

AFRL-RY-WP-TR-2015-0002

MINESTRONE

Salvatore Stolfo, Angelos D. Keromytis, Junfeng Yang, Dimitris Geneiatakis, Michalis
Polychronakis, Georgios Portokalidis, Kangkook Jee, and Vasileios P. Kemerlis

Columbia University

Angelos Stavrou and Dan Fleck

George Mason University

Matthew Elder and Azzedine Benameur

Symantec

MARCH 2015
Final Report

Approved for public release; distribution unlimited.

See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or permission to
manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by IARPA Public Affairs Office and is available to the
general public, including foreign nationals. Qualified requestors may obtain copies of this report
from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RY-WP-TR-2015-0002 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

//Signature// //Signature//

TOD J. REINHART DAVID G. HAGSTROM, Chief
Program Manager Avionics Vulnerability Mitigation Branch
Avionics Vulnerability Mitigation Branch Spectrum Warfare Division
Spectrum Warfare Division

//Signature//
TODD A. KASTLE, Chief
Spectrum Warfare Division
Sensors Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//Signature//” stamped or typed above the signature blocks.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)
March 2015 Final 2 August 2010 – 30 November 2014

4. TITLE AND SUBTITLE
MINESTRONE

5a. CONTRACT NUMBER
FA8650-10-C-7024

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
695285

6. AUTHOR(S)
Salvatore Stolfo, Angelos D. Keromytis, Junfeng Yang, Dimitris Geneiatakis, Michalis
Polychronakis, Georgios Portokalidis, Kangkook Jee, and Vasileios P. Kemerlis
(Columbia University)
Angelos Stavrou and Dan Fleck (George Mason University)
Nathan Evans, Matthew Elder, and Azzedine Benameur (Symantec)

5d. PROJECT NUMBER
ST0N

5e. TASK NUMBER
RY

5f. WORK UNIT NUMBER

Y0LK
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Columbia University
Department of Computer Science
M.C. 0401
1214 Amsterdam Avenue
New York, NY 10027-7003

George Mason University
Symantec

 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Air Force Research Laboratory
Sensors Directorate
Wright-Patterson Air Force Base, OH 45433-
7320
Air Force Materiel Command
United States Air Force

Office of Safe and Secure Operations
Intelligence Advanced Research Project
Activity (IARPA)
Office of the Director of National
Intelligence (ODNI)
Washington, DC 20511

 AGENCY ACRONYM(S)
AFRL/RYWA

11. SPONSORING/MONITORING
 AGENCY REPORT NUMBER(S)

AFRL-RY-WP-TR-2015-0002

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES
The U.S. Government is joint author of the work and has the right to use, modify, reproduce, release, perform, display or disclose
the work cleared by Schira Madan of the IARPA Public Affairs Office, 23 March 2015. Supported by the Intelligence Advanced
Research Projects Activity (IARPA) via contract Air Force Research Laboratory (AFRL) contract number FA8650-10-C-7024.
The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
annotation hereon. Disclaimer: The views and conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or implied, of IARPA, AFRL, or the U.S.
Government. Report contains color.

14. ABSTRACT
MINESTRONE is an architecture that integrates static analysis, dynamic confinement, and code diversification techniques to
enable the identification, mitigation and containment of a large class of software vulnerabilities. These techniques protect new
software, as well as legacy software, by transparently inserting extensive security instrumentation.

15. SUBJECT TERMS
MINESTRONE, vulnerability detection and mitigation, static analysis, dynamic confinement, code diversification

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

66

19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

 Tod Reinhart
19b. TELEPHONE NUMBER (Include Area Code)

N/A
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39-18

TABLE OF CONTENTS

Section Page

LIST OF FIGURES...iv

1.0 SUMMARY...1

2.0 INTRODUCTION... 2

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES... 4

3.1 Evaluation Assumptions.. 4

4.0 RESULTS AND DISCUSSION..5

4.1 Phase 1 Developments... 5

4.1.1 Scale KLEE.. 5

4.1.2 Binary KLEE... 9

4.1.3 Patch Validation... 10

4.1.4 Prophylactic KLEE Checks... 11

4.1.5 Automatic Race Avoidance...12

4.1.6 Binary-level Monitor..14

4.1.7 Lightweight Program Confinement... 17

4.1.8 Function-level Monitoring... 20

4.1.9 Accurate Anomaly Detection... 22

4.1.10 Pin-based Error Virtualization... 24

4.1.11 ISR Extensions... 25

4.1.12 I/O Redirection.. 27

4.1.13 Replica Diversification.. 29

4.1.14 Experimental Evaluation.. 30

4.1.15 System Integration... 30

4.1.16 Miscellaneous Items...31

4.2 Phase 2 Developments... 35

4.2.1 Source-level Monitor Based upon DYBOC and Number Handling Tool................. 35

4.2.2 Binary-level Monitor Based upon PIN... 35

4.2.3 Automatic Race Avoidance...35

4.2.4 Pin-Based Error Virtualization...35

i

Approved for public release; distribution unlimited.

4.2.5 Instruction Set Randomization (ISR)... 35

4.2.6 Replica Diversification.. 36

4.2.7 Replica Monitoring.. 36

4.2.8 TheRing.. 36

4.2.9 KLEE... 37

4.2.10 In-code Engine (ICE) (aka Symbiote)... 37

4.3 Phase 3 Developments... 37

4.3.1 MINESTRONE..37

4.3.2 PaX/SMEP/SMAP Kernel Exploits... 37

4.3.3 ROP Exploits..37

4.3.4 Parrot System... 37

4.3.5 OS-assisted Dataflow Tracking... 38

4.3.6 Hybrid Code Instrumentation Framework... 38

4.3.7 Resource Exhaustion Capture Tool..38

4.3.8 CFI Attacks.. 39

4.3.9 DynaGuard... 39

4.3.10 Pintool.. 39

4.3.11 ShadowReplica.. 39

4.3.12 IntFlow... 39

4.3.13 TheRing... 40

4.3.14 SQLRand... 40

4.3.15 Rescue Point Auto-configuration... 40

4.3.16 Learning Approach to Reduce Resource Bounds.. 40

4.3.17 Dynamic Taint Analysis...40

4.3.18 REASSURE... 41

4.3.19 Compiler Support for Self-healing.. 41

4.3.20 LLVM-based Checkpointing..41

4.3.21 Buffer Overflow Protection with libpmalloc (DYBOC)... 42

4.4 Evaluation Components... 42

4.5 MINESTRONE Overhead Summary... 43

4.6 Evaluation Cases.. 44

ii

Approved for public release; distribution unlimited.

4.7 MINESTRONE Integrated Prototype for Test and Evaluation..................................44

4.8 Evaluation on CTREE... 45

4.9 Component Evaluation.. 46

4.9.1 REASSURE... 46

4.9.2 libDFT.. 46

4.9.3 ISR... 46

4.9.4 TheRing... 46

4.9.5 DYBOC Overflow/Underflow Containers.. 46

4.9.6 Number Handling Container.. 47

4.9.7 Resource Drain Container.. 47

4.9.8 Parrot/xtern Race Avoidance Container...47

4.9.9 Resource Monitor Tool.. 48

4.9.10 KLEE... 50

5.0 CONCLUSIONS... 51

6.0 PUBLISHED PAPERS.. 52

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS..57

iii

Approved for public release; distribution unlimited.

LIST OF FIGURES

Figure Page

Figure 1. MINESTRONE Architecture……………………………………………………………2

Figure 2. Gantt Chart of All Tasks………………………………………………………………...3

Figure 3. Original Schedule………………………………………………………………………. 3

Figure 4. Coverage Increase in KLEE with Path Pruning………………………………………... 7

Figure 5. Speedup Increase in KLEE with Path Pruning…………………………………............. 8

Figure 6. Resource Monitoring and Policing……………………………………………………. 18

Figure 7. Testing and Evaluation Results for MINESTRONE…………………………………. 45

Figure 8. Evaluation on CTREE………………………………………………………………… 45

Figure 9. Wireshark Performance Comparison between Instrumentation Types……………….. 48

Figure 10. Testing Results for resmom………………………………………………………….. 49

Figure 11. Instrumentation Performance Overhead…………………………………………….. 49

Figure 12. KLEE Evaluation……………………………………………………………………..50

iv

Approved for public release; distribution unlimited.

1.0 SUMMARY

MINESTRONE is a novel architecture that integrates static analysis, dynamic confinement, and
code diversification techniques to enable the identification, mitigation and containment of a large
class of software vulnerabilities. These techniques protect new software, as well as already
deployed (legacy) software by transparently inserting extensive security instrumentation. They also
leverage concurrent program analysis (potentially aided by runtime data gleaned from profiling
software) to gradually reduce the performance cost of the instrumentation by allowing selective
removal or refinement.

MINESTRONE also uses diversification techniques for confinement and fault-tolerance purposes.
To minimize performance impact, this project also leverages multi-core hardware or (when
unavailable) remote servers to enable the quick identification of potential compromises.

The developed techniques require no specific hardware or operating system features, although they
take advantage of such features where available, to improve both runtime performance and
vulnerability coverage.

1

Approved for public release; distribution unlimited.

2.0 INTRODUCTION

This work investigates the integration of static analysis, dynamic confinement, and code
diversification techniques to enable the identification, mitigation and containment of a large class of
software vulnerabilities from language class B (C/C++). The system enables the immediate
deployment of new software and the protection of already deployed (legacy) software by
transparently inserting extensive security instrumentation, while leveraging concurrent program
analysis (potentially aided by runtime data gleaned from profiling actual use of the software) to
gradually reduce the performance cost of the instrumentation by allowing selective removal or
refinement. Artificial diversification techniques are used both as confinement mechanisms and for
fault-tolerance purposes. To minimize performance impact, this work leverages multi-core
hardware or (when unavailable) remote servers that enable quick identification of likely
compromise. The approach requires no specific hardware or operating system features, although it
seeks to take advantage of such features where available, to improve both runtime performance and
vulnerability coverage beyond the specific Broad Agency Announcement (BAA) goals.
MINESTRONE is an integrated architecture, which brings together the elements of this effort.

Figure 1. MINESTRONE Architecture

2

Approved for public release; distribution unlimited.

As part of the effort, stand-alone tools were developed for each of the research thrusts
identified in Figure 2 below. MINESTRONE is an integrated architecture incorporated all
of these thrusts. Figure 2 shows a Gantt chart of all tasks.

Figure 2: Gantt Chart of all Tasks

Figure 3 below shows the original schedule for these tasks.

Figure 3: Original Schedule

3

Approved for public release; distribution unlimited.

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

A systems-level approach was taken to designing, prototyping, and evaluating the individual
components. The components are designed for use in Linux, and tested with the Ubuntu
distribution (but should be portable across all major Linux releases). Most of the components are
user-space resident; the integrated system makes use of the OpenVZ container functionality
contained in recent Linux kernels, as well as a small kernel module for enabling I/O redirection
and container management functionality. Most components can operate on pure binary
executables, although they will operate more effectively if there are debug symbols compiled in
the binary.

3.1 Evaluation Assumptions

In making these performance/overhead estimates, the following assumptions are made:

• A variety of applications will be used to test runtime overhead. Runtime overhead is highly
dependent upon the application being tested, as well as the particular inputs provided to the
application, and the runtime overhead of each detection technology will vary based upon
that application and workload.

• All detection technology components can be executed in parallel, as opposed to sequentially.
Measuring the runtime overhead in terms of increased running time would only make sense
in the context of the parallel execution configuration; having to run each detection
technology sequentially would result in prohibitive increased running times.

• Sufficient additional hardware resources are present in order to execute all detection
technologies in parallel. This assumption is likely reasonable given the hardware
capabilities of today’s personal computers and datacenter resources. Personal computers
now come with multiple processor cores, which are often underutilized – those existing
multiple cores could be used by the MINESTRONE integrated prototype, one per container,
in order to run multiple detection technologies in parallel. Alternatively, or in addition,
many enterprises have local server and/or datacenter infrastructure, where MINESTRONE
containers could be executed in parallel, without significant network latency.

• One-time initialization/configuration activities - actions that can be completed prior to
execution of the application - are not included as part of the runtime overhead measurement.
For example, in interactive applications with a graphical user interface where the UI/mouse
actions must be redirected/replicated to the different detection technology containers, the
one-time cost of initializing the VNC sessions between the No Security container and
detection technology containers is not included in the runtime overhead measurement.
Similarly, for the ISR component, the upfront cost of encoding the binary is not included in
the runtime overhead.

• The MINESTRONE integrated prototype configuration can be tailored to the application. In
other words, the detection technologies deployed within a particular instance of the
MINESTRONE integrated prototype can be tailored, turned on or off as desired, in order to
meet the performance and detection requirements of the particular environment.

4

Approved for public release; distribution unlimited.

4.0 RESULTS AND DISCUSSION

4.1 Phase 1 Developments

4.1.1 Scale KLEE

As was indicated in the initial proposal, the bulk of the work has focused on scaling KLEE. There
have been two main thrusts:

• Developing techniques that handle the enormous number of code paths through real code.
Such ''path explosion'' is the most challenging scalability problem for checking large
systems.

• Vastly increasing the scope of programs KLEE can handle by building a version that can
analyze x86 and ARM executables.

In addition, significant work has been done tuning the KLEE system, including developing many
novel optimizations for analyzing constraints.

4.1.1.1 Handling Path Explosion

Two main techniques have been developed for handling path explosion:

• Path pruning, which detects when the suffix of a path must produce the same result as a
previously explored path and skips it.

• Path merging, which merges multiple paths into a single state, thereby allowing the system
to simultaneously execute many paths at once.

Path pruning is a much more mature technique, which gives order of magnitude performance
improvements over a broad range of applications. Path merging is a more recent technique
(developed in the past couple of months), which gives dramatic speedups on some applications, but
performs indifferently on others.

Each is discussed below.

4.1.1.2 Path Pruning

KLEE uses path-based symbolic execution. In this context, each state follows a single unique path
in the code, starting from the checked program's first instruction. States are created when a code
path forks (e.g., at an if-statement); different paths will run the same instruction when these paths
rejoin (e.g., the instruction after an if-statement). In this context, a naive state equivalence-checking
algorithm is simple:

• Every program point records the set of all states that have reached it in a "state cache."
• Before running a state S on the instruction at program point P, check if S is in P's state

cache. If so, terminate (since it will not do anything new). Otherwise insert it and continue.

5

Approved for public release; distribution unlimited.

This, of course, is the algorithm used in many model checkers.

The main problem with the naive approach is that it considers two states equal iff all locations have
the same value. Most locations cannot change behavior, yet a difference in one of them will prevent
a cache miss. This is especially true when checking implementation code as compared to reduced an
abstract model since the number of locations will typically be dramatically larger (e.g., tens of
thousands in the programs checked). Further, for this flavor of path-based symbolic execution, this
cache will almost never produce a hit --- since each state represents a unique path, typically at least
one constraint in that state will differ from all other states, preventing a hit unless the location is
dead.

There are two complementary ways to dramatically improve hit rates. The first determines when
superficially different constraints will produce the same (or a subset) of previously seen behavior,
such as a state that has a more specific set of constraints than what has already been explored (e.g.,
"x = 10" versus "x > 0"). The second approach focuses on discarding as many irrelevant locations
as possible in the state records recorded in the state cache, driving down the miss rate from spurious
differences.

Both are good ways to go. Focus has been placed only on the second. Because it is desirable to
generate inputs that get high code coverage, the strategy has been: remove locations that do not
matter (cannot lead to new coverage) and then propagate these refinements as far as possible (i.e., to
as many state caches above the prune point as possible). As the results show, discarding irrelevant
locations can improve the cache-hit rate by to one to two orders of magnitude.

One reason a location at l in a state S at program point P is irrelevant is if no subsequent instruction
reachable from P using the values in S can read l, i.e., l is dead rather than live. One of the main
refinements is to compute the set of all live locations reachable from P (the ``live set'') by taking the
union of all locations read during an exhaustive exploration of all reachable instructions from P and
then intersecting the live set with S in the state cache, discarding all irrelevant locations.

The number of relevant locations can be reduced further. Again since statement coverage is
important, once an instruction is covered, reaching it again is uninteresting. Thus, if a location l
only affects whether an already covered instruction can be reached, it can be ignored.

Conceptually, this check is implemented by tracking all control and data dependencies for all
instructions reachable from P given state S. By definition these list the complete set of locations that
could cause a change in path behavior. Thus, if a location l is not contained in any such set, then
there is no value it can be assigned that could cause an uncovered instruction to be executed. It can
thus be discarded from the state cache entry.

The main implementation challenge is the sheer number of these dependencies. This can be
mitigated somewhat by exploiting the fact that statements are run whenever a the edge of the
conditional branch controlling them is taken, and thus one need only track the dependencies
of conditional expressions. However, scalability is still a challenge. One intuitive way to see why is
to notice that security tools that try to do full tracking of tainted (untrusted) values have to do a
similar analysis --- the explosion of transitively tainted locations caused when tracking control flow

6

Approved for public release; distribution unlimited.

dependencies (``implicit information flow'') has meant many tools simply give up on the problem
and only track data dependencies. As a result, much of the work has been on devising techniques
and data structures that can handle this enormous number of dependencies.

This optimization was evaluated by using it to execute the 70+ Unix utilities that comprise
CoreUtils suite. These programs form the core user-level environment installed on almost all Unix
systems. They are used daily by millions of people, bug fixes are handled promptly, and new
releases are pushed regularly. The breadth of functions they perform means that this system cannot
be a ``one trick pony'' special-cased to one application class. Moreover, the heavy use of the
environment stress tests this system where symbolic execution has historically been weakest.

