End-to-end Verification of
Code for Statistical Tests

Eliot Moss™, Michael Norrish™*, Jared Yeager*

*University of Massachusetts Amherst
**Australian National University

Fairness in Machine Learning

Fairness in machine learning is an increasingly pressing issue
o Ramifications of unfair learned functions are increasingly impactful
o Examples: Giving advice on loan applications, parole hearings, etc.
o Our formulation also covers safety using the same mathematics

How we formalize fairness of a learned model
o Apply a statistical test to a validation data set
Validation data is separate from training/test data used to build the model
The learned model will be applied to some population of cases in the future
We assume the validation data is drawn randomly from that same population
m They have the same distribution
o We do not assume that we know what that distribution is

o O O

The Validation Procedure

For each validation case x. (i=1, ..., n)
o Apply the learned model to get predicted result f(x)
o Compute an error err, as some difference between f(x) and the desired result y.
o For example, err, = 0 if the loan decision agrees, err, = 1 if it does not

Compute the sum/average of the err, Aerr

We desire E[Aerr] < some chosen limit, e.g., .01 (1% error rate)
o This is what “fair” means in this context

Using the concentration inequality we can test whether E[Aerr] meets that
limit, within some probability p

The Validation Procedure: Hoeffding’s Inequality

Let X;, ..., X,, be independent random variables such that
Ve:1 <1< n—>§|ai,bi : P(XZ = [az,bz]) =1

Vt: P(E(X)—X >t) < exp (— Z@_Qg),t_ a,)2>

So if each X; = Err;, is 0/1 error, then:

Vt: P(E(Err) — Err >t) < i

The Validation Procedure: Example

Say our validation error on 500 samples was 0.04
Say we want E(FErr) < 0.05 with probability 0.95

P(E(Err) — 0.04 > 0.01) < ¢~ 2(500(0-0% _ (5 948
P(E(Err) < 0.05) > 1 — e~ 2(500(0-00% _ (3 0952

P(E(Err) < 0.05) > 1 — e 2(14979)(0.-00% _ (9500

Goal: formally verified code for fairness tests

Formally verified = checked by a machine proof checker
o We use HOL4, an interactive theorem prover

Verified math: concentration inequalities, e.g., Hoeffding’s Inequality
o Requires background theories: measure theory, probability, etc.

Verified algorithm (for computing the desired inequality)

Verified implementation of the algorithm

o Must address lower level concerns
o Notably floating point computation - which induces additional accuracy bounds

Extending Verified Mathematics

Hoeffding’s Inequality is well accepted and understood

But people keep inventing new concentration inequalities
o Their correctness may not be as trusted

We may wish to bound the variance or other measures, not (just) the mean
Proof about statistics necessitate measure theory

Some measure theory results have yet to be shown in HOL4

o Fubini’'s Theorem
o Extensions from semi-algebras to measure spaces

Proving algorithms that compute with random data

Most program logics deal with definite data and deterministic computation
Here, we need to say something about the err. coming from a distribution
The summation algorithm has deterministic control flow, but some algorithms

may follow different paths depending on the nature of the data
o These algorithms requires deeper probabilistic reasoning

More about floating point numbers

“Poster child”: Summation on n floats

Inaccuracies can accumulate over arithmetic operations
o No upper bound to these inaccuracies

We ran an experiment to assess potential error
o Draw 1,000,000 floating point numbers from a distribution
o Compute relative error of direct sum vs accurate sum
o Total of 10,000 trials, show 100 worst trials (worst 1%)

Distributions used

o Uniform over most values (excluding extremes to prevent overflow)
o Gaussian with uy =0 and 02 = 10
o Both have sorted and unsorted variants

Why careful floating point algorithms matter

102 .
— Gaussian Uniform sorted = Uniform double
— Gaussian sorted Gaussian double = Uniform sorted double
1
10*F |==Uniform = Gaussian sorted double +++ float round-off 10-8 5

0
10 109

107 E
16791 .

102} |

10} E
102} E

1071 g
10% B E

107 E

10°} E
104} R
105 ¢ |
— Gaussian — Uniform +++ float round-off
1 0,7 | 10-15 | |- Gaussian sorted Uniform sorted == double round off 2
108 106k === o P Ppp—— P e
9900 9920 9940 9960 9980 10000 9900 9920 9940 9960 9980 10000

IEEE float and double summation of 1,000,000 random numbers, 10,000 trials, worst 1% of the trials.

Relative error of direct sum vs accurate sum. Black/gray drawn Gaussian (u = 0; 02 = 10); red/orange drawn uniformly over
all floats, omitting top V2 of exponent values (to avoid overflow). Black/red added in order drawn; gray/orange added from
most negative to most positive. Blue/purple compare using doubles vs accurate floats. Dotted = float round off; dashed =
double round off.

About accurate floating point computation

Algorithms are known for computing this sum to the floating point value

closest to the actual sum of the real numbers that the input floats represent
o Accurate multiplication and dot product algorithms exist as well

But, people don’t tend to use them

o They involve more instructions

o They're tricky

o (Maybe) a lot of people just say ‘I'll compute with doubles and that will be good enough’

o New IEEE instructions that return the rounded result and the exact error will help - but this is
not yet approved, and will take a while to happen in practice

However, we need a rigorous proof of accuracy!
o We must use the accurate methods

Floating point instructions have been formalized - but not the algorithms

End-to-end Verification: Top to Bottom

The math
The ideal algorithm (over the reals)
The real algorithm (over the floats)

The code produced by a compiler
o For small-ish pieces of code this process is understood
o For some languages, there are verified compilers (CakeML for ML, CompCert for C), so we
can also just use them
o We may wish to push toward GPU implementations

Why? For algorithms where we need to trust a statistical result produced with a
computer, e.qg., for legal or safety reasons.

Thanks to our team

Prof. Eliot Moss, UMass, Amherst, moss@cs.umass.edu

Dr. Michael Norrish, Australian Nat'l| University and Data61/CSIRO,
Michael.Norrish@data61.csiro.au

Jared Yeager, UMass, Amherst, jyeager@cs.umass.edu

mailto:moss@cs.umass.edu
mailto:Michael.Norrish@data61.csiro.au
mailto:jyeager@cs.umass.edu

