
End-to-end Verification of
Code for Statistical Tests

Eliot Moss*, Michael Norrish**, Jared Yeager*

*University of Massachusetts Amherst
**Australian National University

Fairness in Machine Learning
● Fairness in machine learning is an increasingly pressing issue

○ Ramifications of unfair learned functions are increasingly impactful
○ Examples: Giving advice on loan applications, parole hearings, etc.
○ Our formulation also covers safety using the same mathematics

● How we formalize fairness of a learned model
○ Apply a statistical test to a validation data set
○ Validation data is separate from training/test data used to build the model
○ The learned model will be applied to some population of cases in the future
○ We assume the validation data is drawn randomly from that same population

■ They have the same distribution
○ We do not assume that we know what that distribution is

The Validation Procedure
● For each validation case xi (i = 1, ... , n)

○ Apply the learned model to get predicted result f(xi)
○ Compute an error erri as some difference between f(xi) and the desired result yi
○ For example, erri = 0 if the loan decision agrees, erri = 1 if it does not

● Compute the sum/average of the erri, Aerr
● We desire E[Aerr] ≤ some chosen limit, e.g., .01 (1% error rate)

○ This is what “fair” means in this context

● Using the concentration inequality we can test whether E[Aerr] meets that
limit, within some probability p

The Validation Procedure: Hoeffding’s Inequality

The Validation Procedure: Example

Goal: formally verified code for fairness tests
● Formally verified = checked by a machine proof checker

○ We use HOL4, an interactive theorem prover

● Verified math: concentration inequalities, e.g., Hoeffding’s Inequality
○ Requires background theories: measure theory, probability, etc.

● Verified algorithm (for computing the desired inequality)
● Verified implementation of the algorithm

○ Must address lower level concerns
○ Notably floating point computation - which induces additional accuracy bounds

Extending Verified Mathematics
● Hoeffding’s Inequality is well accepted and understood
● But people keep inventing new concentration inequalities

○ Their correctness may not be as trusted

● We may wish to bound the variance or other measures, not (just) the mean
● Proof about statistics necessitate measure theory
● Some measure theory results have yet to be shown in HOL4

○ Fubini’s Theorem
○ Extensions from semi-algebras to measure spaces

Proving algorithms that compute with random data
● Most program logics deal with definite data and deterministic computation
● Here, we need to say something about the erri coming from a distribution
● The summation algorithm has deterministic control flow, but some algorithms

may follow different paths depending on the nature of the data
○ These algorithms requires deeper probabilistic reasoning

More about floating point numbers
● “Poster child”: Summation on n floats
● Inaccuracies can accumulate over arithmetic operations

○ No upper bound to these inaccuracies

● We ran an experiment to assess potential error
○ Draw 1,000,000 floating point numbers from a distribution
○ Compute relative error of direct sum vs accurate sum
○ Total of 10,000 trials, show 100 worst trials (worst 1%)

● Distributions used
○ Uniform over most values (excluding extremes to prevent overflow)
○ Gaussian with μ = 0 and σ2 = 10
○ Both have sorted and unsorted variants

IEEE float and double summation of 1,000,000 random numbers, 10,000 trials, worst 1% of the trials.
Relative error of direct sum vs accurate sum. Black/gray drawn Gaussian (μ = 0; σ2 = 10); red/orange drawn uniformly over
all floats, omitting top ¼ of exponent values (to avoid overflow). Black/red added in order drawn; gray/orange added from
most negative to most positive. Blue/purple compare using doubles vs accurate floats. Dotted = float round off; dashed =
double round off.

Why careful floating point algorithms matter

About accurate floating point computation
● Algorithms are known for computing this sum to the floating point value

closest to the actual sum of the real numbers that the input floats represent
○ Accurate multiplication and dot product algorithms exist as well

● But, people don’t tend to use them
○ They involve more instructions
○ They’re tricky
○ (Maybe) a lot of people just say ‘I’ll compute with doubles and that will be good enough’
○ New IEEE instructions that return the rounded result and the exact error will help - but this is

not yet approved, and will take a while to happen in practice

● However, we need a rigorous proof of accuracy!
○ We must use the accurate methods

● Floating point instructions have been formalized - but not the algorithms

End-to-end Verification: Top to Bottom
● The math
● The ideal algorithm (over the reals)
● The real algorithm (over the floats)
● The code produced by a compiler

○ For small-ish pieces of code this process is understood
○ For some languages, there are verified compilers (CakeML for ML, CompCert for C), so we

can also just use them
○ We may wish to push toward GPU implementations

Why? For algorithms where we need to trust a statistical result produced with a
computer, e.g., for legal or safety reasons.

Thanks to our team
Prof. Eliot Moss, UMass, Amherst, moss@cs.umass.edu

Dr. Michael Norrish, Australian Nat’l University and Data61/CSIRO,
Michael.Norrish@data61.csiro.au

Jared Yeager, UMass, Amherst, jyeager@cs.umass.edu

mailto:moss@cs.umass.edu
mailto:Michael.Norrish@data61.csiro.au
mailto:jyeager@cs.umass.edu