When path pruning is added to KLEE it gets an average speedup of 182X (median is 12.8X), with a
max speedup of 1143X. Statement coverage of the applications increases by an average of 6.8%
(median is 5.9%). The two figures break these down on a per application basis.

Figure 4: Coverage Increase in KLEE with Path Pruning

7

Approved for public release; distribution unlimited.

Figure 5: Speedup Increase in KLEE with Path Pruning

4.1.1.3 Path Merging

Assume there are two paths through code:

 x = symbolic();
 ...
 if(x)
 y = 1;
 else
 y = 2;

In normal KLEE, if both paths are feasible, this will produce two states: {x != 0, y = 1} and { x = 0,
y = 2 }. With merging one state results{x != 0 ==> y = 1 \/ x = 0 ==> y = 2}. This can be a big
win, since many states can be executed simultaneously. It can also be a big loss for two main
reasons: (1) many concrete locations become symbolic (y in the example above) and (2) the
constraints generated are much more complex and different than in the past (in particular,
disjunctions are expensive). A significant amount of time has been spent doing low-level
optimization of the resultant constraints to try to beat them into something more reasonable. The
result is nearly a 10x performance improvement in the best case, with more modest results on other
programs.

8

Approved for public release; distribution unlimited.

4.1.2 Binary KLEE

At a high level, the binary symbolic execution system uses Valgrind's translation library, VEX, to
translate x86-64 machine code a basic block at a time to the internal representation of a heavily
modified copy of the KLEE symbolic execution system (LLVM bitcode from the LLVM compiler).

Like the base system KLEE, the tool represents each path through code as a separate address space.
It extends this "guest state" with memory map bookkeeping, the current state of the guest's machine
registers, symbol mappings, and environment details. The program it interprets (the guest) is loaded
so that every pointer in the guest state matches the equivalent native process through low-overhead
translations. Mostly these translations are the identity; for some, however, one must add a constant
offset (specific cases are discussed later in the paper). Since both the guest program and KLEE
occupy the same address space, conflicts of text addresses are avoided by using the common trick of
linking the system's executable at an uncommon base address.

Shoehorning a dynamic binary translator (DBT) into KLEE requires an updated executor. This new
executor is referred to as the DBT bridge. Originally, KLEE was designed to operate on static
LLVM bitcode files; all the code is immediately available on initialization. On the other hand,
DBTs are designed to incrementally uncover basic blocks on demand. Since precise disassembly of
x86 code is an intractable problem, KLEE's execution model had to be updated to support a stream
of basic blocks. The DBT bridge crosses the gap between the DBT and symbolic execution. The
bridge dispatches basic blocks, wrapped as LLVM functions, to the KLEE LLVM symbolic
interpreter that inspects the function's return value to find the next address (or system call) to
execute.

The KLEE DBT uses VEX as a baseline CPU decoder, but ignores the translated host machine
instructions in favor of the intermediate VEX basic block format. The VEX intermediate
representation is a single assignment language with support for arbitrary expressions. Basic blocks
in this representation readily translate into LLVM (which is also single assignment). Each basic
block is translated into an LLVM function which takes a VEX register file as input and returns the
next guest address to execute. At this stage, a concrete DBT executor can be implemented by using
the built-in LLVM just-in-time compiler to emit the blocks as (binary) machine code.

4.1.2.1 Memory Translation

If address space layout randomization is enabled on the host machine, most of the memory
mappings within the guest process will not conflict with the host process. With no conflicts, the
native process may be safely copied in-place into the host process to form the guest address space.
Two notable exceptions to layout randomization are executable text sections and the virtual system
call page.

On a typical system, the fixed mapping from the guest's text section conflicts with the host process.
Without intervening at compile-time, executables are at the mercy of the default linker script, which
links all executables to the same base address. This conflict is resolved through the popular (e.g.,

9

Approved for public release; distribution unlimited.

used by Pin and QEMU) binary translator linker trick of changing the host text section's base
address to an unusual memory location.

Linux optimizes several system calls through a special kernel-owned, user-visible vsyscall page.
The vsyscall page is read-only mapped at a fixed kernel address that changes from run to run;
relocating and copying the vsyscall page is a challenge. As an aside, this mapping has properties
similar to the "u-area" found on other Unix systems. Although the data in the page may change
from run to run, forking off and ptrace’ing the guest program preserves the vsyscall page of the host
process. Hence, reconciling distinct vsyscall pages at this stage is unnecessary.

4.1.2.2 Robustness

A key goal of this work is to ensure binary-KLEE is a robust tool suitable for real world use, rather
than a cobbled-together, hodge-podge of hacks that can (barely) eek out some results for a
publication. As part of this, focus has been placed on running real programs from the beginning.
The current nightly regressions use roughly 100 programs from "/usr/bin" and "/usr/sbin" from a
current Linux distribution. Larger programs such as firefox have also been executed (albeit with
low coverage). The results of the most recent nightly regressions can be seen at:

 http://bingularity.org/kleemc-bot/2012-01-09/err.xml
 http://bingularity.org/kleemc-bot/2012-01-09/report.xml

Much of the work on binary KLEE has been on coming up with ways to turn KLEE on itself so that
errors in the code can be found/verified. These checks have found tens of errors in the Valgrind
code that can be used for instruction decoding along with a multitude of errors in KLEE itself (and
in the constraint solvers it uses).

4.1.3 Patch validation

This work item was to verify that bug patches only removed crash-causing errors, rather than
changed functionality. The intuition is that one can use symbolic execution to verify on a path-by-
path basis that all non-crashing paths in the old code have identical behavior in the new.

The initial work on this item has been to verify "functional equivalence" where it has been verified
that two functions that purport to implement the same interface do so. While this sounds different
than patches, it is largely the same since you can view a patch as a function. The infrastructure built
is the same needed for patches.

Historically, code verification has been hard. Thus, implementers rarely make any effort to do it.
UC-KLEE, a modified version of KLEE designed to make it easy to verify that two routines are
equivalent, has been built. This ability is useful in many situations, such as checking: different
implementations of the same (standardized) interface, different versions of the same
implementation, optimized routines against a reference implementation, and finding compiler bugs
by comparing code compiled with and without optimization.

10

Approved for public release; distribution unlimited.

Previously, cross checking code that takes inputs with complex invariants or complicated data
structures required tediously constructing these inputs by hand. From experience, the non-trivial
amount of code needed to do so can easily dwarf the size of the checked code (e.g., as happens
when checking small library routines). Manual construction also leads to missed errors caused by
over-specificity. For example, when manually building a linked list containing symbolic data,
should it have one entry? Two? A hash table should have how many collisions and in which
buckets? Creating all possible instances is usually difficult or even impossible. Further, manually
specifying pointers (by assigning the concrete address returned by malloc) can limit paths that
check relationships on them, such as when an if-statement checks whether one pointer is less than
another. In general, if input has many constraints, a human tester will miss one.

In contrast, using the tool is easy: rather than requiring users to manually construct inputs or write a
specification to check code against, they simply give the tool two routines (written in raw, un-
annotated C) to cross check. The tool automatically synthesizes the routines' inputs (even for rich,
nested data structures) and systematically explores a finite number of their paths using sound, bit-
accurate symbolic execution. It verifies that the routines produce identical results when fed identical
inputs on these explored paths by checking that they either (1) write the same values to all escaping
memory locations or (2) terminate with the same errors. If one path is correct, then verifying
equivalence proves the other is as well. If the tool terminates, then with some caveats it has verified
equivalence up to a given input size.

Because UC-KLEE leverages the underlying KLEE system to automatically explore paths and
reason about all values feasible on each path, it gives guarantees far beyond those of traditional
testing, yet it often requires less work than writing even a single test case. It is shown that the
approach works well even on heavily-tested code, by using it to cross check hundreds of routines in
two mature, widely-used open-source LIBC implementations, where it:

• Found numerous interesting errors.
• Verified the equivalence of 300 routines (150 distinct pairs) by exhausting all their paths up

to a fixed input size (8 bytes).
• Got high statement coverage: The lowest median coverage for any experiment was 90% and

the rest were 100%.

A final contribution is a simple, novel trick for finding bugs in the compiler and checking tool by
turning the technique on itself, which is used to detect a serious LLVM optimizer bug and numerous
errors in UC-KLEE.

These results are described in more detail in the 2011 CAV paper "Practical, low-effort equivalence
verification of real code".

4.1.4 Prophylactic KLEE Checks

This deliverable has been de-emphasized in order to throw more resources at building the binary
version of KLEE. This goal was deemed more relevant for the Phase 1 effort than building
prophylactic checks.

11

Approved for public release; distribution unlimited.

4.1.5 Automatic Race Avoidance

Two trends have caused multithreaded programs to become pervasive and critical. The first is a
hardware trend: the rise of multicore computing. For years, sequential code enjoyed automatic
speedup as computer architects steadily made single-core multiprocessors faster. Recently,
however, this “free lunch is over”: power and wire-delay constraints have forced microprocessors
into multicore designs, and adding more cores does not automatically speed up sequential code.
Thus, developers, including those working for various government agencies, are writing more and
more multithreaded code.

The second trend is a software one: the coming storm of cloud computing. More and more services,
including many traditionally offered on desktops (e.g., word processing), are now served from
distributed “clouds” of servers to meet the current computing demands for high scalability, always-
on availability, everywhere connectivity, and desirable consistency. These services are also getting
ever richer and more powerful---and thus computation and data intensive. To cope with this
massive workload, practically all services today employ threads to increase performance.

Unfortunately, despite the system's increasing reliance on multithreaded programs, they remain
extremely difficult to write. This difficulty has led to many subtle but serious concurrency
vulnerabilities such as race conditions in real-world multithreaded programs. Some of these errors
have killed people in the Therac 25 incidents and caused the 2003 Northeast blackout.
Multithreaded programs are the most widespread parallel programs, yet many luminaries in
computing consider parallel programming one of the top challenges facing computer science. As
John Hennessy once put: “when we start talking about parallelism and ease of use of truly parallel
computers, we're talking about a problem that's as hard as any that computer science has faced.”

Just as vulnerabilities in sequential programs can lead to security exploits, concurrency
vulnerabilities can similarly compromise security and lead to concurrency attacks. The recent study
of real concurrency vulnerabilities in the CVE database shows that these vulnerabilities are very
dangerous: they allow attackers to corrupt arbitrary program data, inject malicious code, and
escalate privileges. Worse, in addition to being directly exploited by attackers, concurrency
vulnerabilities also compromise key defense techniques that were once trusted. For instance,
consider an information flow tracking mechanism that tracks whether each piece of program data is
classified or not using a metadata tag. An attacker may exploit a race condition on program data to
make the data and the tag inconsistent, thus evading the information flow tracking mechanism.

A key reason that multithreaded programs are so difficult to get right is non-determinism: different
runs of a parallel program may compute different results and show different behaviors, depending
on how the parallel threads of executions interleave. The interleaved parallel execution is called a
schedule. A typical parallel program exhibits many possible schedules across runs, due to
variations in hardware, OS scheduling, input, and timing factors. Ideally all schedules will lead to a
single correct result, but in practice, these schedules lead to different results, some of which are
incorrect. Non-determinism makes it difficult to write, understand, maintain, test, debug, and verify
parallel programs. It deprives parallel computation of the most essential and appealing properties of
sequential computation: understandability, repeatability, predictability, and determinism. For
instance, non-determinism makes it virtually impossible to rerun a large parallel computation and

12

Approved for public release; distribution unlimited.

reproduce the exact results as the original run. Thus, it is impossible for third-party researchers to
independently verify results from parallel computation, which is crucial for fields such as nuclear,
biological, and medical sciences where correctness is a life-or-death matter. Similarly, testing, the
predominant industrial method to assure software quality tends to cover few schedules, leaving
many untested, buggy schedules running in the wild. Debugging is quite challenging because
developers have to reproduce these exact buggy schedules on their machines.

As part of the thrust to automatically avoid races, a number of techniques and prototypes exploring
and demonstrating automatic race avoidance were investigated and developed.

4.1.5.1 Tern

Tern uses schedule-memoization to memoize past working schedules and reuse them on future
inputs, making program behaviors stable across different inputs. For instance, it can make
programs to hang on to the good schedules, and avoid potential errors in the unknown schedules. A
second novelty in Tern is the idea of windowing that extends schedule memoization to server
programs by splitting continuous request streams into windows of requests. The Tern
implementation runs on Linux. It operates as user-space schedulers, requiring no changes to the OS
and only a few lines of changes to the application programs.

Tern was evaluated on a diverse set of 14 programs, including two server programs Apache and
MySQL, a parallel compression utility PBZip2, and 11 scientific programs in SPLASH2. The
workload included a Columbia CS web trace and benchmarks used by Apache and MySQL
developers. Results show that (1) Tern is easy to use. For most programs, only a few lines were
modified to adapt them to Tern. (2) Tern enforces stability across different inputs. In particular, it
reused 100 schedules to process 90.3% of a 4-day Columbia CS web trace. Moreover, while an
existing DMT system made three bugs inconsistently occur or disappear, depending on minor input
changes, Tern always avoided these bugs. (3) Tern has reasonable overhead. For nine out of
fourteen evaluated programs, Tern has negligible overhead or improves performance; for the other
programs, Tern has up to 39.1% overhead.
(4) Tern makes threads deterministic. For twelve out of fourteen evaluated programs, the schedules
Tern memoized can be deterministically reused barring some assumptions.

4.1.5.2 PEREGRINE

PEREGRINE improved upon Tern by removing manual annotations and by efficiently making
threads deterministic. The key insight is that races tend to occur only within minor portions of an
execution, and a dominant majority of the execution is still race-free. Thus, one can resort to a
mem-schedule only for the “racy” portions and enforce a sync-schedule otherwise, combining the
efficiency of sync-schedules and the determinism of mem-schedules. These combined schedules are
called hybrid schedules. Based on this insight, PEREGRINE has been built, an efficient
deterministic multithreading system. When a program first runs on an input, PEREGRINE records
an execution trace. It then relaxes this trace into a hybrid schedule and reuses the schedule on future
compatible inputs efficiently and deterministically. PEREGRINE further improves efficiency with
two new techniques: determinism-preserving slicing to generalize a schedule to more inputs while

13

Approved for public release; distribution unlimited.

preserving determinism, and schedule-guided simplification to precisely analyze a program
according to a specific schedule.

PEREGRINE was evaluated on a diverse set of 18 programs, including the Apache web server;
three desktop programs, such as PBZip2, a parallel compression utility; implementations of 12
computation-intensive algorithms in the popular SPLASH2 and PARSEC benchmark suites; and
racey, a benchmark with numerous intentional races for evaluating deterministic execution and
replay systems. Results show that PEREGRINE is both deterministic and efficient (executions
reusing schedules range from 68.7% faster to 46.6% slower than nondeterministic executions); it
can frequently reuse schedules for half of the programs (e.g., two schedules cover all possible inputs
to PBZip2 compression as long as the number of threads is the same); both its slicing and
simplification techniques are crucial for increasing schedule-reuse rates, and have reasonable
overhead when run offline; its recording overhead is relatively high, but can be reduced using
existing techniques; and it requires no manual efforts except a few annotations for handling server
programs and for improving precision.

4.1.5.3 RACEPRO

RACEPRO is a tool for detecting process races. Process races occur when multiple processes
access shared operating system resources, such as files, without proper synchronization. The first
study of real process races and the first system designed to detect them has been presented. A study
of hundreds of applications shows that process races are numerous, are difficult to debug, and
constitute a real threat to reliability. To address this problem, RACEPRO was created, a system for
automatically detecting these races. RACEPRO checks deployed systems in-vivo by recording live
executions then deterministically replaying and checking them later. This approach increases
checking coverage beyond the configurations or executions covered by software vendors or beta
testing sites. RACEPRO records multiple processes, detects races in the recording among system
calls that may concurrently access shared kernel objects, then tries different execution orderings of
such system calls to determine which races are harmful and result in failures. To simplify race
detection, RACEPRO models under-specified system calls based on load and store micro-
operations. To reduce false positives and negatives, RACEPRO uses a replay and go-live
mechanism to distill harmful races from benign ones. RACEPRO was implemented in Linux,
shown that it imposes only modest recording overhead, and used it to detect a number of previously
unknown bugs in real applications caused by process race.

4.1.6 Binary-level monitor

As part of this thrust, a number of techniques and prototypes exploring and demonstrating a binary-
level monitor were investigated and developed.

4.1.6.1 libDFT

Dynamic data flow tracking (DFT), also referred to as information flow tracking, is a well known
technique that deals with the tagging and tracking of “interesting” data as they propagate during
pro- gram execution. DFT has many uses, such as analyzing malware behavior, hardening software
against zero-day attacks (e.g., buffer overflow, format string), detecting and preventing information

14

Approved for public release; distribution unlimited.

leaks, and even debugging software misconfigurations. From an architectural perspective, it has
been integrated into full system emulators and virtual machine monitors, retrofitted into unmodified
binaries using dynamic binary instrumentation, and added to source codebases using source-to-
source code transformations. Proposals have also been made to implement it in hardware, but they
had little appeal to hardware vendors.

Previous studies utilized DFT to investigate the applicability of the technique into a particular
domain of interest, producing their own problem-specific and ad hoc implementations of software-
based DFT that all suffer from one or more of the following issues: high overhead, little reusability
(i.e., they are problem specific), and limited applicability (i.e., they are not readily applicable to
existing commodity software). For instance, LIFT and Minemu use DFT to detect security attacks.
While fast, they do not support multithreaded applications (the first by design). LIFT only works
with 64-bit binaries, while Minemu only with 32-bit binaries, featuring a design that requires
extensive modifications to support 64-bit architectures. More importantly, they focus on a single
problem domain and cannot be easily modified for use in others.

