Juliet Test Suite v1.1 for C/C++
User Guide

Center for Assured Software
National Security Agency
9800 Savage Road
Fort George G. Meade, MD 20755-6577

cas@nsa.gov

December 2011

Table of Contents

SECiON L: INEFOTUCTION.cuiiiiieite ettt nbe b e 1
1.1 DOCUMENT PUIMPOSE ..ottt 1
1.2 What @re TSt CASES?ecueiuierieierieiie st sttt sttt st bbb 1
1.3 WY TESE CASES?.. ittt bbbttt b 1
1.3.1 Limitations of Natural COEccooviiiiiiiiiieee e 1
1.3.2 Limitations Of the TeSt CaSES......cccrviiirrierieiieiie e eeesieesie e sreesie e sreenee e 2
1.4 Creating TSt CaASES.cvciieireeieiteesteeie s e ste e et e s et e e ste e e e s e s teebesreesteeeeaneesraeneas 3
L5 FEEUADACK ...ttt et ne e 3
SECHION 2: TSt CASE SCOPE ...cveeuriitieiieeiteette et este e e st e ste et e st e e s te et e sreesteetesseesaeestesneesteenreaneens 4
2.1 TSt CaSe SEIECHIONeivii ettt nre e 4
2.2 TSt CASE SEALISTICSveevvevieiiiie ittt e 4
Section 3: TeSt Case NAMINGoiiiiiiiiieiee et 6
3.1 NAMING SCREIME ... 6
3.2 Test Case FUNCIONAl Variantscccoeiieiieieiie e 6
3.2.1 Key Strings in Functional Variant Namesccccoceviieiieiiee e, 6
3.3 Test Case FIOW ValTaNnTScccciveieiieiiee et anes 7
A TESE CASE FHIES ... e 8
3.4.1 TeSt Case File NAMES.......cc.oceiieieeiesiene et nee e sreeneennees 8
3.4.2 SUD-Tile IAENTITIEN ..o 9
Section 4: TeSt Case DESIGNooeiuiiiriiiieieieie ettt 10
4.1 Non-Class-Based FIaw TeSt CaSEScovvriiiirriiiie e 10
4.1.1 ReqQUITEA FUNCTIONS ..ottt 10
4.1.2 Optional FUNCLIONS.......cc.oiiiieiie et 12
4.2 C++ Class-Based FIaw TeSt CaSEScvevuveviiierieieseesieeie e steesee e sie e snee e neas 14
4.3 Virtual FUNCLION TSt CASES. ...cveiiiiieeiieeiesieesieeie sttt sttt sbe e nneas 16
4.4 Bad-0NlY TESE CASEScveeeiirieiieeiecie sttt e st te et sreeste e ae e e teesaesseesneeneenneas 16
Section 5: Test Case SUPPOIT FIIEScviiiiiieiiie e 17
5.1 ComMMON SUPPOIE FIIES ...c.vveieiieiie sttt nneas 17
5.2 CWE Entry Specific SUPPOIt FIIESccviiiiiiieeieseeeee e 18
5.3 Main SUPPOIT FIIES......civeiiieie ettt 18
Section 6: BUIlAING TSt CASESc.ueieeieeieiiieiie e see sttt sttt enes 19
6.1 BUIlA Prer@QUISITES ...c.viiveeieeeie ettt e et e e sraenneaneens 19
6.2 COMPIING TESE CASESvevieiieiieciee ittt sttt sttt sbe e nreas 19
6.2.1 Compile All Test Cases as One Executable...........ccccccevvveviviiiiciiccccieen, 19
6.2.2 Compile Test Cases per CWE ENIY.......cccooviiiiiiiiiieiescse e 20
6.3 Compiling an Individual TeSt CaSE.......cccvivveiierieiieieeie e 20

6.3.1 Building and RUNNiNg @ TeSt CaSE.......ccceriiiririiieieiesese e 20

Section 7: Updating BUild FIlESc.cov oo 21
7.1 Updating C/C++ BUild FIlEScooiiiiiiiec e 21

SECtioN 8: TOOI ANAIYSIS ...c.vveieitieiiieie ettt sae et e teareesreenas 21
8.1 True Positives and False NEGALIVESccccoiiiiiiiieiee e 21
8.2 False Positives and True NEQAtIVEScccciverieiiieieeie et 22
8.3 Unrelated FIAW REPOITSccuiiiiiiiiieiee e 22

Appendix A: Test Case CWE ENLFIES........cociiiiiiieieieiese e A-1

AppendixX B: SANS/CWE TOP 25 COVEIAJEecveeveeieeiesieeiie e steesteesie e sreesee e e B-1
Appendix C: Test Case FIOW VAITaNTS ..o C-1
AppendiX D: Bad-Only TeSt CASEScccveirieriiiiiiieeiie e esie et sae e s D-1
Appendix E : Test Case Changes iN VL1 ... E-1

Section 1: Introduction

1.1 Document Purpose

This document describes the “Juliet Test Suite v1.1 for C/C++” test cases that were created by
the NSA’s Center for Assured Software (CAS) specifically for use in testing static analysis tools.
It is intended for anyone who wishes to use the test cases for their own testing purposes, or who
would like to have a greater understanding of how the test cases were created.

This document explains the philosophy behind the naming and design of the test cases and
provides instruction on how to compile and run them using a Command Line Interface (CLI).
Section 8 also provides details on how the tool results can be evaluated.

The test cases are publically available for download at http://samate.nist.gov/SRD/testsuite.php.

1.2 What are Test Cases?

Test cases are pieces of buildable code that can be used to study static analysis tools. A test case
targets exactly one type of flaw, but other, unrelated flaws may be incidentally present. For
example, the C test case “CWE476_NULL_Pointer_Dereference__char_01” targets only a
NULL Pointer Dereference flaw. In addition to the construct containing the target flaw, each test
case typically contains one or more non-flawed constructs that perform a function similar to the
flawed construct. A small subset of test cases does not contain non-flawed constructs and are
considered bad-only test cases (see Section 4.3).

1.3 Why Test Cases?

In order to study static analysis tools, the CAS needs software for tool analysis. The CAS
previously considered using “natural” or “artificial” software. Natural software is software that
was not created to test static analysis tools. Open source software applications, such as the
Apache web server (httpd.apache.org) or the OpenSSH suite (www.openssh.com), are examples
of natural software. Artificial software, in this case, is software that contains intentional flaws
and is created specifically to test static analysis tools. The test cases are an example of artificial
software.

1.3.1 Limitations of Natural Code

During previous research efforts, the CAS used a combination of natural and artificial code in
testing static analysis tools. In addition, the CAS followed the National Institute of Standards
and Technology (NIST) Static Analysis Tool Exposition (SATE) that examined the performance
of static analysis tools on natural code.

Experiences from these efforts indicated that the use of natural code often presents specific
challenges, such as:

Evaluating tool results to determine their correctness — When a static analysis tool is run
on natural code, each result needs to be reviewed to determine if the code in fact has the
specified type of flaw at the specified location (i.e. if the result is correct or a “false
positive”). This review is non-trivial for most results on natural code and often the
correctness of a given result cannot be determined with a high degree of certainty in a
reasonable amount of time.

Comparing results from different tools — Comparing static analysis tool results on natural
code is complicated because different tools report results in different manners. For
example, many flaws involve a “source” of tainted data and a “sink” where that data is
used inappropriately. Some tools may report the source where others report the sink.
Sometimes multiple sources of tainted data all lead to one sink, which may cause
different tools to report a different number of results.

Identifying flaws in the code that no tools find — When evaluating static analysis tools, a
“standard” list of all flaws in the code is needed in order to identify which flaws each tool
failed to report. On natural code, creating this “standard” is difficult, especially
identifying flaws that are not reported by any automated tool and therefore can only be
found with manual code review.

Evaluating tool performance on constructs that do not appear in the code — Natural code
has the limitation that even a combination of different projects will likely not contain all
flawed and non-flawed constructs that the CAS wants to test. Even flaw types that
appear in the code may be obfuscated by complex control and data flows such that a flaw
in the natural code will remain undetected even by tools that generally catch a flaw of
that type. To address this issue, the CAS considered using a “seeding” method to embed
flaws and non-flaws into natural code. Ultimately, test cases were created instead of
using “seeding” because the CAS believed that studying static analysis tools using
“seeded” code would be overly complex and result in testing fewer constructs than
desired.

