
 

 

                                                             

 

 

 

 

 Juliet Test Suite v1.2 for Java 

User Guide 

 

 

 

Center for Assured Software 

National Security Agency 

9800 Savage Road 

Fort George G. Meade, MD 20755-6738 
cas@nsa.gov 

 

 

 

 

 

December 2012 

  



 

- ii - 

Table of Contents 

Section 1: Introduction .........................................................................................................1 

1.1 Document Purpose ...................................................................................................1 
1.2 What are Test Cases? ...............................................................................................1 
1.3 Why Test Cases? ......................................................................................................1 

1.3.1 Limitations of Natural Code ...........................................................................1 
1.3.2 Limitations of the Test Cases ..........................................................................2 

1.4 Creating Test Cases..................................................................................................3 
1.5 Feedback ..................................................................................................................3 

Section 2: Test Case Scope ..................................................................................................4 
2.1 Test Case Selection ..................................................................................................4 

2.2 Third Party Libraries ................................................................................................4 
2.3 Test Case Statistics ..................................................................................................5 

Section 3: Test Case Naming ...............................................................................................7 
3.1 Naming Scheme .......................................................................................................7 

3.2 Test Case Functional Variants .................................................................................7 
3.2.1 Key Strings in Functional Variant Names ......................................................7 

3.3 Test Case Flow Variants ..........................................................................................8 

3.4 Test Case Files .........................................................................................................9 
3.4.1 Test Case File Names....................................................................................10 

3.4.2 Sub-file Identifier ..........................................................................................11 
Section 4: Test Case Design ..............................................................................................12 

4.1 Non-Class-Based Flaw Test Cases ........................................................................12 

4.1.1 Required Methods .........................................................................................12 

4.1.2 Optional Methods..........................................................................................14 
4.2 Class-Based Flaw Test Cases.................................................................................16 
4.3 Abstract Method Test Cases ..................................................................................17 

4.4 Bad-only Test Cases ..............................................................................................18 
Section 5: Test Case Support Files ....................................................................................19 

5.1 Common Support Files ..........................................................................................19 
5.2 CWE Entry Specific Support Files ........................................................................20 

5.3 Main Class Support Files .......................................................................................20 
Section 6: Building Test Cases ..........................................................................................22 

6.1 Build Prerequisites .................................................................................................22 
6.2 Compiling Test Cases per CWE Entry ..................................................................22 
6.3 Compiling an Individual Test Case........................................................................23 

6.3.1 Building and Running a non-Servlet Test Case ............................................23 
6.3.2 Building and Running a Servlet Test Case ...................................................25 

Section 7: Updating Build Files .........................................................................................26 
7.1 Updating Build Files ..............................................................................................26 

Section 8: Tool Analysis ....................................................................................................27 
8.1 True Positives and False Negatives .......................................................................27 
8.2 False Positives and True Negatives .......................................................................27 
8.3 Unrelated Flaw Reports .........................................................................................28 



 

- iii - 

Appendix A : Test Case CWE Entries ............................................................................. A-1 

Appendix B : CWE/SANS Top 25 Coverage ..................................................................B-1 
Appendix C : Test Case Flow Variants ............................................................................C-1 
Appendix D : Bad-Only Test Cases ................................................................................ D-1 

Appendix E : Test Case Changes in v1.2 ......................................................................... E-1 
Appendix F : Running a Servlet Test Case in Eclipse ..................................................... F-1 



 

- 1 - 

Section 1: Introduction 

1.1 Document Purpose 

This document describes the Juliet Test Suite v1.2 for Java. The test suite was created by the 

National Security Agency’s (NSA) Center for Assured Software (CAS) and developed 

specifically for assessing the capabilities of static analysis tools.  It is intended for anyone who 

wishes to use the test cases for their own testing purposes, or who would like to have a greater 

understanding of how the test cases were created. 

This document explains the philosophy behind the naming and design of the test cases and 

provides instructions on how to compile and run them using a Command Line Interface (CLI). 

Section 8 also provides details on how the tool results can be evaluated. 

The test cases are publically available for download at http://samate.nist.gov/SRD/testsuite.php. 

1.2 What are Test Cases? 

Test cases are pieces of buildable code that can be used to study static analysis tools.  A test case 

targets exactly one type of flaw, but other, unrelated flaws may be incidentally present.  For 

example, the Java test case “CWE476_NULL_Pointer_Dereference__int_array_01” targets only 

a NULL Pointer Dereference flaw. In addition to the construct containing the target flaw, each 

test case typically contains one or more non-flawed constructs that perform a function similar to 

the flawed construct. A small subset of test cases does not contain non-flawed constructs and are 

considered bad-only test cases (see Section 4.4). 

1.3 Why Test Cases? 

In order to study static analysis tools, the CAS needs software for tool analysis.  The CAS 

previously considered using “natural” or “artificial” software.  Natural software is software that 

was not created to test static analysis tools.  Open source software applications, such as the 

Apache web server (httpd.apache.org) and the OpenSSH suite (www.openssh.com), are 

examples of natural software.  Artificial software, in this case, is software that contains 

intentional flaws and is created specifically to test static analysis tools. The test cases are an 

example of artificial software. 

1.3.1 Limitations of Natural Code 

During previous research efforts, the CAS used a combination of natural and artificial code in 

testing static analysis tools.  In addition, the CAS followed the National Institute of Standards 

and Technology (NIST) Static Analysis Tool Exposition (SATE) that examined the performance 

of static analysis tools on natural code.  

  



 

- 2 - 

Experiences from these efforts indicated that the use of natural code often presents specific 

challenges, such as: 

 Evaluating tool results to determine their correctness – When a static analysis tool is run 

on natural code, each result needs to be reviewed to determine if the code in fact has the 

specified type of flaw at the specified location (i.e. if the result is correct or a “False 

Positive”).  This review is non-trivial for most results on natural code and often the 

correctness of a given result cannot be determined with a high degree of certainty in a 

reasonable amount of time. 

 Comparing results from different tools – Comparing static analysis tool results on natural 

code is complicated because different tools report results in different manners.  For 

example, many flaws involve a “source” of tainted data and a “sink” where that data is 

used inappropriately.  Some tools may report the source where others report the sink.  

Sometimes multiple sources of tainted data all lead to one sink, which may cause 

different tools to report a different number of results.   

 Identifying flaws in the code that no tools find – When evaluating static analysis tools, a 

“standard” list of all flaws in the code is needed in order to identify which flaws each tool 

failed to report.  On natural code, creating this “standard” is difficult, especially 

identifying flaws that are not reported by any automated tool and therefore can only be 

found with manual code review. 

 Evaluating tool performance on constructs that do not appear in the code – Natural code 

has the limitation that even a combination of different projects will likely not contain all 

flawed and non-flawed constructs that the CAS wants to test.  Even flaw types that 

appear in the code may be obfuscated by complex control and data flows such that a flaw 

in the natural code will remain undetected even by tools that generally catch a flaw of 

that type.  To address this issue, the CAS considered using a “seeding” method to embed 

flaws and non-flaws into natural code.  Ultimately, test cases were created instead of 

using “seeding” because the CAS believed that studying static analysis tools using 

“seeded” code would be overly complex and result in testing fewer constructs than 

desired. 

Based on these experiences and challenges, the CAS decided to develop artificial test cases to 

test static analysis tools.  Using artificial code simplifies tool studies by allowing the CAS to 

control, identify, and locate the flaws and non-flaws included in the code.  

1.3.2 Limitations of the Test Cases 

Although the use of the test cases simplifies static analysis tool studies, it may limit the 

applicability of results in the following two ways: 

 Test cases are simpler than natural code – Some test cases are intentionally the simplest 

form of the flaw being tested.  Even test cases which include control or data flow 

complexity are relatively simple compared to natural code, both in terms of the number 

of lines of code and in terms of the number and types of branches, loops, and method 



 

- 3 - 

calls.  This simplicity may inflate results in that tools may report flaws in the test cases 

that they would rarely report in natural, non-trivial code. 

 Frequencies of flaws and non-flawed constructs in the test cases may not reflect their 

frequencies in natural code – Each type of flaw is tested once in the test cases, regardless 

of how common or rare that flaw type may be in natural code.  For this reason, two tools 

that have similar results on the test cases may provide very different results on natural 

code, such as if one tool finds common flaws and the other tool only finds rare flaws.  

Even a tool with poor results on the test cases may have good results on natural code.  

Similarly, each non-flawed construct also appears only once in the test cases, regardless 

of how common the construct is in natural code.  Therefore, the False Positive rates on 

the test cases may be much different from the rates the tools would have on natural code. 

1.4 Creating Test Cases 

Most of the test cases for non-class-based flaws were generated using source files that contain 

the flaw and a tool called the “Test Case Template Engine” created by the CAS.  Generated test 

case files contain a comment in the first line indicating that they were generated. 

Some flaw types could not be generated by the CAS’s custom Test Case Template Engine.  Test 

cases for those flaw types were manually created. Due to resource constraints, these test cases 

were created to include only the simplest form of the flaw without added control or data flow 

complexity.  