More flexible and customizable implementations of fine-grained DFT have also failed to provide
the research community with a practical and reusable DFT framework. For example, Dytan focuses
on presenting a configurable DFT tool that supports both data and control flow dependencies.
Unfortunately, its versatility comes at a high price, even when running small programs with data
flow dependencies alone (control flow dependencies further impact performance). For instance,
Dytan reported a 30x slow- down when compressing with gzip, while LIFT reports less than 10x.
Although the experiments may not be directly comparable, the significant disparity in performance
suggests that the design of Dytan is not geared towards low overhead.

A practical dynamic DFT implementation needs to address all three problems listed above, and thus
it should be concurrently fast, reusable, and applicable to commodity hardware and software. libdft
was developed, a meta-tool in the form of a shared library that implements dynamic DFT using
Intel’s Pin dynamic binary instrumentation framework. libdft’s performance is comparable or better
than previous work, incurring slowdowns that range between 1.14x and 6.03x for command-line
utilities, while it can also run large server applications like Apache and MySQL with an overhead
ranging between 1.25x and 4.83x. In addition, it is versatile and reusable by providing an extensive
API that can be used to implement DFT-powered tools. Finally, it runs on commodity systems. The
current implementation works with x86 binaries on Linux, and it will be extended to run on 64-bit
architectures and the Windows operating system (OS). libdft introduces an efficient, 64-bit capable,
shadow memory, which represented one of the most serious limitations of earlier works, as flat
shadow memory structures imposed unmanageable memory space overheads on 64-bit systems, and
dynamically managed structures introduce high performance penalties. More importantly, libdft
supports multi-process and multithreaded applications, by trading off memory for assurance against
race, and it does not require modifications to programs or the underlying OS.

A novel optimization approach to DFT was developed, based on combining static and dynamic
analysis, which significantly improves its performance. This methodology is based on separating
program logic from taint tracking logic, extracting the semantics of the latter, and representing them
using a Taint Flow Algebra. Multiple code optimization techniques were applied to eliminate
redundant tracking logic and minimize interference with the target program, in a manner similar to

15

Approved for public release; distribution unlimited.

an optimizing compiler. Drawing on the rich theory on basic block optimization and data flow
analysis, done in the context of compilers, the safety and correctness of the algorithm using a formal
framework can be argued.

The correctness and performance of the methodology was evaluated on libdft, and showed that the
code generated by this analysis behaves correctly when performing dynamic taint analysis. The
performance gains achieved by the various optimizations were evaluated using several Linux
applications, including commonly used command-line utilities (bzip, gzip, tar, scp, etc.), the SPEC
CPU 2000 benchmarks, the MySQL database server, the runtimes for the PHP and JavaScript
languages, and web browsers. Results indicate performance gains as high as 2.23×, and an average
of 1.72× across all tested applications.

4.1.6.2 Virtual Application Partitioning

Virtual partitioning was developed, a technique that enables application of diverse defensive
mechanisms to manage the attack surface of applications. This approach is based on the
observation that applications can be separated into parts that face different types of threats, or suffer
dissimilar exposure to a particular threat, because of external events or innate properties of the
software. The goal is to use these virtual partitions to apply a multitude of security techniques
without inflicting cumulative overheads, deploying what is needed, when it is needed. As a starting
point, focus was placed on virtually partitioning applications based on user authentication, and
selectively applying distinct protection techniques on its partitions. A methodology was introduced
that enables automatic determination of the authentication point of an application with little or no
supervision, and without the need for source code. A virtual partitioning tool that operates on
binary-only software, and at runtime splits the execution of an application in its pre- and post-
authentication segments, based on the identified authentication point was also developed. Different
protection mechanisms, such as dynamic taint analysis and instruction-set randomization, can be
applied on these partitions.

This is the first work on virtual partitioning. The approach was applied on well-known server
applications, such as OpenSSH, MySQL, Samba, Pure-FTPd, and more. These services were set up
to use different authentication schemes, and demonstrated that it is possible to effectively and
automatically determine their authentication points. Moreover, a particular security management
scenario was run to demonstrate the applicability of the solution on existing software. DTA and ISR
were enforced on the pre-authentication part of the servers, and switch to ISR, or disable all
protection, after successful authentication. This not only minimizes the attack surface to otherwise
unprotected software, but also does so with significantly lower performance cost. Note that the
same mechanisms can be applied in the reverse order, which enables protection of applications
against different type of threats (e.g., code-injection attacks and sensitive information leakage).
Results show that, in the first set up, one can greatly reduce the user-observable overhead of DTA,
compared with having it always operational, up to 5x for CPU-bound applications and with
negligible overhead for I/O intensive applications. However, other configurations (i.e.,
combinations of mechanisms) may not enjoy the same improvements in performance.

16

Approved for public release; distribution unlimited.

4.1.6.3 SecondWrite

A prototype tool for inserting security features against low-level software attacks into third party,
proprietary or otherwise binary-only software was developed. This was motivated by the inability of
software users to select and use low-overhead protection schemes when source code is unavailable
to them, by the lack of information as to what (if any) security mechanisms software producers have
used in their toolchains, and the high overhead and inaccuracy of solutions that treat software as a
black box. This approach is based on SecondWrite, an advanced binary rewriter that operates
without need for debugging information or other assist. Using SecondWrite, a variety of defenses
into program binaries are inserted. Although the defenses are generally well known, they have not
generally been used together because they are implemented by different (non-integrated) tools. Such
mechanisms were developed without source code availability for the first time. The effectiveness
and performance impact of this approach were experimentally evaluated. This showed that it stops
all variants of low-level software attacks at a very low performance overhead, without impacting
original program functionality. However, because SecondWrite works as a static binary rewriter, it
is currently limited with respect to the size and complexity of the programs that it can handle.

4.1.6.4 Symbiotes

A large number of embedded devices on the Internet, such as routers and VOIP phones, are
typically ripe for exploitation. Little to no defensive technology, such as AV scanners or IDS’s, is
available to protect these devices. A host-based defense mechanism was developed, called
Symbiotic Embedded Machines (SEM), which is specifically designed to inject intrusion detection
functionality into the firmware of the device. A SEM or simply the Symbiote may be injected into
deployed legacy embedded systems with no disruption to the operation of the device. A Symbiote is
a code structure embedded in situ into the firmware of an embedded system. The Symbiote can
tightly co-exist with arbitrary host executables in a mutually defensive arrangement, sharing
computational resources with its host while simultaneously protecting the host against exploitation
and unauthorized modification. The Symbiote is stealthily embedded in a randomized fashion
within an arbitrary body of firmware to protect itself from removal. The operation of a generic
whitelist-based rootkit detector Symbiote injected in situ into Cisco IOS with negligible
performance penalty and without impacting the routers functionality was demonstrated. A MIPS
implementation of the Symbiote was ported to ARM and injected into a Linux 2.4 kernel, allowing
the Symbiote to operate within Android and other mobile computing devices. The use of Symbiotes
represents a practical and effective protection mechanism for a wide range of devices, especially
widely deployed, unprotected, legacy embedded devices.

4.1.7 Lightweight Program Confinement

In Phase I, the automation of the execution and data collection of binary programs inside the
lightweight containers was completed. To achieve that, an architecture that enables the efficient and
completely automated execution of software, collection of the observable information, and the post
processing of the produced logs for analysis was created. Figure 1 below shows the overall
automation architecture.

17

Approved for public release; distribution unlimited.

Each application contained in the database is run once (or possibly more than once) inside a
separately instantiated container. The container offers a standard and clean execution environment.
In addition, it enables tracking the application behavior and provides a uniform and robust
execution environment for the data collection because the starting state, application configuration,
and input are recorded in the form of a system snapshot. All operations triggered by the application
- system calls, all memory usage, all communications towards other applications or via the network
- are recorded and form the so called standard profile of the application. Moreover, this approach
allows running several application containers in parallel on the same machine, thus leveraging the
high computational power of servers to produce a quicker and more responsive analysis.

As part of this effort, the coding of the Framework core and the design of the database schema for
the Application Database were completed. In addition, the system snapshot architecture using
UnionFS was automated. UnionFS is a stackable unification file system, able to merge the contents
of several directories (branches), while keeping their physical content separate. UnionFS allows any
mix of read-only and read-write branches, as well as insertion and deletion of branches.

Figure 6: Resource Monitor & Policing

4.1.7.1 Resource Monitoring

Resource monitoring aims to collect resource usage information from different sources (see
attached image) and process them in a homogeneous way that allows constant profile checking. In
this way anomalies or policy infringement can be detected at runtime.

18

Approved for public release; distribution unlimited.

The basic monitoring structure needed to collect data was implemented. The queuing system is now
able to gather data from any source through a file interface. Moreover, the full structure minimizes
CPU utilization and a buffering system avoids dynamic memory allocation. In this way it was
possible to implement a lightweight interface that will be reused for all data sources. Moreover, the
parsing mechanism necessary for CPU and memory monitoring was implemented. It is thus now
possible to dynamically track usage for the two resources and do simple runtime statistics (min,
max, avg).

A preliminary study on nethogs and other network analysis tools revealed that network-monitoring
time granularity is bound to hit a lower limit at around 2-3 seconds. In other words, reading data
faster than that introduces a lot of noise and can lead to imprecise measurements. On the contrary,
this system can track CPU and memory with a granularity well under the single second. This
discrepancy is still under study.

4.1.7.2 Resource Monitoring - Network Traffic

After several testing rounds, already existing network traffic monitoring tools (e.g., nethogs)
showed intrinsic limits in their implementation. Typically, the allowed granularity in traffic
measuring was never appropriate to the requirements of the current project. Furthermore, the
statistical analysis provided by existing tools was too limited, compared to the required insights. For
these reasons the implementation of an ad-hoc network filter was begun. The tool will behave like a
daemon, running in background and monitoring the traffic coming from several containers. It will
be built on top of iptables, and will also integrate the capability of injecting new packets when
appropriate.

4.1.7.3 Resource Monitoring - Memory and CPU

The problem of tracking the child processes that are spawned by the original monitored process was
addressed by implementing a per-user filtering mechanism. Each container hosts a dummy user,
created only for monitoring purposes. The monitored process is executed with permission elevation
into the dummy user, and statistics are then extracted by filtering and adding all the activity
generated by it. This way, even if a malicious attacker is able to exploit an existing vulnerability to
download and execute a binary, the resource count will still keep track of the new process. We have
implemented and tested the harness that is needed for the user filtering capability. Also, the memory
and CPU monitoring tools have undergone pervasive testing to verify their stability and scalability.

4.1.7.4 Synchronizing Outgoing Packets among Containers

MINESTRONE’s design inherently poses a significant network synchronization problem. Since
each container will be running the same program, they will all produce the same network traffic.
However, the rate at which traffic is produced will vary with the particular technology employed on
each container. Additionally, external stimuli will expect to communicate with a single host, not
each of the containers. Thus, one must be able to reduce outgoing traffic to a single stream, and then
replicate incoming traffic to all of the containers.

19

Approved for public release; distribution unlimited.

To address the issue of outgoing traffic, NFQUEUE was used, targeting with iptables. A user-space
program continuously reads new packets as they enter the queue. Then, the payload of each packet
is hashed and stored in a table. Next, when another container sends a packet with the same payload
hash, a ‘times sent’ variable is incremented. When that variable reaches the number of containers
(i.e., when all containers have sent the same packet), the first packet is let through and the rest of the
packets are dropped. However, because each technology may alter network behavior, a one-second
window is established in which to receive packets from all containers. If a container does not send
a packet in that window, the packet is sent anyway. This prevents network deadlock since a
particular container may unexpectedly stop network traffic while we are waiting for it to send a
packet. There are obvious performance implications with this approach, since it essentially limits
network capacity to that of the slowest container.

A hash table has been implemented using the MD5 hash to generate keys, and includes a
dynamically allocated array in which to store them. When the load factor becomes too large, the
hash table increases in size and rehashes data. A user-space program is also used that can read
packets sent to a queue. The next step is to hash each packet, check for the correct number of
copies, and then send the packet through.

4.1.7.5 Replicating Incoming Packets to Containers

Attempts at being able to replicate packets incoming to a container to the other containers are being
made. Research was done into the quickest/easiest way to implement this functionality and later
work towards a kernel module in order to transition more easily towards keyboard and mouse
control as well. Iptables does not seem to be able to provide the functionality needed. The main
issue is being able to properly NAT each packet to its rightful destination separately. The easiest
way to reach this goal is likely through a packet injection program. This program will receive all
incoming packets destined for the "main" container (the one driving the conversation), rewrite the
destination information and inject the new packet onto the wire.

The first thing investigated was Pycap, a Python module for sniffing/injecting of packets. It
provided the exact functionality that was needed but it was discovered that the module would not
build on the system, most likely due to the fact that it is from 2003 and has not been updated since.
Investigation then began on Scapy. This program also has the ability to sniff, rewrite packet data,
and inject packets into the network. A version to be able to replicate the packets using Scapy was
also prototyped. The module will listen on the host at all packets coming in and check to see if they
are destined for the openvz container. If it is, the destination information (MAC and IP) will be
changed for each container and subsequently injected onto the wire.

4.1.8 Function-level Monitoring

When a new application needs to be profiled this framework executes it inside an isolated
lightweight containers. Each container is an instance of an OpenVZ virtual machine, and guarantees
a common and clean starting point: every container starts from a standardized snapshot of the
system, and the execution flows through a controlled path.

The usage of containers creates a powerful vantage point for:

20

Approved for public release; distribution unlimited.

• IO operations: all accessed or modified files are tracked. Moreover, all created files are

saved for further analysis.
• Network operations: a complete dump of the network operation inside the container is easily

performed through standard tools like tcpdump.

The usage of separate containers exposes the application to a set of different asynchronous events:
simulated user interactions, network responses, and naturally occurring interrupts to cite a few. This
was leveraged to observe the behavior of the application in several, different scenarios. Once all
data are gathered, the common behavior is extracted, and it is used to create the standard profile.

Furthermore, a complete environment was set up able to run in a streamlined fashion several
applications and automatically create the logs of the observed operations. So far focus was placed
on the completeness of the system from the elaboration point of view. For each application the
framework goes through the following steps:

• A new instance of a container is created from a saved template. If the system is already at its
full capacity, the request is put on hold until the number of running containers decreases;

• The initial image of the system is mounted, through the use of UnionFS;
• The application and the scripts necessary for its execution are copied in the mounted

directory;
• The application code is executed within the container(s);
• The container is stopped after a timeout is reached or if the application terminates, whatever

happens first;
• All the logs are copied in a result directory;
• All the recorded network activities are copied in a result directory;
• All the modified files are copied in a result directory;
• The result directory is compressed;
• The image of the system is unmounted

4.1.8.1 Preliminary Results -Generating Normality Models

The container-based and session-separated architecture not only enhances the security but also
provides the isolated information flows that are separated in each container session. It allows
identification of the mapping between different components For instance, in typical 3-tiered web
server architecture, the web server receives HTTP requests from user clients and then issues SQL
queries to the database server to retrieve and update data. These SQL queries are causally dependent
on the web request hitting the web server. It is desirable to model such causal mapping relationships
of all legitimate traffic so as to detect abnormal/attack traffic.

In practice, it is impossible to build such mapping under a classic 3-tier setup. Although the web
server can distinguish sessions from different clients, the SQL queries are mixed and all from the
same web server. It is impossible for a database server to determine which SQL queries are the
results of which web requests, much less to find out the relationship between them. Even if one
knew the application logic of the web server and were to build a correct model, it would be
impossible to use such a model to detect attacks within huge amounts of concurrent real traffic

21

Approved for public release; distribution unlimited.

unless one had a mechanism to identify the pair of the HTTP request and SQL queries that are
causally generated by the HTTP request. However, within the container-based web servers, it is a
straightforward matter to identify the causal pairs of web requests and resulting SQL queries in a
given session. Moreover, as traffic can easily be separated by session, it becomes possible to
compare and analyze the request and queries across different sessions.

To that end, sensors were placed at both sides of the servers. At the web server, the sensors are
deployed on the host system and cannot be attacked directly since only the virtualized containers are
exposed to attackers. The sensors will not be attacked at the database server either, as it is assumed
that the attacker cannot completely take control of the database server. In fact, it is assumed that the
sensors cannot be attacked and can always capture correct traffic information at both ends.

Once the mapping model is built, it can be used to detect abnormal behaviors. Both the web request
and the database queries within each session should be in accordance with the model. If there exists
any request or query that violates the normality model within a session, then the session will be
treated as a possible attack.

4.1.9 Accurate Anomaly Detection

Recent advances in offensive technologies targeting embedded systems have shown that the stealthy
exploitation of high-value embedded devices such as router and firewalls is indeed feasible.
However, little to no host-based defensive technology is available to monitor and protect these
devices, leaving large numbers of critical devices defenseless against exploitation. A method of
augmenting legacy embedded devices, like Cisco routers, with host-based defenses in order to
create a stealthy, embedded sensor-grid capable of monitoring and capturing real-world attacks
against the devices which constitute the bulk of the Internet substrate was devised. Using a software
mechanism that is called the Symbiote, a white-list based code modification detector is
automatically injected in situ into Cisco IOS, producing a fully functional router firmware capable
of detecting and capturing successful attacks against itself for analysis. Using the Symbiote-
protected router as the main component, a sensor system was designed which requires no
modification to existing hardware, fully preserves the functionality of the original firmware, and
detects unauthorized modification of memory within 150 ms. It is believed that it is feasible to use
the techniques described in this paper to inject monitoring and defensive capability into existing
routers to create an early attack warning system to protect the Internet substrate.