Based on these experiences and challenges, the CAS decided to develop artificial test cases to
test static analysis tools. Using artificial code simplifies tool studies by allowing the CAS to
control, identify, and locate the flaws and non-flaws included in the code.

1.3.2 Limitations of the Test Cases

Although the use of the test cases simplifies static analysis tool studies, it may limit the
applicability of results in the following two ways:

Test cases are simpler than natural code — Some test cases are intentionally the simplest
form of the flaw being tested. Even test cases which include control or data flow
complexity are relatively simple compared to natural code, both in terms of the number
of lines of code and in terms of the number and types of branches, loops, and function

-2-

calls. This simplicity may inflate results in that tools may report flaws in the test cases
that they would rarely report in natural, non-trivial code.

e Frequencies of flaws and non-flawed constructs in the test cases may not reflect their
frequencies in natural code — Each type of flaw is tested once in the test cases, regardless
of how common or rare that flaw type may be in natural code. For this reason, two tools
that have similar results on the test cases may provide very different results on natural
code, such as if one tool finds common flaws and the other tool only finds rare flaws.
Even a tool with poor results on the test cases may have good results on natural code.
Similarly, each non-flawed construct also appears only once in the test cases, regardless
of how common the construct is in natural code. Therefore, the false positive rates on the
test cases may be much different from the rates the tools would have on natural code.

1.4 Creating Test Cases

Most of the test cases for non-class-based flaws were generated using source files that contain
the flaw and a tool called the “Test Case Template Engine” created by the CAS. Generated test
case files contain a comment in the first line indicating that they were generated.

Some flaw types could not be generated by the CAS’s custom Test Case Template Engine. Test
cases for those flaw types were manually created. Due to resource constraints, only Baseline
(“01” flow variant) test cases were created for these flaw types.

1.5 Feedback

If you have gquestions, comments or suggestions on how to improve the test cases, please contact
the CAS via e-mail at CAS@nsa.gov.

Section 2: Test Case Scope

This section provides details on the scope of the test cases. In general, the test cases are focused
on functions available on the underlying platform rather than the use of third-party libraries.

Although C and C++ are different programming languages, they are treated as a single unit since
C++ is a generally a superset of C. In addition, most software assurance tools support both C
and C++.

Wherever possible, the C/C++ test cases restrict Application Programming Interface (API) calls
to the C standard library, which is available on all platforms. In order to cover more issues,
some test cases target the Windows platform (using Windows-specific API functions). In the
future, this effort could be expanded to cover API functions that are unique to platforms other
than Windows. No third-party C or C++ library functions are used.

The C test case code targets the C89 standard so that the test cases can be compiled and analyzed
using a wide variety of tools that may not support newer versions of the C language.

The test cases limit the use of C++ constructs and features to only the test cases that require them
(such as test cases related to C++ classes or the “new” operator). Unless necessary for the flaw
type targeted, test cases do not use the C++ standard library.

2.1 Test Case Selection
The CAS uses several sources when selecting flaw types for test cases:

e The test case development team’s experiences in Software Assurance
e Flaw types used in the CAS’s previous tool studies
e Vendor information regarding the types of flaws their tools identify

e Weakness information in MITRE’s Common Weakness Enumeration (CWE)

While each test case uses a CWE identifier as part of its name, a specific CWE entry for a flaw
type is not required in order to create a test case. Test cases are created for all appropriate flaw
types and each one is named using the most relevant CWE entry (which might be rather generic
and/or abstract).

2.2 Test Case Statistics

The test cases cover 11 of the 2011 CWE/SANS Top 25 Most Dangerous Software Errors (see
Appendix B). Of the 14 CWE entries in the Top 25 that the test cases do not cover, ten are
design issues that do not fit into the structure of the CAS test cases. The other four are not
specific to C/C++. See Appendix B for details on the test cases associated with each of the Top
25.

New flaws as well as new control and data flow variants were added in Juliet Test Suite v1.1 for
C/C++. The number of C/C++ test cases in 2011 totaled 57,099, as opposed to 45,324 in 2010.
This represents an increase of nearly 26%. Table 1 contains statistics on the size and scope of the
test cases for 2010 and 2011.

2010 2011 Percentage
Increase
CWE Entries

0,

Covered 116 119 2.6%
Flaw Types 1,432 1,489 4%
Test Cases 45,324 57,099 26%

Lines of Code' | 6,338,548 8,375,604 32.1%

Table 1 —2010-2011 C/C++ Test Case Statistics
See Appendix A for a complete list of the CWE entries covered by the test cases.

In addition, the following changes occurred in Juliet Test Suite v1.1 for C/C++:

Test cases for an additional 12 CWEs were added.

Test cases for four CWESs were removed.

Seven new flow variants were added.

Test cases for five CWESs were redesigned to be part of a chain with another CWE.
The number of flaw types for 24 CWEs either increased or decreased.

See Appendix E for more details on each of these changes including reasoning behind the
additions and deletions of certain flaws types.

! Counted using CLOC (cloc.sourceforge.net). Blank or commented lines were not included.

-5-

Section 3: Test Case Naming

As described in Section 1.2, test cases are pieces of buildable code that target exactly one type of
flaw and typically contain one or more non-flawed constructs that perform a function similar to
the flawed construct.

3.1 Naming Scheme

The test cases use MITRE's CWEs as a basis for naming and organization. The test cases strive
to use the most specific CWE entry for the target flaw. Each test case file is associated with
exactly one CWE entry.

A test case is uniquely identified by a combination of four elements:

e The identifying number and possibly shortened name of the CWE entry most closely
associated with the intentional flaw.

e A “functional variant” name, which indicates the intentional flaw more specifically than
the CWE entry.

e A two-digit number associated with a “flow variant” which indicates the type of data
and/or control flow used in the test case. For example, flow variant “01” is the simplest
form of the flaw and contains neither data nor control flows.

e The programming language used in the test case. This is indicated in the extension(s) for
the test case files (“.c”, “.cpp”, or “.h”).

The name for a test case is written as “C test case CWE476 _NULL_Pointer_
Dereference__char_01”. Single file test cases can also be referenced by the file name.

3.2 Test Case Functional Variants

Every test case has a “functional variant” name. This word or phrase is used to differentiate test
cases for the same CWE entry. It should be as short as possible and will often be simply the
name of a type or function used in the test case. If there is only one type of issue for a CWE
entry, then the functional variant name for test cases for that CWE entry is “basic”.

3.2.1 Key Strings in Functional Variant Names

There is a key string that can appear in functional variant names to indicate test case
characteristics. This string is used by scripts that manage the test cases, build process, and result
evaluation. Due to the nature of the software used to generate most test cases, this string may
appear more than once in a functional variant name:

e “w32” —This string in the functional variant name for a test case indicates that the
functional variant is specific to the Windows operating system. Typically, these test
cases use functions in the “win32” API that are not present in other operating systems.
An example of such a test case is the C test case
CWE78_0OS_Command_Injection__char_listen_socket w32_execv_41.c. Many of the
C/C++ test cases will compile on non-Windows platforms, however these will not.

3.3 Test Case Flow Variants

The test cases are used to demonstrate the ability of static analysis tools to follow various control
and data flows in order to properly report a flaw and properly disregard a non-flaw in software.
The type of control or data flow present in a test case is specified by the “flow variant” number.
Test cases with the same flow variant number (but a different CWE entry or “functional variant™)
are using the same type of control or data flow.

Test cases with a flow variant of “01” are the simplest form of the flaws and do not contain
added control or data flow complexity. This set of test cases is referred to as the “Baseline” test
cases.

Test cases with a flow variant other than “01” are referred to as the “More Complex” test cases.
Those with a flow variant from “02” to “22” (inclusive) cover various types of control flow
constructs and are referred to as the “Control Flow” test cases. Those with a flow variant of “31”
or greater cover various types of data flow constructs and are referred to as the “Data Flow” test
cases. The gap between 22 and 31 is left to allow for future expansion.

