

 Juliet Test Suite v1.2 for C/C++

User Guide

Center for Assured Software

National Security Agency

9800 Savage Road

Fort George G. Meade, MD 20755-6738
cas@nsa.gov

December 2012

- ii -

Table of Contents

Section 1: Introduction ...1

1.1 Document Purpose ...1
1.2 What are Test Cases? ...1
1.3 Why Test Cases? ..1

1.3.1 Limitations of Natural Code ...1
1.3.2 Limitations of the Test Cases ..2

1.4 Creating Test Cases..3
1.5 Feedback ..3

Section 2: Test Case Scope ..4
2.1 Test Case Selection ..4

2.2 Test Case Statistics ..5
Section 3: Test Case Naming ...7

3.1 Naming Scheme ...7
3.2 Test Case Functional Variants ...7

3.2.1 Key Strings in Functional Variant Names ..7
3.3 Test Case Flow Variants ..8
3.4 Test Case Files ...9

3.4.1 Test Case File Names..10
3.4.2 Sub-file Identifier ..11

Section 4: Test Case Design ..12
4.1 Non-Class-Based Flaw Test Cases ..12

4.1.1 Required Functions ...12

4.1.2 Optional Functions ..14

4.2 Class-Based Flaw Test Cases...16
4.3 Virtual Function Test Cases ...18
4.4 Constructor/Destructor Test Cases ..18

4.5 Bad-only Test Cases ..19
Section 5: Test Case Support Files ..20

5.1 Common Support Files ..20
5.2 CWE Entry Specific Support Files ..20

5.3 Main Support Files ...21
Section 6: Building Test Cases ..23

6.1 Build Prerequisites ...23
6.2 Compiling Test Cases ..23

6.2.1 Compile All Test Cases as One Executable ..23

6.2.2 Compile Test Cases per CWE Entry ...24
6.3 Compiling an Individual Test Case..24

6.3.1 Building and Running a Test Case..25
Section 7: Updating Build Files ...26

7.1 Updating C/C++ Build Files ..26
Section 8: Tool Analysis ..27

8.1 True Positives and False Negatives ...27
8.2 False Positives and True Negatives ...27

- iii -

8.3 Unrelated Flaw Reports ...28

Appendix A : Test Case CWE Entries ... A-1
Appendix B : CWE/SANS Top 25 Coverage ..B-1
Appendix C : Test Case Flow Variants ..C-1

Appendix D : Bad-Only Test Cases .. D-1
Appendix E : Test Case Changes in v1.2 ... E-1

- 1 -

Section 1: Introduction

1.1 Document Purpose

This document describes the Juliet Test Suite v1.2 for C/C++. The test suite was created by the

National Security Agency’s (NSA) Center for Assured Software (CAS) and developed

specifically for assessing the capabilities of static analysis tools. It is intended for anyone who

wishes to use the test cases for their own testing purposes, or who would like to have a greater

understanding of how the test cases were created.

This document explains the philosophy behind the naming and design of the test cases and

provides instruction on how to compile and run them using a Command Line Interface (CLI).

Section 8 also provides details on how the tool results can be evaluated.

The test cases are publically available for download at http://samate.nist.gov/SRD/testsuite.php.

1.2 What are Test Cases?

Test cases are pieces of buildable code that can be used to study static analysis tools. A test case

targets exactly one type of flaw, but other, unrelated flaws may be incidentally present. For

example, the C test case “CWE476_NULL_Pointer_Dereference__char_01” targets only a

NULL Pointer Dereference flaw. In addition to the construct containing the target flaw, each test

case typically contains one or more non-flawed constructs that perform a function similar to the

flawed construct. A small subset of test cases does not contain non-flawed constructs and are

considered “bad-only” test cases (see Section 4.5).

1.3 Why Test Cases?

In order to study static analysis tools, the CAS needs software for tool analysis. The CAS

previously considered using “natural” or “artificial” software. Natural software is software that

was not created to test static analysis tools. Open source software applications, such as the

Apache web server (httpd.apache.org) and the OpenSSH suite (www.openssh.com), are

examples of natural software. Artificial software, in this case, is software that contains

intentional flaws and is created specifically to test static analysis tools. The test cases are an

example of artificial software.

1.3.1 Limitations of Natural Code

During previous research efforts, the CAS used a combination of natural and artificial code in

testing static analysis tools. In addition, the CAS followed the National Institute of Standards

and Technology (NIST) Static Analysis Tool Exposition (SATE) that examined the performance

of static analysis tools on natural code.

- 2 -

Experiences from these efforts indicated that the use of natural code often presents specific

challenges, such as:

 Evaluating tool results to determine their correctness – When a static analysis tool is run

on natural code, each result needs to be reviewed to determine if the code in fact has the

specified type of flaw at the specified location (i.e. if the result is correct or a “False

Positive”). This review is non-trivial for most results on natural code and often the

correctness of a given result cannot be determined with a high degree of certainty in a

reasonable amount of time.

 Comparing results from different tools – Comparing static analysis tool results on natural

code is complicated because different tools report results in different manners. For

example, many flaws involve a “source” of tainted data and a “sink” where that data is

used inappropriately. Some tools may report the source where others report the sink.

Sometimes multiple sources of tainted data all lead to one sink, which may cause

different tools to report a different number of results.

 Identifying flaws in the code that no tools find – When evaluating static analysis tools, a

“standard” list of all flaws in the code is needed in order to identify which flaws each tool

failed to report. On natural code, creating this “standard” is difficult, especially

identifying flaws that are not reported by any automated tool and therefore can only be

found with manual code review.

 Evaluating tool performance on constructs that do not appear in the code – Natural code

has the limitation that even a combination of different projects will likely not contain all

flawed and non-flawed constructs that the CAS wants to test. Even flaw types that

appear in the code may be obfuscated by complex control and data flows such that a flaw

in the natural code will remain undetected even by tools that generally catch a flaw of

that type. To address this issue, the CAS considered using a “seeding” method to embed

flaws and non-flaws into natural code. Ultimately, test cases were created instead of

using “seeding” because the CAS believed that studying static analysis tools using

“seeded” code would be overly complex and result in testing fewer constructs than

desired.

Based on these experiences and challenges, the CAS decided to develop artificial test cases to

test static analysis tools. Using artificial code simplifies tool studies by allowing the CAS to

control, identify, and locate the flaws and non-flaws included in the code.

1.3.2 Limitations of the Test Cases

Although the use of the test cases simplifies static analysis tool studies, it may limit the

applicability of results in the following two ways:

 Test cases are simpler than natural code – Some test cases are intentionally the simplest

form of the flaw being tested. Even test cases which include control or data flow

complexity are relatively simple compared to natural code, both in terms of the number

of lines of code and in terms of the number and types of branches, loops, and function

- 3 -

calls. This simplicity may inflate results in that tools may report flaws in the test cases

that they would rarely report in natural, non-trivial code.

 Frequencies of flaws and non-flawed constructs in the test cases may not reflect their

frequencies in natural code – Each type of flaw is tested once in the test cases, regardless

of how common or rare that flaw type may be in natural code. For this reason, two tools

that have similar results on the test cases may provide very different results on natural

code, such as if one tool finds common flaws and the other tool only finds rare flaws.

Even a tool with poor results on the test cases may have good results on natural code.

Similarly, each non-flawed construct also appears only once in the test cases, regardless

of how common the construct is in natural code. Therefore, the False Positive rates on

the test cases may be much different from the rates the tools would have on natural code.

1.4 Creating Test Cases

Most of the test cases for non-class-based flaws were generated using source files that contain

the flaw and a tool called the “Test Case Template Engine” created by the CAS. Generated test

case files contain a comment in the first line indicating that they were generated.

Some flaw types could not be generated by the CAS’s custom Test Case Template Engine. Test

cases for those flaw types were manually created. Due to resource constraints, these test cases

were created to include only the simplest form of the flaw without added control or data flow

complexity.

1.5 Feedback

If you have questions, comments, or suggestions on how to improve the test cases, please contact

the CAS via e-mail at CAS@nsa.gov.

- 4 -

Section 2: Test Case Scope

This section provides details on the scope of the test cases. In general, the test cases are focused

on functions available on the underlying platform rather than the use of third-party libraries.

Although C and C++ are different programming languages, they are treated as a single unit since

C++ is generally a superset of C. In addition, most software assurance tools support both C and

C++.