Recent studies suggest that large populations of vulnerable embedded devices on the Internet are
ripe for exploitation [8]. However, examples of successful exploits against such devices are rarely
observed in the wild, despite the availability of proof-of-concept malware, known vulnerabilities
and high monetization potential. It is posited that the inability to monitor embedded devices for
malware installation is a factor in this phenomenon. When deployed throughout the Internet
substrate, the sensor system discussed in this paper will provide visibility into black-box embedded
devices, allowing capture and analysis of the exploitation of embedded devices in real time.

As a first step to show feasibility, a general method of transforming existing legacy embedded
devices into exploitation detection sensors was demonstrated. Cisco firmware and hardware were
used as the main demonstrative platform in this paper. However, the techniques described are not

22

Approved for public release; distribution unlimited.

specific to any particular operating system or vendor, and can be directly applied to many other
types of embedded devices.

In order to detect and capture successful attacks against Cisco routers for analysis, a system that
automatically injects generic whitelist-based anti-rootkit functionality into standard IOS firmwares
was engineered. Once injected, the augmented router firmware can be loaded onto physical Cisco
routers, essentially transforming such devices into highly interactive router honeypots. The resulting
devices are fully functional, and can be deployed into production environments. The main challenge
of creating an embedded device honeypot rests with the difficulties of injecting arbitrary detection
code into proprietary, closed-source, embedded devices with complex and undocumented operating
systems. A Symbiote, along with its payload, is injected in situ into an arbitrary host binary, in this
case, Cisco IOS. The injection is achieved through a generic process that is agnostic to the operating
environment of the host program. In general, Symbiotes can inject arbitrary host-based defenses
into black-box embedded device firmwares. The unique capabilities of the Symbiote construct allow
overcoming the complexities of injecting generic exploitation detection code into what is essentially
an unknown black-box device. The original functionality of resulting Symbiote-injected embedded
device firmware remains unchanged. A portion of the router’s computational resources is diverted
to a proof of concept Symbiote payload, which continuously monitors for unauthorized
modifications to any static areas within the router’s memory address space, a key side effect of
rootkit installation. The portion of the CPU diverted to the Symbiote’s payload is a configurable
parameter, and directly affects the performance of the Symbiote payload: in this case, the detection
latency of any unauthorized modification.

A monitoring system is constructed around the main component of the system, the Symbiote-
injected IOS image. The Symbiote within the IOS firmware simultaneously performs checksums on
all protected regions of the router’s memory while periodically communicating with an external
monitor via a covert channel. In the event of an unauthorized memory modification within the
router, the Symbiote will raise an alarm to the external monitor, which then triggers the capture and
analysis component of the system.

The sensor system has three components; a Symbiote-protected router, a monitoring station, and a
capture and analysis system that automatically collects and analyzes forensics data once an alarm is
triggered. The Symbiote within the IOS firmware simultaneously performs checksums on all
protected regions of the router’s memory while periodically communicating with an external
monitor via a covert channel. In the event of an unauthorized memory modification within the
router, the Symbiote will raise an alarm to the monitor, which then triggers the capture and analysis
component of the system.

The proposed exploitation detection sensor can be deployed in one of at least three ways; natively,
emulated within a general-purpose computer, or as a shadow replica for a production device. The
implementation of the monitoring station and capture and analysis engine changes depending on
how the Symbiote-injected router firmware is executed natively on embedded hardware or emulated
on a general-purpose computer.

When deployed natively, the monitor and capture components are integrated into the Symbiote
payload and injected directly into Cisco hardware, producing a standalone sensor. When the

23

Approved for public release; distribution unlimited.

detection payload raises an alarm, the Symbiote immediately triggers the core dump functionality
from within IOS. This causes the bulk of the router’s execution state to be captured and transferred
via FTP or TFTP.

When deployed as an emulated sensor, using Dynamips for example, the monitoring and capture
components of the sensor are implemented within the emulator. This reduces the footprint of the
Symbiote and allows performance of more sophisticated capture and analysis on the server running
the emulation. For example, Dynamips was modified to continuously monitor a region of the
router’s memory for an encoded marker, which is set by the Symbiote payload only when an alarm
is raised.

For testing purposes, a portion of the text that is printed when the “show version” command is
invoked was modified. In practice, many better covert channels can be used to communicate
between the Symbiote and the router emulator.

In order to transform large populations of embedded devices into massive embedded exploitation
sensor grids, the native deployment is the most efficient and practical. For the purposes of testing
and validation of this approach, the emulated deployment scenario is most appropriate.

4.1.10 Pin-based Error Virtualization

Program errors or bugs are ever-present in software, and especially in large and highly complex
code bases. They manifest as application crashes or unexpected behavior and can cause significant
problems, like limited availability of Internet services, loss of user data, or lead to system
compromise. Many attempts have been made to increase the quality of software and reduce the
number of bugs. Companies enforce strict development strategies and educate their developers in
proper development practices, while static and dynamic analysis tools are used to assist in bug
discovery. However, it has been established that it is extremely difficult to produce completely
error-free software.

To alleviate some of the dangers that bugs like buffer overflows and dangling pointers entail,
various containment and runtime protection techniques have been proposed. These techniques can
offer assurances that certain types of program vulnerabilities cannot be exploited to compromise
security, but they do not also offer high availability and reliability, as they frequently terminate the
compromised program to prevent the attacker from performing any useful action.

In response, researchers have devised novel mechanisms for recovering execution in the presence of
errors. ASSURE, in particular, presents a powerful system that enables applications to automatically
self-heal. Its operation revolves around the understanding that programs usually include code for
handling certain anticipated errors, and it introduces the concept of rescue points (RPs), which are
locations of error handling code that can be reused to gracefully recover from unexpected errors. In
ASSURE, RPs are the product of offline analysis that is triggered when a new and unknown error
occurs, but they can also be the result of manual analysis. For example, RPs can be identified by
examining the memory dump produced when a program abnormally terminates. Also, they serve a
dual role; first they are the point where execution can be rolled back after an error occurs, and

24

Approved for public release; distribution unlimited.

second they are responsible for returning a valid and meaningful error to the application (i.e., one
that will allow it to resume normal operation).

Regrettably, deploying RPs using ASSURE is not straightforward, but demands that various
complex systems be present. For instance, to support execution rollback, applications are placed
inside the Zap virtual execution environment, while RP code is injected using Dyninst. Zap is a
considerably complex component that is tightly coupled with the Linux kernel, and requires
maintenance along with the operating system (OS). In practice, RPs are a useful but temporary
solution for running critical software until a proper solution, in the form of a dynamic patch or
update, is available. It is likely that RPs have not been widely used mainly because of the numerous
requirements, in terms of additional software and setup, of previous solutions like ASSURE.

REASSURE was developed, a self-contained mechanism for healing software using RPs.
REASSURE assumes that a RP has already been identified, and needs to be deployed quickly and in
a straightforward manner. It builds on Intel’s Pin dynamic binary instrumentation (DBI) framework
to install the RP and provide the virtual execution environment for rolling back execution. As Pin
itself is simply an application, installation is simple and very little maintenance (or none at all) is
necessary. Furthermore, REASSURE does not need to be continuously operating or even present,
but can be easily installed and attached only when needed. Disabling it and removing it from a
system is equally uncomplicated, since it can be detached from a running application without
interrupting its operation. Combined with a dynamic patching mechanism, applications protected
with REASSURE can be run and eventually patched without any interruption.

REASSURE was implemented as a Pin tool for Linux. Evaluation with popular servers, like Apache
and MySQL, that suffer from well-known vulnerabilities shows that REASSURE successfully
prevents the protected applications from terminating. When no faults occur, the performance
overhead imposed by REASSURE varies between 1% and 115% depending on the application,
while in the presence of errors there is little effect on the protected application until the frequency of
faults surpasses five faults per second. Note that Pin supports multiple platforms (e.g., Windows
and Mac OS), and REASSURE can be extended to support them with little effort.

4.1.11 ISR extensions

4.1.11.1 PinISR

ISR is a general approach that defeats all types of remote code-injection regardless of the way they
were injected into a process. It operates by randomizing the instructions that the underlying system
“understands”, so that “foreign” code such as the code injected during an attack will fail to execute.
It was initially proposed as a modification to the processor to ensure low performance overheads,
but unfortunately this proposal has had little allure with hardware vendors. Instead, software
implementations of ISR on x86 emulators have been created, mainly to demonstrate the
effectiveness of the approach, as they incur large runtime overheads. Software-only
implementations of ISR using dynamic binary translation have been also proposed, but have seen
little use in practice as they cannot be directly applied to commodity systems. For instance, they do
not support shared libraries or dynamically loaded libraries (i.e., they require that the application is
statically linked), and increase the code size of encoded applications.

25

Approved for public release; distribution unlimited.

A fast and practical software implementation of ISR for commodity systems was developed. The
implementation is based on Intel’s dynamic instrumentation tool called Pin, which provides the
runtime environment. Application code is randomized using the XOR function and a 16-bit key,
which is randomly generated every time the application is launched to make it resistant against key
guessing attacks. Multiple keys can be used to randomize different parts of the application. For
instance, every shared library used by the system can be randomized using a different key, creating
a randomized copy of each library. While additional disk space will be required to store the
randomized versions, during runtime all binaries running under ISR will be using the same
randomized copy. Also, original (native) code can be combined with randomized code. The keys
used to encode the various libraries are managed using SQLite, a self-contained and server-less
database engine. Libraries can be randomized once and reused by multiple applications, while
frequently re-randomizing them also protects them against key guessing attempts. Finally, it is
assumed that the attacker does not have access to the randomized code (i.e., it is a remote attacker),
so a known ciphertext attack against the key is not possible.

Instruction-set randomization for commodity systems using Intel’s Pin framework was
implemented. This implementation of ISR is freely available from
https://sourceforge.net/projects/isrupin/
This implementation operates on currently deployed binaries, as it does not require recompilation,
or changes to the underlying system (i.e., the operating system and hardware). This system supports
dynamically linked executables, as well as dynamically loaded libraries. A key management
scheme for storing and keeping track of the keys used to randomize shared libraries and applications
is also introduced. This is the first to apply ISR on shared libraries. Executables are re-randomized
every time they are launched, and shared libraries are re-randomized at custom intervals to protect
the key from guessing attacks.

The overhead of this implementation can be as low as 10% compared with native execution. It is
able to run popular servers such as the Apache web server, and the MySQL database server, and
show that running Apache using ISR has negligible effect on throughput for static HTML loads,
while the overhead for running MySQL is 75%. The cost of completely isolating the framework’s
data from the application was also evaluated. This memory protection (MP) requires more invasive
instrumentation of the target application, and it has not been investigated by previous work on
software-based ISR, since it incurs significant overhead. It was shown that adding MP over ISR
does not reduce Apache’s throughput, while it imposes an extra 57% overhead when running
MySQL.

4.1.11.2 In-place Code Randomization

In-place code randomization was also developed, a mitigation technique against return-oriented
programming (ROP) attacks that can be applied directly on third-party software. This method uses
narrow-scope code transformations that can be applied statically, without changing the location of
basic blocks, allowing the safe randomization of stripped binaries even with partial disassembly
coverage. These transformations effectively eliminate about 10%, and probabilistically break about
80% of the useful instruction sequences found in a large set of Windows executable (PE) files.
Since no additional code is inserted, in-place code randomization does not incur any measurable

26

Approved for public release; distribution unlimited.

https://sourceforge.net/projects/isrupin/

runtime overhead, enabling it to be easily used in tandem with existing exploit mitigations such as
address space layout randomization. Evaluation using publicly available ROP exploits and two ROP
code generation toolkits (Q and Mona) demonstrates that this technique prevents the exploitation of
vulnerable Windows 7 applications, as well as the automated construction of alternative ROP
payloads that aim to circumvent in-place code randomization using solely any remaining unaffected
instruction sequences. Although quite effective, in-place code randomization is not meant to be a
complete prevention solution against ROP exploits as it offers probabilistic protection. However, it
can be applied in tandem with existing randomization techniques to increase process diversification.
This is facilitated by the practically zero overheads of the code transformations, and the ease with
which they can be applied on existing third-party executables.

4.1.12 I/O redirection

The goal of the I/O redirection task within MINESTRONE is to enable multiple, diverse replicas of
a program being tested to be run concurrently, possibly in an alternate, remote execution
environment, such as a data center or cloud computing environment. This alternate execution
environment enables the exploration of diversification strategies other than ISR (discussed in
Section 5.12) while also providing a sensor for a posteriori detection of attacks/vulnerabilities.

Within the MINESTRONE system, I/O redirection involves (1) capturing inputs and outputs from a
“canonical” version of the program being tested on a “local” computer, and (2) communicating
those inputs and outputs to diverse replicas of the program being tested running on possibly
“remote” computers. This local versus remote distinction could be conceptual – the diverse replicas
could be run on the same computer as the canonical program given sufficient computing power,
isolation capabilities between the program instances, etc. (understanding that the decision on how to
distribute replicas could impact the diversification strategies that can be employed).

Examples of high-level I/O types to capture and replay include keyboard, file system, network, and
mouse/graphics. Multiple options for I/O redirection in both user and kernel space across the
various I/O types of concern were investigated and developed. Some investigations were specific to
particular input types (e.g., keyboard or network), while others have been more generally
applicable. The techniques that were investigated specific to particular input types included the
following:

• Capture of keyboard input by listening to keyboard device events, which are mapped to
/dev/input/event* on a Linux system.

• Capture of keyboard input by listening to /dev/input/uinput.
• Capture of keyboard input using pseudo-tty and expect.
• Capture of keyboard input using the Linux notifier chain facility, a mechanism provided for

kernel objects to register for notifications upon the occurrence of asynchronous events, in
this case keyboard events. The keyboard notifier was registered using
register_keyboard_notifier(), defined in the Linux headers keyboard.h, and defined the
function to be called upon occurring keyboard events.

• Investigation of X11 events for mouse/graphical input, given that in a Linux environment,
generally speaking one can assume the X Window System is present and then sniff X11
events to track mouse events and input. (X11 events are also applicable to keyboard input.)

27

Approved for public release; distribution unlimited.

Alternately, one could capture mouse device events in an analogous manner to keyboard
device events.

• Capture of network input using the commonly available network packet analyzer/sniffer,
tcpdump. Replay of the network traffic using iptables (the packet filtering capability
provided by the Linux kernel firewall), redirection of traffic to a QUEUE, and
transformation of that traffic using NFQUEUE (the interface to packets that have been
queued for the kernel packet filter) was investigated.

One generally applicable technique for I/O redirection that was investigated is library interposition,
in which a subset of function calls from glibc is intercepted using the LD_PRELOAD command.
Library interposition is a well-understood technique. One advantage of library interposition, in
contrast with the other approaches that were investigated, is that it captures only the input
associated with the particular program being tested. (All other approaches will receive all the input
from the instrumented system, and then the input associated with the particular program must be
sorted out for capture.) Another advantage of library interposition is that it operates in user space,
so it is a simple change to the container environment. The primary issue with the library
interposition approach is that there are a great many functions within glibc that would have to be
intercepted in order to capture all input.

Another technique that was investigated for I/O redirection that is applicable to multiple I/O types is
system call interception. System call interception is another well-understood technique for
capturing I/O to a system. There are multiple ways to intercept system calls. The first method
investigated was hooking the system call table. However, in version 2.6 of the Linux kernel, the
system call table is no longer exported. A proof-of-concept kernel module was developed that
locates the system call table based on the address of the Interrupt Descriptor Table (IDT), stored in
a machine register, which points to the system call handler. From the system call handler the
address of the system call table can be found. Using that address the system call table was hooked,
demonstrating capture of an example system call, the open call for files; this technique is easily
extended to the read calls associated with input. However, given control over the configuration of
the platform in the MINESTRONE system, it is possible to intercept system calls in a more
straightforward manner.

The MINESTRONE system is built upon lightweight containers as described in Section 5.6, and the
system enabling that container-based virtualization technology has been extended to enable system
call interception and logging using the Linux kernel debugging facilities of Kprobes, Jprobes, and
Return probes. The extensions enable system calls to be be tracked on a per-container basis. This
method of system call interception was investigated for I/O redirection as well. In addition its
advantage of being applicable to many I/O types, system call interception has the advantage that
many of those input types end up using read system calls. One disadvantage of intercepting system
calls is that each high-level operation can result in a large number of system calls, and some form of
aggregation is required.

Based on these investigations, I/O redirection in the MINESTRONE system uses a combination of
methods for capturing input, including system call interception at the core and X11 events for
mouse/keyboard input.

28

Approved for public release; distribution unlimited.

4.1.13 Replica Diversification

Building upon the capabilities provided by I/O redirection within the MINESTRONE system,
additional diversification strategies were investigated beyond ISR that can be implemented for
remote execution of program replicas.

The ability to redirect I/O to lightweight containers running replicas in a remote computing
environment (e.g., an enterprise data center or a cloud computing environment) enables alternate,
“heavyweight” strategies beyond traditional diversification techniques like ASLR. In particular, it
provides control over the platform and environment for replica execution in such a remote
computing environment, enabling exploration of diversification strategies using those elements.
Exploits for vulnerabilities are often very dependent upon the specific characteristics of the
environment to execute properly, and the purpose of these diversification strategies would be to
provide many variations on environment in order to trigger these environment-dependent exploits.