Some flaw types do not have test cases for every flow variant. There are several reasons for this
as some of the flaw types:

e Involve “data” and therefore cannot be used in Data Flow test cases.

e Are inherent in a C++ class and for that reason cannot be placed in Control or Data flows
(only a Baseline test case is possible for these flaw types).

e Can’t be generated by the current version of the CAS’s custom Test Case Template
Engine and as a result are manually created. Only Baseline (“01” flow variant) test cases
are created for these flaw types. In the future, More Complex test cases could be created
for these flaw types, either manually or through the use of an enhanced version of the
engine.

e Are compatible with all of the control and data flows. That is, they result in a test case
that will not compile or does not function appropriately. Some of these issues are
unavoidable because the problem is inherent in the combination of the flaw type and the
flow variant. Others involve limitations of the current engine prompting future releases
of the test cases to possibly contain addition combinations.

The flow variants used in the test cases are detailed in Appendix C.

3.4 Test Case Files

A test case file is a file that is associated with exactly one test case (as opposed to test case
supporting files that are typically used by multiple test cases). An individual test case consists of
one or more test case file(s). Below are examples of test cases and their associated file names:

C test case CWE476_NULL_Pointer_Dereference__char_01 consists of one file:
e CWE476_NULL_Pointer_Dereference__char_01.c
C test case CWE476_NULL_Pointer_Dereference__char_51 consists of two files:

e CWE476_NULL_Pointer_Dereference_char_5la.c
e CWE476_NULL_Pointer_Dereference__char_51b.c

C test case CWE476_NULL_Pointer_Dereference__char_54 consists of five files:

CWE476_NULL _Pointer_Dereference__char_54a.c
CWE476_NULL _Pointer_Dereference__char_54b.c
CWE476_NULL _Pointer_Dereference__char_54c.c
CWE476_NULL_Pointer_Dereference__char_54d.c
CWE476_NULL_Pointer_Dereference__char_54e.c

C++ test case CWE563 Unused_Variable _unused_class_member_value 01 consists of two
files:

e CWE563_Unused_Variable unused class_member_value 01 bad.cpp
e CWE563_Unused Variable unused class_member_value 01 goodl.cpp

Test cases are not entirely self-contained. They rely on other files called test case support files,
which are described in Section 5.

3.4.1 Test Case File Names

Test case files are named with the following parts in order:

Part Description Optional/Mandatory
“CWE” String Literal Mandatory
Numerical identifier for the CWE entry
CWE ID associated with this test case, such as Mandatory
“36”
- String Literal Mandatory

A potentially shortened version of the
Shortened CWE CWE entry name, with underscores

entry name between words, such as Mandatory
“Absolute Path_Traversal”

" (two String Literal Mandatory

underscores)

A word or short phrase describing this
Functional Variant | particular variant of the issue, such as Mandatory
Name “fromConsole”. This item is described
further in Section 3.2 above.
“ String Literal Mandatory
A two digit integer value describing the
. type of complexity of the test case, such
Flow Variant 28 "01”. "02 or 61", This tem is Mandatory
described further in Section 3.3 above.
A string that identifies this file in a test
) e case consisting of multiple files, such as .
Sub-file Identifier “a” b’ “_bad’? “_good1p”. This item is Optional
described further in Section 3.4.2 below.
. String Literal Mandatory
Language
identifier / file String Literal “c”, “cpp”, or “.h” Mandatory
extension

Table 2 — Test Case File Name Components

For example, consider a test case written to evaluate a tool’s ability to find integer overflows.
This test case reads input from the console using the “fscanf” function and adds two numbers.
This test case is the simplest form of this flaw and is contained in one file:

CWE Entry ID: 190

Shortened CWE Entry Name: “Integer Overflow”
Functional Variant: “char_fscanf_add”

Flow Variant: 01

Language: C

The test case will be contained in the file named:

CWE190_Integer_Overflow__char_fscanf_add 01.c

3.4.2 Sub-file Identifier

The simpler forms of most flaws can be contained in a single source code file, but some test
cases consist of multiple files. There are several reasons a test case may be split into multiple
files and each one uses a different type of string to identify each file in the test case.

Some C++ flaws are inherent in a class and require separate files for the flawed and non-
flawed constructs. In this case, the flaw will be in a file identified with the string “ bad”
(such as “CWE401_Memory Leak _destructor 01 bad.cpp”) and the non-flaw will be
in the file identified with the string “_goodl” (such as
“CWE401_Memory_Leak _destructor 01 goodl.cpp”). Section 4.2 contains more
information about class-based flaws.

Some Data Flow test cases involve the flow of data between functions in different source
code files. In these test cases, the test case will “start” in the file identified with the string

“a”, such as “CWE476 NULL Pointer Dereference char 54a.c”. Functions in the “a”
file will call functions in the “b” file, which may call functions in the “c” file, etc.

e Some Data Flow test cases involve the flow of data between virtual function calls. In the
C++ version of these test cases, a header file (.h) is used to define the virtual function and
implementations occur in separate source (.cpp) files.

Section 4: Test Case Design

Most test cases cover flaws that can be contained in arbitrary functions (non-class-based flaws).
However, some flaws, call class-based flaws, are inherent in the C++ class definition and must
be handled differently in the test case design. An example of a class-based flaw is:

e C++ “use after free” caused by not defining operator= (C++ test case
CWE416_Use_After_Free_operator_equals_01_bad).

Virtual function and bad-only test cases are unique. Virtual function test cases require multiple
files while bad-only test cases are only used to test flaws, as opposed to testing both flaws and
non-flaws as in all other test cases.

All C/C++ test cases also define a “main” function in the primary file. This main function is not
used when multiple test cases are compiled at once. However, it can be used when building an
individual test case, such as for developer testing or for creating binaries to use in testing binary
analysis tools.

In the C/C++ test cases, the preprocessor macro INCLUDEMAIN must be defined at compile
time for this main function to be included in the compilation.

The sections below describe the test case design for non-class-based flaw, class-based flaw,
virtual function and bad-only test cases.

4.1 Non-Class-Based Flaw Test Cases

4.1.1 Required Functions

Test cases for flaws that are not inherent in a C++ class must define bad and good functions.
(Note: A few test cases are considered bad-only and do not contain an implementation of the
good function. See Section 4.3 for more details on these test cases.)

For test cases that use multiple files, the following functions are defined in the “a” sub-file (e.g.,
CWE78_0OS_Command_Injection__wchar_t_connect_socket_execl 5la.c). The “primary file”
for a test case is a general term for the “a” sub-file in multi-file test cases, or the only file in
single-file test cases.

-10 -

4.1.1.1 Primary Bad Function

Each test case contains exactly one primary bad function in the primary file. In many simpler
test cases, this function contains the flawed construct, but in other test cases this function calls
other “sink” or “helper” function(s) that contain the flaw (“sink” and “helper” functions are
described in a later section).

The primary bad function:

e For C, is named with the test case name followed by the string “ bad”, such as
“CWE78_OS Command_Injection__char_connect_socket_execl_01 bad()”.

e For C++, is named bad() and is in a namespace that is unique to the test case. The
function is not part of a C++ class.

e Takes no parameters and has no return value.
The name of the primary bad function matches the following regular expression:
NCWE.*_)?bad$
4.1.1.2 Primary Good Function

Each test case contains exactly one primary good function in the primary file (the same file as
the primary bad function). The only code in this good function is calls to each of the secondary
good functions (described in the next section). However, a few of the bad-only test cases contain
empty good functions. This function does not contain any non-flawed constructs.

The primary good method:

e For C, this function is named with the test case name followed by the string “ good”,
such as “CWE78 OS_Command_Injection__char_connect_socket_execl_01_good()”.

e For C++, this function is named good() and is in the namespace that is unique to the test
case. The function is not part of a C++ class.

e Takes no parameters and has no return value.
The name of the primary good function matches the following regular expression:
A(CWE.*)?good$
4.1.1.3 Secondary Good Function(s)

Non-class-based test cases also contain one or more secondary good functions in the primary
file. Some of the bad-only test cases, however, do not include any secondary good functions. In
many simpler test cases, these secondary good functions contain the actual non-flawed
constructs. In other test cases, these functions will call “sink” or “helper” functions, which

-11 -

contain the non-flawed constructs. The number of secondary good functions depends on the test
case’s flaw type as well as how many non-flawed constructs similar to that flaw exist. Many test
cases have only one secondary good function, but others may have more.