Wherever possible, the C/C++ test cases restrict Application Programming Interface (API) calls

to the C standard library, which is available on all platforms. In order to cover more issues,

some test cases target the Windows platform (using Windows-specific API functions). In the

future, this effort could be expanded to cover API functions that are unique to platforms other

than Windows. No third-party C or C++ library functions are used.

The C test case code targets the C89 standard so that the test cases can be compiled and analyzed

using a wide variety of tools that may not support newer versions of the C language.

The test cases limit the use of C++ constructs and features to only the test cases that require them

(such as test cases related to C++ classes or the “new” operator). Unless necessary for the flaw

type targeted, test cases do not use the C++ standard library.

2.1 Test Case Selection

The CAS uses several sources when selecting flaw types for test cases:

 The test case development team’s experiences in Software Assurance

 Flaw types used in the CAS’s previous tool studies

 Vendor information regarding the types of flaws their tools identify

 Weakness information in MITRE’s Common Weakness Enumeration (CWE)
1

While each test case uses a CWE identifier as part of its name, a specific CWE entry for a flaw

type is not required in order to create a test case. Test cases are created for all appropriate flaw

types and each one is named using the most relevant CWE entry (which might be rather generic

and/or abstract).

1
 The MITRE CWE is a community-developed dictionary of software weakness types and can be found at:

http://cwe.mitre.org

- 5 -

2.2 Test Case Statistics

The test cases cover 11 of the 2011 CWE/SANS Top 25 Most Dangerous Software Errors. Of

the 14 CWE entries in the Top 25 that the test cases do not cover, 10 are design issues that do not

fit into the structure of the CAS test cases. The other four are not specific to C/C++ and are

covered in the related Java test cases. (See Appendix B for details on the test cases associated

with each of the Top 25).

New flaws were added in the Juliet Test Suite v1.2 for C/C++. The number of C/C++ test cases

in 2012 totaled 61,387, as opposed to 57,099 in 2011. This represents an increase of 7.5%.

Table 1 contains statistics on the size and scope of the test cases for 2011 and 2012.

2011 2012
Percentage

Change

CWE Entries
Covered

119 118 -0.8%

Flaw Types 1,489 1,617 8.6%

Test Cases 57,099 61,387 7.5%

Lines of Code
2
 8,375,604 8,679,682 3.6%

Table 1 – 2011-2012 C/C++ Test Case Statistics

See Appendix A for a complete list of the CWE entries covered by the test cases.

2
 Counted using CLOC (cloc.sourceforge.net). Blank or commented lines were not included. Includes main

functions.

- 6 -

In addition, the following changes occurred in Juliet Test Suite v1.2 for C/C++:

 Test cases for an additional six CWEs were added.

 Test cases for seven CWEs were removed.

 One flow variant was removed.

 Two flow variants were added.

 The number of flaw types for 22 CWEs either increased or decreased.

 Some test case directories were split into smaller subdirectories so that each one contains

no more than 1,000 test case files.

 Removal of dead code from several control flow variants.

See Appendix E for more details.

- 7 -

Section 3: Test Case Naming

As described in Section 1.2, test cases are pieces of buildable code that target exactly one type of

flaw and typically contain one or more non-flawed constructs that perform a function similar to

the flawed construct.

3.1 Naming Scheme

The test cases use MITRE's CWEs as a basis for naming and organization. The test cases strive

to use the most specific CWE entry for the target flaw. Each test case file is associated with

exactly one CWE entry.

A test case is uniquely identified by a combination of four elements:

 The identifying number and possibly shortened name of the CWE entry most closely

associated with the intentional flaw.

 A “functional variant” name, which indicates the intentional flaw more specifically than

the CWE entry.

 A two-digit number associated with a “flow variant” which indicates the type of data

and/or control flow used in the test case. For example, flow variant “01” is the simplest

form of the flaw and contains neither data nor control flows.

 The programming language used in the test case. This is indicated in the extension(s) for

the test case files (“.c,” “.cpp,” or “.h”).

The name for a test case is written as “C test case CWE476_NULL_Pointer_

Dereference__char_01.” Single file test cases can also be referenced by the file name.

3.2 Test Case Functional Variants

Every test case has a “functional variant” name. The term functional variant is also synonymous

with “flaw type.” This word or phrase is used to differentiate test cases for the same CWE entry.

It should be as short as possible and will often be simply the name of a type or function used in

the test case. If there is only one type of issue for a CWE entry, then the functional variant name

for test cases for that CWE entry is “basic.”

3.2.1 Key Strings in Functional Variant Names

There is a key string that can appear in functional variant names to indicate test case

characteristics. This string is used by scripts that manage the test cases, build process, and result

evaluation. Due to the nature of the software used to generate most test cases, this string may

appear more than once in a functional variant name:

- 8 -

 “w32” – This string in the functional variant name for a test case indicates that the

functional variant is specific to the Windows operating system. Typically, these test

cases use functions in the “win32” API that are not present in other operating systems.

Many of the C/C++ test cases will compile on non-Windows platforms, however these

will not. An example of such a test case is the C test case

CWE78_OS_Command_Injection__char_listen_socket_w32_execv_41.c.

3.3 Test Case Flow Variants

The test cases are used to demonstrate the ability of static analysis tools to follow various control

and data flows in order to properly report a flaw and properly disregard a non-flaw in software.

The type of control or data flow present in a test case is specified by the “flow variant” number.

Test cases with the same flow variant number (but a different CWE entry or “functional variant”)

are using the same type of control or data flow.

Test cases with a flow variant of “01” are the simplest form of the flaws and do not contain

added control or data flow complexity. This set of test cases is referred to as the “Baseline” test

cases.

Test cases with a flow variant other than “01” are referred to as the “More Complex” test cases.

Those with a flow variant from “02” to “22” (inclusive) cover various types of control flow

constructs and are referred to as the “Control Flow” test cases. Those with a flow variant of “31”

or greater cover various types of data flow constructs and are referred to as the “Data Flow” test

cases. The gap between 22 and 31 is left to allow for future expansion.

Some flaw types do not have test cases for every flow variant. There are several reasons for this

as not all of the flaw types:

 Involve “data” and therefore cannot be used in Data Flow test cases.

 Can be placed in Control or Data flows because the flaw is inherent in a C++ class (only

a Baseline test case is possible for these flaw types).

 Can be generated by the current version of the CAS’s custom Test Case Template Engine

and as a result are manually created. Only Baseline (“01” flow variant) test cases are

created for these flaw types. In the future, more complex test cases may be created for

these flaw types, either manually or through the use of an enhanced version of the engine.

 Support compatibility with all of the control and data flows and may result in a test case

that will not compile or function appropriately. Some of these issues are unavoidable

because the problem is inherent in the combination of the flaw type and the flow variant.

Other compatibility issues involve limitations of the current Test Case Template Engine.

Future versions of the test engine may contain additional combinations.

The flow variants used in the test cases are detailed in Appendix C.

- 9 -

3.4 Test Case Files

A test case file is a file that is associated with exactly one test case (as opposed to test case

supporting files that are typically used by multiple test cases). An individual test case consists of

one or more test case file(s). Below are examples of test cases and their associated file names:

C test case CWE476_NULL_Pointer_Dereference__char_01 consists of one file:

 CWE476_NULL_Pointer_Dereference__char_01.c

C test case CWE476_NULL_Pointer_Dereference__char_51 consists of two files:

 CWE476_NULL_Pointer_Dereference__char_51a.c

 CWE476_NULL_Pointer_Dereference__char_51b.c

C test case CWE476_NULL_Pointer_Dereference__char_54 consists of five files:

 CWE476_NULL_Pointer_Dereference__char_54a.c

 CWE476_NULL_Pointer_Dereference__char_54b.c

 CWE476_NULL_Pointer_Dereference__char_54c.c

 CWE476_NULL_Pointer_Dereference__char_54d.c

 CWE476_NULL_Pointer_Dereference__char_54e.c

C++ test case CWE563_Unused_Variable__unused_class_member_value_01 consists of two

files:

 CWE563_Unused_Variable__unused_class_member_value_01_bad.cpp

 CWE563_Unused_Variable__unused_class_member_value_01_good1.cpp

Test cases are not entirely self-contained. They rely on other files called test case support files,

which are described in Section 5.

