

AFRL-RY-WP-TR-2015-0017

PREVENTING EXPLOITS AGAINST SOFTWARE OF
UNCERTAIN PROVENANCE (PEASOUP)

David Melski

GrammaTech, Inc.

MAY 2015
Final Report

Approved for public release; distribution unlimited.

See additional restrictions described on inside pages

©2014 GrammaTech, Inc.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or corporation;
or convey any rights or permission to manufacture, use, or sell any patented invention
that may relate to them.

This report was cleared for public release by the USAF 88th Air Base Wing (88 ABW)
Public Affairs Office (PAO) and is available to the general public, including foreign
nationals.

Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RY-WP-TR-2015-0017 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

//Signature// //Signature//

KENNETH LITTLEJOHN, Program Manager DAVID G. HAGSTROM, Chief
Avionics Vulnerability Mitigation Branch Avionics Vulnerability Mitigation Branch

//Signature//
TODD A. KASTLE, Chief
Spectrum Warfare Division

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//Signature//” stamped or typed above the signature blocks.

http://www.dtic.mil/

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)
May 2015 Final 26 August 2010 – 30 November 2013

4. TITLE AND SUBTITLE
PREVENTING EXPLOITS AGAINST SOFTWARE OF UNCERTAIN PROVENANCE
(PEASOUP)

5a. CONTRACT NUMBER
FA8650-10-C-7025

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
69199F

6. AUTHOR(S)
David Melski

5d. PROJECT NUMBER
OthAF

5e. TASK NUMBER
RY

5f. WORK UNIT NUMBER

Y0LG
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

GrammaTech, Inc.
531 Esty Street
Ithaca, NY 14850

 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Air Force Research Laboratory
Sensors Directorate
Wright-Patterson Air Force Base, OH 45433-7320
Air Force Materiel Command
United States Air Force

Intelligence Advanced Research
Project Activity (IARPA)
Office of the Director of National
Intelligence (ODNI)
Washington, DC 20511

 AGENCY ACRONYM(S)
AFRL/RYWA

11. SPONSORING/MONITORING
 AGENCY REPORT NUMBER(S)

AFRL-RY-WP-TR-2015-0017
12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.
13. SUPPLEMENTARY NOTES

©2014 GrammaTech, Inc. The U.S. Government is joint author of the work and has the right to use, modify, reproduce, release,
perform, display or disclose the work. PAO Case Number 88ABW-2015-2491, Clearance Date 20 May 2015. Report contains
color.

14. ABSTRACT
We describe the results of the research and development of PEASOUP (Preventing Exploits Against Software of Uncertain
Provenance), a technology that enables the safe execution of software executables. PEASOUP provides the following capabilities:
prevents exploits of number-handling weaknesses and memory-safety weaknesses; prevents OS command injections, OS
command argument injections, SQL injections, and denial-of-service exploits based on inducing a null-pointer dereference; and
prevents any exploit based on arc-injection or code-injection, regardless of the type of vulnerability targeted for attack.
PEASOUP also offers experimental protection against exploit of many concurrency and resource drain vulnerabilities, including:
file-system Time-Of-Check-to-Time-Of-Use (TOCTOU) vulnerabilities, use of non-reentrant functions in signal handlers,
deadlock vulnerabilities, atomicity violations, memory leaks, and file-handle leaks.
The PEASOUP effort advanced the state-of-the-art in automatic machine-code analysis, diversification, confinement, and
remediation. Specific results include: a technique for preventing command injection attacks inspired by DNA Shotgun
Sequencing, a technique that often allows server programs to remain operational after an attempted null-pointer dereference,
improved integer-error analyses, improved protections for heap- and stack-allocated memory, novel techniques for analyzing file
input types, and a superior design for a software dynamic translator that prevents attacks against the translator.

15. SUBJECT TERMS
software security, automatic binary repair, automatic binary hardening, exploit prevention

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

258

19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

 Kenneth Littlejohn
19b. TELEPHONE NUMBER (Include Area Code)

N/A
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39-18

Abstract
We describe the results of the research and development of PEASOUP (Preventing Exploits
Against Software of Uncertain Provenance), a technology that enables the safe execution of
software executables. PEASOUP provides the following capabilities: prevents exploits of
number-handling weaknesses and memory-safety weaknesses; prevents OS command injections,
OS command argument injections, SQL injections, and denial-of-service exploits based on
inducing a null-pointer dereference; and prevents any exploit based on arc-injection or code-
injection, regardless of the type of vulnerability targeted for attack. PEASOUP also offers
experimental protection against exploit of many concurrency and resource drain vulnerabilities,
including: file-system Time-Of-Check-to-Time-Of-Use (TOCTOU) vulnerabilities, use of non-
reentrant functions in signal handlers, deadlock vulnerabilities, atomicity violations, memory
leaks, and file-handle leaks.

The PEASOUP effort advanced the state-of-the-art in automatic machine-code analysis,
diversification, confinement, and remediation. Specific results include: a technique for
preventing command injection attacks that was inspired by DNA Shotgun Sequencing, a
technique that often allows server programs to remain operational even after an attempted null-
pointer dereference, improved integer-error analyses and protections that apply to large programs
with a low false positive rate, improved protections for heap- and stack-allocated memory, novel
techniques for analyzing file input types, and a superior design for a software dynamic translator
that prevents attacks against the translator.

TABLE OF CONTENTS
SECTION PAGE

ABSTRACT I
TABLE OF CONTENTS I
LIST OF FIGURES V
LIST OF TABLES VIII
1.0 SUMMARY 1
2.0 INTRODUCTION 3

 Innovation Goals for the Proposed Research 4 2.1
 Summary of the Products and Transferable Technology 5 2.2
 Use of Third-Party COTS Products 7 2.3
 Overview of the Technical Approach and Plan 8 2.4

2.4.1 The (Offline) Analyzer 8
2.4.2 The Execution Manager 9
2.4.3 The Intermediate Representation Database 10

 Objectives, Scientific Relevance, Technical Approach and Expected Significance 10 2.5
2.5.1 Technology Leveraged in PEASOUP 10
2.5.2 Components of PEASOUP 15

 Related Research 20 2.6
 Project Contributors 22 2.7
 Summary of Statement of Work Tasks 22 2.8

2.8.1 Phase 1 Tasks 22
2.8.2 Phase 2 Tasks 25
2.8.3 Phase 3 Tasks 26
2.8.4 Management Tasks 27

 Outline of Remainder of Report 27 2.9
3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 28

 Evaluation Metrics and Methodology 28 3.1
3.1.1 Preliminary Phase 1 Test and Evaluation (December 2011) 29
3.1.2 Final Phase 1 Test and Evaluation (April, 2012) 32
3.1.3 Phase 2 Test and Evaluation 39
3.1.4 Phase 3 Test and Evaluation 39
3.1.5 Component Test and Evaluation 39

 Platform and Environment Assumptions 43 3.2
 Core Technologies 43 3.3

3.3.1 Intermediate Representation Database (IRDB) 44
3.3.2 Input Generation: The Grace Concolic Execution Engine 46
3.3.3 Input Replayer 53
3.3.4 STARS Static Analyzer 54
3.3.5 Data Delineation Analysis (DDA) 58
3.3.6 Dynamic Rewriting. 62
3.3.7 Efficient Checkpointing for Remediation 64

 C1: Number-Handling Errors 69 3.4
3.4.1 Confinement of Incorrect Number-Handling Weaknesses 69

 C4: Resource Drains 74 3.5

i
Approved for public release: distribution unlimited.

 C5: Command Injection 75 3.6
3.6.1 Threat Model 77
3.6.2 Software DNA Shotgun Sequencing: High-Level Overview 77
3.6.3 Software DNA Shotgun Sequencing: Detailed Overview 79
3.6.4 Related Work 84

 C6: Concurrency Errors 86 3.7
3.7.1 Unhandled CWEs 87
3.7.2 File System TOCTOU 88
3.7.3 Deadlocks 91
3.7.4 Signal Handler Errors 94
3.7.5 Atomicity Violations 98

 C7: Memory-Safety Errors 102 3.8
3.8.1 Twitcher: Efficient Memory-Safety Enforcement 102
3.8.2 Stack-Layout Randomization Transformation (SLX) 115
3.8.3 Phase 2 Heap Randomization 122
3.8.4 Phase 1–2 Heap-Usage Confinement 123
3.8.5 The Twim Allocator: Phase 3 Heap Protection 124

 C8: Null-Pointer Errors 125 3.9
 General Defenses 125 3.10

3.10.1 Instruction-Layout Location Randomization (ILR) 125
3.10.2 Secure In-process Monitoring (SIM): Phase 2 Protection of PEASOUP 133
3.10.3 Secure Dynamic Code Generation (SDCG): Phase 3 Protection of PEASOUP 147
3.10.4 Program-Counter Confinement 164
3.10.5 Instruction Set Randomization (ISR) 164
4.0 RESULTS AND DISCUSSION 165

 Phase 1 Independent Test and Evaluation Results 165 4.1
4.1.1 Preliminary Test and Evaluation Results (December 2011) 165
4.1.2 Final Test and Evaluation Results (April, 2012) 166
4.1.3 Post T&E Work 168

 Phase 2 Independent Test and Evaluation 169 4.2
4.2.1 Preserved Functionality 169
4.2.2 C1: x86 Binary Number Handling 169
4.2.3 C7: x86 Binary Memory Corruption 169
4.2.4 x86 Binary Injection 170
4.2.5 x86 Binary Null Pointer Errors 170

 Phase 3 Independent Test and Evaluation 170 4.3
 Data Delineation Analysis 171 4.4

4.4.1 DDA Evaluation: 32-bit 171
4.4.2 DDA Evaluation: 64-bit 172
4.4.3 Investigation of False Positives 173
4.4.4 Investigation of False Negatives 174
4.4.5 Evaluation DDA/SLX Integration 174

 Checkpointing Test and Evaluation 175 4.5
4.5.1 Width-first Forking 176
4.5.2 Depth-first Forking 176

 Ground-Truth IR Evaluation 177 4.6

ii
Approved for public release: distribution unlimited.