There are three naming conventions used for secondary good functions:

e g00dG2B, goodG2B1, goodG2B2, goodG2B3, etc. — These names are used in data flow
test cases when a good source is passing safe data to a potentially bad sink.

e (00dB2G, goodB2G1, goodB2G2, goodB2G3, etc. — These names are used in data flow
test cases when a bad source is passing unsafe or potentially unsafe data to a good sink.

e goodl, good2, good3, etc. — This is the “default” or “generic” name for these functions
when the conditions above do not apply.

The names of the secondary good functions match the following regular expression:
~good(\d+|G2B\d*|B2G\d*)$

Note: It is important that this regular expression does not overlap with the previously
defined good function regular expression so that the primary good functions are not
matched.

The secondary good functions have the same argument and return types as the primary bad and
primary good functions. In addition, the secondary good functions have the following
characteristics:

e In C and C++ test cases, the secondary good functions are statically scoped. Therefore,
they are only accessible within that source code file, which prevents name collisions.

e In C++ test cases, the secondary good functions are in the namespace that is unique to the
test case. The functions are not part of a C++ class.

4.1.2 Optional Functions

99 13

In addition to the required functions, test cases may define “helper”, “source”, and/or “sink”
functions as described in the following sections.

4.1.2.1 Helper Functions

Helper functions are used in test cases when even the simplest form of the flaw cannot be
contained in a single function (within the constraints of the test case design). Functions used to
create data flow patterns (“source” and “sink” functions) in More Complex test cases are not
considered “helper” functions because they are not part of the flaw construct.

Examples of test cases where helper functions are required include:

-12 -

Test cases involving variable argument functions, such as in the C test case
CWE134_Uncontrolled_Format_String__char_console_vprintf 01.

Test cases for unused parameter, such as in the C test case
CWE563_Unused_Variable__unused_parameter_variable_01.

The following items describe helper functions further:

The helper functions are always specific to the bad function or good functions. The bad
helper and good helper functions may contain different code or the exact same code
(separate functions are used to easily evaluate tool results as “true positives” or “false
positives”).

Helper functions for the bad code are generally named “helper _bad”.

Ideally, helper functions would be specific to an individual secondary good function and
be named like “helper _good1” or “helper goodG2B”. This naming is used in manually
created test cases, but unfortunately is not supported in the current Test Case Template
Engine. In generated test cases, a generic function named “helper good” is used.

In C test cases, helper functions are statically scoped when possible.

In C++ test cases, helper functions are in the namespace for the test case and are statically
scoped when possible.

In multi-file test cases, helper functions may be in the primary file or in the other, non-
primary files.

In test cases using variable argument functions, such as CWE134_Uncontrolled
Format_String__char_console_vprintf_01, helper functions are named “bad_vasink”,
“goodG2B_vasink”, and “goodB2G_vasink”. In control flow test cases, such as
CWE134_Uncontrolled_Format_String__char_console_vprintf_02, helper functions are
named “bad vasinkb”, “bad vasinkg”, “goodB2G1 vasinkb”, “goodB2G2 vasinkg”,
“200dG2B1_vasinkb”, etc. Despite their names, these “vasink” functions are considered
“helper” functions rather than “sink” functions because they are needed in even the
simplest forms of the flaws.

The names of the helper functions will match the following regular expressions:

NCWE.+_)?(helper_bad|bad_vasink[bg]?)$

NCWE.+_)?((helper_good(G2B|B2G)?\d*)|(good(G2B|B2G)?\d*_vasink[bg]?))$

4.1.2.2 Source and Sink Functions

Test cases that contain data flows use “source” and “sink” functions, which are called from each
other or from the primary bad or good function. Each source or sink function is specific to either
the bad function for the test case or for exactly one secondary good function.

-13 -

The following items describe source and sink functions further:

Bad source and sink functions are generally named “bad_source” and “bad_sink”.

2 (13

Good source functions are generally named “goodG2B source”, “goodG2B1 source”,

29 ¢¢

“g00dB2G_source”, “goodB2G2_source”, etc.

Good sink functions are generally named “goodG2B sink”, ‘“goodG2B1 sink”,
“g00dB2G_sink”, “goodB2G2_sink”, etc.

In C test cases, source and sink function are statically scoped when possible. If the
function is called from another file, then the test case name is added to the beginning of
the function name. Examples of non-static source and sink function names are

“CWE134 Uncontrolled Format String char console printf 61b bad source” and
“CWE134 Uncontrolled Format String char console printf 51b goodG2B sink™.

In C++, source and sink functions are defined in the namespace for that test case and are
statically scoped when possible. When multiple source or multiple sink functions are
used in a test case, they are named ‘“bad sink b”, bad sink ¢”, etc. and
“g00dG2B_sink b”, “goodG2B sink c”, etc.

In multi-file test cases, source and sink functions may be defined in the primary file or in
the other, non-primary files.

The names of the source and sink functions will match the following regular expressions:

NCWE.+_)bad_source(_[a-z])?$
N(CWE.+_)bad_sink(_[a-2])?$
NCWE.+_)good(G2B\d*|B2G\d*)?_source(_[a-z])?$

A(CWE.+_)good(G2B\d*|B2G\d*)?_sink(_[a-z])?$

4.2 C++ Class-Based Flaw Test Cases

The design of test cases for C++ class-based flaws (i.e., those flaws that affect an entire class and
not just a statement or code block) are slightly different because the bad and good constructs
cannot be contained in an arbitrary function. These test cases use separate classes in separate

files.

Bad File for Class-Based Flaws

In a test case for a class-based flaw, the bad file:

Has a name that ends in _bad (before the extension). For example,
“CWE401 Memory Leak destructor 01 bad.cpp”.

-14 -

Contains a required bad function with a signature like the bad function in a test case for a
non-class-based flaw. This function makes use of the bad class for this test case to
exercise the flaw being tested.

o In C++, this function is in the namespace for the test case, but outside of the class
in the file.

If there is only one class in the file, it is named “BadClass”. If a base class and a subclass
are needed for the flaw, the classes are in the same file and are named “BadBaseClass”
and “BadDerivedClass”.

Has a main function that calls the bad function. Like the main functions in test cases for
non-class-based flaws, this function is only used for testing or building separate binaries
for the test case.

Good File for Class-Based Flaws

In a test case for a class-based flaw, the good file:

Has a name that ends in “ _goodl” (before the extension). For example,
“CWE401 Memory Leak destructor 01 goodl.cpp”. Future versions of the test cases
may include additional good files with names containing “ good2”, “ good3”, etc.

Contains a required primary good function named “good” with a signature like the
“good” function in a test case for a non-class-based flaw. Like the primary good function
in a test case for a non-class-based flaw, this function only calls the secondary good
function in this file.

o In C++, this function is in the namespace for the test case, but outside of the class
in the file.

Contains at least one required secondary good function named “good1” to match the file
name (currently, only “good1” function names are used, but future versions of the test
cases may use “good2”, “good3”, etc. functions). The signature for this function is like
the signature of a secondary good function in a test case for a non-class-based flaw. This
secondary good function makes use of the class in this file to exercise the non-flawed
construct being tested.

o In C++, the “good1” function is statically scoped and in the namespace for the test
case, but outside of the class in the file.

In C++, if there is only one class in the file, it is named “GoodClass”. If a base class and
a subclass are needed for the non-flawed construct, the classes are in the same file and are
named “GoodBaseClass” and “GoodDerivedClass™.

Has a main function that calls the primary good function. Like the main functions in test

cases for non-class-based flaws, this function is only used for testing or building separate
binaries for the test case.

-15-

4.3 Virtual Function Test Cases

A few test cases, like ones using flow variants 81 and 82, make use of virtual functions. In order
to fit these types of test cases into the test case suite, they are designed slightly different than the
“traditional” test cases described in the previous sections.

A C++ virtual function Data Flow test case contains five files:

1. Header file — This file defines the base class and declares a function, named “action”,
within the base class as a pure virtual function. It also defines bad and good classes and
declares “action” functions within those that will implement the “action” function from
the base class. The extension for this file is the standard “.h”.

2. Root file — This file contains the implementations for the bad and good functions. The file
name contains the letter ‘a’ as a sub-file identifier and is a C++ source file.