- 10 -

3.4.1 Test Case File Names

Test case files are named with the following parts in order:

Part Description Optional/Mandatory

“CWE” String Literal Mandatory

CWE ID
Numerical identifier for the CWE entry
associated with this test case, such as
“36”

Mandatory

“_” String Literal Mandatory

Shortened CWE
entry name

A potentially shortened version of the
CWE entry name, with underscores
between words, such as
“Absolute_Path_Traversal”

Mandatory

“__” (two
underscores)

String Literal Mandatory

Functional Variant
Name

A word or short phrase describing this
particular variant of the issue, such as
“fromConsole.” This item is described
further in Section 3.2 above.

Mandatory

“_” String Literal Mandatory

Flow Variant

A two digit integer value describing the
type of complexity of the test case, such
as “01,” “02,” or “61.” This item is
described further in Section 3.3 above.

Mandatory

Sub-file Identifier

A string that identifies this file in a test
case consisting of multiple files, such as
“a,” “b,” “_bad,” “_good1.” This item is
described further in Section 3.4.2 below.

Optional

“.” String Literal Mandatory

Language
identifier / file
extension

String Literal “c,” “cpp,” or “.h” Mandatory

Table 2 – Test Case File Name Components

For example, consider a test case written to evaluate a tool’s ability to find integer overflows.

This test case reads input from the console using the “fscanf” function and adds two numbers.

This test case is the simplest form of this flaw and is contained in one file:

CWE Entry ID: 190

Shortened CWE Entry Name: “Integer_Overflow”

Functional Variant: “char_fscanf_add”

Flow Variant: 01

Language: C

The test case will be contained in the file named:

 CWE190_Integer_Overflow__char_fscanf_add_01.c

- 11 -

3.4.2 Sub-file Identifier

The simpler forms of most flaws can be contained in a single source code file, but some test

cases consist of multiple files. There are several reasons a test case may be split into multiple

files and each one uses a different type of string to identify each file in the test case.

 Some C++ flaws are inherent in a class and require separate files for the flawed and non-

flawed constructs. In this case, the flaw will be in a file identified with the string “_bad”

(such as “CWE401_Memory_Leak__destructor_01_ bad.cpp”) and the non-flaw will be

in the file identified with the string “_good1” (such as

“CWE401_Memory_Leak__destructor_01_good1.cpp”). Section 4.2 contains more

information about class-based flaws.

 Some Data Flow test cases involve the flow of data between functions in different source

code files. In these test cases, the test case will “start” in the file identified with the string

“a,” such as “CWE476_NULL_Pointer_Dereference__char_ 54a.c.” Functions in the “a”

file will call functions in the “b” file, which may call functions in the “c” file, etc.

 Some Data Flow test cases involve the flow of data between virtual function calls. In the

C++ version of these test cases, a header file (.h) is used to define the virtual function and

implementations occur in separate source (.cpp) files.

 Some Data Flow test cases involve the flow of data between a class constructor and

destructor. In these test cases, a header file (.h) is used to define the constructor and

destructor and the implementations occur in separate source (.cpp) files.

- 12 -

Section 4: Test Case Design

Most test cases cover flaws that can be contained in arbitrary functions (non-class-based flaws).

However, some flaws, called class-based flaws, are inherent in the C++ class definition and must

be handled differently in the test case design. An example of a class-based flaw is:

C++ test case CWE416_Use_After_Free__operator_equals_01

(In this test case, failure to define operator= may result in a program crash due to

potentially using memory after it has been freed.)

Virtual function, constructor/destructor, and bad-only test cases are unique. Virtual function and

constructor/destructor test cases require multiple files while bad-only test cases are only used to

test flaws, as opposed to testing both flaws and non-flaws as in all other test cases.

All C/C++ test cases also define a “main” function in the primary file. This main function is not

used when multiple test cases are compiled at once. However, it can be used when building an

individual test case, such as for developer testing or for creating binaries to use in testing binary

analysis tools.

In the C/C++ test cases, the preprocessor macro INCLUDEMAIN must be defined at compile

time for this main function to be included in the compilation.

The sections below describe the test case design for non-class-based flaw, class-based flaw,

virtual function, constructor/destructor and bad-only test cases.

4.1 Non-Class-Based Flaw Test Cases

4.1.1 Required Functions

Test cases for flaws that are not inherent in a C++ class must define bad and good functions.

(Note: A few test cases are considered bad-only and do not contain an implementation of the

good function. See Section 4.3 for more details on these test cases.)

For test cases that use multiple files, the following functions are defined in the “a” sub-file (e.g.,

CWE78_OS_Command_Injection__wchar_t_connect_socket_execl_51a.c). The “primary file”

for a test case is a general term for the “a” sub-file in multi-file test cases, or the only file in

single-file test cases.

4.1.1.1 Primary Bad Function

Each test case contains exactly one primary bad function in the primary file. In many simpler

test cases, this function contains the flawed construct, but in other test cases this function calls

other “sink” or “helper” function(s) that contain the flaw (“sink” and “helper” functions are

described in a later section).

- 13 -

The primary bad function:

 For C, is named with the test case name followed by the string “_bad,” such as

“CWE78_OS_Command_Injection__char_connect_socket_execl_01_bad().”

 For C++, is named bad() and is in a namespace that is unique to the test case. The

function is not part of a C++ class.

 Takes no parameters and has no return value.

The name of the primary bad function matches the following regular expression:

^(CWE.*_)?bad$

4.1.1.2 Primary Good Function

Each test case contains exactly one primary good function in the primary file (the same file as

the primary bad function). The only code in this good function is a call to each of the secondary

good functions (described in the next section). However, a few of the bad-only test cases contain

empty good functions. This function does not contain any non-flawed constructs.

The primary good function:

 For C, this function is named with the test case name followed by the string “_good,”

such as “CWE78_OS_Command_Injection__char_connect_socket_execl_01_good().”

 For C++, this function is named good() and is in the namespace that is unique to the test

case. The function is not part of a C++ class.

 Takes no parameters and has no return value.

The name of the primary good function matches the following regular expression:

^(CWE.*_)?good$

4.1.1.3 Secondary Good Function(s)

Non-class-based test cases also contain one or more secondary good functions in the primary

file. Some of the bad-only test cases, however, do not include any secondary good functions. In

many simpler test cases, these secondary good functions contain the actual non-flawed

constructs. In other test cases, these functions will call “sink” or “helper” functions, which

contain the non-flawed constructs. The number of secondary good functions depends on the test

case’s flaw type as well as how many non-flawed constructs similar to that flaw exist. Many test

cases have only one secondary good function, but others may have more.

- 14 -

There are three naming conventions used for secondary good functions:

 goodG2B, goodG2B1, goodG2B2, goodG2B3, etc. – These names are used in data flow

test cases when a good source is passing safe data to a potentially bad sink.

 goodB2G, goodB2G1, goodB2G2, goodB2G3, etc. – These names are used in data flow

test cases when a bad source is passing unsafe or potentially unsafe data to a good sink.

 good1, good2, good3, etc. – This is the “default” or “generic” name for these functions

when the conditions above do not apply.

The names of the secondary good functions match the following regular expression:

^good(\d+|G2B\d*|B2G\d*)$

Note: It is important that this regular expression does not overlap with the previously

defined good function regular expression so that the primary good functions are not

matched.

The secondary good functions have the same argument and return types as the primary bad and

primary good functions. In addition, the secondary good functions have the following

characteristics:

 In C and C++ test cases, the secondary good functions are statically scoped. Therefore,

they are only accessible within that source code file, which prevents name collisions.

 In C++ test cases, the secondary good functions are in the namespace that is unique to the

test case. The functions are not part of a C++ class.

4.1.2 Optional Functions

In addition to the required functions, test cases may define “helper,” “source,” and/or “sink”

functions as described in the following sections.

4.1.2.1 Helper Functions

Helper functions are used in test cases when even the simplest form of the flaw cannot be

contained in a single function (within the constraints of the test case design). Functions used to

create data flow patterns (“source” and “sink” functions) in More Complex test cases are not

considered “helper” functions because they are not part of the flaw construct.

Examples of test cases where helper functions are required include:

 Test cases involving variable argument functions, such as in the C test case

CWE134_Uncontrolled_Format_String__char_console_vprintf_01.