4.6.1 Improved Object-Boundary Recovery 179
 C5: Command Injection 180 4.7

4.7.1 Experimental Setup 180
4.7.2 Benchmarks 180
4.7.3 Security Evaluation 180
4.7.4 Performance Evaluation 182
4.7.5 Analysis Time 184
4.7.6 Security Discussion 184

 C6: Concurrency-Error Defenses 186 4.8
4.8.1 TOCTOU Defenses 186
4.8.2 Deadlock Defenses 186
4.8.3 Signal-Handler Defenses 187
4.8.4 Atomicity-Violation Defenses 187

 C7: Stack-Layout Randomization Evaluation 188 4.9
4.9.1 Transformation Metrics 188
4.9.2 Performance Metrics 192
4.9.3 Security Discussion 195

 C7: Twitcher Evaluation 197 4.10
 Instruction-Location Randomization 198 4.11

4.11.1 Experimental Setup 198
4.11.2 Security-Related Experiments 199
4.11.3 Effectiveness of ILR Components 199
4.11.4 ILR Security 203
4.11.5 Performance Metrics 205
4.11.6 Security Discussion 206
4.11.7 Conclusions 208

 SIM 209 4.12
4.12.1 Performance Test 209
4.12.2 Compatibility with other Protection and Optimization Techniques 211
4.12.3 Conclusion 212

 Secure Dynamic Code Generation 212 4.13
4.13.1 Security Analysis 212
4.13.2 Performance 212
4.13.3 Discussion 217

 Publications 219 4.14
5.0 CONCLUSIONS 222

 Advances in Automated Binary Analysis 222 5.1
5.1.1 Data Delineation Analysis 222
5.1.2 Speculative Transformation 223
5.1.3 Limitations of Automated Test-Case Generation 224

 Advances in Techniques for Building Binary-Hardening Tools 224 5.2
5.2.1 Secure Dynamic Code Generation (SDCG) 224
5.2.2 Robust, Extensible Architecture 225

 Advances in Automatic Exploit Prevention and Software Repair 226 5.3
 Transition and Future Work 227 5.4

6.0 REFERENCES 229

iii
Approved for public release: distribution unlimited.

LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 243

iv
Approved for public release: distribution unlimited.

List of Figures
Figure Page
Figure 1. Use of PEASOUP to Create Hardened Executables 5

Figure 2. The PEASOUP Architecture 8

Figure 3. Concolic Example 11

Figure 4. Strata Architecture 13

Figure 5. Strata Performance 13

Figure 6. Architecture of SIM 15

Figure 7. The Remediation Strategist 16

Figure 8. Behavior Equivalence Detection Sandbox 17

Figure 9. BED Module 18

Figure 10. Test-Suite Evaluation 19

Figure 11. PEASOUP Architecture: Offline Generation of Sprockets Programs 63

Figure 12. PEASOUP Architecture: Online Selection of Sprocket Programs 63

Figure 13. Sprocket Rewrite Rule to Change Stack Frame Allocation. 64

Figure 14. Sample command, with S3’s “blessed” and “critical” markings 79

Figure 15. Sample fragments manually extracted from SpamAssassin Milter Plugin (28 shown
out of 315 fragments total) 81

Figure 16. Attack detection policies using the same fragment origin policy ([\s] denotes an
optional whitespace). 83

Figure 17. Overlapping policies to detect attacks. 83

Figure 18: Extending k-race to arbitrary check/use TOCTOU pairs. 91

Figure 19: Simple deadlock scenario 93

Figure 20: Potential deadlock mitigated by an additional lock 94

Figure 21: Deadlock with a single thread and interrupt handlers. 97

Figure 22: Deadlock with signal handlers; PEASOUP's deadlock detection gets interrupted 97

Figure 23: Problematic thread interleaving for single-variable atomicity violations (diagram is
from [157], though much of the literature references these same scenarios). 98

Figure 24: Data kept in shadow memory entries. 100

Figure 25: Illustration of the happens-before relationship 100

Figure 26: Sketch of Avert's data race detection on heap memory. 101

Figure 27 (Offline) Twitcher Preparation Stage 103

Figure 28 Layout of a Bipartite Guard on a Little-Endian Machine. 107

Figure 29 Strided Accesses Hit Small-Guard Values 107

v
Approved for public release: distribution unlimited.

Figure 30. General Form of the Stack Layout 118

Figure 31. Overall Approach to Stack Randomization 121

Figure 32. Traditional Program Versus an ILR Program 126

Figure 33. High-Level Overview of ILR 127

Figure 34. Example ILR Rewrite Rules 128

Figure 35. High-Level Overview of the STARS Analysis Engine Used in ILR 129

Figure 36. Example Weakness with CFI 133

Figure 37. Phase 2 Execution Manager 134

Figure 38. Bi-View Based Confinement 136

Figure 39. Race-condition-based attack using two threads. With switching based W⊕X
enforcement, a single thread (A) can no longer attack the code cache (access 1). But the code
cache can still be attacked using multiple threads. As when the code generator is serving one
thread (access 2), the code cache will also become writable for other thread (access 3). The
attack window refers to t2 - t1, as once the code generator finishes its task, the code cache
becomes read-only again (access 4). 147

Figure 40. A permission switching based W⊕X enforcement. The code cache is kept as read-
only when the generated code is executing. When the code generator is invoked (t1), the
permission is changed to writable; and when the generator finishes its task (t2), the permission is
changed back to read-only. 147

Figure 41. Overview of SDCG’ multi-process-based architecture. The gray memory areas are
shared memory, other are mapped as private (copy-on-write). Depending on the requirement, the
SDT’s code and data can be mapped differently. 158

Figure 42. Average time to invoke system versus number of signatures. 182

Figure 43. Average time for email transaction versus number of milter signatures. 182

Figure 44: Average pthreads trace difference between 30 runs of pbzip2 with 8 threads. 188

Figure 45. Statistics for the Binary Programs Used for Assessment 189

Figure 46. Performance of the All Offsets Inference Heuristic 190

Figure 47. Performance of the Direct Access Inference Heuristic 191

Figure 48. Performance of the Scaled Access Inference Heuristic 192

Figure 49. Statistics of the SPEC2006 Benchmarks Used for Timing Assessment 193

Figure 50. Timing Assessment of SLR on the SPEC 2006 Benchmarks 193

Figure 51. Results of Running the Wilander Buffer-Overflow Exploit Tests 194

Figure 52. SPEC CPU2006 Run-Time Overhead 195

Figure 53. Percent of Call Instructions Given Randomized Return Address 200

Figure 54. Breakdown of Call Instructions with Original Return Address 201

Figure 55. Percent of Instructions Marked as Possible Indirect Branch Targets 202

vi
Approved for public release: distribution unlimited.

Figure 56. Percent of Instructions that were Moved Using ILR 203

Figure 57. Reduction of Number of Gadgets Found After ILR 204

Figure 58. Performance Overhead of ILR and ILR+ 205

Figure 59. Example of a Calculated Branch Target 207

Figure 60. SPEC CINT 2006 Slowdown. The baseline is the vanilla Strata. 214

Figure 61. V8 Benchmark Slowdown (IA32) 215

Figure 62. V8 Benchmark Slowndown (x64). 215

vii
Approved for public release: distribution unlimited.