A number of additional diversification strategies for implementation in the MINESTRONE system
were identified, including the following:

• When testing a program for which source code is provided, one can diversify during the
compilation process, including generating replicas using different compilers and different
versions of a single compiler.

• When building lightweight containers to execute program replicas, one can diversify the
software running within each container, including providing different versions of libraries
for dynamic linking and different versions of other software upon which the program replica
might depend.

• When building physical or virtual machines that host the lightweight containers, one can
diversify the platform itself, including varying characteristics of the operating system such
as its version or even distribution (for Linux). One could also diversify the underlying
hardware, for example running replicas on hardware with different processor architectures
or characteristics (e.g., 32-bit versus 64-bit).

Given this initial set of additional diversification strategies, the characteristics of each are being
explored. Some of the platform diversification strategies might be difficult to implement depending
upon the particular I/O redirection methodology chosen for certain input types – for example, where
using system call interception for I/O redirection, some system calls might not translate across
different operating system versions.

A container was developed that provided replica diversification in terms of the build process and
container environment (Linux loader and libc), primarily, including templates that enabled different
compilation parameters (CFLAGS) to be used and different versions of the C compiler (gcc and
clang). An initial evaluation was conducted of some of these diversification strategies along with
an LLVM-based multi-compiler approach (from UC-Irvine) using the Phase 2 T&E dataset, and it
was found that these diversification strategies do provide some limited detection/protection
capabilities (approximately 10% of weaknesses prevented), but there are issues with alternate
functionality.

29

Approved for public release; distribution unlimited.

4.1.14 Experimental Evaluation

Each component has been experimentally evaluated by itself. Some of the high-level results are
supplied in the text describing each component; for full details, see the papers accompanying this
report.

The Test & Evaluation process conducted by MITRE also covered this work. An integrated system
against vulnerability classes 7 (Memory Errors) and 8 (NULL Pointer Errors) was used. For the
former, the libDFT, PinISR, REASSURE and KLEE components were used, each within a
container. For the latter, REASSURE and KLEE were used, each within a container. A rough
prototype of a system that was worked on more fully during Phase 2, named DYBOC, was also
used.

4.1.15 System Integration

The component technologies of the MINESTRONE project were integrated into a single prototype
system, building upon the lightweight containers described previously.

For the MINESTRONE system prototype at the end of Phase 1 of the STONESOUP program, a
lightweight container was built for each of the following prototypes: KLEE, PinISR, REASSURE,
and libDFT. A container for the DYBOC prototype was also built, which was used during the test
and evaluation process but did not include in the Phase 1 system prototype.

The integration of MINESTRONE components involved configuring a container for each of the
detection technologies with the specific prerequisites for the particular technology being installed.
Each container was also configured with access to a shared file system using UnionFS, enabling
each container to see the same files but maintain its own copy of each. Finally, each container was
configured with its own network interface and X window display.

The integrated MINESTRONE system relies upon the I/O redirection component to distribute
inputs to each detection container for testing of a program. A “canonical” version of the program
runs in its own container without any instrumentation, and this is the container with which a user
interacts.

The MINESTRONE system prototype can operate in one of two modes:

• Off-line: Input to the program in the canonical container is captured until program
termination (either user initiated or the result of a crash), and the input is replayed within
each detection container after the fact.

• On-line: Input to the program in the canonical container is captured, transmitted to, and
replayed within each container in “real time”. (In this mode, it is preferable to run the
lightweight containers for the detection technologies in a separate machine – either a
physical or virtual machine – from the canonical container due to the replay of X windows
events in each of the containers. A user might find the concurrent replay of X windows
events in multiple containers distracting or disconcerting.)

30

Approved for public release; distribution unlimited.

The MINESTRONE system composer (see Figure 1) ensures that each container has a copy of the
program being tested and the arguments used for execution. The results from each container are
presented upon completion of execution.

4.1.16 Miscellaneous Items

This section describes work done as part of the project in supporting functions (i.e., enables but
does not “cleanly” fit in any of the tasks described above).

4.1.16.1 Vulnerable Host Scanner

One "out of band", activity directly related to the effort on vulnerable embedded devices that are
being provided to the agency is the embedded system scanner.

A quantitative lower bound on the number of vulnerable embedded devices on a global scale was
determined. Over the past year, large portions of the Internet have been systematically scanned to
monitor the presence of trivially vulnerable embedded devices. At the time of writing, over 540,000
publicly accessible embedded devices configured with factory default root passwords have been
identified. (As of December 2011, the number has increased to 1.4 million.) This constitutes over
13% of all discovered embedded devices. These devices range from enterprise equipment such as
firewalls and routers to consumer appliances such as VoIP adapters, cable and IPTV boxes, to office
equipment such as network printers and video conferencing units. Vulnerable devices were detected
in 144 countries, across 17,427 unique private enterprise, ISP, government, educational, satellite
provider as well as residential network environments. Preliminary results from a longitudinal study
tracking over 102,000 vulnerable devices revealed that over 96% of such accessible devices remain
vulnerable after a 4-month period. The data provides a conservative lower bound on the actual
population of vulnerable devices in the wild. By combining the observed vulnerability distributions
and their potential root causes, a set of mitigation strategies was proposed. Employing this strategy,
a partnership with Team Cymru to engage key organizations capable of significantly reducing the
number of trivially vulnerable embedded devices currently on the Internet was made.

4.1.16.2 ROP Payload Detection Using Speculative Code Execution

The exploitation of memory corruption vulnerabilities in server and client applications has been one
of the prevalent means of system compromise and malware infection. By supplying a malicious
input to the target application, an attacker can inject and execute arbitrary code, known as shellcode,
in the context of the vulnerable process. Fortunately, the wide adoption of non-executable memory
page protections like Data Execution Prevention (DEP) in recent versions of popular OSes has
reduced the impact of conventional code injection attacks.

In turn, attackers have started adopting a new exploitation technique, widely known as return-
oriented programming (ROP), which allows the execution of arbitrary code on a victim system
without the need to inject any code. In the same spirit as in the return-to-libc exploitation tech-
nique, return-oriented programming relies on the execution of code that already exists in the address
space of the process. In contrast to return-to-libc though, instead of executing the code of a whole
library function, return-oriented programming is based on the combination of tiny code fragments,

31

Approved for public release; distribution unlimited.

dubbed gadgets, scattered throughout the code segments of the process. The execution order of the
gadgets is controlled through a sequence of gadget addresses that is part of the attack payload. This
means that an attacker can execute arbitrary code on the victim system by injecting only control
data.

Besides the effective circumvention of non-executable page protections, return-oriented
programming also poses significant challenges to a broad range of defenses that are based on
shellcode detection. The main idea behind these approaches is to execute valid instruction
sequences found in the inspected data on a CPU emulator and identify characteristic behaviors
exhibited by different shellcode types using runtime heuristics. Besides the detection of code
injection attacks at the network level, shellcode identification has been used for in-browser
detection of drive-by download attacks, as well as malicious document scanning.

In a ROP exploit, however, in place of the shellcode, the attack vector contains just a chunk of data,
referred to as the ROP payload, comprising the addresses of the gadgets to be executed along with
any necessary instruction arguments. Since there is no injected binary code to identify, existing
emulation-based shellcode detection techniques are ineffective against ROP attacks. At the same
time, return-oriented programming is increasingly used in the wild to broaden the targets of exploits
against Acrobat Reader and other popular applications, extending the infection coverage of recent
exploit packs.

As a step towards filling this gap, a new technique was developed for the detection of ROP exploits
based on the identification of the ROP payload that is contained in the attack vector. ROPscan, the
prototype implementation, uses a code emulator to speculatively execute code fragments that
already exist in the address space of a targeted process. The execution is driven by valid memory
addresses that are found in the injected payload, and which could possibly point to the actual
gadgets of a malicious ROP code. ROPscan was evaluated using an array of publicly available ROP
exploits against Windows applications, as well as with a vast amount of benign data. Results show
that ROPscan can accurately detect existing ROP exploits without false positives, while it achieves
an order of magnitude higher throughput compared to Nemu, an existing shellcode detector with
which ROPscan shares the code emulation engine.

Current exploits use ROP code only as a first step to bypass memory protections and to enable the
execution of a second-level conventional shellcode, which is included in the same attack vector and
thus can be identified by existing shellcode detectors. However, the embedded shellcode can easily
be kept unexposed through a simple packing scheme, and get dynamically decrypted by a tiny ROP-
based decryption routine, similarly to simple polymorphic shellcode engines. It has also been
demonstrated that return-oriented programming can be used to execute arbitrary code, and thus
future exploits may rely solely on ROP-based malicious code.

In any case, the ability to identify the presence of ROP code can increase the detection accuracy of
current defenses that rely only on shellcode detection. ROPscan can inspect arbitrary data, which
allows its easy integration into existing detectors—two case studies are presented in which
ROPscan is used as part of a network-level attack detector and a malicious PDF scanner.

32

Approved for public release; distribution unlimited.

4.1.16.3 kGuard

Return-to-user (ret2usr) attacks are control-flow violation attacks against the kernel that enable
local users to hijack privileged execution paths and run arbitrary code with elevated privileges. Such
attacks have become increasingly frequent since they were first demonstrated in 2007. Normally,
they require local access to the system, and operate by exploiting vulnerabilities in kernel code that
implement facilities like system calls. When successful, they manage to overwrite some, or all,
bytes of a function or data pointer in kernel space. Since most OSs keep user memory mapped and
accessible when the kernel is invoked, privileged execution paths can be hijacked and redirected to
user space, leading to arbitrary code execution and, oftentimes, privilege escalation. In fact, Intel
has recently announced a new CPU feature, named SMEP, which mitigates ret2usr by preventing
privileged code from branching to pages without the supervisor bit set.

There are numerous reasons why attacks against the kernel are becoming more common. First,
processes running with administrative privileges have become harder to exploit, due to the various
defensive mechanisms adopted by modern OSs, such as W^X memory pages, address space layout
randomization (ASLR), and stack-smashing protection. Second, NULL pointer dereference errors
have not received significant attention, exactly because they were thought impractical and difficult
to exploit. However, in the kernel setting, where there is unrestricted access to all memory and
system objects, such assumptions do not hold. As a matter of fact, some security researchers dubbed
2009 as “the year of the kernel NULL pointer dereference flaw.” Third, the separation wall between
kernel and user space is not symmetrical. Kernel entrance is hardware-assisted and facilitated by a
considerable amount of protection logic, including user argument validation and system call
parameter sanitization. However, the opposite (i.e., kernel-to-user crossing) is not always policed,
allowing the kernel to freely cross the boundary between kernel and user space, and when abused,
execute user-provided code in kernel mode.

Current defenses have proven to be inadequate, as they have been repeatedly circumvented, incur
considerable overhead, or rely on extended hypervisors and special hardware features. The most
popular approach has been to disallow user processes to memory-map the lower parts of their
address space (i.e., the one including page zero). Unfortunately, this scheme has several limitations.
Firstly, it does not address the root cause of the problem, which is the weak separation between
kernel and user space. Secondly, it has been circumvented through various means. Thirdly, it breaks
compatibility with various applications that depend on having access to low logical addresses. A
proposed system named UDEREF offers comprehensive protection, but incurs considerable
overhead, requires kernel patching, and works only on specific architectures. On x86, it utilizes the
segmentation unit to isolate kernel from user space, incurring overheads between 5.6% and 257% in
system call and I/O latency. On x86-64, where segmentation is not available, the overhead is even
larger.

On the other hand, recent advances in virtualization have prompted a wave of research that employs
custom virtual machine monitors (VMMs) for attesting or assuring the integrity of privileged
software. SecVisor and NICKLE are two hypervisor-based systems that can prevent ret2usr attacks
by leveraging memory virtualization and VMM introspection. However, running the whole OS as a
VM guest incurs notable performance penalty, additional management cost, and simply buries the
issue to a lower level.

33

Approved for public release; distribution unlimited.

kGuard was developed, a compiler plugin that augments the kernel with compact inline guards,
namely Control-Flow Assertions, which prevent ret2usr with low performance and space overhead.
kGuard can be used with any operating system that features a weak separation between kernel and
user space and is vulnerable to such attacks, requires no modifications to the source code of the OS,
and is applicable to both 32- and 64-bit architectures. kGuard identifies all indirect control transfers
during compilation, and injects compact dynamic checks to attest that the kernel remains confined.
When a violation is detected, a user-defined fault handler is invoked. The default handler reports
the error and halts the system. kGuard is able to protect against attacks that overwrite a branch
target to directly transfer control to user space, while it also handles more elaborate, two-step
attacks that overwrite data pointers to point to user- controlled memory and, hence, hijack execution
through tampered data structures. Finally, kGuard protects itself from being subverted. Evaluation
demonstrates that Linux kernels compiled with kGuard become impervious to a variety of control-
flow hijacking exploits, while at the same time kGuard imposes on average an overhead of 11.4%
on system call and I/O latency on x86 OSs, and 10.3% on x86-64. The size of a kGuard-protected
kernel grows between 3.5% and 5.6%, due to the inserted checks, while the impact on real-life
applications is minimal (~1.03%).

4.1.16.4 Taint Exchange

A generic cross-process and cross-host taint tracking framework was developed, called Taint-
Exchange. This system builds on the libdft open-source data flow tracking (DFT) framework, which
performs taint tracking on unmodified binary processes using Intel’s Pin dynamic binary
instrumentation framework. libdft was extended to enable transfer of taint information for data
exchanged between hosts through network sockets, and between processes using pipes and unix
sockets. Taint information is transparently multiplexed with user data through the same channel
(i.e., socket or pipe), allowing marking of individual bytes of the communicating data as tainted.
Additionally, users have the flexibility to specify which communication channels will propagate or
receive taint information. For instance, a socket from HOST A can contain fine-grained taint
information, while a socket from HOST B may not contain detailed taint transfer information, and
all data arriving can be considered as tainted. Similarly, users can also configure Taint-Exchange to
treat certain files as tainted. Currently, entire files can be identified as a source of tainted data.

Most real-world services consist of multiple applications exchanging data, which in many cases run
on different hosts, e.g., Web services. Taint-Exchange can be a valuable asset in such a setting,
providing transparent propagation of taint information, along with the actual data, and establishing
accurate cross-system information flow monitoring of interesting data. Taint-Exchange could find
many applications in the system security field. For example, in tracking and protecting privacy-
sensitive information as it flows throughout a multi-application environment (e.g., from a database
to a web server, and even to a browser). In such a scenario, the data marked with a “sensitive” tag,
will maintain their taint-tag throughout their lifetime, and depending on the policies of the system,
Taint-Exchange can be configured to raise an alert or even restrict their use on a security-sensitive
operation, e.g., their transfer to another host. In a different scenario, a Taint-Exchange-enabled
system could also help improve the security of Web applications by tracking unsafe user data, and
limiting their use in JavaScript and SQL scripts to protect buggy applications from XSS and SQL-

34

Approved for public release; distribution unlimited.

injection attacks. The performance overhead imposed by Taint-Exchange was evaluated, showing
that it incurs minimal additional overhead over the libdft baseline.

4.2 Phase 2 Developments

The key component technologies have been successfully developed and tested and are poised for
integration into a single MINESTRONE system.

4.2.1 Source-level Monitor Based upon DYBOC and Number Handling Tool

In preparation for Phase 2 evaluation, DYBOC and the number handling tool were migrated from
TXL to CIL and LLVM compiler framework respectively to support applications with large source
base.

4.2.2 Binary-level Monitor Based Upon Pin

The prototype for binary-level DFT is libdft. It is complete and mature, and can apply taint analysis
to binaries to prevent control-flow diversion attacks. Since such attacks are part both of code-
injection and ROP payloads, it can detect and prevent a broad range of attacks.

4.2.3 Automatic Race Avoidance

A prototype system was built. Technology was created to reduce the set of schedules of a parallel
program for avoiding races.

4.2.4 Pin-based Error Virtualization

The component for error virtualization is REASSURE. The prototype was completed and mature,
and can deploy RPs both on Windows and Linux binaries with or without symbols. It is also able to
operate on 32-bit and 64-bit systems.

4.2.5 Instruction Set Randomization (ISR)

One of the run-time protection modules that was created implements instruction-set randomization
(ISR) for processes. ISR can be used to defend against code-injection (CI) attacks that can be still
performed against legacy software that does not adhere to W^X semantics. That is, code that
includes memory pages that are both writable and executable. It can also protect against the second
stage of attacks that utilize code-reuse attacks to facilitate code injection. In this context ISR
prevents the introduction of new code into a process, essentially operating as a code integrity
solution. The solution uses a 16-bit XOR for randomizing binaries in disk and dynamically de-
randomizing them before execution. It supports dynamic libraries and it is the first approach that
allows for randomized libraries to be shared among processes, lessening memory pressure to the
system. The approach is not vulnerable to brute-force attacks, as requests to execute injected code
are detected and result in de-randomization with a random key to avoid divulging any information
about used keys. However, it remains vulnerable to attacks that leak code memory of known
binaries to learn the key. Its use is recommended for non W^X binaries or for reducing the attack

35

Approved for public release; distribution unlimited.

surface of a binary. Two publications were written associated with ISR and the majority of this
work was done at Columbia.

4.2.6 Replica Diversification

A number of diversification strategies for replicas were investigated and prototyped, including
diversification of the build process (e.g., compiler, options) and environment (e.g., libraries,
platform). These strategies were experimented with and both the detection capabilities and altered
functionality using the test and evaluation dataset were evaluated.