 Test cases for unused parameter, such as in the C test case

CWE563_Unused_Variable__unused_parameter_variable_01.

- 15 -

The following items describe helper functions further:

 The helper functions are always specific to the bad function or good functions. The bad

helper and good helper functions may contain different code or the exact same code

(separate functions are used to easily evaluate tool results as “True Positives” or “False

Positives”).

 Helper functions for the bad code are named “helperBad.”

 Ideally, helper functions would be specific to an individual secondary good function and

be named like “helperGood1” or “helperGoodG2B.” This naming is used in manually

created test cases, but unfortunately is not supported in the current Test Case Template

Engine. In generated test cases, a generic function named “helperGood” is used.

 In C test cases, helper functions are statically scoped when possible.

 In C++ test cases, helper functions are in the namespace for the test case and are statically

scoped when possible.

 In multi-file test cases, helper functions may be in the primary file or in the other, non-

primary files.

 In test cases using variable argument functions, such as CWE134_Uncontrolled_

Format_String__char_console_vprintf_01, helper functions are named “badVaSink,”

“goodG2BVaSink,” and “goodB2GVaSink.” In control flow test cases, such as

CWE134_Uncontrolled_Format_String__char_console_vprintf_02, helper functions are

named “badVaSinkB,” “goodB2G1VaSinkG,” “goodB2G2VaSinkG,”

“goodG2B1VaSinkB,” etc. Despite their names, these “VaSink” functions are

considered “helper” functions rather than “sink” functions because they are needed in

even the simplest forms of the flaws.

The names of the helper functions will match the following regular expressions:

^(CWE.+_)?(helperBad|badVaSink[BG]?)$

^(CWE.+_)?((helperGood(G2B|B2G)?\d*)|(good(G2B|B2G)?\d*VaSink[BG]?))$

4.1.2.2 Source and Sink Functions

Test cases that contain data flows use “source” and “sink” functions, which are called from each

other or from the primary bad or good function. Each source or sink function is specific to either

the bad function for the test case or for exactly one secondary good function.

The following items describe source and sink functions further:

 Bad source and sink functions are generally named “BadSource” and “BadSink.”

- 16 -

 Good source functions are generally named “goodG2BSource,” “goodG2B1Source,”

“goodB2GSource,” “goodB2G2Source,” etc.

 Good sink functions are generally named “goodG2BSink,” “goodG2B1Sink,”

“goodB2GSink,” “goodB2G2Sink,” etc.

 In C test cases, source and sink function are statically scoped when possible. If the

function is called from another file, then the test case name is added to the beginning of

the function name. Examples of non-static source and sink function names are

“CWE134_Uncontrolled_Format_String__char_console_printf_61b_badSource” and

“CWE134_Uncontrolled_Format_String__char_console_printf_51b_goodG2BSink.”

 In C++, source and sink functions are defined in the namespace for that test case and are

statically scoped when possible. When multiple source or multiple sink functions are

used in a test case, they are named “badSink_b,” badSink_c,” etc. and

“goodG2BSink_b,” “goodG2BSink_c,” etc.

 In multi-file test cases, source and sink functions may be defined in the primary file or in

the other, non-primary files.

The names of the source and sink functions will match the following regular expressions:

^(CWE.+_)badSource(_[a-z])?$

^(CWE.+_)badSink(_[a-z])?$

^(CWE.+_)good(G2B\d*|B2G\d*)?Source(_[a-z])?$

^(CWE.+_)good(G2B\d*|B2G\d*)?Sink(_[a-z])?$

4.2 Class-Based Flaw Test Cases

The design of test cases for C++ class-based flaws (i.e., those flaws that affect an entire class and

not just a statement or code block) are slightly different because the bad and good constructs

cannot be contained in an arbitrary function. These test cases use separate classes in separate

files.

Bad File for Class-Based Flaws

In a test case for a class-based flaw, the bad file:

 Has a name that ends in _bad (before the extension). For example,

“CWE401_Memory_Leak__destructor_01_bad.cpp.”

 Contains a required bad function with a signature like the bad function in a test case for a

non-class-based flaw. This function makes use of the bad class for this test case to

exercise the flaw being tested.

- 17 -

o In C++, this function is in the namespace for the test case, but outside of the class

in the file.

 If there is only one class in the file, it is named “BadClass.” If a base class and a subclass

are needed for the flaw, the classes are in the same file and are named “BadBaseClass”

and “BadDerivedClass.”

 Has a main function that calls the bad function. Like the main functions in test cases for

non-class-based flaws, this function is only used for testing or building separate binaries

for the test case.

Good File for Class-Based Flaws

In a test case for a class-based flaw, the good file:

 Has a name that ends in “_good1” (before the extension). For example,

“CWE401_Memory_Leak__destructor_01_good1.cpp.” Future versions of the test cases

may include additional good files with names containing “_good2,” “_good3,” etc.

 Contains a required primary good function named “good” with a signature like the

“good” function in a test case for a non-class-based flaw. Like the primary good function

in a test case for a non-class-based flaw, this function only calls the secondary good

function in this file.

o In C++, this function is in the namespace for the test case, but outside of the class

in the file.

 Contains at least one required secondary good function named “good1” to match the file

name (currently, only “good1” function names are used, but future versions of the test

cases may use functions “good2,” “good3,” etc.). The signature for this function is like

the signature of a secondary good function in a test case for a non-class-based flaw. This

secondary good function makes use of the class in this file to exercise the non-flawed

construct being tested.

o In C++, the “good1” function is statically scoped and in the namespace for the test

case, but outside of the class in the file.

 In C++, if there is only one class in the file, it is named “GoodClass.” If a base class and

a subclass are needed for the non-flawed construct, the classes are in the same file and are

named “GoodBaseClass” and “GoodDerivedClass.”

 Has a main function that calls the primary good function. Like the main functions in test

cases for non-class-based flaws, this function is only used for testing or building separate

binaries for the test case.

- 18 -

4.3 Virtual Function Test Cases

A few test cases, like ones using flow variants 81 and 82, make use of virtual functions. In order

to fit these types of test cases into the test case suite, they are designed slightly different than the

“traditional” test cases described in the previous sections.

A C++ virtual function Data Flow test case contains five files:

1. Header file – This file defines the base class and declares a function, named “action,”

within the base class as a pure virtual function. It also defines bad and good classes and

declares “action” functions within those that will implement the “action” function from

the base class. The extension for this file is the standard “.h.”

2. Root file – This file contains the implementations for the bad and good functions. The file

name contains the letter ‘a’ as a sub-file identifier and is a C++ source file.

3. Bad implementation file – This file implements the “action” function for the bad class,

contains the string “bad” as a sub-file identifier, and is a C++ source file.

4. GoodG2B implementation file - This file implements the “action” function for a good

class that makes use of a bad sink. The root file ensures that a good source is used with

this bad sink. The file name contains the string “goodG2B” as a sub-file identifier, and is

a C++ source file.

5. GoodB2G implementation file - This file implements the “action” function for a good

class that makes use of a good sink. The root file ensures that a bad source is used with

this good sink. The file name contains the string “goodB2G” as a sub-file identifier, and

is a C++ source file.

As an example, the files for the CWE191_Integer_Underflow__unsigned_int_rand_sub_81 test

case are as follows:

 CWE191_Integer_Underflow__unsigned_int_rand_sub_81.h

 CWE191_Integer_Underflow__unsigned_int_rand_sub_81a.cpp

 CWE191_Integer_Underflow__unsigned_int_rand_sub_81_bad.cpp

 CWE191_Integer_Underflow__unsigned_int_rand_sub_81_goodG2B.cpp

 CWE191_Integer_Underflow__unsigned_int_rand_sub_81_goodB2G.cpp

4.4 Constructor/Destructor Test Cases

A few test cases, like ones using flow variants 83 and 84, contain data flows between the

constructor and destructor of a class. The code containing the “source” of the data flow is

contained within the constructor and the code containing the “sink” of the data flow is contained

within the destructor. Like the virtual function test cases described in Section 4.3, these types of

test cases are designed slightly different than the “traditional” test cases in order for them to fit

into the test case suite.

- 19 -

A C++ constructor/destructor Data Flow test case contains five files:

1. Header file – This file defines the bad and good classes. Each of these classes contains a

single constructor and destructor. The extension for this file is the standard “.h.”