List of Tables

Table Page
Table 1: Categorization of Concurrency-Related CWEs 87

Table 2: Code snippet demonstrating a potential file system TOCTOU vulnerability. 88

Table 3. Performance overhead in milliseconds. Asterisks indicate the differences are not
statistically siginifacnt from the 50 trial runs performed. 181

Table 4. Analysis time in seconds 183

Table 5: PBZip2 experiments with a 20MB bz2 file. Times are in seconds, and are averaged over
10 runs. 186

Table 6: Apache tests, for a variety of simultaneous connections (threads). Times are in seconds,
and are averaged over 10 runs. 187

Table 7 SIM Performance Test Results 210

Table 8 SIM Performance Overhead 211

Table 9. RPC Overhead During the Execution of the V8 Benchmark. 213

Table 10. Cache Coherency Overhead Under Different Scheduling Strategies. 213

Table 11. SPEC CINT 2006 Results. Since the standard deviation is quite small (less than 1%),
we omitted this information. 214

Table 12. V8 Benchmark Results (IA32). The score is the geometric mean over 10 executions of
the benchmark suite. Number in the parentheses is the standard deviation. 216

Table 13. V8 Benchmark Slowdown (x64). The score is the geometric mean over 10 executions
of the benchmark suite. Number in the parentheses is the standard deviation.. 216

viii
Approved for public release: distribution unlimited.

1.0 Summary
We describe the results of the development of PEASOUP (Preventing Exploits Against Software
of Uncertain Provenance), a technology that enables the safe execution of software executables
of uncertain provenance. PEASOUP prevents exploits of number-handling weaknesses and
memory-safety weaknesses in Software of Uncertain Provenance (SOUP). In addition,
PEASOUP prevents any exploit based on arc-injection or code-injection, regardless of the type
of vulnerability targeted for attack.

PEASOUP advanced the state-of-the-art in automatic program analysis, diversification,
confinement, and remediation. In the remainder of this section, we describe the results of
research in each areas.

Analysis. The PEASOUP analyzer uses a novel combination of precise run-time analyses [105]
with recent techniques for generating high-coverage test suites [48, 97]. The analyzer has the
following components:

1. Test-case Generation: concolic execution is used to analyze the subject program (in
binary form) and generate a test suite.

2. Input Classification: various run-time monitoring tools are used to classify the program
inputs as ‘bad’ inputs that cause the program to crash and ‘good’ inputs that appear to
function normally. During Phase 1, we demonstrated that even simple run-time monitors
are sometimes sufficient for this task.

3. Intermediate Representation Recovery: PEASOUP applies a combination of static
analysis and dynamic analysis to recover an intermediate representation (IR) of the
subject program. The IR holds facts about the syntactic and semantic structure of the
subject program, such as the location of instructions, functions, and data-object layout.
The design of the IR Recovery module is novel in that (i) it can leverage the classification
of inputs and (ii) it can provide feedback to the test-case generation and input
classification modules in order to improve overall analysis results.

4. Variant Generation: PEASOUP use the recovered IR to generate many different variants
of the subject program. The goal of variant generation is to remove vulnerabilities and
introduce diversity. PEASOUP uses a novel design for representing program variants.
Each variant is stored as a set of rules that rewrite the original program into the variant.
The rules are applied dynamically using software dynamic translation. This architecture
allows PEASOUP to have the advantages of both static and dynamic rewriting
approaches. Specifically, PEASOUP computes the desired variant offline, leveraging the
results of exhaustive analyses, but apply the changes online. The application of program
transformations on-demand means that PEASOUP automatically tolerates certain types
of errors in the recovered IR, such as misidentifying data as code.

5. Variant Validation: Automatic program analysis and transformation is frequently
impossible because any flaw in IR recovery can lead to incorrect program transformation
and undesired changes in program behavior. PEASOUP solves this problem in two ways:
(i) by leveraging the inherent robustness of just-in-time application of transformations, as
described above and (ii) validating each of the generated program variants using the
classified test inputs. In order for PEASOUP to consider a program variant acceptable, it
requires that test-case generation succeeded in generating a high-quality test suite and
that the variant has the same observable behavior as the original program on the ‘good’

1
Approved for public release: distribution unlimited.

inputs. Variants are also considered more robust if their behavior differs from the original
program on ‘bad’ inputs.

We demonstrated that the utility of this approach to binary analysis. For example, we
demonstrated that we could safely transformation the layout of stack-allocated data despite flaws
in the IR recovery algorithm for identifying the boundaries of objects on the stack. The
behavioral-equivalence testing discarded those variants that relied on misidentified stack
boundaries.

We developed a novel analysis for determining the layout of data in a binary. This analysis has
been transitioned to GrammaTech’s commercial tool, CodeSonar.
Diversification. We developed a novel diversification technique called Instruction-Location
Randomization (ILR) that works by relocating 99.7% of the instructions in a program. Many
approaches to diversification suffer from low-entropy or complicated estimates of the measure of
introduced entropy based on assumptions that may not hold for some executables. ILR advances
the state of the art in program diversification because it does not suffer from these shortcomings:
it is simple to show that 99.7% of instructions can be relocated to any one of 231 addresses (on a
32-bit machine). This represents 3.5 orders of magnitude improvement over some of the most
common, successful diversification techniques. ILR makes any type of arc-injection attack
infeasible, including attacks based on Return-Oriented Programming (ROP). Furthermore, ILR
still has the desirable properties of existing diversification techniques: it has low overhead and is
easy to deploy.

In addition to ILR, we demonstrated that PEASOUP can safely perform Stack-Layout
Transformation (SLX) on software binaries. Previous approaches to randomizing the layout of
the stack required access to a program’s source code. We believe that part of the promise of
PEASOUP is that it feasible to take transformations that currently require source code and apply
directly to binaries.

Confinement. PEASOUP incorporates many advances in confinement techniques, including:

• A novel dual-process architecture for Software Dynamic Translators. We demonstrated
the feasibility of exploiting SDTs. Our dual-process architecture prevents these exploits.

• Novel memory-error protection technologies. To our knowledge, PEASOUP is the first
and only existing technique that can successfully mitigate the infamous Heartbleed
vulnerability (in some circmustances).

• A novel technique for defending against command-injection attacks. Our technique is
loosely inspired by a technique called DNA Shotgun Sequencing that is used by biologists
to sequence DNA. The technique opens a new area of research we call positive taint
inference. We demonstrated the effectiveness of our technique for preventing OS
command injections.

Remediation. Finally, PEASOUP demonstrated advances in the state-of-the-art for automatic
program remediation. For example, the padding introduced by PEASOUP’s diversification
techniques allowed real-world applications to continue correct execution when they were
provided malicious inputs.

The remainder of this report provides details on each of these results.

2
Approved for public release: distribution unlimited.

2.0 Introduction
We describe the results of the research and development of PEASOUP, a technology that enables
the safe execution of software executables. PEASOUP (Preventing Exploits Against Software of
Uncertain Provenance) provides the following capabilities: prevents exploits number-handling
weaknesses and memory-safety weaknesses; prevents OS command injections, OS command
argument injections, SQL injections, and denial-of-service exploits based on inducing a null-
pointer dereference; and prevents any exploit based on arc-injection or code-injection, regardless
of the type of vulnerability targeted for attack. PEASOUP also offers experimental protection
against exploit of many concurrency and resource drain vulnerabilities, including: file-system
Time-Of-Check-to-Time-Of-Use (TOCTOU) vulnerabilities, use of non-reentrant functions in
signal handlers, deadlock vulnerabilities, atomicity violations, memory leaks, and file-handle
leaks.

The PEASOUP project was broken into three phases, with funding for subsequent phases
dependent on performance in earlier phases. Each phase focused on providing protection for two
new classes of vulnerabilities, as well as improving the degree of protection for the vulnerability
classes addressed in earlier phases. Phase 1 of the PEASOUP project provided protection against
exploits of improper handling of fixed-width computations and memory safety errors. The
protections implemented in Phase 1 also provide partial protection against use of tainted data,
input validation errors, and command injection exploits. Phase 2 provided protection against OS
command injection, OS-command argument injection, SQL injection, and denial-of-service via a
null-pointer dereference. Phase 3 provided partial protection against concurrency vulnerabilities
and resource drains.

PEASOUP combined new approaches to analysis, confinement and diversity in order to break
through the limitations of existing practice as follows:

• Analysis: leading (source-code) analysis tools find only a small fraction of CWE test
cases, even when used in combination. PEASOUP developed advances in IR recovery
that enabled more effective defensive transformations.

• Confinement: current confinement techniques only protect a single run of the program
and operate in fail-stop or fail-oblivious modes, leaving the program vulnerable to
Denial-of-Service (DOS) attacks or open to unpredictable behavior. PEASOUP advances
recent techniques for automatically patching vulnerabilities by generating patches for
vulnerabilities prior to deployment. Automatic testing of patches ensures that
unpredictable behavior is avoided.

• Diversification: current diversification techniques do not provide guarantees: often
program variants have the same vulnerabilities, albeit in different places. While
PEASOUP cannot change this fundamental limitation of diversification, it employs high
entropy, machine-code diversification techniques to make certain attacks infeasible, e.g.,
by mutating the passing of function parameters to prevent arc attacks.

PEASOUP provides defense-in-depth by combining a collection of defenses, including:

• Automatic fault removal. PEASOUP uses an (offline) analysis phase to discover
vulnerabilities, generate one or more strategies to compensate for the underlying fault,
and automatically test each candidate strategy. An online execution manager applies
remediation strategies.