4.2.7 Replica Monitoring

The xpc prototype (formerly process checker) was researched and prototyped for monitoring the
MINESTRONE prototype platform and associated replicas, using either virtual machine
introspection or monitoring from within the host. Experimentation and initial evaluation of xpc’s
detection capabilities for integrity checking of the kernel, loaded modules, processes, and libraries
as well as unlinked kernel modules, privilege escalation, and resource monitoring of memory
utilization was conducted.

Replica monitoring explores alternate monitoring strategies that are enabled by the MINESTRONE
architecture and MINESTRONE/containers running in off-host computing environments. These
off-host computing environments (again, data center or cloud) enable different, more expensive
monitoring strategies, which enable not only replica monitoring but also monitoring of the
MINESTRONE platform itself. Virtual machine introspection (VMI) techniques were explored and
prototyped for monitoring the integrity of the platform kernel and kernel modules, as well as
processes and libraries running in containers. Non-VMI techniques were also explored, using Linux
kernel module extensions for reading memory (e.g., /dev/mem, /dev/fmem) and developing a new
kernel module implementation. Proof-of-concept detections of various attacks on the platform were
also demonstrated, such as user and kernel rootkits, privilege escalation, and unlinked kernel
modules.

4.2.8 TheRing

As many of the above technologies are built on top of runtime binary instrumentation using Intel’s
Pin framework, theRing aims to unify different compatible protection mechanisms into a single
program hardening tool. Currently, theRing supports REASSURE, ISR, and libdft, while it can also
parse and run program binaries compiled with DYBOC, which allows it to intercept and apply self-
healing to vulnerabilities prevented by DYBOC. Currently, the applied defenses are selected at load
time, and we plan to add support for dynamic reconfiguration.

4.2.9 KLEE

KLEE was scaled to programs of larger sizes.

36

Approved for public release; distribution unlimited.

4.2.10 In-Code Engine (ICE) (aka Symbiote)

The proposed ICE concept became the Symbiote technology. ISA- and OS-agnostic prototypes of
randomly injected symbiote defenses has been completed and demonstrated for Cisco IOS routers,
Cisco IP phones and HP printers. FRAK technology automating the “random” reorganization of
arbitrary firmware in addition to the random injection of Symbiotes was separately developed.

4.3 Phase 3 Developments

4.3.1 MINESTRONE

An integrated prototype was created and demonstrated for the kickoff meeting, including both a
Linux and Windows implementation. Several applications of MINESTRONE internal to Symantec
were investigated. A new baseline virtual machine was created and all base test programs were
imported for use in evaluating MINESTRONE, which was set up within Amazon EC2. It was
further extended with a CLANG source-to-source transformation module to better handle function
variables by creating a new block of memory per module and address format string vulnerabilities.
Work was done on improving replica diversification by evaluating multicompiler technology with
corpora from phase 2. An article on results of this phase was written for a penetration-testing
magazine, and phase 2 MINESTRONE results were written up and submitted to CSET.

4.3.2 PaX/SMEP/SMAP Kernel Exploits

Attacks were demonstrated on systems using PaX/SMEP/SMAP which break isolation guarantees
of ret2usr protection schemes by allowing implicit sharing of memory pages between kernel and
user space. A proof-of-concept translator to generate BPF/seccomp filter from x86 shell code to
bypass validation checks was developed, which uses a “spraying” phase where kernel memory is
flooded with BPF filters containing a malicious payload.

4.3.3 ROP Exploits

A protection technique against return-oriented-programming (ROP) exploits was investigated by
observing that legitimate code rarely needs to perform read operations from code sections, so
memory access operations to code sections from instructions fetched from the same section can be
treated differently.

4.3.4 Parrot System

This system was released as opensource. It was tested on a benchmark suite constructed with 50
programs representing many parallel computing idioms. The system was integrated with TheRing
(currently some issues with compatibility with ASSURE rollback). Concurrent programs using
Parrot will have enforced schedules race-checked using the Parrot-Tsan detector. A system using
ideas from STONESOUP to help find bugs in mobile apps called AppDoctor was also designed and
implemented, for which a paper was accepted at EuroSys. AppDoctor was successfully used to find
real bugs in Android apps made by large companies, and demonstrated an over 10x improvement in
bug detection and app testing. An open source release is being considered, and a patent application
is in progress.

37

Approved for public release; distribution unlimited.

4.3.5 OS-assisted Dataflow Tracking

Developed a performance improvement by using (base, length) segment registers to efficiently track
tagged memory locations, and setting pages that are beyond the storage limits of the registers to
fault on every access. This was implemented as a Linux kernel patch. A MMU simulator to
evaluate DFT configurations has also been designed and tooled with various management policies
for segment registers: eviction of LRU segment to page-level tracking, eviction of LRU segment
that has the largest number of segments in same page, dynamically monitoring false positive page
faults to move back to register tracking. A tool for detection of false positives in propagating
information flows was prototyped, and a new input generation system to get more coverage in
evaluation was created.

4.3.6 Hybrid Code Instrumentation Framework

A system that allows both source code and executables to support third-party software composed of
multiple modules and parts was designed. The framework maximizes performance benefits by
applying instrumentation at both source code level and through dynamic binary instrumentation at
runtime.

4.3.7 Resource Exhaustion Capture Tool

4.3.7.1 KLEE Evaluation

KLEE was evaluated as a component for enumerating all input classes, generating resource profiles,
and generating symbolic outputs for all flow paths for malicious code classification. However,
being designed only as a coverage tool, not for complete flow path monitoring, KLEE may not be
the best way to get exhaustive symbolic inputs. This work identified four problem aspects: KLEE
needs recompilation in C86 which can't be done since only binary is available, KLEE needs inputs
characterized in source code, KLEE produces noisy output, and finally KLEE produces far too
much output for large programs. It was finally concluded that KLEE has limited use for small
programs but is not robust enough for general use in the system.

4.3.7.2 Development

A vulnerability was successfully inserted into XPDF demonstrating the ability of the tool to capture
resource exhaustion in real applications. It was also evaluated using the MITRE test cases, for
which it detected 569/596 (96.9%) of the cases. DynInst was finally chosen as a component for
injecting binary instructions and function calls into small programs for resource monitoring tools.
A shadow libC was initially investigated as an alternative to DynInst (which would require labor-
intensive instrumentation of C libraries), however concluded DynInst could be used to meet all
needs. This will allow clustering KLEE flow paths by resource usage, and providing typical usage
profiles for threat analysis. Further data-mining tools were developed to generate classes of typical
resource usage to be used in conjunction with KLEE-style classes to help with malicious detection,
including tools to generate resource usage classes, do multivariate time series data mining, and
compare code usage to known usage profiles.

38

Approved for public release; distribution unlimited.

4.3.7.3 Evaluation

These tools were successfully used to differentiate four sets of test runs generated from the GREP
program, some modified with code that would cause CPU and memory exhaustion attacks. Similar
tests were also run with Wget. Upon request, this approach was evaluated and it was determined
that it would not detect Heartbleed.

4.3.8 CFI Attacks

It was demonstrated that practical CFI implementations are unsafe because they allow too broad a
set of control-flow transfers, thus allowing code-reuse attacks. Attacks were demonstrated that
were extended to break some assumptions made by tools like kBouncer and ROPecker and identify
small chains of gadgets that can be attacked. This work was published to USENIX Security. Some
initial work was done on providing tools to evaluate defenses to these attacks.

4.3.9 DynaGuard

The tool was improved with detection of Feeb-like attacks on stack canaries and tested on SPEC
benchmarks. A paper was submitted to DIMVA.

4.3.10 Pintool

Pintool was re-implemented from scratch. In doing so, it was investigated and demonstrated that it
now has very low overhead, with what overhead exists being mostly due to context switching.

4.3.11 ShadowReplica

A project for efficient parallelized data flow tracking. The system was improved by generalizing
the communication channel implementation using a n-way buffering scheme to minimize on-chip
cache interference, and the prototype was made open source. A paper was published in ACM CCS.

4.3.12 IntFlow

IntFlow is a compile time arithmetic error detection tool using information flow tracking and static
code analysis to improve detection and prevention of integer overflow. It was improved to reduce
false positives via whitelisting of certain known benign sources, blacklisting of correlated untrusted
sources and possible integer error locations, and correlation of integer locations (sources) and input
arguments of sensitive functions (sinks). The stable implementation was installed into
MINESTRONE. It was evaluated on actual exploitable vulnerabilities in real-world programs as
well as the SPEC2000 benchmark suite. False positives were reduced by 89% compared to IOC. A
paper was published in the ACSAC.

4.3.13 TheRing

The tool was improved to allow customization of activated components with compile-time and run-
time configurations instead of multiple trees, and was ported it to the CMake software build system.

39

Approved for public release; distribution unlimited.

Integration of pmalloc to enhance the tool and enable continued execution of overflow an underflow
errors was explored.

4.3.14 SQLRand

A tool was created to defend against SQL injection with techniques inspired by instruction set
randomization (combination of static code and data flow analysis). This idea was implemented as
LLVM addon. De-randomization was done by intercepting ODBC driver API calls from the
application side.

4.3.15 Rescue Point Auto-configuration

A Clang plug-in was created to gather data about pre-processor macros during compilation,
particularly those relating to return values, which can now be mapped to errors to help generate
more RPs. This involves a new post-fault phase that causes unrescued faults to reconfigure
REASSURE and TheRing and attempt to find a RP to rescue future similar faults.

4.3.16 Learning Approach to Reduce Resource Bounds

A system was developed to profile executable's usage using early-decision time-series analysis.
This involved implementing Symbolic Aggregate Approximation (SAX) to transform the time
series into a symbol sequence, and a Probabilistic Suffix Automaton (a Markov model that trains
using a Suffix Tree Model) that can help detect anomalies in test strings. It can do so either by
using a sliding window approach to compute probabilities of incoming symbols and detect
anomalies (as unlikely symbols). Alternatively, unlikely states can also be identified using the
PSA’s Markovian statistics.

4.3.17 Dynamic Taint Analysis

Work was done using dynamic taint analysis (DTA) to detect control-hijacking attacks thatlead to
code-reuse and code-injection attacks. The methodology followed is well-established and involved
the tainting of user inputs (e.g., inputs from the network and user files) and tracking their
propagation as the program executes. Attacks are prevented by enforcing that no tainted inputs ever
directly affect the program’s control flow. That is, tainted data are not loaded in the program
counter (PC) through a call, jump, return, etc. Data tracking is done by a reusable library, namely
libdft, which tracks data movement and direct dependencies using shadow memory (1-bit of shadow
memory corresponds to each byte of regular memory) and instrumenting program instructions.
While the overhead of doing DTA over a VM, like Pin, can be considerable, libdft has been
carefully engineered to incur relatively small overhead (compared with similar approaches).
Multiple publications were written related to libdft and novel methodologies for accelerating it
using static analysis and parallelization. While the optimizations are not mature enough to be
included in the delivered prototype, additional engineering effort could deliver speedups up to 4x.
The majority of this work was done at Columbia.

40

Approved for public release; distribution unlimited.

4.3.18 REASSURE

REASSURE delivers software self-healing support and protects against null pointer errors by
allowing the program to handle unexpected errors, preventing fatal crashes due to the dereferencing
of null pointers. Self-healing operates by using certain program functions as rescue points (RP).
When entering a rescue point, all the modifications made to memory by the program are logged,
essentially taking a kind of checkpoint when entering a RP function. An unexpected error occurring
within a RP is captured, reverting memory state to what it was upon entry to the function. More
importantly, the RP returns to its caller, so that code does follow the same execution path, returning
an error value that can be checked by the program to gracefully handle the error. Each program
thread can enter a separate RP, ensuring that a rollback occurring in one thread does not affect other
threads in the program. Furthermore, the application of REASSURE using Pin allows one to easily
deploy it when a new fault is discovered and until a patch is released. The entire solution is self-
contained and it does not require any modifications to the application or the operating system.
However, it does require that a configuration including the RPs to be deployed for an application is
present. We have made two publications associated with REASSURE. This work was initiated at
Columbia and continued at Stevens.

4.3.19 Compiler Support for Self-healing

The operation of the self-healing module greatly depends on the ability to define the proper RPs for
a program. To this end, an LLVM-based module was developed that analyzes an application at
compile time to automatically extract the functions that can server as RPs. The process involves
generating a function-call graph (FCG) for the application and detecting all possible return values
for each function in the application. Return values passed between functions are also correlated with
each other and a set of heuristics is used to identify the values that most likely correspond to errors.
The extracted information can be used in two ways. First, one can automatically configure an
application for maximum coverage. That is, deploy as many as RPs as possible to ensure that any
unexpected fault will be captured and handled immediately. This mode, which was also used in the
T&E, offers maximum zero-day coverage, but incurs the largest overhead because applications
checkpoint very frequently. Second, one can use the pool of identified RPs to dynamically activate
them as needed. For example, when one first identifies a fault that causes the application to crash,
one can analyze the crash information, pick an appropriate RP, and deploy it. This process may lead
to a cycle of crashes, as it may be necessary to deploy various RPs to locate the one that completely
encapsulates the error.

4.3.20 LLVM-based Checkpoining

In collaboration with other researchers, work was done toward developing fast checkpointing
performed by code introduced during the compilation of an application. The approach relies on
splitting memory space in two parts, the program’s memory and checkpoint memory.
Checkpointing is done by copying the updated memory into checkpoint memory, the first time a
particular address is written. While other approaches were experimented with, like using a log to
preserve original memory contents, the split memory model was the fastest. This type of
checkpointing was not pursued in the prototype for two reasons. First, it requires that a binary and
all of its shared libraries are compiled with LLVM and our extension, and, second, checkpointing in

41

Approved for public release; distribution unlimited.

this fashion can only be supported for single threaded programs. While many high performance
servers are single threaded, many applications that MINESTRONE protects are not.

4.3.21 Buffer Overflow Protection with libpmalloc (DYBOC)

libpmalloc offers safe versions of standard libc memory management routines, like malloc, free, etc.
It operates by placing guard pages around allocated buffers. These guard buffers are mapped in
memory without any access permissions, so any overread, underread, overwrite, or underwrite
touching the guard buffers is detected. There are mainly two different versions of libpmalloc
provided, one that places the user buffer close to the guard page near the end of the buffer, and one
close to the guard near the beginning of the buffer. The purpose is to ensure that memory errors are
detected as soon as possible, however, it is worth mentioning that deploying one of the versions is
sufficient, because guards are placed on both ends of a buffer. During the third phase T&E,
modifications were made so that libpmalloc strictly adhered to the alignment requirements of the
libc versions of the functions. These alignment requirements no longer allowed placement of the
buffer right before a guard page, as some padding might be introduced. As a result, while security is
not compromised, an off-by-one error may go undetected, even though it is prevented (i.e., the
attacker cannot “escape” buffer boundaries).

4.4 Evaluation Components

The MINESTRONE integrated prototype produced for Phase 3 of the STONESOUP
program relied on OpenVZ lightweight virtualization containers for isolation and parallel
execution of different detection technologies. The MINESTRONE integrated prototype
consisted of the following containers and their associated detection components:

• No Security container
• ISR container
• REASSURE container
• libDFT container
• DYBOC overflow container
• DYBOC underflow container
• Number Handling container
• Resource drain container
• Parrot/xtern race condition container

The MINESTRONE integrated prototype can run in one of two modes: on-line/real-time
execution or off-line/capture-and-replay mode. For the purposes of this document, focus
is placed on the runtime overhead of the on-line/real-time execution mode. In on-
line/real-time execution mode, a user interacts with a “No Security” container in which
input is captured and redirected to the remaining containers, each of which is executing a
detection component. If any of the detection components detect a vulnerability, an alert is
provided to the user.

42

Approved for public release; distribution unlimited.

Performance and runtime overhead measurements are highly dependent upon the particular
applications and workload used. The target applications for Phase 3 will be 64-bit applications for
the x86-64 platform of approximately 500,000 lines of code (LOC). For the purposes of this
document estimates are based on previous experiments, often using real-world applications of
varying sizes.

4.5 MINESTRONE Overhead Summary

Performance and runtime overhead measurements are highly dependent upon the particular
applications and workload used. The target applications for Phase 3 will be 64-bit applications for
the x86-64 platform of approximately 500,000 lines of code (LOC). For the purposes of this
document estimates are based on previous experiments, often using real-world applications of
varying sizes.

The runtime overhead of the MINESTRONE integrated prototype at the beginning of Phase 3 was
estimated to be approximately 115%, dependent upon application and workload.

Given the parallel execution of the detection technologies, the runtime overhead
will be dominated by the slowest component. For example, if one detection
technology imposes a 20% runtime overhead and the rest of the containers have
lower overheads than that, then all of the other detection technologies will
complete execution of a task prior to the slowest detection technology, and thus the
lower overhead technologies will not impact the overall MINESTRONE integrated
prototype overhead (again, assuming sufficient hardware resources to run all
detection technology containers in parallel). At a high level, the different detection
technologies impose the following overheads:

• ISR: 0-75%
• REASSURE: 1-115%
• libDFT container: 24%-14.52x
• DYBOC overflow: 2x
• DYBOC underflow: 2x
• Number Handling container: 2x
• Resource drain container: 1.7x – 14.2x
• Parrot/xtern race avoidance container: 20%

For most applications the libDFT container incurs too high a runtime overhead and as such would
be configured as an optional component, turned off by default. Many of the vulnerabilities detected
by the libDFT technology could be detected by other components as well.