2. Root file – This file contains the implementations for the bad and good functions. These

functions create objects that will call the constructors/destructors implemented in the

remaining implementation files described below. The file name contains the letter “a” as

a sub-file identifier and is a C++ source file.

3. Bad implementation file – This file implements the constructor and destructor for the bad

class, contains the string “bad” as a sub-file identifier, and is a C++ source file.

4. GoodG2B implementation file – This file implements the constructor and destructor for a

good class that makes use of a bad sink. The good source implementation is contained

within the constructor and the bad sink implementation is contained within the destructor.

The file name contains the string “goodG2B” as a sub-file identifier, and is a C++ source

file.

5. GoodB2G implementation file – This file implements the constructor and destructor for a

good class that makes use of a good sink. The bad source implementation is contained

within the constructor and the good sink implementation is contained within the

destructor. The file name contains the string “goodB2G” as a sub-file identifier, and is a

C++ source file.

4.5 Bad-only Test Cases

During the test case design process, it was determined that in a few cases a non-flawed construct

could not be generated that correctly fixed the flaw being tested. Therefore, a minimal number of

test cases are considered “bad-only” in the sense that they only contain a flawed construct.

The bad-only test cases differ from the rest of the test cases in the following ways:

 All bad-only test cases are non-class-based.

 No bad-only test cases contain Data Flows.

The bad-only test cases follow the same naming scheme as non-class-based test cases. It should

be noted that these test cases should be excluded from any analysis that attempts to determine the

number of False Positives reported by static analysis tools. A list of these test cases appears in

Appendix D.

- 20 -

Section 5: Test Case Support Files

As mentioned in Section 3.4 above, test cases are not self-contained. Every test case requires at

least one common test case support file. There are additional test case support files that are CWE

entry specific and used by test cases, where appropriate. In addition, support files with an

included main function are provided to execute the test cases.

The sections below describe the purpose and contents of each test case support file.

5.1 Common Support Files

One or more common support files are required for every test case and are located in the

~testcasesupport directory.

The standard test case header:

 std_testcase.h – This header file is included in every C/C++ test case source code file

and contains several variable and macro definitions. It also includes other header files

such as “std_testcase_io.h” and the system header “stdio.h” so that they don’t need to be

included by every test case.

Input/Output related support files:

 io.c – This file contains definitions for several functions used by the test case source

code files to print various types to the console. For example, printLine() is used to print

an array of characters to the console. Test cases use the functions in this file instead of

calling console output functions directly in order to prevent incidental issue reports from

analysis tools for “inappropriate logging” or “possible data disclosure.” This file also

contains the definitions of several global variables used by the Control Flow test cases.

 std_testcase_io.h – This header file declares the functions and variables which are

defined in io.c. It is not named io.h because there is a system header in Windows with

that name.

Thread related support files:

 std_thread.c – This file contains implementations of several thread-related functions

used by the test case source code files.

 std_thread.h – This header file is used to define the functions in std_thread.c.

5.2 CWE Entry Specific Support Files

In addition to the common support files, test cases may make use of support files that are specific

to multiple test cases associated with a CWE entry. When present, these files will be in the

- 21 -

directory for the CWE entry and will have a name that does not match the expected pattern for a

test case file.

5.3 Main Support Files

Support files are also provided to test an individual CWE entry’s test cases. These files, called

main.cpp and testcases.h, are auto-generated and are included with each CWE entry (such as in

the ~testcases\CWE15_External_Control_of_System_or_Configuration_Setting directory). They

can be used to test all the test cases contained within that CWE entry’s directory.

Beginning with v1.2 of the Juliet Test Suite for C/C++, several CWE entries were split among

multiple subdirectories due to the vast number of files. Each subdirectory is limited to a

maximum of 1,000 test case files and contains a main.cpp file and a testcases.h file. These files

can be used to compile and test all of the test cases contained within that subdirectory.

One “master” version of each file, included in the ~testcasesupport directory, is used to run all

the test cases at once.

Each file is described below:

 main.cpp – This file is auto-generated and contains a “main” function that calls the

primary “good” function for each test case, and then calls the primary “bad” function for

each test case. This file can be compiled using the preprocessor macro OMITBAD or

OMITGOOD to omit the calls to the bad or good functions.

 testcases.h – This header file is automatically generated and contains declarations of the

bad and good functions in the test cases so that they can be called by the main.cpp file.

This header is only included in main.cpp.

Most of the test cases should compile on operating systems other than Windows. Test cases that

are Windows-specific contain the string “w32” in their file names. The following support files

are included in the directory (or directories) for each CWE entry if the directory contains test

cases that will compile on Linux
3
:

 main_linux.cpp – This file is auto-generated and contains a “main” function that calls the

primary “good” function, and then the primary “bad” function, for each test case that is

not Windows-specific. This file can be compiled using the preprocessor macro

OMITBAD or OMITGOOD to omit the calls to the “bad” or “good” functions.

 Makefile – A standard makefile that will compile all non-Windows-specific test cases

within a CWE directory when executed by the utility, “make.”

3
 The test cases are not guaranteed to compile on Linux and were designed specifically for Windows. All test cases

have been tested and compile successfully on Windows.

- 22 -

See Section 7.1 for details on how to update main.cpp, main_linux.cpp, testcases.h, and Makefile

using scripts distributed with the test cases.

- 23 -

Section 6: Building Test Cases

6.1 Build Prerequisites

All files needed to build the test cases are included in this distribution using the following

environment (development and test was done using versions shown in parentheses):

 Microsoft Windows platform (Windows 7)

 Microsoft Visual Studio (2010 Professional)

 Python for Windows (version 3.2.3)

The current release of the test cases targets the Microsoft Windows platform; however, many test

cases will work on non-Windows platforms. Windows-specific test case files contain the string

“w32” in their name.

Although the versions listed above were used to develop and test the test cases, other versions

may work as well.

6.2 Compiling Test Cases

There are two ways to compile these test cases: as a single compiled executable that contains all

test cases; or as individual executables, each containing a single CWE entry.

Note that some CWE entries’ test cases are split between multiple subdirectories. Compiling the

code using the main.cpp and testcases.h in each of these subdirectories will only compile the test

cases in that folder and not all of the test cases for the CWE entry. Also, due to the number of

files and the number of lines of code contained in the test cases, some static analysis tools may

not be able to analyze the single compiled executable.

6.2.1 Compile All Test Cases as One Executable

To compile a single (large) executable file named “testcases.exe,” run the file “compile_all.bat”

located in the top level directory. This batch file must be run with Visual Studio specific

environment variables set, which is most easily done by running it in a “Visual Studio Command

Prompt.” This batch file can be used as a basis for analyzing all test cases by following

instructions in the documentation for the tool being used.

The non-Windows-specific test cases can be compiled into a single (large) executable file named

“all-testcases” by running “make” and targeting “Makefile_all,” located in the top level

directory.

- 24 -

6.2.2 Compile Test Cases per CWE Entry

The test cases can also be compiled so that a separate executable file is generated for each CWE

entry, with a few exceptions. This is accomplished by running the batch file in the directory for

that CWE entry (such as by running “CWE476.bat” in the

~testcases\CWE476_NULL_Pointer_Dereference directory to create the file “CWE476.exe”).

In order to automate the process of compiling the individual test cases in each CWE entry’s

directory, the Python script “run_analysis_example_tool.py” can be executed (also in a “Visual

Studio Command Prompt”). This script will go to each CWE entry directory and run the batch

file to compile those test cases. This script can also be used as the basis for a script to automate

performing analysis on the test cases for each CWE entry. The comments in the script provide

an example of how this can be accomplished.

The test cases for a given CWE can also be compiled by running “make” within the CWE

directory. Note, however, that there are several CWE directories that do not contain make files as

all of the test cases for those CWEs are Windows-specific.