3. Bad implementation file — This file implements the “action” function for the bad class,
contains the string “bad” as a sub-file identifier, and is a C++ source file.

4. GoodG2B implementation file - This file implements the “action” function for a good
class that makes use of a bad sink. The root file ensures that a good source is used with
this bad sink. The file name contains the string “goodG2B” as a sub-file identifier, and is
a C++ source file.

5. GoodB2G implementation file - This file implements the “action” function for a good
class that makes use of a good sink. The root file ensures that a bad source is used with
this good sink. The file name contains the string “goodB2G” as a sub-file identifier, and
is a C++ source file.

As an example, the files for the CWE191 Integer_Underflow__unsigned_int_rand_sub_81 test
case are as follows:

CWE191 Integer_Underflow__unsigned_int_rand_sub_81.h

CWE191 _Integer_Underflow__unsigned_int_rand_sub_8la.cpp

CWE191 _Integer_Underflow__unsigned_int_rand_sub_81 bad.cpp
CWE191 Integer_Underflow__unsigned_int_rand_sub_81 goodG2B.cpp
CWE191 Integer_Underflow__unsigned_int_rand_sub 81 goodB2G.cpp

4.4 Bad-only Test Cases

As the test cases were being designed, it was determined that in a few cases a non-flawed
construct could not be generated that correctly fixed the flaw being tested. Therefore, a minimal
number of test cases are considered “bad-only” in the sense that they only contain a flawed
construct.

The bad-only test cases differ from the rest of the test cases in the following ways:

e All bad-only test cases are non-class-based.

e No bad-only test cases contain Data Flows.

-16 -

e Some bad-only test cases contain an empty good function.

e Some bad-only test cases include good functions that contain the flawed construct within
unreachable code.

The bad-only test cases follow the same naming scheme as non-class-based test cases. It should
be noted that these test cases should be excluded from any analysis that attempts to determine the
number of False Positives reported by static analysis tools. A list of these test cases appears in
Appendix D.

Section 5: Test Case Support Files

As mentioned in Section 3.4 above, test cases are not self-contained. Every test case requires at
least one common test case support file. There are additional test case support files that are CWE
entry specific and used by test cases, where appropriate. In addition, support files with an
included main function are provided to execute the test cases.

The sections below describe the purpose and contents of each test case support file.

5.1 Common Support Files

One or more common support files are required for every test case and are located in the
~testcasesupport directory.

The standard test case header:

e std_testcase.h — This header file is included in every C/C++ test case source code file
and contains several variable and macro definitions. It also includes other header files
such as “std_testcase i10.h” and the system header “stdio.h™ so that they don’t need to be
included by every test case.

Input/Output related support files:

e io.c — This file contains definitions for several functions used by the test case source
code files to print various types to the console. For example, printLine() is used to print
an array of characters to the console. Test cases use the functions in this file instead of
calling console output functions directly in order to prevent incidental issue reports from
analysis tools for “inappropriate logging” or “possible data disclosure”. This file also
contains the definitions of several global variables used by the Control Flow test cases.

e std testcase io.h — This header file declares the functions and variables which are
defined in io.c. It is not named io.h because there is a system header in Windows with
that name.

Thread related support files:

-17 -

e std_thread.c — This file contains implementations of several thread-related functions
used by the test case source code files.
e std_thread.h — This header file is used to define the functions in std_thread.c.

5.2 CWE Entry Specific Support Files

In addition to the common support files, test cases may make use of support files that are specific
to multiple test cases associated with a CWE entry. When present, these files will be in the
directory for the CWE entry and will have a hame that does not match the expected pattern for a
test case file.

5.3 Main Support Files

Support files are also provided to test an individual CWE entry’s test cases. These files, called
main.cpp and testcases.h, are auto-generated and are included with each CWE entry (such as in
the ~testcases\CWE15 External_Control_of System_or_Configuration_Setting directory) and
used to test all the test cases associated with that CWE entry.

One “master” version of each file, included in the ~testcasesupport directory, is used to run all
the test cases at once.

Each file is described below:

e main.cpp — This file is auto-generated and contains a “main” function that calls the
primary “good” function for each test case, and then calls the primary “bad” function for
each test case. This file can be compiled using the preprocessor macro OMITBAD or
OMITGOOD to omit the calls to the bad or good functions.

e testcases.h — This header file is automatically generated and contains declarations of the
bad and good functions in the test cases so that they can be called by the main.cpp file.
This header is only included in main.cpp.

Most of the test cases should compile on operating systems other than Windows. Test cases that
are Windows-specific contain the string “w32” in their file names. The following support files
are included in the directory for each CWE entry if the directory contains test cases that will
compile on Linux:

e main_linux.cpp — This file is auto-generated and contains a “main” function that calls the
primary “good” function, and then the primary “bad” function, for each test case that is
not Windows-specific. This file can be compiled using the preprocessor macro
OMITBAD or OMITGOOD to omit the calls to the “bad” or “good” functions.

% The test cases are not guaranteed to compile on Linux and were designed specifically for Windows. All test cases
have been tested and compile successfully on Windows.

-18 -

e Makefile — A standard makefile that will compile all non-Windows-specific test cases
within a CWE directory when executed by the utility, “make”.

See Section 7.1 for details on how to update main.cpp, main_linux.cpp, testcases.h, and Makefile
using scripts distributed with the test cases.

Section 6: Building Test Cases

6.1 Build Prerequisites

All files needed to build the test cases are included in this distribution using the following
environment (development and test was done using versions shown in parentheses):

e Microsoft Windows platform (Windows 7)
e Microsoft Visual Studio (2010 Professional)
e Python for Windows (version 3.1.2)

The current release of the test cases targets the Microsoft Windows platform; however, many test
cases will work on non-Windows platforms. Windows-specific test case files contain the string
“w32” in their name.

Although the versions listed above were used to develop and test the test cases, other versions
may work as well.

6.2 Compiling Test Cases

There are two ways to compile these test cases: as a single compiled executable that contains all
test cases; or as individual executables, each containing a single CWE entry. Due to the number
of files and the number of lines of code contained in the test cases, some static analysis tools may
not be able to analyze the single compiled executable.

6.2.1 Compile All Test Cases as One Executable

To compile a single (large) executable file named “testcases.exe”, run the file “compile_all.bat”
located in the top level directory. This batch file must be run with Visual Studio specific
environment variables set, which is most easily done by running it in a “Visual Studio Command
Prompt”. This batch file can be used as a basis for analyzing all test cases by following
instructions in the documentation for the tool being used.

The non-Windows-specific test cases can be compiled into a single (large) executable file named
“all-testcases” by running “make” and targeting ‘“Makefile all”, located in the top level
directory.

-19 -

6.2.2 Compile Test Cases per CWE Entry

The test cases can also be compiled so that a separate executable file is generated for each CWE
entry. This is accomplished by running the batch file in the directory for that CWE entry (such
as by running “CWE476.bat” in the ~testcasesS\CWE476_NULL_Pointer_Dereference directory
to create the file “CWE476.exe”).

In order to automate the process of compiling the individual test cases in each CWE entry’s
directory, the Python script “run_analysis_example tool.py” can be run (also in a “Visual Studio
Command Prompt™). This script will go to each CWE entry directory and run the batch file to
compile those test cases. This script can also be used as the basis for a script to automate
performing analysis on the test cases for each CWE entry. The comments in the script provide
an example of how this can be accomplished.

The test cases for a given CWE can also be compiled by running “make” within the CWE
directory. Note, however, that there are several CWEs directories that do not contain make files
as all of the test cases for those CWEs are Windows-specific.

6.3 Compiling an Individual Test Case

Although the test cases are typically compiled and analyzed in sets, the test cases are designed so
that each test case can be compiled and executed individually. Running a test case is useful
during test case development, but can also be used to analyze a test case in isolation.

6.3.1 Building and Running a Test Case

In the test cases, a main function exists that contains a call to the primary good function for the
test case, followed by a call to the bad function. The INCLUDEMAIN preprocessor macro
definition is used to include the main function when compiling a test case. The preprocessor
macros OMITBAD and OMITGOOD can also be used to omit the flawed or non-flawed
constructs from the compilation. Omitting portions of the test case(s) allows for compiling a
binary that contain only flaws or only non-flaws, which may be useful when testing binary
analysis tools.