1.5 Feedback 

If you have questions, comments or suggestions on how to improve the test cases, please contact 

the CAS via e-mail at CAS@nsa.gov. 



 

- 4 - 

Section 2: Test Case Scope 

This section provides details on the scope of the test cases.  In general, the test cases are focused 

on methods available on the underlying platform rather than the use of third-party libraries.   

2.1 Test Case Selection 

The CAS uses several sources when selecting flaw types for test cases:  

 The test case development team’s experiences in Software Assurance 

 Flaw types used in the CAS’s previous tool studies 

 Vendor information regarding the types of flaws their tools identify 

 Weakness information in MITRE’s Common Weakness Enumeration (CWE)
1
 

While each test case uses a CWE identifier as part of its name, a specific CWE entry for a flaw 

type is not required in order to create a test case.  Test cases are created for all appropriate flaw 

types and each one is named using the most relevant CWE entry (which might be rather generic 

and/or abstract). 

2.2 Third Party Libraries 

The test cases limit the use of features to those found in Java 1.6. Currently, the test cases cover 

issues that can affect standalone Java applications or Java Servlets.  No test cases specifically 

cover Java Applets or Java Server Pages (JSPs) at this time. 

The Java Servlet test cases make use of the Java Servlet API version 2.5 or above.  The test cases 

were developed and are distributed with Apache’s implementation of this API in the file servlet-

api.jar. However, the test cases should build and run with any implementation of version 2.4 or 

greater of the Servlet API. 

Additional third party libraries were used when necessary, but their usage was limited. API calls 

in these libraries were only used if there was no other conceivable way to implement a test case 

for a given flaw type. Table 1 lists these libraries and the names of the files included in the test 

case suite. 

 

 

                                                 

1
 The MITRE CWE is a community-developed dictionary of software weakness types and can be found at: 

http://cwe.mitre.org 



 

- 5 - 

Library File 

Apache Commons Codec 1.5 API commons-code-1.5.jar 

Apache Commons Lang 2.5 API commons-lang-2.5.jar 

JavaMail API 1.4.4 javamail-1.4.4.jar 

Table 1 – Additional Java Libraries 

2.3 Test Case Statistics 

The test cases cover 11 of the 2011 CWE/SANS Top 25 Most Dangerous Software Errors. Of 

the 14 CWE entries in the Top 25 that the test cases do not cover, 10 are design issues that do not 

fit into the structure of the CAS test cases, two are issues specific to the Buffer Handling 

weakness class, which is not relevant to Java, and two are covered in the related C/C++ test 

cases.  (See Appendix B for details on the test cases associated with each of the Top 25.) 

New flaws were added in the Juliet Test Suite v1.2 for Java. The number of Java test cases in 

2012 totaled 25,477, as opposed to 23,957 in 2011. This represents an increase of over 6%. Table 

2 contains statistics on the size and scope of the test cases for 2011 and 2012. 

 
 
 

2011 2012 
Percentage 

Increase 

CWE Entries 
Covered 

113 112 -0.90% 

Flaw Types 751 841 12.00% 

Test Cases 23,957 25,477 6.30% 

Lines of Code
2
 4,712,718 4,565,713 -3.12% 

Table 2 – 2011-2012 Java Test Case Statistics 

See Appendix A for a complete list of the CWE entries covered by the test cases. 

  

                                                 

2
 Counted using CLOC (cloc.sourceforge.net). Blank or commented lines were not included. Includes main methods. 



 

- 6 - 

In addition, the following changes occurred in Juliet Test Suite v1.2 for Java: 

 Test cases for an additional seven CWEs were added. 

 

 Test cases for eight CWEs were removed. 

 

 One flow variant was removed. 

 

 The number of flaw types for twenty CWEs either increased or decreased. 

 

 Some test case directories were split into smaller subdirectories so that each one contains 

no more than 1,000 test case files. 

 

 Removal of dead code from several control flow variants. 

See Appendix E for more details. 

 

  



 

- 7 - 

Section 3: Test Case Naming 

As described in Section 1.2, test cases are pieces of buildable code that target exactly one type of 

flaw and typically contain one or more non-flawed constructs that perform a function similar to 

the flawed construct.  

3.1 Naming Scheme 

The test cases use MITRE's CWEs as a basis for naming and organization.  The test cases strive 

to use the most specific CWE entry for the target flaw.  Each test case file is associated with 

exactly one CWE entry. 

A test case is uniquely identified by a combination of four elements: 

 The identifying number and name (sometimes in a shortened form) of the CWE entry 

most closely associated with the intentional flaw. 

 A “functional variant” name, which indicates the intentional flaw more specifically than 

the CWE entry. 

 A two-digit number associated with a “flow variant” which indicates the type of data 

and/or control flow used in the test case.  For example, flow variant “01” is the simplest 

form of the flaw and contains neither data nor control flows. 

 The programming language used in the test case.  This is indicated in the extension for 

the test case files (“.java”). 

The name for a test case is written as “Java test case CWE563_Unused_Variable__unused_ 

init_variable_int_01.”  Single file test cases can also be referenced by the file name. 

3.2 Test Case Functional Variants 

Every test case has a “functional variant” name.  The term functional variant is also synonymous 

with “flaw type.” This word or phrase is used to differentiate test cases for the same CWE entry.  

It should be as short as possible and will often be simply the name of a type or method used in 

the test case.  If there is only one type of issue for a CWE entry, then the functional variant name 

for test cases for that CWE entry is “basic.” 

3.2.1 Key Strings in Functional Variant Names 

There is a key string that can appear in functional variant names to indicate test case 

characteristics.  This string is used by scripts that manage the test cases, build process, and result 

evaluation.  Due to the nature of the software used to generate most test cases, this string may 

appear more than once in a functional variant name: 



 

- 8 - 

 “Servlet” – This string in the functional variant name for a test case indicates that the test 

case is a Java Servlet and inherits AbstractTestCaseServlet. An example of such a test 

case is the Java test case CWE78_OS_Command_Injection__getParameter_Servlet_01. 

3.3 Test Case Flow Variants 

The test cases are used to demonstrate the ability of static analysis tools to follow various control 

and data flows in order to properly report a flaw and properly disregard a non-flaw in software.  

The type of control or data flow present in a test case is specified by the “flow variant” number.  

Test cases with the same flow variant number (but a different CWE entry or “functional variant”) 

are using the same type of control or data flow. 

Test cases with a flow variant of “01” are the simplest form of the flaws and do not contain 

added control or data flow complexity.  This set of test cases is referred to as the “Baseline” test 

cases. 

Test cases with a flow variant other than “01” are referred to as the “More Complex” test cases.  

Those with a flow variant from “02” to “22” (inclusive) cover various types of control flow 

constructs and are referred to as the “Control Flow” test cases.  Those with a flow variant of “31” 

or greater cover various types of data flow constructs and are referred to as the “Data Flow” test 

cases. The gap between 22 and 31 is left to allow for future expansion. 

Some flaw types do not have test cases for every flow variant.  There are several reasons for this 

as not all of the flaw types: 

 Involve “data” and therefore cannot be used in Data Flow test cases. 

 Can be placed in Control or Data flows because the flaw is inherent in a Java class (only 

a Baseline test case is possible for these flaw types). 

 Can be generated by the current version of the CAS’s custom Test Case Template Engine 

and as a result are manually created.  Only Baseline (“01” flow variant) test cases are 

created for these flaw types.  In the future, more complex test cases could be created for 

these flaw types, either manually or through the use of an enhanced version of the engine. 

 Support compatibility with all of the control and data flows and may result in a test case 

that will not compile or function appropriately.  Some of these issues are unavoidable 

because the problem is inherent in the combination of the flaw type and the flow variant.  

Other compatibility issues involve limitations of the current Test Case Template Engine. 

Future versions of the engine may contain additional combinations. 

The flow variants used in the test cases are detailed in Appendix C. 



 

- 9 - 

3.4 Test Case Files 

A test case file is a file that is associated with exactly one test case (as opposed to test case 

supporting files that are typically used by multiple test cases).  An individual test case consists of 

one or more test case file(s).  Below are examples of test cases and their associated file names: 

Java test case CWE476_NULL_Pointer_Dereference__int_array_01 consists of one file:  

 CWE476_NULL_Pointer_Dereference__int_array_01.java 

Java test case CWE476_NULL_Pointer_Dereference__int_array_22 consists of two files:  

 CWE476_NULL_Pointer_Dereference__int_array_22a.java  

 CWE476_NULL_Pointer_Dereference__int_array_22b.java 

Java test case CWE476_NULL_Pointer_Dereference__Integer_54 consists of five files: 

 CWE476_NULL_Pointer_Dereference__Integer_54a.java  

 CWE476_NULL_Pointer_Dereference__Integer_54b.java  

 CWE476_NULL_Pointer_Dereference__Integer_54c.java  

 CWE476_NULL_Pointer_Dereference__Integer_54d.java  

 CWE476_NULL_Pointer_Dereference__Integer_54e.java  

Java test case CWE563_Unused_Variable__unused_public_member_variable_01 consists of two 

files:  

 CWE563_Unused_Variable__unused_public_member_variable_01_bad.java  

 CWE563_Unused_Variable__unused_public_member_variable_01_good1.java 

Test cases are not entirely self-contained.  They rely on other files called test case support files, 

which are described in Section 5.  