3
Approved for public release: distribution unlimited.

• Instruction-level confinement. The execution manager uses Software Dynamic
Translation to efficiently monitor the execution at the granularity of individual
instructions.

• High entropy diversification. The analysis phase generates many variants of the program,
and the execution manager randomly selects a variant at run time. The high degree of
differences in the variants makes it impractical to construct an exploit that works on more
than one variant.

• Hardware-enforced confinement. The hardware’s page protection mechanism is used to
prevent tampering of the execution monitor. This provides an outer shell around the
executable to help confine damage in the unlikely event that the other defenses fail.

 Innovation Goals for the Proposed Research 2.1
The PEASOUP project sought to advance the state-of-the-art in many different areas:

• Improved test-case generation for executables. Recent automatic test-case generation
techniques have demonstrated the capability to 1) discover faults in large programs [97],
2) achieve high coverage and discover faults in mature, well-tested programs [48], and 3)
achieve specific coverage metrics in analysis of machine code [125]. PEASOUP sought
to advance techniques for generating high coverage test suites based on analysis of
machine code [125].

• Improved IR recovery. Optimizing compilers build an Intermediate Representation (IR)
of the program to guide optimization. The final step of compilation generates machine
code from the IR. IR recovery reverses this process by constructing an IR based on
analysis of the machine code. PEASOUP advanceр the state-of-the-art in IR recovery,
particularly for the key problem of data delineation.

• Improved techniques for automated fault removal. Recent results have demonstrated the
feasibility of automatically patching vulnerabilities in running software [160]. PEASOUP
improved on [160] in the following ways:

o PEASOUP discovers faults and generates remediation strategies prior to
deployment. This approach prevents zero-day attacks and reduces the possibility
of denial-of-service.

o PEASOUP automatically tests each remediation strategy without user feedback.
This reduces the potential for unpredictable behavior.

• Secure Software Dynamic Translation (SDT). SDT is an efficient technique for
monitoring an executable at the instruction level and modifying its runtime behavior.
Prior to PEASOUP, all SDT implementations that we are aware of live in the address
space of the translated program. We demonstrated that this architecture is subject to
attack. Furthermore, under PEASOUP we developed a novel architecture that runs the
translator in a separate process from the translated process, allowing the translator to be
protected. We demonstrated that this approach provides additional security with minimal
additional runtime overhead.

4
Approved for public release: distribution unlimited.

• Dynamic application of high-entropy diversification techniques to machine code.
Previously, such techniques required source code, but our improvements to IR recovery
and our ability to test variants enableed these techniques for executables and enable novel
techniques.

 Summary of the Products and Transferable Technology 2.2
Conceptually, the PEASOUP analyzer takes as input executables from Software Of Uncertain
Provenance (SOUP) and produces hardened versions of those executables, called peasoupified
executables (see Figure 1). Using PEASOUP consists of two steps: first, the analyzer must be
run to create the peasoupified versions of the executables; then the peasoupified executables
must be installed in place of the original executables. The peasoupified executables can be run on
different machines than the analyzers. The analyzer requires a few third-party tools to run, while
the peasoupified executables are stand-alone.

Figure 1. Use of PEASOUP to Create Hardened Executables

SOUP: Software Of
Uncertain Provenance

• Not malicious, but …
• Not safe from attack!
• Includes:

• Doc, PDF viewers
• Media players
• Utilities (zip, etc.)
• Web browsers

Software
Executable

PEASOUP Analyzer

• Recovers:
• Structure
• Vulnerabilities

• Generates prog. variants:
• Alters attack surface
• Repairs or confines

vulnerabilities
• Checks correctness,

strength

Hardened
Executable

• Immune to many attacks
• On malicious input:

• Corrected execution
• Controlled exit
• Uncontrolled exit
• Stops exploits!

5
Approved for public release: distribution unlimited.

The current platform requirements for PEASOUP are as follows:

 Usage Requirements

 PEASOUP Analyzer Protected Executable

Platform
Dependences

Ubuntu, x86-32 and -64;

No runtime code generation in
SOUP;

Prelim. Support for CentOS, REHL

Ubuntu, x86-32 and -64;

No runtime code generation in
SOUP;

Prelim. Support for CentOS,
REHL

Software
Dependences

Commercial: IDA Pro 6.5

Requires some open source, e.g.
Postrgres, g++, nasm.

None: protected exe is self-
contained;

[Optional] relocate protected
executable with slight
modifications to run script.

Installation Manual: IDA Pro 6.5

Scripted: Download and
configuration of all other software

None: protected exe is self-
contained;

[Optional] relocate protected
executable with slight
modifications to run script.

Running Invoke analyze script Invoke protected executable

As described below, PEASOUP stores its IR in a relational database. Currently, when PEASOUP
creates a peasoupified binary, it extracts all of the necessary information from the database and
stores it in a directory alongside of the peasoupified executable. This simplifies distribution of
the peasoupified binary.

We envision many possible scenarios for the deployment of PEASOUP. In the first scenario, an
IT department would use PEASOUP to provide a curated list of software for end users. Many IT
shops already configure their private cloud infrastructure to update applications on their Linux
boxes from an update server managed by the IT department. For each request for a new
application or an update to a deployed application, they vet the application or update and
configure their update server to deploy the application according to the enterprises security
requirements.

Under this scenario, when there is a new (version of) a package to deploy, the IT department
would download the package, extract the executables, peasoupify them, and build a new package
file with the peasoupified executables. They would then use the existing package distribution

6
Approved for public release: distribution unlimited.

mechanism to deploy the peasoupified executables. Under this scenario, only the administrator
needs to be able to peasoupify executables.

Another scenario allows end-users to peasoupify their own applications: they would run the
default package management system and allow it to install executables as necessary. Prior to
running an application, the user would replace any untrusted executables with peasoupified
versions.

PEASOUP was developed for the purpose of protecting executables, but it has other possible
applications. An error amplification technique increases the likelihood of detecting errors. A
software flaw can go unnoticed if all of a developer’s test inputs that exercise the flaw happen to
pass, for example, because the flaw happens to not cause incorrect outputs for the test inputs. If a
developer peasoupifies their application, then there is a chance that PEASOUP will flag an error,
even if it does not affect the program’s output. In this way, PEASOUP amplifies the error signal,
allowing the developer to find and fix the error prior to release.

PEASOUP can also be used to classify program inputs as potentially malicious. Given a
collection of files of a certain type (e.g., PDF) some of which may be malicious and some of
which may be benign, a user can create a peasoupified version of a viewer for the files (e.g., a
peasoupified PDF viewer) and run all of the files through the peasoupified viewer. Malicious
inputs are likely to cause different behavior when run under PEASOUP than when run on the
unprotected version of the program. Furthermore, PEASOUP may directly detect malicious
actions induced by malicious inputs. This use of PEASOUP for malicious input classification
could also be performed at the perimeter of a network, e.g., so that potentially malicious files can
be identified and quarantined instead of delivered to end users.

One barrier to the eventual deployment of PEASOUP is the potential for undesired Altered
Functionality (AF) where the behavior of a peasoupified incorrectly differs from the behavior of
the original. AF is particularly problematic for PEASOUP when used directly for program
protection. With error amplification and malicious input classification, the tolerance for altered
functionality is somewhat higher, possibly simplifying these uses of the technology.

 Use of Third-Party COTS Products 2.3
The PEASOUP analyzer depends on two mature and well-respected commercial software
packages:

• The IDA Pro Disassembler and Debugger, a Commercial Off-The-Shelf (COTS)
product of Hex-Rays SA. IDA Pro will not be delivered. It is available for purchase from
Hex-Rays. At the Government’s request, GrammaTech will loan up to three licenses for
IDA Pro executables to sites needing them for the purpose of evaluating the delivered
prototypes.

• Yices: An SMT Solver, a COTS product of SRI International. Yices will not be
delivered with the research results prototype. It is available for free download from SRI
International. At the Government’s request, GrammaTech will loan up to three licenses
for Yices executables to sites needing them for the purpose of evaluating the delivered
prototypes, albeit this will just be a convenience given that Yices is available for
download from SRI.

7
Approved for public release: distribution unlimited.

Widespread deployment of the research results prototype will require licenses for both IDA Pro
and Yices, but it is inappropriate to budget for these licenses prior to deployment.

In addition, PEASOUP makes use of several open-source packages, both for building and
deploying PEASOUP. These include: postgres, beaengine, binutils 2.19, diablo_toolchain, elfio,
boost, config.guess, libdwarf, libelf, and scons. As these tools are open source, their use should
not affect deployment or usage of PEASOUP.

 Overview of the Technical Approach and Plan 2.4
As stated above, the goal of PEASOUP was the protection of specific classes of vulnerabilities
that may be present in Software Of Uncertain Provenance (SOUP). To meet that goal, we present
the PEASOUP architecture (see Figure 2). In the remainder of this section, we describe the
components of PEASOUP at the highest level of components: the analyzer, the execution
manager, and the Intermediate Representation Database (IRDB).