The following example command will use the Visual Studio command line compiler to compile
a single file test case into the file testcase.exe. This command should be run in a “Visual Studio
Command Prompt” in the directory to which the test case .zip file was extracted.

cl /Itestcasesupport /DINCLUDEMAIN /Fetestcase.exe testcasesupportl\io.c
testcasesupport\std thread.c

testcases\CWE78 OS Command Injection\CWE78 OS Command Injection char c
onsole system 0l.c

The following example command will compile a multiple file test case into the file testcase.exe.

cl /Itestcasesupport /DINCLUDEMAIN /Fetestcase.exe testcasesupport\io.c
testcasesupport\std thread.c

-20 -

testcases\CWE78 OS Command Injection\CWE78 OS Command Injection char c
onsole system 54*.c

In both cases, this will produce an executable testcase.exe.

Section 7: Updating Build Files

Included in the test case distributions are scripts that can be used to update the test case build
files if changes are made to the set of test cases. Using the test cases as distributed or after edits
are made to existing test case files do not require the use of these scripts. These scripts are only
needed if test case files are deleted from the set or new test cases are added. If new test cases are
added to the test case set, care should be taken to follow the test case design in order to prevent
errors in these scripts, in compilation, or in tool result analysis.

7.1 Updating C/C++ Build Files

The C/C++ test case archive contains two scripts that can be used to update the build files if
changes are made to the set of test cases to be analyzed.

e create_single_batch_file.py — Running this script will update the file “compile all.bat”,
which can be run to compile all the test cases into a single executable file. This script
also edits source code and header files needed for a successful compilation with this
batch file.

e create_single_Makefile.py — Running this script will update the file “Makefile all”,
which can targeted with “make” to compile all the non-Windows-specific test cases into a
single executable file. This script also edits source code and header files needed for a
successful compilation with this makefile.

e create_per_cwe_files.py — Running this script will update the batch files, and makefiles
for non-Windows-specific test cases if they exist, that compile the test cases for each
CWE entry into a separate executable file. This script also edits source code and header
files needed for a successful compilation with those batch files.

Section 8: Tool Analysis

The test cases have been designed so that static analysis tool results can be easily evaluated.
This section describes the desired results when running a static analysis tool on the test cases.

8.1 True Positives and False Negatives

When a static analysis tool is run on a test case, one desired result is for the tool to report one
flaw of the target type. That reported flaw should be in a function with the word “bad” in its
name (such as bad(), bad_sink(), or CWE476_NULL_Pointer_Dereference_char_41 bad()) or
in a class whose implementation is contained within a file with the word “bad” in the file name

-21 -

(such as “CWE401_Memory_Leak _destructor_01 bad.cpp™). A correct report of this type is
considered a “True Positive”.

In some circumstances, tools may report the flaw in a test case more than once in the bad
functions or classes. For example, a tool may report multiple, slightly different flaw types or, in
other cases, a tool may report flaws in different locations. At times, a tool may report two results
with the exact same type in the exact same location (sometimes with different call stacks or other
different metadata).

If the tool does not report a flaw of the target type in a bad function or class in a test case, then
the result for the tool on the test case is considered a “False Negative”.

8.2 False Positives and True Negatives

The other desired result when running a tool on a test case is for the tool to not report any flaws
of the target type in a function with the word “good” in its name or a class with the word “good”
in its file name. An incorrect report of the target flaw type in a good function is considered a
“False Positive”.

As described in Section 4.1.1.3, each non-class-based test case has one or more secondary good
functions that contain a non-flawed construct. When a test case has more than one secondary
function, a test case user may want to determine in which secondary good function(s) a tool
reported false positives and in which secondary good function(s) the tool had no false positives
(that is, where the tool had “True Negative(s)”).

In many test cases, this can be determined by examining the name of the functions where tool
results are reported. The “source” and “sink” functions can be associated with the secondary
good function from which they are called (for example, the function goodB2G_source or
goodB2G_sink can be associated with the secondary good function goodB2G).

Unfortunately, limitations of the CAS’s Test Case Template Engine used to generate test cases
prevent being able to definitively tie all false positive results to the secondary good functions in
all test cases. Specifically, as detailed in Section 4.1.2.1, good helper functions are not specific
to the secondary good functions in a test case. Therefore, in a test case with more than one
secondary good function and one or more false positive results in a good helper function, the
false positives(s) cannot be easily® associated with secondary good function(s) and true negatives
cannot be determined, either.

8.3 Unrelated Flaw Reports

A tool may also report flaws with types that are not related to the target flaw type in a test case.
There are two occasions when this may occur:

® This association cannot be made based solely on function names. Some tools may report additional information,
such as stack traces, with findings that allow this association to be made.

-22 -

e Those flaw reports may be correctly pointing out flaws of the non-target type that are
present in the test case. Flaws of this type are known as “incidental” flaws. The
developers of the test cases attempted to minimize the incidental flaws and marked
unavoidable incidental flaws with a comment containing the string “INCIDENTAL”.
Many uncommented incidental flaws remain in the test cases, however, so test case users
should not draw any conclusions about tool reports of non-target flaw types without
investigating the reported result fully.

e The flaw reports may be indicating flaws that do not exist in the test case. Flaw reports
of this type are known as “unrelated false positives” because they are incorrect flaw
reports (false positives) and not related to the type of flaw the test case is intended to test.

Flaw reports of non-target types generally cannot be characterized as correct or incorrect in an
automated or trivial manner. They may be triggered by common code constructs that are
repeated in a large number of test cases (due to the automated generation process used to create
the test cases). For these reasons, these flaw reports are typically ignored when studying a static
analysis tool.

-23-

Appendix A: Test Case CWE Entries

The table below shows the CWE entries associated with the 2011 Test Cases, along with the
number of test cases associated with each CWE entry.

CWE C/C++

Entry CWE Entry Name Test
ID Cases
15 External Control of System or Configuration Setting 47
23 Relative Path Traversal 1410
36 Absolute Path Traversal 1410
78 Improper Neutralization of Specigl Elements used in an OS 4700

Command ('OS Command Injection’)
114 Process Control 564
121 Stack-based Buffer Overflow 5002
122 Heap-based Buffer Overflow 5665
123 Write-what-where Condition 141
124 Buffer Underwrite (‘Buffer Underflow’) 2042
126 Buffer Over-read 1452
127 Buffer Under-read 2042
134 Uncontrolled Format String 2820
188 Reliance on Data/Memory Layout 38
190 Integer Overflow or Wraparound 2538
191 Integer Underflow (Wrap or Wraparound) 1551
194 Unexpected Sign Extension 1128
195 Signed to Unsigned Conversion Error 1128
196 Unsigned to Signed Conversion Error 19
197 Numeric Truncation Error 846
204 Response Discrepancy Information Leak 19
222 Truncation of Security-relevant Information 19
223 Omission of Security-relevant Information 19
226 Sensitive Information Uncleared Before Release 76
242 Use of Inherently Dangerous Function 19
244 | Improper (':Iearing of Heap Memory Before Release ('Heap 38
Inspection’)

247 Reliance on DNS Lookups in a Security Decision 19
252 Unchecked Return Value 665
253 Incorrect Check of Function Return Value 722
256 Plaintext Storage of a Password 94
259 Use of Hard-coded Password 94
272 Least Privilege Violation 190
273 Improper Check for Dropped Privileges 38

-A-1 -

CWE CIC++

Entry CWE Entry Name Test
ID Cases
284 Access Control (Authorization) Issues 190
304 Missing Critical Step in Authentication 19
319 Cleartext Transmission of Sensitive Information 188
321 Use of Hard-coded Cryptographic Key 94
325 Missing Required Cryptographic Step 76
327 Use of a Broken or Risky Cryptographic Algorithm 57
328 Reversible One-Way Hash 38
338 Use of Cryptographically Weak PRNG 19
364 Signal Handler Race Condition 19
366 Race Condition within a Thread 38
367 Time-of-check Time-of-use (TOCTOU) Race Condition 38
369 Divide By Zero 846
374 Passing Mutable Objects to an Untrusted Method 19
377 Insecure Temporary File 152
390 Detection of Error Condition Without Action 95
391 Unchecked Error Condition 57
392 Missing Report of Error Condition 38
396 Declaration of Catch for Generic Exception 57
397 Declaration of Throws for Generic Exception 21
398 Indicator of Poor Code Quality 96
400 Uncontrolled Resource Consumption (‘Resource Exhaustion’) 470
201 Improper Release of Memory Before Removing Last Reference 1686