 

 

 

 

 

 

 



 

- 10 - 

3.4.1 Test Case File Names 

Test case files are named with the following parts in order: 

Part Description Optional/Mandatory 

“CWE” String Literal Mandatory 

CWE ID 
Numerical identifier for the CWE entry 
associated with this test case, such as 
“36” 

Mandatory 

“_” String Literal Mandatory 

Shortened CWE 
entry name 

A potentially shortened version of the 
CWE entry name, with underscores 
between words, such as 
“Absolute_Path_Traversal” 

Mandatory 

“__” (two 
underscores) 

String Literal Mandatory 

Functional Variant 
Name 

A word or short phrase describing this 
particular variant of the issue, such as 
“fromConsole.”  This item is described 
further in Section 3.2 above. 

Mandatory 

“_” String Literal Mandatory 

Flow Variant 

A two digit integer value describing the 
type of complexity of the test case, such 
as “01,” “02,” or “61.”  This item is 
described further in Section 3.3 above. 

Mandatory 

Sub-file Identifier 

A string that identifies this file in a test 
case consisting of multiple files, such as 
“a,” “b,” “_bad,” “_good1.”  This item is 
described further in Section 3.4.2 below. 

Optional 

“.” String Literal Mandatory 

Language 
identifier / file 
extension 

String Literal “java” Mandatory 

Table 3 – Test Case File Name Components 

For example, consider a test case written to evaluate a tool’s ability to find integer overflows.  

This test case reads input from the console using the “readLine” method and adds two numbers.  

This test case is the simplest form of this flaw and is contained in one file. 

CWE Entry ID: 190 

Shortened CWE Entry Name: “Integer_Overflow” 

Functional Variant: “byte_console_readLine_add” 

Flow Variant: 01 

Language: Java 

The test case will be contained in the file named:  

 CWE190_Integer_Overflow__byte_console_readLine_add_01.java 



 

- 11 - 

3.4.2 Sub-file Identifier 

The simpler forms of most flaws can be contained in a single source code file, but some test 

cases consist of multiple files.  There are several reasons a test case may be split into multiple 

files and each one uses a different type of string to identify each file in the test case. 

 Some flaws are inherent in a class and require separate files for the flawed and non-

flawed constructs.  In this case, the flaw will be in a file identified with the string “_bad” 

(such as “CWE665_Improper_Initialization__flag_01_bad.java”) and the non-flaw will 

be in the file identified with the string “_good1” (such as 

“CWE665_Improper_Initialization__flag_01_good1”).  Section 4.2 contains more 

information about class-based flaws. 

 Some Data Flow test cases involve the flow of data between methods in different 

classes.  In these test cases, the test case will “start” in the class identified with the string 

“a,” such as in the file “CWE90_LDAP_Injection__connect_tcp_54a.java.”  Methods in 

the “a” class will call methods in the “b” class, which may call methods in the “c” class, 

etc. 

 Some Data Flow test cases involve the flow of data between abstract method calls.  A 

base class is used to define the abstract method and implementations occur in separate 

classes. 

  



 

- 12 - 

Section 4: Test Case Design 

Most test cases cover flaws that can be contained in arbitrary methods (non-class-based flaws).  

However, some flaws, called class-based flaws, are inherent in the class definition and must be 

handled differently in the test case design. An example of a class-based flaw is: 

Java test case CWE581_Object_Model_Violation__hashCode_01 

(In this test case, failure to override the hashCode() method when overriding the equals() 

method could lead to incorrect equality calculations.) 

Abstract method and bad-only test cases are unique. Abstract method test cases require multiple 

files while bad-only test cases are only used to test flaws, as opposed to testing both flaws and 

non-flaws as in all other test cases. 

All test cases also define a “main” method in the primary file.  This main method is not used 

when multiple test cases are compiled at once. However, it can be used when building an 

individual test case, such as for developer testing or for creating archives to use in testing binary 

analysis tools.   

The sections below describe the test case design for non-class-based flaw, class-based flaw, 

abstract method, and bad-only test cases. 

4.1 Non-Class-Based Flaw Test Cases 

4.1.1 Required Methods 

Test cases for flaws that are not inherent in a class must define bad and good methods. (Note:  A 

few test cases are considered bad-only and do not contain an implementation of the good 

method. See Section 4.3 for more details on these test cases.) 

For test cases that use multiple files, the following methods are defined in the “a” sub-file (e.g., 

CWE78_OS_Command_Injection__connect_tcp_51a.java).  The “primary file” for a test case is 

a general term for the “a” sub-file in multi-file test cases, or the only file in single-file test cases. 

The class for the test case (or the class in the “a” sub-file for test cases with multiple files) 

inherits AbstractTestCase or AbstractTestCaseServlet, which will cause the Java compiler to 

enforce the presence and signature of the primary methods below. The class which implements 

AbstractTestCase or AbstractTestCaseServlet is known as the “primary class” for the test case. 

4.1.1.1 Primary Bad Method 

Each test case contains exactly one primary bad method in the primary file.  In many simpler test 

cases, this method contains the flawed construct, but in other test cases this method calls other 



 

- 13 - 

“sink” or “helper” method(s) that contain the flaw (“sink” and “helper” methods are described in 

a later section). 

The primary bad method: 

 Is always named bad(). 

 

 Is a public method. 

 

 For non-Servlet test cases, takes no arguments and has no return value. 

 

 For Servlet test cases, has no return value and takes two arguments: an 

HttpServletRequest and an HttpServletResponse.  Those arguments allow the test case to 

access the HTTP request received from the client and to write to the HTTP response 

which is sent to the client. 

The name of the primary bad method matches the following regular expression: 

^bad$ 

4.1.1.2 Primary Good Method 

Each test case contains exactly one primary good method in the primary file (the same file as the 

primary bad method). This method does not contain any non-flawed constructs. The only code in 

this good method is a call to each of the secondary good methods (described in the next section).  

However, a few of the bad-only test cases contain empty good methods.  

The primary good method: 

 Is always named good(). 

 

 Is a public method. 

 

 For non-Servlet test cases, this method takes no arguments and has no return value. 

 

 For Servlet test cases, this method has no return value and takes two arguments: an 

HttpServletRequest and an HttpServletResponse.  Those arguments allow the test case to 

access the HTTP request received from the client and to write to the HTTP response 

which is sent to the client. 

The name of the primary good method matches the following regular expression: 

^good$ 

4.1.1.3 Secondary Good Method(s) 

Non-class-based test cases also contain one or more secondary good methods in the primary file. 

Some of the bad-only test cases, however, do not include any secondary good methods. In many 



 

- 14 - 

simpler test cases, these secondary good methods contain the actual non-flawed constructs. In 

other test cases, these methods will call “sink” or “helper” methods, which contain the non-

flawed constructs.  The number of secondary good methods depends on the test case’s flaw type 

as well as how many non-flawed constructs similar to that flaw exist.  Many test cases have only 

one secondary good method, but others may have more. 

There are three naming conventions used for secondary good methods: 

 goodG2B(), goodG2B1(), goodG2B2(), goodG2B3(), etc. – These names are used in data 

flow test cases when a good source is passing safe data to a potentially bad sink.  

 goodB2G(), goodB2G1(), goodB2G2(), goodB2G3(), etc. – These names are used in data 

flow test cases when a bad source is passing unsafe or potentially unsafe data to a good 

sink. 

 good1(), good2(), good3(), etc. – This is the “default” or “generic” name for these 

methods when the conditions above do not apply. 

The names of the secondary good methods match the following regular expression: 

^good(\d+|G2B\d*|B2G\d*)$ 

Note: It is important that this regular expression does not overlap with the previously 

defined good method’s regular expression so that the primary good methods are not 

matched. 

The secondary good methods have the same argument and return types as the primary bad and 

primary good methods.  In addition, the secondary good methods have the following 

characteristic: 

 The secondary good methods are private methods in the class for the test case. 

4.1.2 Optional Methods 

In addition to the required methods, test cases may define “helper,” “source,” and/or “sink” 

methods as described in the following sections. 

4.1.2.1 Helper Methods 

Helper methods are used in test cases when even the simplest form of the flaw cannot be 

contained in a single method (within the constraints of the test case design).  Methods used to 

create data flow patterns (“source” and “sink” methods) in More Complex test cases are not 

considered “helper” methods because they are not part of the flaw construct. 

An example of a test case where helper methods are required: 

 Test cases for unused parameter, such as in the Java test case 

CWE563_Unused_Variable__unused_parameter_value_01. 



 

- 15 - 

The following items describe helper methods further: 

 The helper methods are always specific to the bad or good methods.  The bad helper and 

good helper methods may contain different code or the exact same code (separate 

methods are used to easily evaluate tool results as “True Positives” or “False Positives”). 

 Helper methods for the bad code are named “helperBad.” 

 Ideally, helper methods would be specific to an individual secondary good method and be 

named like “helperGood1” or “helperGoodG2B.”  This naming is used in manually 

created test cases, but unfortunately is not supported in the current Test Case Template 

Engine.  In generated test cases, a generic method named “helperGood” is used. 