2.4.1 The (Offline) Analyzer
The analyzer must be run before the SOUP is sanctioned for use. The analyzer may be re-
invoked if confinement detects an attack against a previously unknown vulnerability. The
analyzer has many responsibilities, shared between four sub-modules as described in the
following subsections.

IR Recovery and Vulnerability Detection Module. IR recovery (analysis of the structure of the
SOUP) and vulnerability detection are at the heart of the analyzer. The recovered IR must be
precise enough to support low-overhead confinement and high-entropy diversification. Most
vulnerabilities in SOUP should be discovered by the analyzer offline, before deployment. As
stated above PEASOUP achieves these goals through a combination of advanced techniques for
generating high-coverage test suites and precise (and potentially expensive) run-time analyses.

Remediation Strategist. Techniques that are failure-stop or failure-oblivious still allow denial of
service attacks. To avoid DOS attacks, and entropy-exhausting derandomizing attacks,

Figure 2. The PEASOUP Architecture

8
Approved for public release: distribution unlimited.

PEASOUP employs various remediation strategies for the vulnerabilities that it detects. The
remediation strategist is responsible for analyzing each detected vulnerability and developing
one or more strategies for eliminating or at least ameliorating the vulnerability. In terms of the
fault taxonomy, the strategist may opt for repair of the fault or for a recovery plan.

Variant Generator. The variant generator is responsible for generating many different variants
of the SOUP for use in diversification. It relies heavily on the recovered IR to generate a set of
variants with high entropy. The variant generator uses many different diversification techniques.

Validation Module. Both automatic remediation and variant selection come with the risk of
modifying the program behavior in unintended ways. The generation of remediation strategies
and program variants will be designed to limit this risk, but it cannot be eliminated. The
validation module ensures that unintended changes do not occur. It consists of two components:

1. Behavior Equivalence Detector (BED). The BED module uses automatic test-case
generation to test if two program variants are equivalent on ‘normal’ executions (e.g., that
do not exercise a vulnerability). We expect remediation to change program behavior on
an input that exploits a vulnerability. Similarly, the purpose of diversification is to make
exploits have unpredictable behavior (e.g., crash instead of taking the control).

2. Test-Suite Evaluation Technology (TSET). The purpose of the TSET component is to
ensure that BED is working correctly. TSET works by generating mutations of a program
that are expected to alter the program’s behavior, and checking that BED detects the
mutants.

2.4.2 The Execution Manager
PEASOUP uses the execution manager to run SOUP. Its responsibilities include:

• Monitoring the execution of the SOUP for exploits of vulnerabilities that were not
discovered offline, or were found but could not be remedied.

• Modifying the execution stream of the SOUP to implement proven remediation
strategies. This may include insertion or modification of instructions in the SOUP and/or
speculative execution and roll-back of dangerous sections of code. (Remediation
strategies are available prior to execution. They are applied at runtime for convenience:
the execution manager is based on technology (software dynamic translation) that makes
it both simple and efficient to modify the dynamic execution.)

• Implementing run-time diversity by selecting from the pool of pre-generated variants.

• Feeding information about any detected attacks back to the analyzer for potential
refinement of the IR and remediation strategies.

The execution manager is implemented using a novel approach to Software Dynamic Translation
(SDT). SDT is a technique for modifying the execution stream of a running process. A software
dynamic translator does not execute the instructions of the program directly. Instead, it copies
each instruction, on demand, and executes the (possibly modified) copy. SDT is extremely well
suited to the needs of PEASOUP. The translator touches every instruction during the execution,
giving it the opportunity to insert very fine-grained monitoring code and to implement arbitrary
patches for remediation of vulnerabilities. PEASOUP is built on the Strata SDT developed at
UVA for software dynamic translation in PEASOUP [181].

9
Approved for public release: distribution unlimited.

A drawback of SDT is its vulnerability to attack. Strata could be vulnerable due to a false
negative in protection of the vulnerabilities that PEASOUP handles, or due to a vulnerability that
PEASOUP does not handle. To protect Strata, we developed a novel dual-process architecture
for software dynamic translation: the translator runs in a separate process from the translated
SOUP process. Both processes share most of their memory, but with different page permissions
(that are enforced by the operating system and the hardware). The SOUP has no direct access to
the translator code or data and only has read/execute access to the translated code cache. When
new code must be translated, a secure Remote Procedure Call (RPC) is issued from the SOUP to
the translator.

2.4.3 The Intermediate Representation Database
The final component of PEASOUP is the Intermediate Representation Database (IRDB). The
analyzer and the execution manager communicate through the IRDB. The IRDB records facts
about the program, including the structure of the SOUP (types, layout, and other IR), locations of
known vulnerabilities, remediation strategies, program variants, and a test suite with high
coverage.

 Objectives, Scientific Relevance, Technical Approach and Expected Significance 2.5
This section expands on the overview given in Section 2.3, as follows: Section 2.5.1 describes
the technology that is leveraged in building PEASOUP. Section 2.5.2 describes how that
technology is assembled to create the PEASOUP components.

2.5.1 Technology Leveraged in PEASOUP
PEASOUP was designed to leverage a strong, existing technology base. This section gives an
overview of the technology that we intended to use in PEASOUP. We have noted the cases
where the actual implementation deviated from the planned use of existing technology; this
happened in response to research results during performance of the project.

2.5.1.1 Automatic Generation of High-Coverage Test Suites
For smaller programs, PEASOUP’s offline analyzer leverages a capability to automatically
generate test suites with high program coverage. The analyzer uses this capability to drive the
dynamic analyses for IR recovery, vulnerability detection, and equivalence testing. To
implement the capability, PEASOUP builds on several advanced techniques developed prior to
the beginning of the contract. An important technique for generating comprehensive test suites is
concolic execution [35, 48, 58, 96, 185], which seeks to achieve high program coverage by
generating inputs that force a program to follow each possible execution path. While achieving
complete path coverage is impossible (at least, impractical) for any interesting program, several
concolic-execution techniques achieve high coverage in reasonable time [35, 48, 58, 97, 136,
137]. The fact that these techniques have been successful in finding bugs in very large
executables [97], as well as in very mature, well-tested executables [48], supports their use in
PEASOUP.

Unfortunately, we believe there are limitations to the use of automated test-case generation for
analyzing larger programs. Limitations in the test-case generation technology mean that often it
fails to generate a high-coverage test suite, especially for larger programs. Even supposing that
this limitation could be overcome, a large coverage test suite may include an impractical number
of tests. Simply running a test suite that is large enough to generate good coverage may be

10
Approved for public release: distribution unlimited.

impractical. This does not mean that symbolic execution cannot play a role in a tool like
PEASOUP. However, future efforts should focus on either incorporating all testing as part of the
test-case generation, so that the test suite does not have to be run repeatedly and separately, or
aggressively leverage the parallelism of running many tests in parallel.

In the remainder of this section, we elaborate on the principles behind concolic execution and
related techniques, as well as the existing technology that we will serve as our starting point.

Concolic execution combines concrete execution (used in dynamic analysis) with symbolic
execution (used in static analysis) [185]. It has also been described as directed automated
random testing [96], whitebox fuzzing [97], and symbolic execution [35, 58]. The technique
starts by generating a random input for the program (or module) under test. The concrete (actual)
execution of the program is observed on the random input. As the concrete execution proceeds, a
set of symbolic constraints is recorded that summarizes what must be true for execution to
proceed along the observed path. At the end of the execution, any solution to the constraints
should provide an input that would cause the program to follow the same path, execute the same
sequence of instructions, and decide all branches in the same way. By modifying the constraints
before they are solved, it is possible to get an input that follows a similar, but slightly different
path.

Consider the function in Figure 3: let execution begin on (random) input x=201,056. The
execution begins at statement (1) in the concrete (actual) state x=201,056, and the symbolic state
is true (i.e., unconstrained). After statement (1), the concrete state is x=201,156, and the
symbolic state is described by a single constraint x1 = xin+100. Concrete execution proceeds to
(2), which evaluates to false, causing execution to proceed to (4). The concrete state remains
unchanged during these transitions, but the symbolic state at (4) is updated by conjoining the
constraint for the decision of the branch: x1 = xin+100 ∧ x1 ≥ 1000.

At this point, the execution ends. Note that any solution to the symbolic constraints that describe
the symbolic state, also known as path constraints, would cause execution to follow the same
path, and that the initial input is one solution to the path constraints. Concolic execution proceeds
to search for an input that will cause a different choice at the last (and in this case only) branch.
The constraint from this branch is negated, giving the constraints: x1 = xin+100 ∧ x1 < 1000.
An SMT solver is called to generate a solution to the path constraints, for example xin=750, and a
new round of concolic execution is performed using the chosen solution as inputs. For this
example, two rounds are sufficient to achieve complete path coverage, and the process
terminates. Note that traditional fuzzing (using random inputs) has a very low probability
(1000/232) of generating an input that exercises line (3).