6.2.2.1 CWE Entries Containing Subdirectories

Due to the vast number of test case files for some CWE entries, test case files for these CWEs

are split into subdirectories containing no more than 1,000 test case files per directory. For

example, the test cases for CWE 590 are broken up into the following subdirectories:

 ~testcases\CWE590_Free_Memory_Not_on_Heap\s01

 ~testcases\CWE590_Free_Memory_Not_on_Heap\s02

 ~testcases\CWE590_Free_Memory_Not_on_Heap\s03

 ~testcases\CWE590_Free_Memory_Not_on_Heap\s04

 ~testcases\CWE590_Free_Memory_Not_on_Heap\s05

Each subdirectory contains a batch file that can be used to compile all of the test case files

located within that directory (for example, “CWE590_s01.bat”). The batch file, and generated

executable, each contain the CWE number and subdirectory number in their file names. For

example, “CWE590_s01.bat” can be executed to compile the test cases in the

~testcases\CWE590_Free_Memory_Not_on_Heap\s01 directory into “CWE590_s01.exe.”

Note that all flow variants for a given functional variant will appear within the same

subdirectory.

6.3 Compiling an Individual Test Case

Although the test cases are typically compiled and analyzed in sets, the test cases are designed so

that each test case can be compiled and executed individually. Running a test case is useful

during test case development, but can also be used to analyze a test case in isolation.

- 25 -

6.3.1 Building and Running a Test Case

In the test cases, a main function exists that contains a call to the primary good function for the

test case, followed by a call to the bad function. The INCLUDEMAIN preprocessor macro

definition is used to include the main function when compiling a test case. The preprocessor

macros OMITBAD and OMITGOOD can also be used to omit the flawed or non-flawed

constructs from the compilation. Omitting portions of the test case(s) allows for compiling a

binary that contain only flaws or only non-flaws, which may be useful when testing binary

analysis tools.

The following example command will use the Visual Studio command line compiler to compile

a single file test case into the file testcase.exe. This command should be run in a “Visual Studio

Command Prompt” in the directory to which the test case .zip file was extracted.

cl /Itestcasesupport /DINCLUDEMAIN /Fetestcase.exe testcasesupport\io.c

testcasesupport\std_thread.c

testcases\CWE78_OS_Command_Injection\s02\CWE78_OS_Command_Injection__ch

ar_console_system_01.c

The following example command will compile a multiple file test case into the file testcase.exe.

cl /Itestcasesupport /DINCLUDEMAIN /Fetestcase.exe testcasesupport\io.c

testcasesupport\std_thread.c

testcases\CWE78_OS_Command_Injection\s02\CWE78_OS_Command_Injection__ch

ar_console_system_54*.c

In both cases, this will produce an executable testcase.exe.

- 26 -

Section 7: Updating Build Files

Included in the test case distribution are scripts that can be used to update the test case build files

if changes are made to the set of test cases. Using the test cases as distributed or after edits are

made to existing test case files do not require the use of these scripts. These scripts are only

needed if test case files are deleted from the set or new test cases are added. If new test cases are

added to the test case set, care should be taken to follow the test case design in order to prevent

errors in these scripts, in compilation, or in tool result analysis.

7.1 Updating C/C++ Build Files

The C/C++ test case archive contains three scripts that can be used to update the build files if

changes are made to the set of test cases to be analyzed.

 create_single_batch_file.py – Running this script will update the file “compile_all.bat,”

which can be run to compile all the test cases into a single executable file. This script

also edits source code and header files needed for a successful compilation with this

batch file.

 create_single_Makefile.py – Running this script will update the file “Makefile_all,”

which can be targeted with “make” to compile all the non-Windows-specific test cases

into a single executable file. This script also edits source code and header files needed for

a successful compilation with this makefile.

 create_per_cwe_files.py – Running this script will update the batch files, and makefiles

for non-Windows-specific test cases if they exist, that compile the test cases for each

CWE entry into a separate executable file. This script also edits source code and header

files needed for a successful compilation with those batch files.

- 27 -

Section 8: Tool Analysis

The test cases have been designed so that static analysis tool results can be easily evaluated.

This section describes the desired results when running a static analysis tool on the test cases.

8.1 True Positives and False Negatives

When a static analysis tool is run on a test case, one desired result is for the tool to report one

flaw of the target type. That reported flaw should be in a function with the word “bad” in its

name (such as bad(), badSink(), or CWE476_NULL_Pointer_Dereference__char_41_bad()) or in

a class whose implementation is contained within a file with the word “bad” in the file name

(such as “CWE401_Memory_Leak__destructor_01_bad.cpp”). A correct report of this type is

considered a “True Positive.”

In some circumstances, tools may report the flaw in a test case more than once in the bad

functions or classes. For example, a tool may report multiple, slightly different flaw types or, in

other cases, a tool may report flaws in different locations. At times, a tool may report two results

with the exact same type in the exact same location (sometimes with different call stacks or other

different metadata).

If the tool does not report a flaw of the target type in a bad function or class in a test case, then

the result for the tool on the test case is considered a “False Negative.”

8.2 False Positives and True Negatives

The other desired result when running a tool on a test case is for the tool to not report any flaws

of the target type in a function with the word “good” in its name or a class with the word “good”

in its file name. An incorrect report of the target flaw type in a good function is considered a

“False Positive.”

As described in Section 4.1.1.3, each non-class-based test case has one or more secondary good

functions that contain a non-flawed construct. When a test case has more than one secondary

function, a test case user may want to determine in which secondary good function(s) a tool

reported False Positives and in which secondary good function(s) the tool had no False Positives

(that is, where the tool had “True Negative(s)”).

In many test cases, this can be determined by examining the name of the functions where tool

results are reported. The “source” and “sink” functions can be associated with the secondary

good function from which they are called (for example, the function goodB2GSource or

goodB2GSink can be associated with the secondary good function goodB2G).

Unfortunately, limitations of the CAS’s Test Case Template Engine used to generate test cases

prevent being able to definitively tie all False Positive results to the secondary good functions in

all test cases. Specifically, as detailed in Section 4.1.2.1, good helper functions are not specific

to the secondary good functions in a test case. Therefore, in a test case with more than one

- 28 -

secondary good function and one or more False Positive results in a good helper function, the

False Positive(s) cannot be easily associated with secondary good function(s) and True Negatives

cannot be determined, either.
4

8.3 Unrelated Flaw Reports

A tool may also report flaws with types that are not related to the target flaw type in a test case.

There are two occasions when this may occur:

 Those flaw reports may be correctly pointing out flaws of the non-target type that are

present in the test case. Flaws of this type are known as “incidental” flaws. The

developers of the test cases attempted to minimize the incidental flaws and marked

unavoidable incidental flaws with a comment containing the string “INCIDENTAL.”

However, many uncommented incidental flaws remain in the test cases so users should

not draw any conclusions about tool reports of non-target flaw types without

investigating the reported result fully.

 The flaw reports may be indicating flaws that do not exist in the test case. Flaw reports

of this type are known as “unrelated False Positives” because they are incorrect flaw

reports (False Positives) and not related to the type of flaw the test case is intended to

test.

Flaw reports of non-target types generally cannot be characterized as correct or incorrect in an

automated or trivial manner. They may be triggered by common code constructs that are

repeated in a large number of test cases (due to the automated generation process used to create

the test cases). For these reasons, these flaw reports are typically ignored when studying a static

analysis tool.

4
 This association cannot be made based solely on function names. Some tools may report additional information,

such as stack traces, with findings that allow this association to be made.

- A-1 -

Appendix A : Test Case CWE Entries

The table below shows the CWE entries associated with the 2012 Test Cases, along with the

number of test cases associated with each CWE entry.