 Helper methods are private methods when possible. 

 In multi-file test cases, helper methods may be in the primary file or in the other, non-

primary files. 

The names of the helper methods will match the following regular expressions: 

^helperBad$ 

^helperGood(G2B|B2G)?\d*$ 

4.1.2.2 Source and Sink Methods 

Test cases that contain data flows use “source” and “sink” methods, which are called from each 

other or from the primary bad or good method.  Each source or sink method is specific to either 

the bad method for the test case or for exactly one secondary good method. 

The following items describe source and sink methods further: 

 Bad source and sink methods are generally named “badSource” and “badSink.” 

 Good source methods are generally named “goodG2BSource,” “goodG2B1Source,” 

“goodB2GSource,” “goodB2G2Source,” etc. 

 Good sink methods are generally named “goodG2BSink,” “goodG2B1Sink,” 

“goodB2GSink,” “goodB2G2Sink,” etc. 

 In multi-file test cases, source and sink methods may be defined in the primary file or in 

the other, non-primary files. 

The names of the source and sink methods will match the following regular expressions: 

^badSource$ 

 

^badSink$ 



 

- 16 - 

^good(G2B\d*|B2G\d*)?Source$ 

 

^good(G2B\d*|B2G\d*)?Sink$ 

4.2 Class-Based Flaw Test Cases 

The design of test cases for class-based flaws (i.e., those flaws that affect an entire class and not 

just a statement or code block) are slightly different because the bad and good constructs cannot 

be contained in an arbitrary method.  These test cases use separate classes in separate files. 

Bad File for Class-Based Flaws 

In a test case for a class-based flaw, the bad class: 

 Is located in a file that ends in _bad (before the extension).  For example, 

“CWE581_Object_ Model_Violation__hashCode_01_bad.java.” 

 Contains a required bad method with a signature like the bad method in a test case for a 

non-class-based flaw.  This method makes use of the bad class for this test case to 

exercise the flaw being tested. 

o This is a public method in the class. 

 The class is based on the file name (as required by the Java compiler).  The class inherits 

AbstractTestCaseClassIssueBad. 

 Has a main method that calls the bad method.  Like the main methods in test cases for 

non-class-based flaws, this method is only used for testing or building separate archives 

for the test case. 

Good File for Class-Based Flaws 

In a test case for a class-based flaw, the good class: 

 Is located in a file that ends in “_good1” (before the extension).  For example, 

“CWE581_Object_ Model_Violation__hashCode_01_good1.java.”  Future versions of 

the test cases may include additional good files with names containing “_good2,” 

“_good3,” etc. 

 Contains a required primary good method named “good” with a signature like the good 

method in a test case for a non-class-based flaw.  Like the primary good method in a test 

case for a non-class-based flaw, this method only calls the secondary good method in this 

file. 

o This is a public method in the class. 



 

- 17 - 

 Contains at least one required secondary good method named “good1” to match the file 

name (currently, only “good1” method names are used, but future versions of the test 

cases may use methods “good2,” “good3,” etc.).  The signature for this method is like the 

signature of a secondary good method in a test case for a non-class-based flaw.  This 

secondary good method makes use of the class in this file to exercise the non-flawed 

construct being tested. 

o This is a private method in the class contained in the file. 

 The class in the file is named based on the file name (as required by the Java compiler).  

The class inherits AbstractTestCaseClassIssueGood. 

 Has a main method that calls the primary good method.  Like the main methods in test 

cases for non-class-based flaws, this method is only used for testing or building separate 

archives for the test case. 

4.3 Abstract Method Test Cases 

A few test cases, like ones using flow variant 81, make use of abstract methods. In order to fit 

these types of test cases into the test case suite, they are designed slightly different than the 

“traditional” test cases described in the previous sections. 

An abstract method Data Flow test case contains five files: 

1. Base file – This file defines an abstract base class and declares an abstract method, named 

“action,” within the base. The file name contains the string “base” and is a Java source 

file. 

2. Root file – This file contains the implementations for the bad and good methods. The file 

name contains the letter ‘a’ as a sub-file identifier and is a Java source file. 

3. Bad implementation file – This file implements the “action” method for the bad class, 

contains the string “bad” as a sub-file identifier, and is a Java source file. 

4. GoodG2B implementation file - This file implements the “action” method for a good 

class that makes use of a bad sink. The root file ensures that a good source is used with 

this bad sink. The file name contains the string “goodG2B” as a sub-file identifier, and is 

a Java source file. 

5. GoodB2G implementation file - This file implements the “action” method for a good 

class that makes use of a good sink. The root file ensures that a bad source is used with 

this good sink. The file name contains the string “goodB2G” as a sub-file identifier, and 

is a Java source file. 

 

 

 



 

- 18 - 

As an example, the files for the CWE369_Divide_by_Zero__int_File_divide_81 test case are as 

follows: 

 CWE369_Divide_by_Zero__int_File_divide_81_base.java 

 CWE369_Divide_by_Zero__int_File_divide_81a.java 

 CWE369_Divide_by_Zero__int_File_divide_81_bad.java 

 CWE369_Divide_by_Zero__int_File_divide_81_goodG2B.java 

 CWE369_Divide_by_Zero__int_File_divide_81_goodB2G.java 

4.4 Bad-only Test Cases 

During the test case design process, it was determined that in a few cases a non-flawed construct 

could not be generated that correctly fixed the flaw being tested. Therefore, a minimal number of 

test cases are considered “bad-only” in the sense that they only contain a flawed construct. 

The bad-only test cases differ from the rest of the test cases in the following ways: 

 All bad-only test cases are non-class-based. 

 No bad-only test cases contain Data Flows. 

 Some bad-only test cases contain an empty good method.  

 Some bad-only test cases include good methods that contain the flawed construct within 

unreachable code. 

The bad-only test cases follow the same naming scheme as non-class-based test cases. It should 

be noted that these test cases should be excluded from any analysis that attempts to determine the 

number of False Positives reported by static analysis tools. A list of these test cases appears in 

Appendix D. 

  



 

- 19 - 

Section 5: Test Case Support Files 

As mentioned in Section 3.4 above, test cases are not self-contained.  Every test case requires at 

least one common test case support file. There are additional test case support files that are CWE 

entry specific and used by test cases, where appropriate. In addition, support files with an 

included main method are provided to execute the test cases.  

The following sections describe the purpose and contents of each test case support file. 

5.1 Common Support Files 

One or more common support files are required for every test case and are located in the 

~src\testcasesupport directory.  

Abstract Class test case support files: 

 AbstractTestCase.java – This file contains the base class which non-Servlet, non-class-

based test cases extend.  It contains abstract primary good and bad methods, along with 

implementations of common logic for running the test case. 

 AbstractTestCaseBadOnly.java – This file contains the base class which bad-only based 

test cases extend. It contains an abstract primary bad method as well as an 

implementation of common logic for running the test case. 

 AbstractTestCaseBase.java – This file contains the base class which all non-Servlet based 

test cases extend. It contains an abstract method for running the test case as well an 

implementation of a main method. 

 AbstractTestCaseClassIssue.java - This file contains a base class for test cases that have 

flaws outside of a good or bad method and which are part of the class itself. It creates a 

protected object for a bad and good class as well as implementation of common logic for 

running the test case. 

 AbstractTestCaseClassIssueBad.java – This file contains the base class which the bad 

class for class-based test cases extends.  It contains the abstract primary bad method 

along with implementations of common logic for running the test case. 

 AbstractTestCaseClassIssueGood.java – This file contains the base class which the good 

class for class-based test cases extends.  It contains the abstract primary good method 

along with implementations of common logic for running the test case. 

 AbstractTestCaseServlet.java – This file contains the base class which Servlet test cases 

extend.  It contains abstract primary good and bad methods along with implementations 

of common logic for running the test case. 

 AbstractTestCaseServletBadOnly.java – This file contains the base class which bad-only 

Servlet-based test cases extend. It contains an abstract primary bad method as well as an 

implementation of common logic for running the test case. 

 AbstractTestCaseServletBase.java - This file contains the base class which all Servlet 

based test cases extend. It contains an abstract method for running the test case as well an 

implementation of a main method. 



 

- 20 - 

Input/Output related support files: 

 IO.java – This file contains several methods used by the test cases to print various types 

of data to the console. Test cases use the methods in this file instead of calling console 

output methods directly in order to prevent incidental issue reports from analysis tools for 

“inappropriate logging” or “possible data disclosure.”  This file also contains a method to 

obtain a database connection and several methods and static variables used in Control 

Flow test cases.   

5.2 CWE Entry Specific Support Files 

In addition to the common support files, test cases may make use of support files that are specific 

to multiple test cases associated with a CWE entry.  When present, these files will be in the 

directory for the CWE entry and will have a name that does not match the expected pattern for a 

test case file. 