Given these numbers, the worst-case parallel execution runtime overhead for the MINESTRONE
integrated prototype would be dominated by the REASSURE component at approximately 115%
for an application such as MySQL. For other applications, the worst-case parallel execution
runtime overhead could be imposed by other components, at a lower rate.

43

Approved for public release; distribution unlimited.

4.6 Evaluation Cases

For their performance evaluation real-world applications like the following are used:

• The Apache HTTP server https://httpd.apache.org/
• The MySQL open source database https://dev.mysql.com/
• The CoreHTTP web server http://corehttp.sourceforge.net/
• The Firefox web server http://www.mozilla.org/en-US/firefox/new/
• The SAMBA file sharing service for Linux https://www.samba.org/

Benchmark suites like CPU Spec 2006 are also used.
The size of the software used ranges from small to large:

• Apache HTTP server ~200K. Large.
• MySQL database ~1M. Very large.
• CoreHTTP web server server ~700. Small.
• SAMBA Windows interoperability suite ~2M. Very large.

These solutions build on the Pin DBI framework, so part of the overhead is due to the VM used.

4.7 MINESTRONE Integrated Prototype for Test and Evaluation

In the first two phases, the overall detection capabilities of the MINESTRONE integrated prototype
on memory corruption and null pointer weakness (in Phases 1 and 2) and number handling and
resource drain weakness (in Phase 2) were positive and largely achieved the program goals. For the
final T&E in Phase 3, a number of integration challenges arose due to having to integrate with a
new version of the test infrastructure (TEXAS) as well as the compressed nature of the dry runs and
the introduction of changes in TEXAS and the test programs every dry run and before final T&E.
Most significantly, a configuration error due to a change introduced in dry run 3 caused complete
failure of execution, requiring a re-run of dry run 3 in order to test the MINESTRONE integration
with TEXAS, and this two-week delay effectively caused the final T&E to become another dry run,
with expectedly poor results. Debugging integration issues during the final T&E enabled execution
of a limited test suite of only the CTREE test program against a final set of changes for the
MINESTRONE integrated prototype, and the results of that CTREE test suite largely matched prior
expectations for the detection capabilities of the MINESTRONE integrated prototype, summarized
in the table below.

Weakness
Class

TCs
Passed

TCs
Failed

Total
TCs

Score
%

Injection 16 17 33 48%
Memory Corruption 135 25 160 84%
Number Handling 43 1 44 98%

Null Pointer 24 4 28 86%
Concurrency 24 35 59 41%

Resource Drain 39 9 48 81%
Figure 7: Testing and Evaluation results for MINESTRONE

44

Approved for public release; distribution unlimited.

https://httpd.apache.org/
https://dev.mysql.com/
http://www.mozilla.org/en-US/firefox/new/
https://www.samba.org/

In summary, the MINESTRONE integrated prototype is capable of detecting and mitigating
memory corruption, number handling, null pointer, and resource drain weaknesses. The
MINESTRONE integrated prototype only handles SQL injection and not command injection
weaknesses. The race condition components of the MINESTRONE prototype only handled a
subset of concurrency weaknesses, and they had to be disabled in the final configuration due to false
positive and component conflict issues. Overall, the runtime overhead of the MINESTRONE
detection components is prohibitively high, especially for interactive, GUI-based applications, and
more engineering effort would be required to develop and deploy a scaled-down version of the
MINESTRONE integrated prototype for transition purposes.

4.8 Evaluation on CTREE

The results were analyzed on the CTREE program, which offers the best insights as they exhibited
the least interference from integration issues. The table below summarizes the results reported by
the T&E team and the results according to analysis of the data following the T&E. Briefly, in some
cases good I/O pairs appeared to fail because bugs in the injected code got triggered even when they
were not supposed to, while in other cases some errors were caused due to the complexity of Texas
and MINESTRONE. However, ~8% of bad I/O pairs in the memory corruption category did indeed
not trigger an alert. Some were expected. For example, libpmalloc does not handle overflows within
a structure allocated in a single malloc statement, so it cannot detect such an overflow on its own.
Some others did not trigger an alert, but were essentially implicitly handled by our solution. For
example, a double free can no longer cause harm because we no longer manage buffers in a list. If it
were to cause harm, it would be detected by the protected version of free(). Similarly, due to
alignment tricks, freeing a buffer with a slightly different pointer than the one supplied by malloc
also works correctly without corrupting any memory. With moderate engineering such errors can
also be captured and forbidden.

Fault Good I/O pairs
passed Bad I/O pairs

passed (mitigated)

 T&E MINESTRONE T&E MINESTRONE
Null pointer
(CWE-476)

120/140
(85.71%) 140/140 (100%) 56/56 (100%) 56/56 (100%)

Memory
Corruption

633/660
(95.91%) 660/660 (100%) 225/264 (85.23%) 244/264 (92.42%)

Figure 8: Evaluation on CTREE

4.9 Component Evaluation

4.9.1 REASSURE

For MySQL the overhead is between 18%-115%. Note that the costly checkpointing and rollback
are not performed all the time, but only for the code that requires it. For Apache and the
CoreHTTP server the overhead is lower between 40%-60%. Transferring data over a
REASSSURE-protected SAMBA server only incurs 1% overhead. So the worst case scenario is
115%.

45

Approved for public release; distribution unlimited.

4.9.2 libDFT

The overhead of libdft on the Apache web server is between 24%-64%. On MySQL the overhead is
on average 3.36x. On Firefox the overhead is between 7x-8x. Running JavaScript has large
overhead between 13.9x-14.52x

4.9.3 ISR

ISR imposes 75% overhead on average with MySQL. It imposes negligible overhead on Apache.

4.9.4 TheRing

The overhead of TheRing compound tool is primarily due to the DFT component. Also, since a
large part of the overhead is caused by Pin, it is not expected that the total overhead will be
cumulative. Instead, it is expected to get ISR for free (no additional overhead), and REASSURE
will only add overhead when recovery from a previously detected bug/vulnerability is required.

Using TheRing to combine the three above detection technologies is one configuration option
within the MINESTRONE integrated prototype. The primary advantage of the TheRing would be
in a configuration where none of the other detection technologies are required, or where the
MINESTRONE integrated prototype’s usage of lightweight virtualization containers is not
acceptable or possible. In such a configuration, TheRing could be used to provide the protection of
three detection technologies on an application directly, without the use of OpenVZ, a No Security,
and I/O redirection.

4.9.5 DYBOC Overflow/Underflow Containers

The runtime overhead for containers running DYBOC protection against buffer overflows and
underflows varies greatly depending upon the application and workload, just like for the other
components. During Phase 1 test and evaluation, DYBOC demonstrated approximately 2x
slowdown over native execution.

Using the real-world programs of the Phase 2 test and evaluation, for most of the base programs, the
runtime overhead caused by DYBOC is negligible because the memory allocations are pretty light.
Wget, nginx, cherokee, and wwwx show almost no performance impact when used with DYBOC.
On the other hand, tcpdump when used to process a pcap file, can result in significant performance
impact. This is because for each packet a very small memory allocation is done; whereas malloc
can optimize by allocating a single and splitting it up on each allocation, DYBOC allocates a whole
page every time, slowing things down. However, if tcpdump is used on actual network traffic,
again the runtime overhead is minimal. The usage pattern (e.g., frequency and size of memory
allocations) of an application should be understood and taken into account in order to manage the
runtime overhead of the DYBOC containers.

46

Approved for public release; distribution unlimited.

4.9.6 Number Handling Container

In testing with the Phase 2 Test and Evaluation (T&E) applications, the number handling tool
incurred a slowdown of approximately 2x over native execution. The Phase 2 T&E applications
included web servers, shell engines, Wget clients, etc. The number handling tool is designed to
defend against different classes of integer errors - overflow/underflow, sign extension, conversion
errors, divide by zero and so on. Therefore, it requires most integer operations to be
instrumented/replaced with conditions blocks.

4.9.7 Resource Drain Container

The current overhead of the resource drain container ranges from 1.7x - 1103x with typical
overheads of 1.7x – 14.2x depending on:

a) The granularity of verification (i.e. frequency calls of the Pin tool),
b) The number of types of resource exhaustion attacks being tracked and defended against

a. CPU usage,
b. Memory allocation rate and utilization
c. I/O allocation rate and utilization
d. The specific complexity of the code being monitored.

In Phase 3, using the current implementation of the Pin tool, the typical overhead can be reduced to
100% - 500% (1x - 5x) depending on the level of granularity of the code verification desired and the
resource protection.
Using static binary rewriting as an alternate implementation to the Pin tool, it is estimated that the
overhead in Phase 3 will be reduced to 10% - 150% for the same ranges of granularity and number
of simultaneous processes used to estimate current overhead.
In general, the overhead incurred from the resource drain tool is not dependent on the overhead of
the other tools in the suite and a parallel container can be used for its implementation and policy
enforcement.

4.9.8 Parrot/xtern Race Avoidance Container

Parrot works by intercepting synchronization calls, such as pthread_mutex_lock, which incurs
overhead. Parrot also enforces a particular synchronization order, which has some overhead as
well.
Parrot was integrated with a popular race detector, the Google ThreadSanitizer. This integrated tool
reduced the performance overhead for ThreadSaniziter by 43% on a diverse set of 16 popular
multithreaded programs on representative workloads.

During the STONESOUP T&E, this integrated tool was studied on all the 23 CWEs on a base
program called CTREE, which were divided into two categories: (1) eight of these CWEs involve
data races and have source code tar bar, so they are supposed to be handled by the tool; (2) eight
CWEs do not have source tar bar, and seven CWEs are inter-process races, so the tool is not
designed to handle these fifteen CWEs. For the eight CWEs in category (1) that the tool is designed
to handle, the tool correctly detected data races on 5 CWEs (414, 543, 663, 765, 833) in both good
and bad IO pairs, and safely avoided the races in the other 3 CWEs (609, 820, 821) via PARROT's

47

Approved for public release; distribution unlimited.

schedules. These T&E results show that the tool can effectively detect races in CWEs or safely
avoid races. However, one caveat is that currently the tool is designed to simply detect races so that
developers can fix them, and it is not designed to fix these bugs automatically.

4.9.9 Resource Monitor Tool

Figure 9 below shows the runtime for WireShark without monitoring, with dynamic (Pin)
instrumentation and then static (Dyninst) instrumentation.

Figure 9: Wireshark Performance Comparison between Instrumentation Types

The resource monitoring system (resmon) effectively instrumented and monitored all base programs
attempted. The following C programs were all instrumented using the static binary instrumentation
approach: GIMP, WireShark, Subversion, FFMPEG, OpenSSL, Postgresql. Due to issues with the
testing system, detailed IV&V results are not available for OpenSSL and Postgresql. Each of the
tests for the remaining programs has been reviewed to determine how the resmon system
functioned. The following issues were encountered which caused errors reported at IV&V.

GIMP – The plugins were patched in addition to the base program. Two of the plugins had
extremely high CPU usage which triggered our CPU exhaustion monitor. This is the expected and
desired behavior when CPU usage reaches 100% which was not seen during basic usage of the
program. The remedy is to either train with all plugins enabled so the system learns 100% CPU is
acceptable or disable the CPU monitor altogether for GIMP.

Subversion – Some subversion results were stored in the “run” directory which was not seen by the
test system. The evaluation shows the technology should catch the faults injected into the program.

FFMPEG – One test set did fail to be recognized by our system due to it using mkstemp() which
was not monitored. This is a capability lacking within the system which can be addressed in the

48

Approved for public release; distribution unlimited.

future. Additionally, some tests exited with a segfault, however these were not in the resmon
system. Once the segfaulting code is corrected, the resmon system should detect the exhaustion.

Wireshark - There were exhaustions in the Wireshark test cases which were not detected correctly
by resmon. These tests did use a large amount of resources, but not enough to cross the detection
threshold.

Overall, in lab testing the resource usage was detectable for all programs being tested in the final
T&E. In some cases the resources being used did not cross the alert boundary and were not
reported. The following table summarizes the internal pass/fail metrics based on evaluating the
IV&V results available.

 Total Passed Failed
GIMP 144 142 2
WireShark 56 52 4
Subversion 20 20 0
FFMPEG 25 24 1

Total: 245 (100%) 238 (97%) 7 (3%)
Figure 10: Testing results for resmon

Another key metric is the overhead injected using the resmon system. The T&E results will provide
overhead numbers for the entire MINESTRONE system so metrics are provided here for only the
resmon subsystem.

The following table shows the average real time for programs when running the baseline (no
monitoring) and the percent increase when running static binary instrumentation using DynInst and
dynamic binary instrumentation using Pin.

 Baseline
time

DynInst % increase Pin % increase

GREP 0.589s 69.10% 19667%
GIMP 2.49s 178% 17494%
WireShark 1.704s 1.27% 15987%
FFMPEG 0.15s 576.17% 27156%

Figure 11: Instrumentation performance overhead

The FFMPEG overhead for static instrumentation is large; however, this is also a very fast test. The
actual time delay is less than 1 second. As described before, Pin consistently adds a large amount of
overhead versus static instrumentation. This is due to the context switch into and out of the
monitoring code. While the static instrumentation is substantially better, gradually reducing the
monitoring calls’ frequency can further reduce the overhead incurred when monitoring an
executable.

49

Approved for public release; distribution unlimited.

4.9.10 KLEE

Over the past year the GMU team evaluated the effectiveness of KLEE for resource exhaustion
monitoring. The typical goal of KLEE is to provide inputs that result in 100% test coverage for an
executable. Our goal was to use these inputs to drive the training of our system to develop a
comprehensive normal model. Additionally, KLEE would be used to generate symbolic constraints
for the inputs. The constraints could be used to “bin” new unseen inputs to determine which
resource flow the executable would process. The final result is a simple way to predict resource
usage for an executable based on the inputs.

The theoretical approach is sound, however the investigation found severe limitations in using
KLEE. KLEE, in its present form, has limited use for small programs, but is not robust enough to be
used generally as part of our resource monitoring tool-based anomaly detection system. KLEE
requires the target program to be compatible with C89 and compilable in llvm. This means that
none of the tests programs proposed for STONESOUP can be used with KLEE without extensive
work modifying KLEE as shown in the table below.

 Compiles in
C89?

Compiles to
llvm?

KLEE coverage

Cherokee No No -

Grep No No -

Vim No No -

Wget No No Many invalid paths

Imagemagick No No -

Mono No No -

Figure 12: KLEE Evaluation

Without modifying KLEE’s source code to identify and characterize all the inputs, KLEE does not
provide complete path coverage. For example, KLEE doesn’t identify paths or symbolic
constraints for: unconditional indirect branches, non-command line inputs, calls to non-libC libraries,
threads, inline assembly, some simple conditions. If an input is not characterized, KLEE either identifies
only one path associated with that input or generates a large number of invalid paths. Using KLEE
as intended, in the merge path mode, KLEE will generate valid paths for any identified inputs, but
since KLEE uses random path selection, it will not define the unique set of paths but with some
paths identified as multiple distinct paths and some paths not identified at all.

Due to these problems, it was concluded that KLEE is not useable when building a monitoring
system to handle a corpus of large, real-world programs.

50

Approved for public release; distribution unlimited.

5.0 CONCLUSIONS

The contract terms were successfully executed in full, including the delivery of testable technology
along with evaluation results that demonstrate its utility. The work on MINESTRONE
encompassed many branches of research in multiple areas and was encapsulated into a
encompassing suite that was comprehensively evaluated to demonstrate the effectiveness of the
system. These results have led to several papers published in top operating systems and
programming languages conferences.

51

Approved for public release; distribution unlimited.

6.0 PUBLISHED PAPERS

Many of the publications can be found in PDF form at:

http://nsl.cs.columbia.edu/projects/minestrone/?p=2

• “Determinism Is Not Enough: Making Parallel Programs Reliable with Stable
Multithreading” Junfeng Yang, Heming Cui, Jingyue Wu, Yang Tang, Gang Hu. CACM
'14.

• "The Devil is in the Constants: Bypassing Defenses in Browser JIT Engines", To appear in
Proceedings of the Network and Distributed System Security (NDSS) Symposium, San
Diego, CA, USA, February 2015

• "IntFlow: Improving the Accuracy of Arithmetic Error Detection Using Information Flow
Tracking" Kangkook Jee, Theofilos Petsios, Marios Pomonis, Michalis Polychronakis, and
Angelos D. Keromytis. To appear in Proceedings of the 30th Annual Computer Security
Applications Conference (ACSAC). December 2014, New Orleans, LA.

• "The power of amnesia: Learning probabilistic automata with variable memory length" D.
Ron, Y. Singer, and N. Tishby, ," Machine learning, vol. 25, no. 2-3, pp. 117–149, 1996.

• "Approximate variable-length time series motif discovery using grammar inference", .Li, Y.
and Lin, J. (2010). In Proceedings of the 10th International Workshop on Multimedia Data
Mining, in conjunction.Xing, Zhengzheng, Jian Pei, and S. Yu Philip. "Early Prediction on
Time Series: A Nearest Neighbor Approach" IJCAI. 2009.

• "Early classification of multivariate time series using a hybrid HMM/SVM model",
Ghalwash, Mohamed F., Dusan Ramljak, and Zoran Obradovic. Bioinformatics and
Biomedicine (BIBM), 2012 IEEE International Conference on. IEEE, 2012.

• "Extraction of Interpretable Multivariate Patterns for Early Diagnostics", Ghalwash,
Mohamed F., Vladan Radosavljevic, and Zoran Obradovic. Data Mining (ICDM), 2013
IEEE 13th International Conference on. IEEE, 2013.