CWE
Entry

ID
CWE Entry Name

C/C++
Test

Cases

15 External Control of System or Configuration Setting 48

23 Relative Path Traversal 2400

36 Absolute Path Traversal 2400

78
Improper Neutralization of Special Elements used in
an OS Command ('OS Command Injection')

4800

90
Improper Neutralization of Special Elements used in
an LDAP Query ('LDAP Injection')

480

114 Process Control 576

121 Stack-based Buffer Overflow 4968

122 Heap-based Buffer Overflow 5922

123 Write-what-where Condition 144

124 Buffer Underwrite ('Buffer Underflow') 2048

126 Buffer Over-read 1452

127 Buffer Under-read 2048

134 Uncontrolled Format String 2880

176 Improper Handling of Unicode Encoding 48

188 Reliance on Data/Memory Layout 36

190 Integer Overflow or Wraparound 2592

191 Integer Underflow (Wrap or Wraparound) 1584

194 Unexpected Sign Extension 1152

195 Signed to Unsigned Conversion Error 1152

196 Unsigned to Signed Conversion Error 18

197 Numeric Truncation Error 864

222 Truncation of Security-relevant Information 18

223 Omission of Security-relevant Information 18

226 Sensitive Information Uncleared Before Release 72

242 Use of Inherently Dangerous Function 18

244
Improper Clearing of Heap Memory Before Release
('Heap Inspection')

72

247 Reliance on DNS Lookups in a Security Decision 18

252 Unchecked Return Value 630

253 Incorrect Check of Function Return Value 684

256 Plaintext Storage of a Password 96

259 Use of Hard-coded Password 96

272 Least Privilege Violation 252

273 Improper Check for Dropped Privileges 36

284 Improper Access Control 216

319 Cleartext Transmission of Sensitive Information 192

321 Use of Hard-coded Cryptographic Key 96

325 Missing Required Cryptographic Step 72

327 Use of a Broken or Risky Cryptographic Algorithm 54

328 Reversible One-Way Hash 54

338 Use of Cryptographically Weak PRNG 18

- A-2 -

364 Signal Handler Race Condition 18

366 Race Condition within a Thread 36

367
Time-of-check Time-of-use (TOCTOU) Race
Condition

36

369 Divide By Zero 864

377 Insecure Temporary File 144

390 Detection of Error Condition Without Action 90

391 Unchecked Error Condition 54

396 Declaration of Catch for Generic Exception 54

397 Declaration of Throws for Generic Exception 20

398 Indicator of Poor Code Quality 181

400
Uncontrolled Resource Consumption ('Resource
Exhaustion')

720

401
Improper Release of Memory Before Removing Last
Reference ('Memory Leak')

1658

404 Improper Resource Shutdown or Release 384

415 Double Free 962

416 Use After Free 459

426 Untrusted Search Path 192

427 Uncontrolled Search Path Element 480

440 Expected Behavior Violation 1

457 Use of Uninitialized Variable 948

459 Incomplete Cleanup 36

464 Addition of Data Structure Sentinel 48

467 Use of sizeof() on a Pointer Type 54

468 Incorrect Pointer Scaling 37

469 Use of Pointer Subtraction to Determine Size 36

475 Undefined Behavior For Input to API 36

476 NULL Pointer Dereference 348

478 Missing Default Case in Switch Statement 18

479 Signal Handler Use of a Non-reentrant Function 18

480 Use of Incorrect Operator 18

481 Assigning instead of Comparing 18

482 Comparing instead of Assigning 18

483 Incorrect Block Delimitation 20

484 Omitted Break Statement in Switch 18

500 Public Static Field Not Marked Final 1

506 Embedded Malicious Code 158

510 Trapdoor 70

511 Logic/Time Bomb 72

526 Information Exposure Through Environmental Variables 18

534 Information Exposure Through Debug Log Files 36

535 Information Exposure Through Shell Error Message 36

546 Suspicious Comment 90

561 Dead Code 2

562 Return of Stack Variable Address 3

563 Unused Variable 512

570 Expression is Always False 16

571 Expression is Always True 16

587 Assignment of a Fixed Address to a Pointer 18

588 Attempt to Access Child of a Non-structure Pointer 80

590 Free of Memory not on the Heap 2680

591
Sensitive Data Storage in Improperly Locked
Memory

96

- A-3 -

605 Multiple Binds to Same Port 18

606 Unchecked Input for Loop Condition 480

615 Information Exposure Through Comments 18

617 Reachable Assertion 306

620 Unverified Password Change 18

665 Improper Initialization 193

666 Operation on Resource in Wrong Phase of Lifetime 90

667 Improper Locking 18

672 Operation on a Resource after Expiration or Release 47

674 Uncontrolled Recursion 2

675 Duplicate Operations on Resource 192

676 Use of Potentially Dangerous Function 18

680 Integer Overflow to Buffer Overflow 576

681 Incorrect Conversion between Numeric Types 54

685 Function Call With Incorrect Number of Arguments 18

688
Function Call With Incorrect Variable or Reference
as Argument

18

690
Unchecked Return Value to NULL Pointer
Dereference

960

758
Reliance on Undefined, Unspecified, or
Implementation-Defined Behavior

581

761 Free of Pointer not at Start of Buffer 576

762 Mismatched Memory Management Routines 3564

773 Missing Reference to Active File Descriptor or Handle 144

775
Missing Release of File Descriptor or Handle after
Effective Lifetime

144

780 Use of RSA Algorithm without OAEP 18

785
Use of Path Manipulation Function without
Maximum-sized Buffer

18

789 Uncontrolled Memory Allocation 960

832 Unlock of a Resource that is not Locked 18

835
Loop with Unreachable Exit Condition ('Infinite
Loop')

6

843
Access of Resource Using Incompatible Type ('Type
Confusion')

80

Table 3 – CWE Entries in 2012 Test Cases

- B-1 -

Appendix B : CWE/SANS Top 25 Coverage

Table 4 shows the degree to which the C/C++ test cases cover each of the 2011 CWE/SANS Top

25 Most Dangerous Software Errors.

Note: As of this writing, 2011 is the most recent version.

2011 CWE/SANS Top 25 CAS Test Cases

Rank CWE Entry CWE Entry / Entries C/C++

1
CWE-89: Improper Neutralization
of Special Elements used in an
SQL Command ('SQL Injection')

None (SQL Injection issues are
covered in the related Java test
cases)

-

2

CWE-78: Improper Neutralization
of Special Elements used in an OS
Command ('OS Command
Injection')

CWE-78 4800

3
CWE-120: Buffer Copy without
Checking Size of Input ('Classic
Buffer Overflow')

CWE-121: Stack-based Buffer
Overflow, CWE-122: Heap-based
Buffer Overflow, CWE-680: Integer
Overflow to Buffer Overflow

11466

4
CWE-79: Improper Neutralization
of Input During Web Page
Generation ('Cross-site Scripting')

None (Cross-Site Scripting issues
are covered in the related Java test
cases)

-

5
CWE-306: Missing Authentication
for Critical Function

None (Design issue which does not
fit into CAS Test Case structure)

-

6 CWE-862: Missing Authorization
None (Design issue which does not
fit into CAS Test Case structure)

-

7
CWE-798: Use of Hard-coded
Credentials

CWE-259: Use of Hard-coded
Password, CWE-321: Use of Hard-
coded Cryptographic Key

192

8
CWE-311: Missing Encryption of
Sensitive Data

CWE-319: Cleartext Transmission
of Sensitive Information

192

9
CWE-434: Unrestricted Upload of
File with Dangerous Type

None (Design issue which does not
fit into CAS Test Case structure)

-

10
CWE-807: Reliance on Untrusted
Inputs in a Security Decision

CWE-247: Reliance on DNS
Lookups in a Security Decision

18

11
CWE-250: Execution with
Unnecessary Privileges

None (Design issue which does not
fit into CAS Test Case structure)

-

- B-2 -

2011 CWE/SANS Top 25 CAS Test Cases

Rank CWE Entry CWE Entry / Entries C/C++

12
CWE-352: Cross-Site Request
Forgery (CSRF)

None (Design issue which does not
fit into CAS Test Case structure)

-

13
CWE-22: Improper Limitation of a
Pathname to a Restricted Directory
('Path Traversal')

CWE-23: Relative Path Traversal,
CWE-36: Absolute Path Traversal

4800

14
CWE-494: Download of Code
Without Integrity Check

None (Design issue which does not
fit into CAS Test Case structure)

-

15 CWE-863: Incorrect Authorization
None (Design issue which does not
fit into CAS Test Case structure)

-

16
CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

None (Design issue which does not
fit into CAS Test Case structure)

-

17
CWE-732: Incorrect Permission
Assignment for Critical Resource

None (Design issue which does not
fit into CAS Test Case structure)

-

18
CWE-676: Use of Potentially
Dangerous Function

CWE-676 18

19
CWE-327: Use of a Broken or
Risky Cryptographic Algorithm

CWE-327 54

20
CWE-131: Incorrect Calculation of
Buffer Size

CWE-121: Stack-based Buffer
Overflow, CWE-122: Heap-based
Buffer Overflow

288

21
CWE-307: Improper Restriction of
Excessive Authentication Attempts

None (Design issue which does not
fit into CAS Test Case structure)

-

22
CWE-601: URL Redirection to
Untrusted Site ('Open Redirect')

None (Open Redirect issues are
covered in the related Java test
cases)

-

23
CWE-134: Uncontrolled Format
String

CWE-134 2880

24
CWE-190: Integer Overflow or
Wraparound

CWE-190, CWE-191: Integer
Underflow (Wrap or Wraparound)

4176

25
CWE-759: Use of a One-Way Hash
without a Salt

None (Use of a One-Way Hash
without a Salt issues are covered in
the related Java test cases)

-

Table 4 – Test Case Coverage of 2011 CWE/SANS Top 25

- C-1 -

Appendix C : Test Case Flow Variants

Below is a table containing information about the Flow Variants in the C/C++ test cases,

including a brief description. Due to design constraints, all flaw types do not contain test cases

for each flow variant.