For example, a number of test cases for CWE-690 (Unchecked Return Value to NULL Pointer 

Dereference) use the class CWE690_NULL_Deref_From_Return__Class_Helper, which 

provides a non-system method which may return NULL. The file is located in the 

~\src\testcases\CWE690_NULL_Deref_From_Return directory. Because this file is used by 

multiple test cases, it is considered a support file rather than a “test case file.”  More importantly, 

this file does not contain the target flaw for the test cases. 

5.3 Main Class Support Files 

Support files are also provided to test an individual CWE entry for both non-Servlet and Servlet 

test cases. These files, called Main.java and ServletMain.java, are auto-generated and are 

included with each CWE entry (such as in the ~src\testcases\CWE23_Relative_Path_Traversal 

directory). They can be used to test all the test cases contained within that CWE entry’s 

directory.  

Beginning with v1.2 of the Juliet Test Suite for Java, several CWE entries were split among 

multiple subdirectories due to the vast number of files. Each subdirectory is limited to a 

maximum of 1,000 test case files and contains a Main.java file and a ServletMain.java file. 

These files can be used to compile and test all of the test cases contained within that 

subdirectory.  

Each file is described below: 

 Main.java – This file contains a “main” method that calls each non-Servlet test case and 

calls the “runTest” method on the object.  The runTest method calls the test case’s 

primary good and primary bad methods.   

 

 ServletMain.java – This file contains a “doGet” method that indirectly creates an object 

for each Servlet test case and calls the “runTest” method on the object.  The runTest 

method calls the test case’s primary good and bad methods.   



 

- 21 - 

See Section 7.1 for details on how to update Main.java and ServletMain.java using scripts 

distributed with the test cases. 

  



 

- 22 - 

Section 6: Building Test Cases 

6.1 Build Prerequisites 

All files needed to build the test cases are included in this distribution using the following 

environment (development and testing was done using versions shown in parenthesis): 

 Microsoft Windows platform (Windows 7) 

 Oracle Java Development Kit (JDK) (Version 6) 

 Apache Ant (version 1.8.4) 

 Python for Windows (version 3.2.3) 

In addition, the PATH environment variable must be set to properly point to the locations of the 

executables for Java, Ant, and Python. 

Although the versions listed above were used to develop and verify the test cases, other versions 

may work as well.  

6.2 Compiling Test Cases per CWE Entry 

The test cases can be compiled so that a separate WAR file is generated for each CWE entry, 

with a few exceptions. This is accomplished by running “ant” in the directory for that CWE entry 

(such as in the ~src\testcases\CWE476_NULL_Pointer_Dereference directory to create the file 

“~src\testcases\CWE476_NULL_Pointer_Dereference.war.”  

In order to automate the process of compiling the individual test cases in each CWE entry’s 

directory, the Python script named “run_analysis_example_tool.py” can be executed.  This script 

will go to each CWE entry directory and run “ant” to compile those test cases. This script can 

also be used as the basis for a script to automate performing analysis on the test cases for each 

CWE entry.  The comments in the script provide an example of how this can be accomplished. 

6.2.1.1 CWE Entries Containing Subdirectories 

Due to the vast number of test case files for some CWE entries, test case files for these CWEs 

are split into subdirectories containing no more than 1,000 test case files per directory. For 

example, the test cases for CWE 190 are broken up into the following subdirectories: 

 ~src\testcases\CWE190_Integer_Overflow\s01 

 ~src\testcases\CWE190_Integer_Overflow\s02 

 ~src\testcases\CWE190_Integer_Overflow\s03 

 ~src\testcases\CWE190_Integer_Overflow\s04 

 ~src\testcases\CWE190_Integer_Overflow\s05 

Each subdirectory contains a build.xml file that can be used to compile all of the test case files 

located within that directory using “ant.” The generated WAR file contains the subdirectory 



 

- 23 - 

number in its file name. For example, running “ant” in the 

~src\testcases\CWE190_Integer_Overflow\s01 directory will compile the test cases in that 

directory into “~src\testcases\CWE190_Integer_Overflow_s01.war.” 

Note that all flow variants for a given functional variant will appear within the same 

subdirectory. 

6.3 Compiling an Individual Test Case 

Although the test cases are typically compiled and analyzed in sets, the test cases are designed so 

that each test case can be compiled and executed individually.  Running a test case is useful 

during test case development, but can also be used to analyze a test case in isolation.    

6.3.1 Building and Running a non-Servlet Test Case 

This section describes commands to compile and run non-Servlet test cases. In each non-Servlet 

test case, a main method exists that contains a call to the primary good method for the test case, 

followed by a call to the primary bad method.  

All commands should be run in the ~src directory under the directory to which the test cases 

were extracted. 

6.3.1.1 Non-split CWE Directories 

The following example command will compile a single file test case, contained within a non-

split directory, into appropriate .class files alongside the source files. 

javac -cp ..\lib\servlet-api.jar;..\lib\commons-lang-

2.5.jar;..\lib\commons-codec-1.5.jar;..\lib\javamail-1.4.4.jar 

testcasesupport\IO.java testcasesupport\AbstractTestCaseBase.java 

testcasesupport\AbstractTestCase.java 

testcasesupport\AbstractTestCaseBadOnly.java 

testcasesupport\AbstractTestCaseServletBase.java 

testcasesupport\AbstractTestCaseServlet.java 

testcasesupport\AbstractTestCaseServletBadOnly.java 

testcasesupport\AbstractTestCaseClassIssue.java 

testcasesupport\AbstractTestCaseClassIssueBad.java 

testcasesupport\AbstractTestCaseClassIssueGood.java 

testcases\CWE78_OS_Command_Injection\CWE78_OS_Command_Injection__consol

e_readLine_01.java 

The following example command will run the test case compiled above. 

java -cp ..\lib\servlet-api.jar;..\lib\commons-lang-

2.5.jar;..\lib\commons-codec-1.5.jar;..\lib\javamail-1.4.4.jar;. 

testcases.CWE78_OS_Command_Injection.CWE78_OS_Command_Injection__consol

e_readLine_01 



 

- 24 - 

The following example command will compile a multiple file test case, contained within a non-

split directory, into appropriate .class files alongside the source files. 

javac -cp ..\lib\servlet-api.jar;..\lib\commons-lang-

2.5.jar;..\lib\commons-codec-1.5.jar;..\lib\javamail-1.4.4.jar 

testcasesupport\IO.java testcasesupport\AbstractTestCaseBase.java 

testcasesupport\AbstractTestCase.java 

testcasesupport\AbstractTestCaseBadOnly.java 

testcasesupport\AbstractTestCaseServletBase.java 

testcasesupport\AbstractTestCaseServlet.java 

testcasesupport\AbstractTestCaseServletBadOnly.java 

testcasesupport\AbstractTestCaseClassIssue.java 

testcasesupport\AbstractTestCaseClassIssueBad.java  

testcasesupport\AbstractTestCaseClassIssueGood.java 

testcases\CWE78_OS_Command_Injection\CWE78_OS_Command_Injection__consol

e_readLine_54*.java 

The following example command will run the test case compiled above.  Note that the “main” 

for the test case is contained in the “a” file for the test case. 

java -cp ..\lib\servlet-api.jar;..\lib\commons-lang-

2.5.jar;..\lib\commons-codec-1.5.jar;..\lib\javamail-1.4.4.jar;. 

testcases.CWE78_OS_Command_Injection.CWE78_OS_Command_Injection__consol

e_readLine_54a 

6.3.1.2 Split CWE Directories 

The following example command will compile a single file test case, contained within a 

subdirectory of a split CWE directory, into appropriate .class files alongside the source files.  

javac -cp ..\lib\servlet-api.jar;..\lib\commons-lang-

2.5.jar;..\lib\commons-codec-1.5.jar;..\lib\javamail-1.4.4.jar 

testcasesupport\IO.java testcasesupport\AbstractTestCaseBase.java 

testcasesupport\AbstractTestCase.java 

testcasesupport\AbstractTestCaseBadOnly.java 

testcasesupport\AbstractTestCaseServletBase.java 

testcasesupport\AbstractTestCaseServlet.java 

testcasesupport\AbstractTestCaseServletBadOnly.java 

testcasesupport\AbstractTestCaseClassIssue.java 

testcasesupport\AbstractTestCaseClassIssueBad.java 

testcasesupport\AbstractTestCaseClassIssueGood.java 

testcases\CWE190_Integer_Overflow\s01\CWE190_Integer_Overflow__byte_con

sole_readLine_add_01.java 

The following example command will run the test case compiled above. 

java -cp ..\lib\servlet-api.jar;..\lib\commons-lang-

2.5.jar;..\lib\commons-codec-1.5.jar;..\lib\javamail-1.4.4.jar;. 

testcases.CWE190_Integer_Overflow.s01.CWE190_Integer_Overflow__byte_con

sole_readLine_add_01 

The following example command will compile a multiple file test case, contained within a 

subdirectory of a split CWE directory, into appropriate .class files alongside the source files. 



