

367 Between the time that a
resource (or its reference)
is checked and the time it
is used, a change may
occur in the resource to
invalidate the check.

C, C++, Java,
SPARK*

asynchronous

Unchecked Error
Condition

391 No action is taken after an
error or exception occurs.

C, C++, Java none

Code Quality

Memory leak 401 Memory is allocated, but is
not released after its final
used.

C, C++ scope, address alias level,
container, local control flow, loop
structure

Unrestricted
Critical Resource
Lock

412 A resource may locked by
an unauthorized external
agent.

C, C++, Java,
SPARK*

asynchronous

Double Free 415 An attempt is made to free
memory that has
previously been used in a
free() function call.

C, C++ scope, address alias level,
container, local control flow, loop
structure, buffer address type

Use After Free 416 An attempt is made to
access memory previously
released by a call to the

C, C++ scope, address alias level,
container, local control flow, loop
structure, buffer address type

free() function.

Uninitialized
variable

457 A variable is created
without assigning it a value
and is subsequently
referenced in the program.

C, C++ scope, address alias level,
container, local control flow, loop
structure

Unintentional
pointer scaling

468 Improper mixing of pointer
types in an expression
may result in references to
memory beyond that
intended by the program.

C, C++ data type

Null Dereference 476 A pointer with a value of
NULL is used as though it
pointed to a valid memory
area.

C, C++ taint, scope, address alias level,
container, local control flow, loop
structure

Encapsulation

Leftover Debug
Code

489 Debug code can create
unintended entry points in
an application.

C, C++, Java,
SPARK

none

* This weakness can only occur in certain cases if RavenSPARK is used.

Annex B Code Complexity Variations

To locate and identify source code weaknesses listed in Annex A, a source code security analysis tool
must be able to find those weaknesses within relevant complex coding structures. A list of these types of
structures, adapted from [Kratkiewicz], is provided below. Some of the complexities are language specific
(e.g. the use of pointers in C, C++), however, most exist in C, C++ and Java. Equivalent constructs in
other languages will be added, as tools for those languages are addressed in this specification.

Complexity Description Enumeration
address alias level level of “indirection” of buffer alias

using variable(s) containing the
address

1, 2, etc.

array address complexity level of complexity of the address
value of an array buffer

constant, variable, linear expression,
nonlinear expression, function return
value, array content value

array index complexity level of complexity of the index
value of an array buffer using
variable assignment

constant, variable, linear expression,
nonlinear expression, function return
value, array content value

array length/limit complexity level of complexity of the index of
an array buffer’s length or limit
value

constant, variable, linear expression,
nonlinear expression, function return
value, array content value

asynchronous asynchronous coding construct threads, forked process, signal handler

buffer address type method used to address buffer pointer, array index

Container containing data structure array, struct, union, array of structs, array
of unions

data type type of data read or written character, integer, floating point, wide
character, pointer, unsigned character,
unsigned integer

index alias level level of buffer index alias
indirection

1, 2, etc.

local control flow type of control flow around
weakness

if, switch/case, cond (?:), goto/label,
setjmp, longjmp, function pointer,
recursion

loop complexity component of loop that is complex initialization, test, increment

loop iteration type of loop iteration/termination fixed, indefinite

loop structure type of loop construct in which
weakness is embedded

standard for, standard do while, standard
while, non standard for, non standard do
while, non standard while

memory access type of memory access related to
weakness

read, write

memory location type of memory location related to
weakness

heap, stack, data region, BSS, shared
memory

Scope scope of control flow related to
weakness

local, within-file/inter-procedural, within-
file/global, inter-file/inter-procedural,
inter-file/global, inter-class

Taint type of tainting to input data argc/argv, environment variables, file or
stdin, socket, process environment

	1.0 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Audience
	1.4 Technical Background
	1.5 Glossary of Terms

	2.0 Functional Requirements
	2.1 High Level View
	2.2 Requirements for Mandatory Features
	2.3 Requirements for Optional Features

	3.0 References
	Annex A Source Code Weaknesses
	Annex B Code Complexity Variations