• "Large-Scale Evaluation of a Vulnerability Analysis Framework", Nathan Evans, Azzedine
Benameur, Matthew Elder, USENIX CSET ’14, August 2014.

• "Dynamic Reconstruction of Relocation Information for Stripped Binaries", Vasilis Pappas,
Michalis Polychronakis, and Angelos D. Keromytis. To appear in Proceedings of the 17th
International Symposium on Research in Attacks, Intrusions and Defenses (RAID).
September 2014, Gothenburg, Sweden.

• "ret2dir: Rethinking Kernel Isolation" Vasileios P. Kemerlis, Michalis Polychronakis, and
Angelos D. Keromytis. To appear in Proceedings of the 23rd USENIX Security Symposium.
August 2014, San Diego, CA.

• "Size Does Matter - Why Using Gadget-Chain Length to Prevent Code-reuse Attacks is
Hard",Enes Goktas, Elias Athanasopoulos, Herbert Bos, Michalis Polychronakis and
Georgios Portokalidis, Usenix Security, 2014.

• "Time Randomization to Thwart Concurrency Bug Exploitation", David Tagatac, Sal Stolfo
2014 IEEE S&P Poster Reception on May 19, 2014

• "Out Of Control: Overcoming Control-Flow Integrity", Proceedings of the 35th IEEE
Symposium on Security and Privacy, San Jose, CA, USA, May 2014 (13.6%)

52

Approved for public release; distribution unlimited.

• "The Best of Both Worlds. A Framework for the Synergistic Operation of Host and Cloud
Anomaly-based IDS for Smartphones", Proceedings of the 2014 European Workshop on
System Security (EUROSEC), Amsterdam, The Netherlands, April 2014 (42.9%)

• "The Other Side of the Fence: How to Protect Against Code Injection Attacks", Azzedine
Benameur, Nathan Evans, Matthew Elder, PenTest Magazine, November 2013.

• "ShadowReplica: Efficient Parallelization of Dynamic Data Flow Tracking" Kangkook Jee,
Vasileios P. Kemerlis, Angelos D. Keromytis, and Georgios Portokalidis. To appear in
Proceedings of the 20th ACM Conference on Computer and Communications Security
(CCS). November 2013, Berlin, Germany.

• "Practically Making Threads Deterministic and Stable", Heming Cui, Jiri Simsa, Yi-Hong
Lin, Hao Li, Ben Blum, Junfeng Yang, Garth A. Gibson, Randal E. Bryant. Proceedings of
the 24th ACM Symposium on Operating Systems Principles (SOSP). Farmington, PA,
November, 2013.

• "An Accurate Stack Memory Abstraction and Symbolic Analysis Framework for
Executables", Kapil Anand, Khaled Elwazeer, Aparna Kotha, Matthew Smithson, Rajeev
Barua and Angelos D. Keromytis. To appear in the Proceedings of the 29th IEEE
International Conference on Software Maintenance (ICSM). Eindhoven,Netherlands,
September 2013.

• "Effective Dynamic Detection of Alias Analysis Errors", Jingyue Wu, Gang Hu, Yang Tang,
Junfeng Yang. Proceedings of the Ninth joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT International Symposium on Foundations
of Software Engineering (ESEC-FSE). August 2013, Saint Petersburgh, Russia.

• "MINESTRONE: Testing the SOUP", Azzedine Benameur, Nathan S. Evans, Matthew C.
Elder. Proceedings of the 6th Workshop on Cyber Security Experimentation and Test
(CSET). August 2013, Washington, DC.

• "Determinism Is Overrated: What Really Makes Multithreaded Programs Hard to Get Right
and What Can Be Done about It", Junfeng Yang, Heming Cui, Jingyue Wu. To appear in the
Proceedings of the 5th USENIX Workshop on Hot Topics in Parallelism (HOTPAR '13).
June, 2013, San Jose, CA.

• "Redundant State Detection for Dynamic Symbolic Execution", Suhabe Bugrara and
Dawson Engler. To appear in the Proceedings of the USENIX Annual Technical Conference
(ATC). June 2013, San Jose, CA.

• "Transparent ROP Exploit Mitigation using Indirect Branch Tracing", Vasilis Pappas,
Michalis Polychronakis, and Angelos D. Keromytis. To appear in Proceedings of the 22nd
USENIX Security Symposium. August 2013, Washington, DC.

• "Expression Reduction from Programs in a Symbolic Binary Executor", Anthony Romano
and Dawson Engler. To appear in Proceedings of the International SPIN Symposium on
Model Checking of Software. July 2013, Stony Brook, NY.

• "SPECTRE: A Dependable Introspection Framework via System Management Mode",
Fengwei Zhang, Kevin Leach, Kun Sun, and Angelos Stavrou. To appear in the Proceedings
of 43rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), Performance and Dependability Symposium(PDS). June 2013, Budapest, Hungary.

• "Verifying Systems Rules Using Rule-Directed Symbolic Execution", Heming Cui, Gang
Hu, Jingyue Wu, Junfeng Yang. To appear in the Proceedings of the Eighteenth
International Conference on Architecture Support for Programming Languages and
Operating Systems (ASPLOS). March 2013, Houston, TX.

53

Approved for public release; distribution unlimited.

• "When Firmware Modifications Attack: A Case Study of Embedded Exploitation", Ang Cui,
Michael Costello, Salvatore J. Stolfo. In Proceedings of NDSS 2013, February 2013, San
Diego, CA.

• "kGuard: Lightweight Kernel Protection", Vasileios P. Kemerlis, Georgios Portokalidis,
Elias Athanasopoulos, and Angelos D. Keromytis. In USENIX;login: Magazine, November
2012.

• "Self-healing Multitier Architectures Using Cascading Rescue Points", Angelika Zavou,
Georgious Portokalidis, and Angelos D. Keromytis. In the Proceedings of the 28th Annual
Computer Security Applications Conference (ACSAC). December 2012, Orlando, FL.
(Acceptance rate: 19%)

• "Adaptive Defenses for Commodity Software Through Virtual Application Partitioning",
Dimitris Geneiatakis, Georgios Portokalidis, Vasileios P. Kemerlis, and Angelos D.
Keromytis. In the Proceedings of the 19th ACM Conference on Computer and
Communications Security (CCS). October 2012, Raleigh, NC. (Acceptance rate: 18.9%)

• "Practical Software Diversification Using In-Place Code Randomization", Vasilis
Pappas, Michalis Polychronakis, and Angelos D. Keromytis. In "Moving Target Defense II:
Application of Game Theory and Adversarial Modeling", Sushil Jajodia, Anup K. Ghosh, V.
S. Subrahmanian, Vipin Swarup, Cliff Wang, and X. Sean Wang (editors), pp. 169 - 196.
Springer, 2012.

• "kGuard: Lightweight Kernel Protection against Return-to-user Attacks", Vasileios P.
Kemerlis, Georgios Portokalidis, and Angelos D. Keromytis. In the Proceedings of the 21st
USENIX Security Symposium. August 2012, Bellevue, WA. (Acceptance rate: 19.4%) (co-
sponsored by DARPA)

• "Concurrency Attacks", Junfeng Yang and Ang Cui and Salvatore J. Stolfo, and Simha
Sethumadhavan. In the Proceedings of the 4th USENIX Workshop on Hot Topics in
Parallelism (HotPar). June 2012, Berkeley, CA. (co-sponsored by DARPA, NSF, and ONR)

• "A Dependability Analysis of Hardware-Assisted Polling Integrity Checking Systems",
Jiang Wang, Kun Sun, Angelos Stavrou. In the Proceedings of the 42nd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (IEEE DSN). June 2012,
Boston, MA. (co-sponsored by the NSF and ARO)

• "Sound and Precise Analysis of Multithreaded Programs through Schedule Specialization",
Jingyue Wu, Yang Tang, Gang Hu, Heming Cui, Junfeng Yang. In the Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI). June 2012, Beijing, China. (co-sponsored by the NSF)

• "Smashing the Gadgets: Hindering Return-Oriented Programming Using In-Place Code
Randomization", Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. In
the Proceedings of the 33rd IEEE Symposium on Security and Privacy (S&P), pp. 601 - 615.
May 2012, San Francisco, CA. (co-sponsored by DARPA)

• "libdft: Practical Dynamic Data Flow Tracking for Commodity Systems", Vasileios
Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D. Keromytis. In Proceedings
of the 8th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE). March 2012, London, UK. (co-sponsored by the NSF and DARPA)

• "SecureSwitch: BIOS-Assisted Isolation and Switch between Trusted and Untrusted
Commodity OSes", Kun Sun, Jiang Wang, Fengwei Zhang and Angelos Stavrou. In
Proceedings of the 19th Internet Society (ISOC) Symposium on Network and Distributed

54

Approved for public release; distribution unlimited.

Systems Security (SNDSS). February 2012, San Diego, CA. (Acceptance rate: 17.8%) (co-
sponsored by the NSF and ARO)

• "A General Approach for Efficiently Accelerating Software-based Dynamic Data Flow
Tracking on Commodity Hardware", Kangkook Jee, Georgios Portokalidis, Vasileios P.
Kemerlis, Soumyadeep Ghosh, David I. August, and Angelos D. Keromytis. In Proceedings
of the 19th Internet Society (ISOC) Symposium on Network and Distributed Systems
Security (SNDSS). February 2012, San Diego, CA. (Acceptance rate: 17.8%) (co-sponsored
by the NSF and DARPA)

• "From Prey To Hunter: Transforming Legacy Embedded Devices Into Exploitation Sensor
Grids", A. Cui, Jatin Kataria, Salvatore J. Stolfo. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC), December 2011, Orlando, FL. (co-sponsored
by DARPA)

• "ROP Payload Detection Using Speculative Code Execution", Michalis Polychronakis and
Angelos D. Keromytis. In Proceedings of the 6th International Conference on Malicious
and Unwanted Software (MALWARE). October 2011, Fajardo, PR. (co-sponsored by the
NSF and DARPA)

• "Killing the Myth of Cisco IOS Diversity: Recent Advances in Reliable Shellcode Design",
Ang Cui, Jatin Kataria, Salvatore J Stolfo. In Proceedings of the USENIX Workshop on
Offensive Technology (WOOT), August 2011, San Francisco, CA. Also presented at Black
Hat 2011.) (co-sponsored by DARPA)

• "Practical Software Model Checking via Dynamic Interface Reduction", Huayang Guo,
Ming Wu, Lidong Zhou, Gang Hu, Junfeng Yang, Lintao Zhang, Proceedings of the 23rd
ACM Symposium on Operating Systems Principles(SOSP '11), October, 2011. (co-
sponsored by the NSF)

• "Efficient Deterministic Multithreading through Schedule Relaxation", Heming Cui, Jingyue
Wu, John Gallagher, Junfeng Yang. In Proceedings of the 23rd ACM Symposium on
Operating Systems Principles (SOSP), October 2011, Cascais, Portugal. (co-sponsored by
the NSF)

• "Pervasive Detection of Process Races in Deployed Systems", Oren Laadan, Chia-che Tsai,
Nicolas Viennot, Chris Blinn, Peter Senyao Du, Junfeng Yang, Jason Nieh. In Proceedings
of the 23rd ACM Symposium on Operating Systems Principles (SOSP), October 2011,
Cascais, Portugal. (co-sponsored by the NSF)

• "Taint-Exchange: a Generic System for Cross-process and Cross-host Taint Tracking",
Angeliki Zavou, Georgios Portokalidis, and Angelos D. Keromytis. In Proceedings of the
6th International Workshop on Security (IWSEC). November 2011, Tokyo, Japan. (co-
sponsored by the NSF)

• "REASSURE: A Self-contained Mechanism for Healing Software Using Rescue Points",
Georgios Portokalidis and Angelos D. Keromytis. In Proceedings of the 6th International
Workshop on Security (IWSEC). November 2011, Tokyo, Japan. (co-sponsored by the NSF
and AFOSR)

• "Defending Legacy Embedded Systems with Software Symbiotes", Ang Cui and Salvatore
J. Stolfo. In Proceedings of the 13th Symposium on Recent Advances in Intrusion
Detection (RAID). September 2011, Menlo Park, CA. (co-sponsored by DARPA)

• "DoubleGuard: Detecting Intrusions In Multi-tier Web Applications", Meixing Le, Angelos
Stavrou, Brent ByungHoon Kang. In the IEEE Journal on Transactions on Dependable and
Secure Computing (TDSC), 2011. (co-sponsored by the NSF)

55

Approved for public release; distribution unlimited.

• "Finding Concurrency Errors in Sequential Code --- OS-level, In-vivo Model Checking of
Process Races", Oren Laadan, Chia-che Tsai, Nicolas Viennot, Chris Blinn, Peter Senyao
Du, Junfeng Yang, and Jason Nieh. In Proceedings of the 13th USENIX Workshop on Hot
Topics in Operating Systems (HotOS). May 2011, Napa Valley, CA. (co-sponsored by the
NSF)

• "The MINESTRONE Architecture: Combining Static and Dynamic Analysis Techniques
for Software Security", Angelos D. Keromytis, Salvatore J. Stolfo, Junfeng Yang, Angelos
Stavrou, Anup Ghosh, Dawson Engler, Marc Dacier, Matthew Elder, and Darrell Kienzle. In
Proceedings of the 1st Workshop on Systems Security (SysSec). July 2011, Amsterdam,
Netherlands.

• "Practical, low-effort verification of real code using under-constrained execution", David A.
Ramos and Dawson Engler. In Proceedings of the 23rd International Conference on
Computer Aided Verification (CAV). July 2011, Snowbird, UT.

• "Retrofitting Security in COTS Software with Binary Rewriting", Padraig O'Sullivan, Kapil
Anand, Aparna Kothan, Matthew Smithson, Rajeev Barua, and Angelos D. Keromytis. In
Proceedings of the 26th IFIP International Information Security Conference (SEC), pp 154 -
172. June 2011, Lucerne, Switzerland. (co-sponsored by DARPA and NSF)

• "Firmware-assisted Memory Acquisition and Analysis tools for Digital Forensic (short
paper)", Jiang Wang, Fengwei Zhang, Kun Sun, and Angelos Stavrou. In Proceedings of the
Sixth International Workshop on Systematic Approaches to Digital Forensic Engineering
(IEEE SADFE 2011). In conjunction with IEEE Security and Privacy Symposium. May
2011, Oakland, CA.

• "Global ISR: Toward a Comprehensive Defense Against Unauthorized Code Execution",
Georgios Portokalidis and Angelos D. Keromytis. In Proceedings of the ARO Workshop on
Moving Target Defense. October 2010, Fairfax, VA. (co-sponsored by NSF and AFOSR)

• "Stable Deterministic Multithreading through Schedule Memoization", Heming Cui, Chia-
che Tsai and Junfeng Yang. In Proceedings of the 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pp. 207 – 222. October 2010, Vancouver,
Canada. (co-sponsored by the NSF)

• "Bypassing Races in Live Applications with Execution Filters", Jingyue Wu, Heming Cui
and Junfeng Yang. In Proceedings of the 9th USENIX Symposium Operating Systems
Design and Implementation (OSDI), pp. 135 - 150. October 2010, Vancouver, Canada. (co-
sponsored by the NSF)

• "Fast and Practical Instruction-Set Randomization for Commodity Systems", Georgios
Portokalidis and Angelos D. Keromytis. In Proceedings of the 26th Annual Computer
Security Applications Conference (ACSAC), pp. 41 - 48. December 2010, Austin, TX.
(Acceptance rate: 17%) (co-sponsored by the NSF)

56

Approved for public release; distribution unlimited.

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

Acronym Nomenclature

ACM Association for Computing Machinery

ARM Advanced RISC Machine

ASLR Address Space Layout Randomization

BAA Broad Agency Announcement

CCS Computer and Communications Security

CPU Central Processing Unit

CTREE Conditional Inference Tree

CWE Common Weakness Enumeration

DBI Dynamic Binary Instrumentation

DBT Dynamic Binary Translator

DEP Data Execution Prevention

DFT Dynamic Flow Tracking

DIMVA Detection of Intrusions and Malware & Vulnerability Assessment

DTA Dynamic Taint Analysis

FCG Function Call Graph

FTP File Transfer Protocol

HTTP Hyper Text Transfer Protocol

IARPA Intelligence Advanced Research Projects Activity

IDT Interrupt Descriptor Table

IOS Internetwork Operating System

ISR Instruction Set Randomization

I/O Input/Output

LOC Lines Of Code

MD5 Message-Digest 5

MIPS Millions of Instructions Per Second

MMU Memory Management Unit

MP Memory Protection

NAT Network Address Translation

57
Approved for public release; distribution unlimited.

Acronym Nomenclature

OS Operating System

PC Program Counter

PDF Portable Document Format

QEMU Quick Emulator

RISC Reduced Instruction Set Computer

ROP Return-Oriented Programming

RP Rescue Point

SAX Symbolic Aggregate Approximation

SEP Symbiotic Embedded Machines

SQL Structured Query Language

SSH Secure Shell Host

SPEC Standard Performance Evaluation Corporation

TEXAS Test & Evaluation Execution and Analysis System

TFTP Trivial File Transfer Protocol

TXL Turing eXtender Language

T&E Test and Evaluation

VMI Virtual Machine Introspection

VMM Virtual Machine Monitor

VOIP Voice Over Internet Protocol

XOR Exclusive Or

58

Approved for public release; distribution unlimited.

	LIST OF FIGURES
	4.9.5 DYBOC Overflow/Underflow Containers

	IARPADISTACoverPage.pdf
	afrl-rY-wp-tR-2015-0002

	SF298.pdf
	REPORT DOCUMENTATION PAGE