 

- 25 - 

javac -cp ..\lib\servlet-api.jar;..\lib\commons-lang-

2.5.jar;..\lib\commons-codec-1.5.jar;..\lib\javamail-1.4.4.jar 

testcasesupport\IO.java testcasesupport\AbstractTestCaseBase.java 

testcasesupport\AbstractTestCase.java 

testcasesupport\AbstractTestCaseBadOnly.java 

testcasesupport\AbstractTestCaseServletBase.java 

testcasesupport\AbstractTestCaseServlet.java 

testcasesupport\AbstractTestCaseServletBadOnly.java 

testcasesupport\AbstractTestCaseClassIssue.java 

testcasesupport\AbstractTestCaseClassIssueBad.java 

testcasesupport\AbstractTestCaseClassIssueGood.java           

testcases\CWE190_Integer_Overflow\s01\CWE190_Integer_Overflow__byte_con

sole_readLine_add_66*.java 

The following example command will run the test case compiled above.  Note that the “main” 

for the test case is contained in the “a” file for the test case.  

java -cp ..\lib\servlet-api.jar;..\lib\commons-lang-

2.5.jar;..\lib\commons-codec-1.5.jar;..\lib\javamail-1.4.4.jar;. 

testcases.CWE190_Integer_Overflow.s01.CWE190_Integer_Overflow__byte_con

sole_readLine_add_66a 

6.3.2 Building and Running a Servlet Test Case 

In order to compile each test case separately, the Servlet test cases inherit the 

javax.servlet.http.HttpServlet class. The process for building and running a Servlet test case 

requires multiple steps and use of a Servlet container.  Due to the number of steps, an example of 

how to build and run a Servlet test case using the Eclipse J2EE Preview Server is detailed in 

Appendix F.  

  



 

- 26 - 

Section 7: Updating Build Files 

Included in the test case distribution are scripts that can be used to update the test case build files 

if changes are made to the set of test cases.  Using the test cases as distributed, or after edits are 

made to existing test case files, do not require the use of these scripts.  These scripts are only 

needed if test case files are deleted from the set or new test cases are added.  If new test cases are 

added to the test case set, care should be taken to follow the test case design in order to prevent 

errors in these scripts, in compilation, or in tool result analysis. 

7.1 Updating Build Files 

The Java test case archive contains a Python script that can be used to update the build files if 

changes are made to the set of test cases to be analyzed.   

create_per_cwe_files.py – Running this script will update the Main.java, 

ServletMain.java, and web.xml files in each CWE entry directory that allow for building 

the test cases for that CWE entry into a separate WAR file. 

  



 

- 27 - 

Section 8: Tool Analysis 

The test cases have been designed so that static analysis tool results can be easily evaluated.  

This section describes the desired results when running a static analysis tool on the test cases. 

8.1 True Positives and False Negatives 

When a static analysis tool is run on a test case, one desired result is for the tool to report one 

flaw of the target type.  That reported flaw should be in a method with the word “bad” in its 

name (such as bad(), badSource(), or badSink()) or in a class that contains the word “bad” in its 

name (such as CWE581_Object_Model_Violation__hashCode_01_bad).  A correct report of this 

type is considered a “True Positive.”   

In some circumstances, tools may report the flaw in a test case more than once in the bad 

methods or classes.  For example, a tool may report multiple, slightly different flaw types or, in 

other cases, a tool may report flaws in different locations.  At times, a tool may report two results 

with the exact same type in the exact same location (sometimes with different call stacks or other 

different metadata). 

If the tool does not report a flaw of the target type in a bad method or class in a test case, then the 

result for the tool on the test case is considered a “False Negative.” 

8.2 False Positives and True Negatives 

The other desired result when running a tool on a test case is for the tool to not report any flaws 

of the target type in a method or class with the word “good” in its name.  An incorrect report of 

the target flaw type in a good method is considered a “False Positive.” 

As described in Section 4.1.1.3, each non-class-based test case has one or more secondary good 

methods that contain a non-flawed construct.  When a test case has more than one secondary 

method, a test case user may want to determine in which secondary good method(s) a tool 

reported False Positives and in which secondary good method(s) the tool had no False Positives 

(that is, where the tool had “True Negative(s)”). 

In many test cases, this can be determined by examining the name of the methods where tool 

results are reported.  The “source” and “sink” methods can be associated with the secondary 

good method from which they are called (for example, the method goodB2GSource or 

goodB2GSink can be associated with the secondary good method goodB2G).   

Unfortunately, limitations of the CAS’s Test Case Template Engine used to generate test cases 

prevent being able to definitively tie all False Positive results to the secondary good methods in 

all test cases.  Specifically, as detailed in Section 4.1.2.1, good helper methods are not specific to 

the secondary good methods in a test case.  Therefore, in a test case with more than one 

secondary good method and one or more False Positive results in a good helper method, the 



 

- 28 - 

False Positive(s) cannot be easily associated with secondary good method(s) and True Negatives 

cannot be determined, either.
3
  

8.3 Unrelated Flaw Reports 

A tool may also report flaws with types that are not related to the target flaw type in a test case.  

There are two occasions when this may occur: 

 Those flaw reports may be correctly pointing out flaws of the non-target type that are 

present in the test case.  Flaws of this type are known as “incidental” flaws.  The 

developers of the test cases attempted to minimize the incidental flaws and marked 

unavoidable incidental flaws with a comment containing the string “INCIDENTAL.”  

However, many uncommented incidental flaws remain in the test cases so users should 

not draw any conclusions about tool reports of non-target flaw types without 

investigating the reported result fully. 

 The flaw reports may be indicating flaws that do not exist in the test case.  Flaw reports 

of this type are known as “unrelated False Positives” because they are incorrect flaw 

reports (False Positives) and not related to the type of flaw the test case is intended to 

test. 

Flaw reports of non-target types generally cannot be characterized as correct or incorrect in an 

automated or trivial manner.  They may be triggered by common code constructs that are 

repeated in a large number of test cases (due to the automated generation process used to create 

the test cases).  For these reasons, these flaw reports are typically ignored when studying a static 

analysis tool. 

                                                 

3
 This association cannot be made based solely on method names.  Some tools may report additional information, 

such as stack traces, with findings that allow this association to be made. 



 

- A-1 - 

Appendix A : Test Case CWE Entries 

The table below shows the CWE entries associated with the 2012 Test Cases, along with the 

number of test cases associated with each CWE entry. 

CWE 
Entry 

ID 
CWE Entry Name 

Java 
Test 

Cases 

15 External Control of System or Configuration Setting 444 

23 Relative Path Traversal 444 

36 Absolute Path Traversal 444 

78 
Improper Neutralization of Special Elements used in an OS 
Command ('OS Command Injection') 

444 

80 
Improper Neutralization of Script-Related HTML Tags in a Web Page 
(Basic XSS) 

666 

81 Improper Neutralization of Script in an Error Message Web Page 333 

83 Improper Neutralization of Script in Attributes in a Web Page 333 

89 
Improper Neutralization of Special Elements used in an SQL 
Command ('SQL Injection') 

2220 

90 
Improper Neutralization of Special Elements used in an LDAP Query 
('LDAP Injection') 

444 

111 Direct Use of Unsafe JNI 1 

113 
Improper Neutralization of CRLF Sequences in HTTP Headers 
('HTTP Response Splitting') 

1332 

114 Process Control 17 

129 Improper Validation of Array Index 2664 

134 Uncontrolled Format String 666 

190 Integer Overflow or Wraparound 2553 

191 Integer Underflow (Wrap or Wraparound) 1702 

193 Off-by-one Error 51 

197 Numeric Truncation Error 1221 

209 Information Exposure Through an Error Message 34 

226 Sensitive Information Uncleared Before Release 17 

248 Uncaught Exception 1 

252 Unchecked Return Value 17 

253 Incorrect Check of Function Return Value 17 

256 Plaintext Storage of a Password 37 

259 Use of Hard-coded Password 111 

315 Plaintext Storage in a Cookie 37 

319 Cleartext Transmission of Sensitive Information 370 

321 Use of Hard-coded Cryptographic Key 37 

325 Missing Required Cryptographic Step 34 

327 Use of a Broken or Risky Cryptographic Algorithm 34 

328 Reversible One-Way Hash 51 

329 Not Using a Random IV with CBC Mode 17 

336 Same Seed in PRNG 17 

338 Use of Cryptographically Weak PRNG 34 

369 Divide By Zero 1850 

378 Creation of Temporary File With Insecure Permissions 17 

379 Creation of Temporary File in Directory with Incorrect Permissions 17 

382 J2EE Bad Practices: Use of System.exit() 34 

383 J2EE Bad Practices: Direct Use of Threads 16 



 