The effects of system calls and pieces of OS state that we do not want to consider as inputs (e.g.,
because we cannot control them or in order to make the analysis more efficient), can be
“borrowed” from the concrete state [96]. This may cause the concolic engine to miss some

bool bounds_check(unsigned int x) {
 x = x + 100; // (1)
 if(x < 1000) // (2)
 return true; // (3)
 return false; // (4)
}

Figure 3. Concolic Example

11
Approved for public release: distribution unlimited.

execution paths that are possible (because it over-tightens the symbolic constraints to the specific
concrete execution it has witnessed). However, it will always be able to make forward progress
and does not get stuck with expensive (or even undecidable) analysis problems. In effect,
concolic execution trades off the strengths and weaknesses of dynamic and static analysis against
one another.

As part of a Phase II SBIR on “Deobfuscating Tools for the Validation and Verification of
Tamper-proofed Software” GrammaTech is developing a concolic-execution engine for x86
machine code. The salient feature of our concolic-execution engine is the use of GrammaTech’s
framework for software dynamic translation (gtSDT) in order to monitor actual program
executions and to obtain concrete run-time values of the processor’s registers and memory
locations. One task in this project was to adapt GrammaTech’s concolic-execution engine to
work with Strata, instead of gtSDT.

The DASH algorithm uses an abstract program representation to drive the concolic-execution
engine [40]. In each round, the algorithm first looks for a path in the abstract program
representation that leads to an error state (or a security violation). It then uses a step similar to
concolic execution to grow from a previously observed execution towards the abstract error path
it has found. If it fails to expand any of the observed paths, DASH refines the abstract program
representation to eliminate the abstract path. The algorithm iterates until one of the following
three results is reached:

1. An input is discovered that triggers one of the errors that DASH was searching for.

2. Abstraction refinement results in an abstract program representation with no error paths. In
this case, the representation serves as proof that the program is error free.

3. The algorithm times out. The algorithm still produces a test suite with good coverage.

Our colleagues at the University of Wisconsin have demonstrated that the DASH algorithm can
be applied directly to machine code [125, 203]. They have also demonstrated that it is possible to
modify the DASH algorithm to achieve test suites with useful coverage properties.
Unfortunately, the use of the DASH algorithm on machine code has poor scalability. A research
goal for PEASOUP is to determine if a simplified version of DASH can be used to improve the
coverage of generated test suites.
Static Machine-Code Analysis. PEASOUP also leverages static analysis, where appropriate. In
Phase 1, the static analysis is implemented as an IDA Pro plugin. In future versions of
PEASOUP, we may leverage more advanced static analyses [36, 37, 126, 170].

2.5.1.2 Strata: a Retargetable Software Dynamic Translator

12
Approved for public release: distribution unlimited.

The Execution Manager requires the ability to monitor and in some cases to modify the
execution stream of the protected executable at the granularity of individual instructions.
Software Dynamic Translation (SDT) is a technology that enables software malleability at the
instruction level by providing facilities for run-time monitoring and code modification. SDT can
affect an executing program by injecting new code, modifying existing code, or controlling the
execution of the program in arbitrary ways. To facilitate SDT research and development of
innovative SDT applications such as next generation software field certification technology, the
University of Virginia constructed a portable, extensible SDT infrastructure called Strata. As
shown in Figure 4, Strata is organized as a process-level virtual machine that mediates execution
of an application’s instructions. Strata was designed and implemented using object-oriented
principles with target independent and dependent services that can be easily reconfigured and
retargeted for new applications and computing platforms [181].

Strata dynamically loads a binary application and mediates application execution by examining
and possibly translating an application’s instructions before they execute on the host CPU.
Translated application instructions are held in a Strata-managed code cache called the fragment
cache. Once a fragment finishes execution, the Strata VM captures and saves the application
context (e.g., PC, condition codes, registers, etc.). Following context capture, Strata processes
the next application instruction. If a translation for this instruction has been cached, a context
switch restores the application context and begins executing cached translated instructions on the
host CPU. Otherwise, the instruction is translated (and, possibly, instrumented) and the
translation is placed into the fragment cache and is executed on the host CPU.

For the Execution Manager, the key point is that Strata examines each instruction in the program
and can insert instrumentation code to enforce desired security properties. For example, if a
security-critical system call should only be made with its arguments having certain value ranges,
as observed during acceptance testing, then instrumentation code could be dynamically inserted
at each call site to check the values of arguments before allowing the call to be made.

Because Strata uses the host CPU to execute instructions, it is very efficient. Figure 5 shows
Strata’s performance (normalized to native execution) for the SPEC2000 benchmark suite on an

Figure 5. Strata Performance

Application

Host CPU and OS

Target Specific Functions

Strata Virtual CPU

Context Management

Memory Management

Cache Management

St
ra

ta
 V

irt
ua

l
M

ac
hi

ne

Target Interface

Linker

Context
Switch

Fetch

Decode

Translate

New
PC

Host CPU (Executing Translated Code from Cache)

Finished?

No

Strata Virtual Machine

Yes

Context
Capture

Cached?

Yes

New
Fragment

Next PC

(a) Strata operates by fetching, decoding,
and translating an application’s
instructions into a translation cache.

(b) The Strata VM sits between the
application and the host CPU

Figure 4. Strata Architecture

13
Approved for public release: distribution unlimited.

AMD Opteron 244 machine running in IA32 mode. The figure shows that applications executing
under control of Strata run only 2.2% slower on average than when run natively [109]. For some
applications, 179.art for example, Strata even yields small performance improvements over
native execution due to improved spatial code locality.

The performance of the Strata virtual machine is important for achieving the performance goals
of PEASOUP. In previous DARPA-funded work UVA demonstrated the practicality of running
what would seem at first glance to be expensive operations, e.g., encrypting/decrypting binaries,
at less than 10% overhead [112]. The Strata VM was the subject of two independent red team
exercises as part of DARPA Self-Regenerative Systems program during which no major flaws of
were found.

2.5.1.3 Secure In-VM Monitoring
Strata enforces security properties on a program from within the program’s application space.
This structure allows Strata to enforce arbitrary policies while achieving high efficiency.
However, for most security researchers it commits a cardinal sin: it exposes the security
mechanism itself (Strata) to attack. For this reason, many security tools are designed to reside in
a completely separate virtual machine. This location promises them isolation from the
application vulnerabilities and even vulnerabilities in the OS, but it introduces a high
performance overhead. For PEASOUP, we need both (a) the fine granularity and high efficiency
offered by Strata and (b) the equivalent of VM-based isolation for Strata itself. In order to
achieve these goals, we proposed to integrate Strata with a technique known as Secure In-VM
Monitoring (SIM) developed at the Georgia Tech [191]. As described above, we eventually
developed an architecture that put the translator into a separate process, rather than a separate
VM.

As mentioned above, performance overhead is the main drawback of external security tools that
reside in a security VM rather than in the desktop OS. External security monitors are activated
when specific security-related events occur in the OS. Generally, hooks can activate event
handlers of the security monitor via mediation by the hypervisor. In addition, hypervisor
intervention is also required for virtual machine introspection (VMI), when data needs to be read
and written from the OS’s address space. The overhead of external security tools is thus
primarily due to the change in privilege levels that occurs while switching back and forth
between the kernel-level and the hypervisor-level.

Georgia Tech developed the Secure In-VM Monitoring (SIM) approach to address these
performance issues while keeping the security benefits of having the security tool external to the
desktop OS. Their design meets two requirements. The first requirement is fast invocation (i.e.,
invoking handlers residing in the monitor should not involve any privilege level changes). The
second requirement is that reading and writing data from the OS should occur at native speed.

14
Approved for public release: distribution unlimited.

The overall design of SIM is shown in Figure 6. The key idea of SIM is to introduce a separate
hypervisor-protected virtual address space called the SIM address space in the guest VM
containing the user’s OS environment. This protected address space is used for the security
monitor. It exists in parallel to the virtual address spaces being utilized by the OS, which we will
refer to as the system address spaces. The SIM address space includes the security monitor’s
code (SIM code) and data (SIM data). The entire system address space is mapped into the SIM
address space, but not vice versa. This mapping means that the security monitor can view the
address space of the OS, but no code executing in the OS can view the security monitor’s address
space. In order to securely transfer execution between the desktop OS and the monitor inside
SIM, a number of entry gates and exit gates are generated. By utilizing the hardware features in
Intel VT-x, these gates allow switching between the OS and the monitor inside SIM without
having the hypervisor activated. Moreover, the memory mapping approach allows reading and
writing from the OS’s address space at native speeds, satisfying the performance requirements.

The SIM approach provides security similar to placing monitors in an external security VM.
First, the entry and exit gates are the only means of transferring execution between the system
address space and the SIM address space. By ensuring that the pages containing the gates are the
only pages containing execute privileges on both address spaces, we enforce that there is no
other way to transfer between the address spaces. Hooks are placed in the kernel before specific
events that transfer control to corresponding gates. The entry gate has an invocation checker
module that verifies whether the gates are invoked by valid hooks. Finally, by having all the
system address space contents that are mapped into the SIM address space as non-executable, we
ensure that no code in the untrusted user’s OS can alter behavior of the security monitor in SIM.
Therefore, isolation, secure invocation and integrity of monitoring behavior are satisfied by
design.