('Memory Leak’)

404 Improper Resource Shutdown or Release 376
415 Double Free 801
416 Use After Free 411
426 Untrusted Search Path 188
427 Uncontrolled Search Path Element 470
440 Expected Behavior Violation 1
457 Use of Uninitialized Variable 926
459 Incomplete Cleanup 38
464 Addition of Data Structure Sentinel 47
467 Use of sizeof() on a Pointer Type 141
468 Incorrect Pointer Scaling 39
469 Use of Pointer Subtraction to Determine Size 38
475 Undefined Behavior For Input to API 38
476 NULL Pointer Dereference 270
478 Missing Default Case in Switch Statement 19
479 Signal Handler Use of a Non-reentrant Function 19
480 Use of Incorrect Operator 19

SA-2 -

CWE CIC++
Entry CWE Entry Name Test
ID Cases
481 Assigning instead of Comparing 19
482 Comparing instead of Assigning 19
483 Incorrect Block Delimitation 21
484 Omitted Break Statement in Switch 19
489 Leftover Debug Code 19
500 Public Static Field Not Marked Final 1
506 Embedded Malicious Logic 163
510 Trapdoor 72
511 Logic/Time Bomb 76
534 Information Leak Through Debug Log Files 38
535 Information leak Through Shell Error Message 38
546 Suspicious Comment 95
547 Use of Hard-coded Security-relevant Constants 19
560 Use of umask() with chmod-style Argument 19
561 Dead Code 2
562 Return of Stack Variable Address 3
563 Unused Variable 398
570 Expression is Always False 6
571 Expression is Always True 6
587 Assignment of a Fixed Address to a Pointer 19
588 Attempt to Access Child of a Non-structure Pointer 82
590 Free of Memory not on the Heap 2679
591 Sensitive Data Storage in Improperly Locked Memory 94
605 Multiple Binds to Same Port 19
606 Unchecked Input for Loop Condition 470
617 Reachable Assertion 301
620 Unverified Password Change 19
665 Improper Initialization 189
666 Operation on Resource in Wrong Phase of Lifetime 95
672 Operation on Resource After Expiration or Release 46
674 Uncontrolled Recursion 38
675 Duplicate Operations on Resource 188
676 Use of Potentially Dangerous Function 19
680 Integer Overflow to Buffer Overflow 564
685 Function Call With Incorrect Number of Arguments 19
688 Function Call With Incorrect Variable or Reference as Argument 19
690 Unchecked Return Value to NULL Pointer Dereference 799
758 Relian_ce on Undefined, Unspecified, or Implementation-Defined 555
Behavior
761 Free of Pointer Not At Start Of Buffer 564

-A-3-

CWE CIC++
Entry CWE Entry Name Test
ID Cases
762 Mismatched Memory Management Routines 3020
773 Missing Reference to Active File Descriptor or Handle 282
775 Missing Release of File Descriptor or Handle After Effective Lifetime 188
780 Use of RSA Algorithm without OAEP 19
785 Use of Path Manipulation Function without Maximum-sized Buffer 19
789 Uncontrolled Memory Allocation 940
832 Unlock of a Resource that is not Locked 19
835 Loop with Unreachable Exit Condition (‘Infinite Loop") 6
843 Access of Resource Using Incompatible Type (‘Type Confusion’) 86

Table 3 — CWE Entries in 2011 Test Cases

-A-4 -

Appendix B: SANS/CWE Top 25 Coverage

Table 4 shows the degree to which the C/C++ test cases cover each of the 2011 SANS/CWE Top

25 Most Dangerous Software Errors.

2011 SANS/CWE Top 25 CAS Test Cases
Rank CWE Entry CWE Entry / Entries C/C++
CWE-89: Improper Neutralization None (SQL Injection issues are
1 of Special Elements used in an covered in the related Java test -
SQL Command ('SQL Injection") cases)
CWE-78: Improper Neutralization
of Special Elements used in an OS
2 Command ('OS Command CWE-78 4700
Injection’)
. . CWE-121: Stack-based Buffer
CWE-120: Buﬁer Copy \'/wthouft Overflow, CWE-122: Heap-based
3 Checking Size of Input (‘Classic ff f . 11231
Buffer Overflow') Buffer Overflow, CWE-680: Integer
Overflow to Buffer Overflow
CWE-79: Improper Neutralization None (Cross-Site Scripting issues
4 of Input During Web Page are covered in the related Java test -
Generation ('Cross-site Scripting’) cases)
5 CWE-306: Missing Authentication None (Design issue which does not i
for Critical Function fit into CAS Test Case structure)
e o None (Design issue which does not i
6 CWE-862: Missing Authorization fit into CAS Test Case structure)
. CWE-259: Use of Hard-coded
7 | QWE-798: Use of Hard-coded Password, CWE-321: Use of Hard- | 188
Credentials .
coded Cryptographic Key
CWE-315: Plaintext Storage in a
CWE-311: Missing Encryption of Cookie, CWE-319: Cleartext
8 " L o 188
Sensitive Data Transmission of Sensitive
Information
9 CWE-434: Unrestricted Upload of None (Design issue which does not i
File with Dangerous Type fit into CAS Test Case structure)
CWE-807: Reliance on Untrusted CWE-247: Reliance on DNS
10 ! . o . . L 19
Inputs in a Security Decision Lookups in a Security Decision
11 CWE-250: Execution with None (Design issue which does not i
Unnecessary Privileges fit into CAS Test Case structure)

-B-1 -

2011 SANS/CWE Top 25

CAS Test Cases

Rank CWE Entry CWE Entry / Entries C/C++
12 CWE-352: Cross-Site Request None (Design issue which does not i
Forgery (CSRF) fit into CAS Test Case structure)
CWE-22: Improper Limitation of a Ha. .
13 Pathname to a Restricted Directory CWE 23: Relative Path Traversal, 2820
' : CWE-36: Absolute Path Traversal
(‘Path Traversal")
14 CWE-494: Download of Code None (Design issue which does not i
Without Integrity Check fitinto CAS Test Case structure)
apa. o None (Design issue which does not i
15 CWE-863: Incorrect Authorization fitinto CAS Test Case structure)
CWE-829: Inclusion of L .
16 Functionality from Untrusted None (Design issue which does not -
fit into CAS Test Case structure)
Control Sphere
17 CWE-732: Incorrect Permission None (Design issue which does not i
Assignment for Critical Resource fitinto CAS Test Case structure)
18 CWE-676: Use of Potentially CWE-676 19
Dangerous Function
CWE-327: Use of a Broken or
19 Risky Cryptographic Algorithm CWE-327 57
. . CWE-121: Stack-based Buffer
20 g\d\flfi;lsiiélncorrect Calculation of Overflow, CWE-122: Heap-based 282
Buffer Overflow
21 CWE-307: Improper Restriction of None (Design issue which does not i
Excessive Authentication Attempts | fit into CAS Test Case structure)
) N None (Open Redirect issues are
22 CWE-601: QRLIRedwectlo_n to , covered in the related Java test -
Untrusted Site (‘Open Redirect’)
cases)
23 CWE-134: Uncontrolled Format CWE-134 1820
String
24 CWE-190: Integer Overflow or CWE-190, CWE-191: Integer 4089
Wraparound Underflow (Wrap or Wraparound)
CWE-759: Use of a One-Way Hash | None (Use of a One-Way Hash
25 without a Salt issues are covered in -

without a Salt

the related Java test cases)

Table 4 — Test Case Coverage of 2011 SANS/CWE Top 25

-B-2 -

Appendix C: Test Case Flow Variants

Below is a table containing information about the Flow Variants in the C/C++ test cases,
including a brief description. Due to design constraints, all flaw types do not contain test cases
for each flow variant.