- A-2 - 

390 Detection of Error Condition Without Action 34 

395 
Use of NullPointerException Catch to Detect NULL Pointer 
Dereference 

17 

396 Declaration of Catch for Generic Exception 34 

397 Declaration of Throws for Generic Exception 4 

398 Indicator of Poor Code Quality 137 

400 Uncontrolled Resource Consumption ('Resource Exhaustion') 1460 

404 Improper Resource Shutdown or Release 5 

459 Incomplete Cleanup 34 

470 
Use of Externally-Controlled Input to Select Classes or Code 
('Unsafe Reflection') 

444 

476 NULL Pointer Dereference 198 

477 Use of Obsolete Functions 68 

478 Missing Default Case in Switch Statement 17 

481 Assigning instead of Comparing 17 

482 Comparing instead of Assigning 17 

483 Incorrect Block Delimitation 19 

484 Omitted Break Statement in Switch 17 

486 Comparison of Classes by Name 17 

491 Public cloneable() Method Without Final ('Object Hijack') 1 

499 Serializable Class Containing Sensitive Data 1 

500 Public Static Field Not Marked Final 1 

506 Embedded Malicious Code 116 

510 Trapdoor 66 

511 Logic/Time Bomb 51 

523 Unprotected Transport of Credentials 17 

526 Information Exposure Through Environmental Variables 34 

533 Information Exposure Through Server Log Files 17 

534 Information Exposure Through Debug Log Files 17 

535 Information Exposure Through Shell Error Message 17 

539 Information Exposure Through Persistent Cookies 17 

546 Suspicious Comment 85 

549 Missing Password Field Masking 17 

561 Dead Code 1 

563 Unused Variable 218 

566 Authorization Bypass Through User-Controlled SQL Primary Key 37 

568 finalize() Method Without super.finalize() 2 

570 Expression is Always False 16 

571 Expression is Always True 16 

572 Call to Thread run() instead of start() 17 

579 J2EE Bad Practices: Non-serializable Object Stored in Session 1 

580 clone() Method Without super.clone() 1 

581 Object Model Violation: Just One of Equals and Hashcode Defined 2 

582 Array Declared Public, Final, and Static 1 

584 Return Inside Finally Block 17 

585 Empty Synchronized Block 2 

586 Explicit Call to Finalize() 17 

597 Use of Wrong Operator in String Comparison 17 

598 Information Exposure Through Query Strings in GET Request 17 

600 Uncaught Exception in Servlet 1 

601 URL Redirection to Untrusted Site ('Open Redirect') 333 

605 Multiple Binds to the Same Port 17 

606 Unchecked Input for Loop Condition 444 

607 Public Static Final Field References Mutable Object 1 



 

- A-3 - 

609 Double-Checked Locking 2 

613 Insufficient Session Expiration 17 

614 Sensitive Cookie in HTTPS Session Without 'Secure' Attribute 17 

615 Information Exposure Through Comments 17 

617 Reachable Assertion 34 

643 
Improper Neutralization of Data within XPath Expressions ('XPath 
Injection') 

444 

667 Improper Locking 1 

674 Uncontrolled Recursion 2 

681 Incorrect Conversion between Numeric Types 51 

690 Unchecked Return Value to NULL Pointer Dereference 296 

698 Execution After Redirect (EAR) 17 

759 Use of a One-Way Hash without a Salt 17 

760 Use of a One-Way Hash with a Predictable Salt 17 

764 Multiple Locks of a Critical Resource 2 

765 Multiple Unlocks of a Critical Resource 2 

772 Missing Release of Resource after Effective Lifetime 2 

775 Missing Release of File Descriptor or Handle after Effective Lifetime 2 

789 Uncontrolled Memory Allocation 1571 

832 Unlock of a Resource that is not Locked 2 

833 Deadlock 6 

835 Loop with Unreachable Exit Condition ('Infinite Loop') 6 

Table 4 – CWE Entries in 2012 Test Cases (Java)



 

- B-1 - 

Appendix B : CWE/SANS Top 25 Coverage 

Table 5 shows the degree to which the Java test cases cover each of the 2011 CWE/SANS Top 

25 Most Dangerous Software Errors.  

Note: As of this writing, 2011 is the most recent version.  

2011 CWE/SANS Top 25 CAS Test Cases 

Rank CWE Entry CWE Entry / Entries Java 

1 
CWE-89: Improper Neutralization of 
Special Elements used in an SQL 
Command ('SQL Injection') 

CWE-89 2220 

2 

CWE-78: Improper Neutralization of 
Special Elements used in an OS 
Command ('OS Command 
Injection') 

CWE-78 444 

3 
CWE-120: Buffer Copy without 
Checking Size of Input ('Classic 
Buffer Overflow') 

None (Buffer Handling issues are 
covered in the related C/C++ test 
cases) 

- 

4 
CWE-79: Improper Neutralization of 
Input During Web Page Generation 
('Cross-site Scripting') 

CWE-80: Improper Neutralization of 
Script-Related HTML Tags in a 
Web Page (Basic XSS), CWE-81: 
Improper Neutralization of Script in 
an Error Message Web Page, 
CWE-83: Improper Neutralization of 
Script in Attributes in a Web Page 

1332 

5 
CWE-306: Missing Authentication 
for Critical Function 

None (Design issue which does not 
fit into CAS Test Case structure) 

- 

6 CWE-862: Missing Authorization 
None (Design issue which does not 
fit into CAS Test Case structure) 

- 

7 
CWE-798: Use of Hard-coded 
Credentials 

CWE-259: Use of Hard-coded 
Password, CWE-321: Use of Hard-
coded Cryptographic Key 

148 

8 
CWE-311: Missing Encryption of 
Sensitive Data 

CWE-315: Plaintext Storage in a 
Cookie, CWE-319: Cleartext 
Transmission of Sensitive 
Information 

407 

9 
CWE-434: Unrestricted Upload of 
File with Dangerous Type 

None (Design issue which does not 
fit into CAS Test Case structure) 

- 

10 
CWE-807: Reliance on Untrusted 
Inputs in a Security Decision 

None (Covered in the related C/C++ 
test cases) 

- 



 

- B-2 - 

2011 CWE/SANS Top 25 CAS Test Cases 

Rank CWE Entry CWE Entry / Entries Java 

11 
CWE-250: Execution with 
Unnecessary Privileges 

None (Design issue which does not 
fit into CAS Test Case structure) 

- 

12 
CWE-352: Cross-Site Request 
Forgery (CSRF) 

None (Design issue which does not 
fit into CAS Test Case structure) 

- 

13 
CWE-22: Improper Limitation of a 
Pathname to a Restricted Directory 
('Path Traversal') 

CWE-23: Relative Path Traversal, 
CWE-36: Absolute Path Traversal 

888 

14 
CWE-494: Download of Code 
Without Integrity Check 

None (Design issue which does not 
fit into CAS Test Case structure) 

- 

15 CWE-863: Incorrect Authorization 
None (Design issue which does not 
fit into CAS Test Case structure) 

- 

16 
CWE-829: Inclusion of Functionality 
from Untrusted Control Sphere 

None (Design issue which does not 
fit into CAS Test Case structure) 

- 

17 
CWE-732: Incorrect Permission 
Assignment for Critical Resource 

None (Design issue which does not 
fit into CAS Test Case structure) 

- 

18 
CWE-676: Use of Potentially 
Dangerous Function 

None (Covered in the related C/C++ 
test cases) 

- 

19 
CWE-327: Use of a Broken or Risky 
Cryptographic Algorithm 

CWE-327 34 

20 
CWE-131: Incorrect Calculation of 
Buffer Size 

None (Does not fit into CAS Test 
Case structure for Java) 

- 

21 
CWE-307: Improper Restriction of 
Excessive Authentication Attempts 

None (Design issue which does not 
fit into CAS Test Case structure) 

- 

22 
CWE-601: URL Redirection to 
Untrusted Site ('Open Redirect') 

CWE-601 333 

23 
CWE-134: Uncontrolled Format 
String 

CWE-134 666 

24 
CWE-190: Integer Overflow or 
Wraparound 

CWE-190, CWE-191: Integer 
Underflow (Wrap or Wraparound) 

4255 

25 
CWE-759: Use of a One-Way Hash 
without a Salt 

CWE-759 17 

Table 5 – Test Case Coverage of 2011 CWE/SANS Top 25



 

- C-1 - 

Appendix C : Test Case Flow Variants 

Below is a table containing information about the Flow Variants in the Java test cases, including 

a brief description.  Due to design constraints, all flaw types do not contain test cases for each 

flow variant.   