2.5.2 Components of PEASOUP
Section 2.5.1 presented the technologies that will be used in PEASOUP. This section describes
how those ‘ingredients’ are assembled in PEASOUP.

2.5.2.1 Offline Analyzer
The offline analyzer can leverage high-coverage test suites (see Section 2.5.1.1). This is used for
IR recovery, vulnerability detection, and validation.

Figure 6. Architecture of SIM

15
Approved for public release: distribution unlimited.

IR Recovery and Vulnerability Detection Module. Our approach to IR recovery and
vulnerability detection combines static analysis, dynamic analysis, and automatic generation of
test suites. At the beginning of the project, we envisioned the use of dynamic analysis and test-
case generation as critical. However, we discovered static-analysis techniques that were much
more scalable and robust.

The one drawback of dynamic analyses is that they only provide results for the executions they
observe. Our attempted use of (automatically generated) high-coverage test suites was meant to
overcome this shortcoming. The high coverage would have allowed us to recover a high
precision IR.

Remediation Strategist. As explained above, identifying a vulnerability or detecting an attack are
not sufficient. In order to do better than failure-stop or failure-oblivious, it is important to
discover vulnerabilities offline and prepare a remediation. To this end, PEASOUP uses the
remediation strategist illustrated in Figure 7. As the figure shows, the remediation strategist
contains a database of candidate mechanisms based on either repairing the underlying fault or
invoking a recovery plan. The candidates are applied and evaluated offline to determine which
mechanisms yield a high confidence that the program semantics are preserved.

The remediation strategist works by analyzing the program using inputs that have caused the
binary program, P, to fail. Ideally, remediation strategies are carefully constructed in such a way
that they are likely to fix the vulnerability without causing a deviation from the program’s
specified behavior. Several recent research results have demonstrated the viability of discovering
and applying remediation strategies that meet these criteria [47, 69, 160, 171]. However,
PEASOUP does more than rely on heuristics and careful design to ensure the safety of its
candidate remediation strategies. Each remediation mechanism is evaluated to ensure that normal
behavior is preserved (using the BED module described below) with high confidence (using the
TSET module described below).

Figure 7. The Remediation Strategist

16
Approved for public release: distribution unlimited.

The candidate remediation database holds possible remediation candidates to be applied when a
program vulnerability is detected. There is a large variety of approaches to remediation. The
exact approach taken will depend on the vulnerability that is discovered and the information
available in the recovered IR. Some example approaches include:

• Insert sanity checks, such as checks for buffer overflows, and discard actions that are
likely to lead to unexpected behavior [160].

• Generate and return an “error code” from the function that contains the error [193].

• Find error handling code in or near the failure point and invoke it [193].

• Return an error code from known system calls (mmap) or functions (such as malloc).

• Filter inputs that are likely to exploit a vulnerability [47, 69]. Alternatively, allow
suspicious input to be processed, but use VM checkpointing and careful monitoring to
rewind and discard the input if an attack is detected.

• Ignore the instruction that generates the error [171].
Prior work has shown many of these techniques to have applicability and some success in
patching a program in the face of program faults. Consequently, they make good remediation
candidates. An innovation of the PEASOUP architecture is the way in which the candidates are
evaluated.

Variant Generator. The variant generator uses the recovered IR to heuristically generate
program variants that are validated by the validation module.

Analysis Engine Diversity Engine

BED(P, P’ I’) ? TSET Diversity

Diversity
P

P’

Successful
Diverse

Yes

Candidate P’ Low confidence

Diversity technique

I’

No

Figure 8. Behavior Equivalence Detection Sandbox

17
Approved for public release: distribution unlimited.

Validation Module. Our approaches to remediation and diversification require validation of the
remedies and the program variants. For example, our approach to diversification uses heuristic
transformations guided by the recovered IR to generate program variants. Often, these heuristic
transformations produce functionally-equivalent (on normal program input) versions of the
program. Sometimes, however, the assumptions made by the heuristics turn out to be invalid and
the diversity transformations fail. Instead of rejecting the heuristic-approach, we use a Behavior
Equivalence Detection (BED) module to determine whether the heuristic generated a useful
program variant and Test-Suite Evaluation Technology (TSET) to provide high confidence that
the transformations indeed are correct. If the BED module or TSET module report that the
diversity transformation is broken or has low confidence in being correct, the variant can be
rejected. In this way, we believe the PEASOUP architecture can provide high-entropy diversity
for much of a program, even when only the binary version of that program is available.

The following sections describe the BED module and TSET modules in more detail.

Behavior Equivalence Detection. The Behavior Equivalence Detection (BED) module uses
concolic testing to determine if two versions of a program (often, one version is the original
unprotected SOUP binary, and another is a diversity variant in consideration for use online)
behave the same for a broad class of program inputs that we believe to be “normal” inputs
(labeled I’ in the figure below). We assume that the original program acts normally when heavy-
weight, precise detectors (such as MEDS, taint-tracking, etc.) do not detect any abnormal
behavior for the given program input. In some cases, it may be feasible and appropriate to simply
run both versions of the program and ensure that the program generates the same output for each
input in the test suite (P(I’)==P’(I’) (see Figure 9).

In other cases though, a more thorough comparison is necessary. In such cases, it may be
desirable to run both variants (P and P’ in Figure 9) in lock-step and maintain a mapping
between the state of the original version to the variant. If we detect any variability between the
two variants while maintaining the state mapping, we know that the variants are behaving
differently. For example, none of our diversification techniques should affect control-flow
decisions. So, a difference in the control-flow decisions between P and P’ when run on identical
inputs indicates an unacceptable change in behavior, even though different control-flow
decisions may not always be lead to different outputs [167, 168]. This functionality was not
implemented during Phase 1, but will be investigated as necessary in later phases of the project.

Figure 9. BED Module

18
Approved for public release: distribution unlimited.

Ultimately, the output of the BED module is a yes-or-no answer. Yes indicates that the variants
behave the same, while no indicates that P and P’ definitely compute different functions. To
assess the confidence of yes answers, we rely on the TSET module, described below.

Test-Suite Evaluation Technology. Ultimately, the BED module’s ability to detect differences
depends on the input set’s ability to distinguish two similar programs from one another. If we
wrongly assume that BED has a high ability to distinguish such programs, our proposed diversity
transformations will likely break the program and create many false positives. Since a false
positive will invoke the remediation module to determine if a patch is necessary, avoiding false
positives will be very important. Consequently, we must have high confidence that the BED
module is capable of detecting incorrect transformations and repairs.

To combat this problem, PEASOUP uses Test-Suite Evaluation Technology (TSET). TSET is
designed to determine whether concolic testing can adequately detect program differences. The
simplest version of TSET evaluates the test suite simply based on the coverage achieved by the
test suite. A more advanced approach will use a variation of mutation testing; that is, we will
programmatically insert errors (Mi in Figure 10, where 0<i<N in the figure below) into a
program (P in the figure below) and determine whether the test suite is capable of detecting those
errors. If the test suite is capable of detecting errors in the program, we have higher confidence
that it can be used to detect programmatic differences in the BED module.

Evaluating Remediation Candidates. Given the variety of possible patches to a program, we need
a mechanism to determine (prior to deployment) patches that maintain the program’s
functionality without introducing security vulnerabilities. To achieve this goal we thoroughly test
the revised version to behave the same on all normal inputs that we can derive from advanced
coverage testing. If the patched program produces the same output for all test cases that the
original program does under a “normal” execution (i.e., no confinement policies are violated),
then we need to consider the anomalous inputs sets. For those inputs, previous technology is not
capable of providing any confidence that a particular patch is suitable for a particular
vulnerability. Our approach differs in that we test the patches on anomalous inputs and evaluate
if the program is behaving properly.

To accomplish this, the program needs to:

• Not produce further confinement errors after the patch code has executed.
• Keep the program’s data and control flow invariants intact to provide higher confidence

that the patch does not open a program to new vulnerabilities.

Figure 10. Test-Suite Evaluation

19
Approved for public release: distribution unlimited.

• Continue to properly process input; i.e. not enter erroneous states nor enter infinite loops.
PEASOUP uses the TSET and BED modules to help address the equivalence (modulo the
remediation) of the original program and the patched program with high confidence. Since the
testing of the patched program occurs offline, we can use expensive confinement policies (such
as MEDS) to ensure that the program’s behavior past the patch point is not anomalous.

2.5.2.2 Execution Manager
As described above, the execution manager is responsible for application of remediation
strategies, selection of program variants, and confinement of exploits against undetected or
unhandled vulnerabilities. By combining software dynamic translation (see Section 2.5.1.1) with
a multi-process translation architecture (see Section 2.5.1.3) we can meet these requirements
with low overhead. The application of remedies and selection of program variants is relatively
straightforward with software dynamic translation. More details are provided in Section 3.3.5. In
the remainder of this section, we describe some examples of the confinement techniques that we
believe will be most beneficial.