Flow
Variant

Flow
Type

Description C C++

01 None Baseline – Simplest form of the flaw X X

02 Control if(1) and if(0) X X

03 Control if(5==5) and if(5!=5) X X

04 Control if(STATIC_CONST_TRUE) and if(STATIC_CONST_FALSE) X X

05 Control if(staticTrue) and if(staticFalse) X X

06 Control if(STATIC_CONST_FIVE==5) and if(STATIC_CONST_FIVE!=5) X X

07 Control if(staticFive==5) and if(staticFive!=5) X X

08 Control if(staticReturnsTrue()) and if(staticReturnsFalse()) X X

09 Control if(GLOBAL_CONST_TRUE) and if(GLOBAL_CONST_FALSE) X X

10 Control if(globalTrue) and if(globalFalse) X X

11 Control if(globalReturnsTrue()) and if(globalReturnsFalse()) X X

12 Control if(globalReturnsTrueOrFalse()) X X

13 Control
if(GLOBAL_CONST_FIVE==5) and
if(GLOBAL_CONST_FIVE!=5)

X X

14 Control if(globalFive==5) and if(globalFive!=5) X X

15 Control switch(6) and switch(7) X X

16 Control while(1) X X

17 Control for loops X X

18 Control goto statements X X

21 Control
Flow controlled by value of a static global variable. All functions
contained in one file.

X X

22 Control
Flow controlled by value of a global variable. Sink functions are
in a separate file from sources.

X X

31 Data Data flow using a copy of data within the same function X X

32 Data
Data flow using two pointers to the same value within the same
function

X X

33 Data Use of a C++ reference to data within the same function * X

34 Data
Use of a union containing two methods of accessing the same
data (within the same function)

X X

41 Data
Data passed as an argument from one function to another in the
same source file

X X

42 Data
Data returned from one function to another in the same source
file

X X

43 Data
Data flows using a C++ reference from one function to another
in the same source file

* X

44
Control/

Data
Data passed as an argument from one function to a function in
the same source file called via a function pointer

X X

45 Data
Data passed as a static global variable from one function to
another in the same source file

X X

51 Data
Data passed as an argument from one function to another in
different source files

X X

52 Data
Data passed as an argument from one function to another to
another in three different source files

X X

- C-2 -

Flow
Variant

Flow
Type

Description C C++

53 Data
Data passed as an argument from one function through two
others to a fourth; all four functions are in different source files

X X

54 Data
Data passed as an argument from one function through three
others to a fifth; all five functions are in different source files

X X

61 Data
Data returned from one function to another in different source
files

X X

62 Data
Data flows using a C++ reference from one function to another
in different source files

* X

63 Data
Pointer to data passed from one function to another in different
source files

X X

64 Data
void pointer to data passed from one function to another in
different source files

X X

65
Control/

Data
Data passed as an argument from one function to a function in a
different source file called via a function pointer

X X

66 Data
Data passed in an array from one function to another in different
source files

X X

67 Data
Data passed in a struct from one function to another in different
source files

X X

68 Data
Data passed as a global variable in the “a” class from one
function to another in different source files

X X

72 Data
Data passed in a vector from one function to another in different
source files

* X

73 Data
Data passed in a linked list from one function to another in
different source files

* X

74 Data
Data passed in a hash map from one function to another in
different source files

* X

81 Data
Data passed in an argument to a virtual function called via a
reference

* X

82 Data
Data passed in an argument to a virtual function called via a
pointer

* X

83 Data
Data passed to a class constructor and destructor by declaring
the class object on the stack

* X

84 Data
Data passed to a class constructor and destructor by declaring
the class object on the heap and deleting it after use

* X

* Included in C test cases as C++ files (logic requires C++ features)

Table 5 – Test Case Flow Variants

- D-1 -

Appendix D : Bad-Only Test Cases

CWE Entry ID CWE Entry Name Functional Variants Flow Variants

506 Embedded Malicious Code

email
file_transfer_connect_socket
file_transfer_listen_socket
screen_capture

*

510 Trapdoor
network_connection
network_listen

*

* Applicable to all variants.

Table 6 – C/C++ Bad-only Test Cases

- E-1 -

Appendix E : Test Case Changes in v1.2

Test cases for the following CWEs were added in Juliet Test Suite v1.2 for C/C++:

CWE Entry ID CWE Entry Name

90
Improper Neutralization of Special Elements used in an LDAP Query
('LDAP Injection')

176 Improper Handling of Unicode Encoding

526 Information Exposure Through Environmental Variables

615 Information Exposure Through Comments

667 Improper Locking

681 Incorrect Conversion between Numeric Types

Table 7 – CWEs Added in Juliet Test Suite v1.2 for C/C++

During quality control review, the test cases for the following CWEs were determined to be

invalid and were removed in Juliet Test Suite v1.2 for C/C++:

CWE Entry ID CWE Entry Name

204 Response Discrepancy Information Exposure

304 Missing Critical Step in Authentication

374 Passing Mutable Objects to an Untrusted Method

392 Missing Report of Error Condition

489 Leftover Debug Code

547 Use of Hard-coded, Security-relevant Constants

560 Use of umask() with chmod-style Argument

Table 8 – CWEs Removed in Juliet Test Suite v1.2 for C/C++

The following flow variants were added in Juliet Test Suite v1.2 for C/C++:

Flow Variant
Number

Flow
Type

Description

83 Data
Data passed to a class constructor and destructor by declaring the class
object on the stack

84 Data
Data passed to a class constructor and destructor by declaring the class
object on the heap and deleting it after use

Table 9 – Flow Variants Added in Juliet Test Suite v1.2 for C/C++

- E-2 -

The following flow variant was removed in Juliet Test Suite v1.2 for C/C++:

Flow Variant
Number

Flow
Type

Description Reason for Removal

19 Control Dead code after a return
Reduce incidental dead code in the test
suite

Table 10 – Flow Variants Removed in Juliet Test Suite v1.2 for C/C++

The number of flaw types for the following CWEs changed in Juliet Test Suite v1.2 for C/C++.

Reasons for these changes include, but are not limited to moving the flaw type to a more specific

CWE, removing the flaw type entirely, or adding additional flaw types.

CWE
Entry

ID
CWE Entry Name

Flaws in
v1.1

Flaws in
v1.2

Increase/
Decrease

23 Relative Path Traversal 30 50 +20

36 Absolute Path Traversal 30 50 +20

122 Heap-based Buffer Overflow 123 126 +3

244
Improper Clearing of Heap Memory Before Release
('Heap Inspection')

2 4 +2

272 Least Privilege Violation 10 14 +4

284 Improper Access Control 10 12 +2

328 Reversible One-Way Hash 2 3 +1

398 Indicator of Poor Code Quality 6 11 +5

400
Uncontrolled Resource Consumption ('Resource
Exhaustion')

10 15 +5

415 Double Free 19 22 +3

416 Use After Free 19 22 +3

457 Use of Uninitialized Variable 44 45 +1

476 NULL Pointer Dereference 6 10 +4

563 Unused Variable 23 26 +3

570 Expression is Always False 6 16 +10

571 Expression is Always True 6 16 +10

590 Free of Memory not on the Heap 57 67 +10

690 Unchecked Return Value to NULL Pointer Dereference 17 20 +3

758
Reliance on Undefined, Unspecified, or
Implementation-Defined Behavior

33 37 +4

762 Mismatched Memory Management Routines 76 86 +10

773 Missing Reference to Active File Descriptor or Handle 6 3 -3

775
Missing Release of File Descriptor or Handle after
Effective Lifetime

4 3 -1

Table 11 – Flaw Count Changes in Juliet Test Suite v1.2 for C/C++