Flow Flow I
Variant Type Description C C++

01 None Baseline — Simplest form of the flaw X X

02 Control | if(1) and if(0) X X

03 Control | if(5==5) and if(5!=5) X X

04 Control | if(static_const t) and if(static_const f) X X

05 Control | if(static_t) and if(static_f) X X

06 Control | if(static_const five==5) and if(static_const_five!=5) X X

07 Control | if(static_five==5) and if(static_five!=5) X X

08 Control | if(static_returns_t()) and if(static_returns_f()) X X

09 Control | if(global _const t) and if(global const f) X X

10 Control | if(global t) and if(global_f) X X

11 Control | if(global returns t()) and if(global_returns_f()) X X

12 Control | if(global_returns t or f()) X X

13 Control | if(global const five==5) and if(global const five!=5) X X

14 Control | if(global five==5) and if(global_five!=5) X X

15 Control | switch(6) and switch(7) X X

16 Control | while(1) and while(0) X X

17 Control | for loops X X

18 Control | goto statements X X

19 Control | Dead code after a return X X

21 Control Flow pontrplled by value of a static global variable. All functions X X
contained in one file.

29 Control _Flow controllec_i by value of a global variable. Sink functions are X X
in a separate file from sources.

31 Data Data flow using a copy of data within the same function X X

32 Data Data'ﬂow using two pointers to the same value within the same X X
function

33 Data Use of a C++ reference to data within the same function * X

34 Data Use of a union containing t_No methods of accessing the same X X
data (within the same function)

a1 Data Data passed as an argument from one function to another in the X X
same source file

42 Data]Icigta returned from one function to another in the same source X X

43 Data Data flows using a Ct+ reference from one function to another . X
in the same source file

Control/ | Data passed as an argument from one function to a function in
44 . . - . X X
Data the same source file called via a function pointer

45 Data Data passed as a static globr_:ll variable from one function to X X
another in the same source file

51 Data D_ata passed as an argument from one function to another in X X
different source files

52 Data Data pagsed as an argument from one function to another to X X
another in three different source files

-C-1-

Flow Flow .
: ++
Variant Type Description C

53 Data Data passed as an argument from one function through two X
others to a fourth; all four functions are in different source files
Data passed as an argument from one function through three

54 Data e X : o . X
others to a fifth; all five functions are in different source files
Data returned from one function to another in different source

61 Data files X
Data flows using a C++ reference from one function to another

62 Data o . X
in different source files
Pointer to data passed from one function to another in different

63 Data . X
source files

64 Data v9|d pointer to da_ta passed from one function to another in X
different source files

65 Control/ | Data passed as an argument from one function to a function in a X

Data different source file called via a function pointer

66 Data Data pa_ssed in an array from one function to another in different X
source files
Data passed in a struct from one function to another in different

67 Data . X
source files
Data passed as a global variable in the “a” class from one

68 Data . A . X
function to another in different source files
Data passed in a vector from one function to another in different

72 Data ; X
source files
Data passed in a linked list from one function to another in

73 Data : : X
different source files

74 Data Data passed in a hash map from one function to another in X
different source files

81 Data Data passed in an argument to a virtual function called via a X
reference

82 Data Data passed in an argument to a virtual function called via a X

pointer

* = Included in C families as C++ files since the logic requires C++ features.

Table 5 — Test Case Flow Variants

-C-2 -

Appendix D : Bad-Only Test Cases

CWE Number CWE Name Functional Variants Flow Variants
email
- file_transfer_connect_socket *
506 Embedded Malicious Code file_transfer_listen_socket
screen_capture
network_connection *
510 Trapdoor network_listen

* = Applies to all variants.

Table 6 — C/C++ Bad-only Test Cases

-D-1 -

Appendix E : Test Case Changes in v1.1

Test cases for the following CWEs were added in Juliet Test Suite v1.1 for C/C++:

CWE Number | CWE Entry Name
304 Missing Critical Step in Authentication
325 Missing Required Cryptographic Step
398 Indicator of Poor Code Quality
500 Public Static Field Not Marked Final
506 Embedded Malicious Logic
510 Trapdoor
773 Missing Reference to Active File Descriptor or Handle
775 Missing Release of File Descriptor or Handle After Effective Lifetime
780 Use of RSA Algorithm without OAEP
832 Unlock of a Resource that is not Locked
835 Loop with Unreachable Exit Condition ('Infinite Loop")
843 Access of Resource Using Incompatible Type (‘'Type Confusion’)

Table 7 — CWEs Added in Juliet Test Suite v1.1 for C/C++

Test cases for the following CWESs were removed in Juliet Test Suite v1.1 for C/C++:

CWE

CWE Name Reason for Removal
Number

187 Partial Comparison Determined to be invalid during quality control review
Based upon vendor feedback as they claimed the flaw could

248 Uncaught exception be flagged in main.cpp and this would break the scoring
method used to mark tool results.

L . Determined to be invalid after quality control review and
365 Race Condition in Switch vendor feedback
Missing Release of o
772 Resource after Effective These test cases were moved to CWE 775 (Missing Release

of File Descriptor or Handle After Effective Lifetime)

Lifetime

Table 8 —- CWEs Removed in Juliet Test Suite v1.1 for C/C++

-E-1-

The following flow variants were added in Juliet Test Suite v1.1 for C/C++:

Flow Variant Flow Describtion
Number Type P

Flow controlled by value of a static global variable. All functions
21 Control) ; :

contained in one file.

Flow controlled by value of a global variable. Sink functions are in a
22 Control :

separate file from sources.

Data passed in a vector from one function to another in different source
72 Data files

Data passed in a linked list from one function to another in different
73 Data ;

source files

Data passed in a hash map from one function to another in different
74 Data -

source files
81 Data Data passed in an argument to a virtual method called via a reference
82 Data Data passed in an argument to a virtual method called via a pointer

Table 9 — Flow Variants Added in Juliet Test Suite v1.1 for C/C++

Test cases for the following CWEs were redesigned to be part of a chain with another CWE in
Juliet Test Suite v1.1 for C/C++. These test cases were not removed; however their CWE
numbers no longer appear in the CWE counts or tables showing which CWEs were covered:

Now Part
CWE Number CWE Name of CWE
Number
121
129 Improper Validation of Array Index 122
126
. . 121
131 Incorrect Calculation of Buffer Size 129
135 Incorrect Calculation of Multi-Byte String Length i;;
170 Improper Null Termination 126
121
193 Off-by-one Error 129

Table 10 — CWE Chains in Juliet Test Suite v1.1 for C/C++

The number of flaw types for the following CWEs changed in Juliet Test Suite v1.1 for C/C++.
Reasons for these changes include, but are not limited to, moving the flaw type to a more
specific CWE, removing the flaw type entirely, or adding additional flaw types.

NSr\r/1th>Eer CWE Name Fl?lvlv.som F|3V]\-I.Slln Increase/Decrease
121 Stack-based Buffer Overflow 86 118 +32
122 Heap-based Buffer Overflow 86 123 +37
124 Buffer Underwrite (‘Buffer Underflow’) 40 46 +6
126 Buffer Over-read 24 36 +12
127 Buffer Under-read 40 46 +6
190 Integer Overflow or Wraparound 45 54 +9
191 Integer Underflow (Wrap or 15 33 +18
Wraparound)

-E-2-

CWE

Flaws in

Flaws in

Number CWE Name v1.0 V11 Increase/Decrease
252 Unchecked Return Value 38 35 -3
272 Least Privilege Violation 1 2 +1

Use of a Broken or Risky Cryptographic
321 Algorithm 2 3 +1
328 Reversible One-Way Hash 1 2 +1
390 Det'ect|on of Error Condition Without 46 5 41
Action
Improper Resource Shutdown or
404 Release 20 8 -12
469 ;Jis;ee of Pointer Subtraction to Determine 12 > -10
483 Incorrect Block Delimitation 1 3 +2
570 Expression is Always False 2 6 +4
571 Expression is Always True 2 6 +4
Attempt to Access Child of a Non-
588 structure Pointer 1 2 1
590 Free of Memory not on the Heap 33 57 +24
605 Multiple Binds to Same Port 2 1 -1
665 Improper Initialization 4 5 +1
762 Mlsm_atched Memory Management 64 76 +12
Routines
789 Uncontrolled Memory Allocation 24 20 -4

Table 11 — Flaw Count Changes in Juliet Test Suite v1.1 for C/C++

-E-3-