Flow Variant 
Flow 
Type 

Description 

01 None Baseline – Simplest form of the flaw 

02 Control if(true) and if(false) 

03 Control if(5==5) and if(5!=5) 

04 Control 
if(PRIVATE_STATIC_FINAL_TRUE) and 
if(PRIVATE_STATIC_FINAL_FALSE) 

05 Control if(privateTrue) and if(privateFalse) 

06 Control 
if(PRIVATE_STATIC_FINAL_FIVE==5) and 
if(PRIVATE_STATIC_FINAL_FIVE!=5) 

07 Control if(privateFive==5) and if(privateFive!=5) 

08 Control if(privateReturnsTrue()) and if(privateReturnsFalse()) 

09 Control if(IO.STATIC_FINAL_TRUE) and if(IO.STATIC_FINAL_FALSE) 

10 Control if(IO.staticTrue) and if(IO.staticFalse) 

11 Control if(IO.staticReturnsTrue()) and if(IO.staticReturnsFalse()) 

12 Control if(IO.staticReturnsTrueOrFalse()) 

13 Control if(IO.STATIC_FINAL_FIVE==5) and if(IO.STATIC_FINAL_FIVE!=5) 

14 Control if(IO.staticFive==5) and if(IO.staticFive!=5) 

15 Control switch(6) and switch(7) 

16 Control while(true) 

17 Control for loops 

21 Control 
Flow controlled by value of a private variable. All methods contained in 
one file. 

22 Control 
Flow controlled by value of a public static variable. Sink methods are in a 
separate file from sources. 

31 Data Data flow using a copy of data within the same method 

41 Data 
Data passed as an argument from one method to another in the same 
class 

42 Data Data returned from one method to another in the same class 

45 Data 
Data passed as a private class member variable from one method to 
another in the same class  

51 Data 
Data passed as an argument from one method to another in different 
classes in the same package 

52 Data 
Data passed as an argument from one method to another to another in 
three different classes in the same package 

53 Data 
Data passed as an argument from one method through two others to a 
fourth; all four methods are in different classes in the same package 

54 Data 
Data passed as an argument from one method through three others to a 
fifth; all five methods are in different classes in the same package 

61 Data 
Data returned from one method to another in different classes in the 
same package 

66 Data 
Data passed in an array from one method to another in different classes 
in the same package 

67 Data 
Data passed in a class from one method to another in different classes in 
the same package 



 

- C-2 - 

Flow Variant 
Flow 
Type 

Description 

68 Data 
Data passed as a member variable in the “a” class from one method to 
another in different classes in the same package 

71 Data 
Data passed as an Object reference argument from one method to 
another in different classes in the same package 

72 Data 
Data passed in a Vector from one method to another in different classes 
in the same package 

73 Data 
Data passed in a LinkedList from one method to another in different 
classes in the same package 

74 Data 
Data passed in a HashMap from one method to another in different 
classes in the same package 

75 Data 
Data passed in a serialized object from one method to another in different 
classes in the same package 

81 Data Data passed in an argument to an abstract method called via a reference 

Table 6 – Test Case Flow Variants



 

- D-1 - 

Appendix D : Bad-Only Test Cases 

CWE Entry ID CWE Entry Name Functional Variants Flow 
Variants 

111 Direct Use of Unsafe JNI * * 

383 
J2EE Bad Practices: Direct Use of 
Threads 

* * 

506 Embedded Malicious Code 

email 
file_transfer_connect_tcp 
file_transfer_listen_tcp 
screen_capture 

* 

510 Trapdoor 
network_connection 
network_listen 

* 

* = Applicable to all variants. 

Table 7 – Java Bad-only Test Cases



 

- E-1 - 

Appendix E : Test Case Changes in v1.2 

Test cases for the following CWEs were added in Juliet Test Suite v1.2 for Java: 

CWE Entry ID CWE Entry Name 

15 External Control of System or Configuration Setting 

197 Numeric Truncation Error 

226 Sensitive Information Uncleared Before Release 

459 Incomplete Cleanup 

526 Information Exposure Through Environmental Variables 

539 Information Exposure Through Persistent Cookies 

667 Improper Locking 

Table 8 – CWEs Added in Juliet Test Suite v1.2 for Java 

During quality control review, the test cases for the following CWEs were determined to be 

invalid and were removed in Juliet Test Suite v1.2 for Java: 

CWE Entry ID CWE Name 

180 Incorrect Behavior Order: Validate Before Canonicalize 

330 Use of Insufficiently Random Values 

489 Leftover Debug Code 

497 Exposure of System Data to an Unauthorized Control Sphere 

514 Covert Channel 

547 Use of Hard-coded, Security-relevant Constants 

665 Improper Initialization 

784 
Reliance on Cookies without Validation and Integrity Checking 
in a Security Decision 

Table 9 – CWEs Removed in Juliet Test Suite v1.2 for Java 

 

The following flow variant was removed in Juliet Test Suite v1.2 for Java: 

Flow Variant 
Number 

Flow 
Type 

Description Reason for Removal 

19 Control Dead code after a return 
Reduce incidental dead code in the test 
suite 

Table 10 – Flow Variants Removed in Juliet Test Suite v1.2 for Java 

 



 

- E-2 - 

The number of flaw types for the following CWEs changed in Juliet Test Suite v1.2 for Java. 

Reasons for these changes include, but are not limited to moving the flaw type to a more specific 

CWE, removing the flaw type entirely, or adding additional flaw types. 

CWE        
Entry ID 

CWE Entry Name 
Flaws in 

v1.1 
Flaws in 

v1.2 
Increase/ 
Decrease 

80 
Improper Neutralization of Script-Related HTML 
Tags in a Web Page (Basic XSS) 

12 18 6 

113 
Improper Neutralization of CRLF Sequences in 
HTTP Headers ('HTTP Response Splitting') 

48 36 -12 

129 Improper Validation of Array Index 58 72 14 

193 Off-by-one Error 1 3 2 

327 Use of a Broken or Risky Cryptographic Algorithm 1 2 1 

328 Reversible One-Way Hash 1 3 2 

382 J2EE Bad Practices: Use of System.exit() 1 2 1 

390 Detection of Error Condition Without Action 3 2 -1 

398 Indicator of Poor Code Quality 4 9 5 

400 
Uncontrolled Resource Consumption ('Resource 
Exhaustion') 

29 40 11 

404 Improper Resource Shutdown or Release 3 5 2 

476 NULL Pointer Dereference 4 7 3 

499 Serializable Class Containing Sensitive Data 2 1 -1 

506 Embedded Malicious Code 7 8 1 

568 finalize() Method Without super.finalize() 1 2 1 

570 Expression is Always False 6 16 10 

571 Expression is Always True 6 16 10 

581 
Object Model Violation: Just One of Equals and 
Hashcode Defined 

1 2 1 

760 Use of a One-Way Hash with a Predictable Salt 12 1 -11 

775 
Missing Release of File Descriptor or Handle after 
Effective Lifetime 

1 2 1 

Table 11 – Flaw Count Changes in Juliet Test Suite v1.2 for Java 

 



 

- F-1 - 

Appendix F : Running a Servlet Test Case 

in Eclipse 

The instructions below describe how to run an individual Servlet test case in Eclipse using the 

J2EE Preview Server.  This process can be used for testing or debugging a Servlet test case, but 

is not needed when compiling or analyzing the test cases. 

These instructions were created using the Eclipse version named Indigo Service Release 2.  

Details may vary for other versions. 

1. Create a new project 

a. File-> New-> Project.  Expand Web and select Dynamic Web Project. 

b. Click Next. 

c. For Project Name, use "TestCases" 

d. If you have nothing in the Target Runtime dropdown, or you do NOT have 

J2EEPreview as a selectable option, click New. 

e. Expand Basic, select J2EEPreview and click Finish. 

f. Select J2EE Preview as the Target Runtime. 

g. Click Finish. 

2. Add the support files 

a. Select File->Import 

b. Select General->File System 

c. Click Next 

d. In From Directory, set it to the Java test case’s source directory, such as 

"C:\testcases\Java\src" 

e. Expand src 

f. Check the checkbox next to "testcasesupport" folder in the left hand pane 

g. Click on Filter Types button, and select only .java files. 

h. In "Into Folder,” select the project src folder, such as "TestCases/src" 

i. Click Finish 

3. Add the library files 

a. Select File->Import 

b. Select General->File System 

c. Click Next 

d. In From Directory, set it to the Java test case directory, such as 

"C:\testcases\Java\" 

e. Expand Java 

f. Check the checkbox next to "lib" folder in the left hand pane 

g. Click on Filter Types button, and select only .jar files. 

h. In "Into Folder,” select the project folder, such as "TestCases" 

i. Click Finish 

 

 

 



 

- F-2 - 

4. Add references to lib files 

a. Right click the "TestCases" project, select Properties 

b. Select Java Build Path, then the Libraries tab 

c. Click Add JARs 

d. Browse to TestCases\lib and select commons-lang-2.5.jar, commons-codec-

1.5.jar, and javamail-1.4.4.jar 

e. Click OK 

f. Click OK Again 

5. Add a test case you want to test 

a. Select File->Import 

b. Select General->File System 

c. Click Next 

d. In From Directory, set it to the Java test case’s source directory, such as 

"C:\testcases\Java\src" 

e. Expand src 

f. Expand testcases 

g. Check the checkbox next to the CWE folder that contains the test case you want 

to test 

h. Click on Filter Types button, and select only .java files. 

i. In "Into Folder,” select the project src folder, such as "TestCases/src" 

j. Click Finish 

6. Associate server to this project 

a. Right-click the project, select New->Other. Expand Server. Select Server. Click 

Next. 

b. Expand Basic, select "J2EE Preview" 

c. Click Next. 

d. Select your project and click Add. 

e. Click Finish. 

7. Run Servlet 

a. Right-click the test case you want to run and select New->Servlet.  This step will 

add it to the web.xml. 

b. Leave all the defaults, and click Finish. 

c. Right-click the test case you want to try and run, select Run As, then Run on 

Server. 

d. The first time you run, you may be asked to select which server to use.  Make sure 

you select the J2EE preview server. 

e. Click Finish. 

f. Click unblock if a windows firewall message pops up. 

g. If you get an error, go to the Servers tab on the bottom, right click the J2EE 

Preview server and click stop. 

h. Try to rerun the test case. 

 