 Related Research 2.6
Discussion of related research is located throughout this report. Perhaps the most relevant paper
is the result of the Applications Community project led by MIT [160]. This research is similar to
PEASOUP in that it uses confinement techniques to identify faults and dynamic analysis to
develop patches that remove the faults. MITs results are particularly important because they
demonstrate that automatic removal of faults can be effective and safe, in some circumstances.
However, [160] is limited in several ways that PEASOUP is not: (i) it only detects a small class
of faults; (ii) faults are detected solely by online confinement, leaving them vulnerable to zero-
day attacks; and (iii) the quality of patches is determined by user feedback.

In addition to addressing the shortcoming listed above, the PEASOUP project also aimed to
advance the state-of-the art in program analysis, automatic fault remediation and diversification
techniques.

Traditional static analysis attempts to explore all possible program behaviors to identify
potential vulnerabilities. Generally, traditional static analyses have shortcomings: (i)
applicability to narrow classes of vulnerabilities, (ii) high computational cost, and (iii) high false-
positive rates. New lightweight analysis tools, e.g., GrammaTech’s CodeSonar, exhibit
scalability and false-positive rates that make the tools more useful for real software but these
attributes are achieved at the cost of high false-negative rates (missed vulnerabilities), which are
not acceptable for automatic protection. PEASOUP demonstrates that carefully designed static
analyses can be very effective for automatically recovering IR that enables defenses of important
classes of vulnerabilities, including those resulting from number-handling and command-
injection weaknesses.

Dynamic program analysis observes runtime behavior and identifies any errors that occur.
Relevant examples of such analyses include Control Flow Integrity (CFI) [24], Data Flow
Integrity (DFI) [69], dynamic taint analysis [115], and program shepherding [122]. Typically,
these techniques first perform an offline analysis to learn the “normal” behavior of the program,
and then monitor each run of the program for deviations. The offline step often requires program
source code. Some monitoring techniques require modifications to the OS. Overheads imposed
by most dynamic analyses are prohibitive: some techniques even rely on special-purpose

20
Approved for public release: distribution unlimited.

hardware to reduce the overheads [227]. Finally, dynamic analyses do not adapt to new exploits.
The proposed approach advances the state of the art in dynamic detection of vulnerabilities as
follows: (i) it operates directly on stripped executables; (ii) it requires no OS modifications or
special-purpose hardware; (iii) it has low overheads; and (iv) it uses a dual-process architecture
[191] to ensure security of the monitor.

Concolic Execution. As previously discussed, concolic execution (or whitebox fuzzing) [49, 96]
uses analysis to derive inputs that exercise execution paths that have not been explored before.
Concolic-execution-based tools, such as SAGE [97] and KLEE [48], have been shown to scale to
real-world programs and were used to find critical vulnerabilities. In our approach, concolic
execution was tightly integrated with run-time program monitoring, with a goal of improving
vulnerability detection. Unfortunately, we were not able to generate sufficiently high-coverage
test suites for medium and large programs. While concolic-execution-based equivalence testing
has been proposed before [48], diversification and patching require relaxed criteria, namely,
equivalence testing modulo “normal” behavior. We are unaware of existing techniques for this
kind of testing.

Fault remediation. The original focus of work on fault tolerance and remediation was to prevent
software from failing due to regular programming errors, but recently the security community
has expanded the focus to include withstanding malicious attacks. The proposed techniques
range from software rejuvenation [151], in which the program (typically, a server) is
occasionally restarted to counter the effect of software aging (e.g., the cumulative effect of
memory leaks, unreleased file locks, and file-descriptor leaks), to slipstream execution [118], in
which a shadow copy of a program is executed in parallel with the main copy and the
redundancy is used to withstand transient hardware faults. Recently, an approach that combines
redundancy and rejuvenation has been proposed to counter cyber attacks [223] Vigilante [69]—a
system for network worm containment—employs a different approach to fault remediation.
Vigilante analyzes compromised applications (located on a honeypot server) to derive input
filters to be deployed for the actual installations of the application.

Recently, language-based approaches that rely on the analysis of an application have been
proposed. M. Rinard, M. Ernst, and B. Demsky developed an approach for inferring application-
data-structure invariants, detecting their violations, and performing online repairs necessary to
re-establish the invariants [77-79]. An independent red-teaming effort has shown that their
approach was able to successfully withstand real-world attacks. Sidiroglou et al. proposed a
recovery technique that relies on rescue points—application code for handling programmer-
anticipated failures. In their tool ASSURE, the execution is restored to an appropriate rescue
point after a fault is detected [193].

Our work built on the above ideas. A key innovation of our approach was the offline evaluation
of the possible remediation approaches for a given program vulnerability.

Diversification. Data Diversity is a technique for creating software systems that can tolerate
faults during execution [26]. The concept is to execute multiple, identical copies of a program
with each copy using different but equivalent data. Because the data read by the copies is
different, the copies execute differently, and in some cases, a copy may not be subject to any
given fault. The outputs of the copies are supplied to a voter, and the most common output is
selected for use. It has been noted that diversity can be used to thwart the software monoculture
problem; that is, diverse variants deployed across different installations can keep one attack from

21
Approved for public release: distribution unlimited.

being successful against all sites [88]. Current diversity techniques require compiler-tool-chain
support, or suffer from low entropy. Our use of data diversity will address the limitations by
providing high-entropy diversity using only static analysis and testing of binary code.

 Project Contributors 2.7
GrammaTech is the Prime on the PEASOUP effort. GrammaTech brought a wealth of
experience and relevant technology to the project based on its research into machine code
analysis starting in 2002 [38, 38]. In particular, GrammaTech provided Grace, the concolic
execution engine that served as the starting point for automatic test-case generation in
PEASOUP.

The Univ. of Virginia (UVA), Georgia Institute of Technology, and Raytheon were all
subcontractors on the PEASOUP effort. UVA and Georgia Tech provided crucial technology for
PEASOUP. UVA’s contributions started with Strata and MEDS, mature tools for software
dynamic translation and runtime detection of memory errors, respectively. UVA also brought
extensive experience in building security tools to help develop all of the core technologies in
PEASOUP.

Georgia Tech’s contributions began with Secure In-VM Monitoring (SIM), an advanced
technique for secure, low-cost monitoring of guest domains in a virtual machine. Georgia Tech
applied its technology to securing the components of PEASOUP from attack, introducing
diversity to the application-OS interface, and implementing recovery techniques.

Raytheon brought its extensive experience in successfully integrating large complicated software
systems to the PEASOUP project. In particular, Raytheon provided integration testing to ensure
that all of the components developed by various team members work together. Raytheon is also
focused on finding real-world test platforms for PEASOUP and ensuring that PEASOUP can be
successfully transitioned at the end of Phase III.

In addition to the above contributors, the PEASOUP effort benefited from the ongoing
collaboration between GrammaTech and the University of Wisconsin on machine-code analysis.
In particular, Wisconsin was heavily funded to continue its research into machine-code analysis
and GrammaTech had access to any extensions that Wisconsin made to its technology.

 Summary of Statement of Work Tasks 2.8
This section contains a copy of the SOW tasks, as amended during the course of the project.
Notice, the SOW task items are numbered according to the original SOW, not the section
numbers of this document.

2.8.1 Phase 1 Tasks
For Phase 1, the contractor shall orient the research towards initially handling vulnerabilities
classes C1, C5, and C7 (buffer overflow/underflow). The contractor shall meet the required
performance goals for at least two vulnerability classes, but will retain the flexibility, if needed
or strategically advantageous, to replace the anticipated vulnerability classes with others from the
list specified in the BAA. The goals of Phase 1 are to successfully process 85% of executables,
render 75% of the vulnerabilities in two classes unexploitable, with no more than 20% runtime
overhead. The contractor shall document the findings of the effort. The remainder of this section
describes the following tasks for Phase 1.

22
Approved for public release: distribution unlimited.

SOW Task 3.1.1 Analysis.

SOW Task 3.1.1.1 Tools for providing “ground truth” IR. The contractor shall develop or
enhance existing tools for creating an accurate representation of the program’s Intermediate
Representation (IR) based on the output of compilation tools. This will serve two purposes: (a)
allow work to start on components that require IR before the IR recovery module is complete;
and (b) provide a baseline for evaluating the quality of recovered IR.

SOW Task 3.1.1.2 IR Recovery and Vulnerability Detection Module. The contractor shall develop
an IR recovery and vulnerability module that will include the following subtasks:

SOW Task 3.1.1.2.1 The contractor shall design the format of the IR and vulnerability database.

SOW Task 3.1.1.2.2 The contractor shall develop a tool for automatic test-case generation for
Linux executables by combining a concolic execution engine with a software dynamic
translation tool, such as Strata. The tool should achieve 90% instruction coverage.

SOW Task 3.1.1.2.3 The contractor shall integrate the automatic test-case generator with the
Memory Error
Detection System (MEDS) and enhance functionality to provide the necessary IR recovery (95%
agreement with ground truth) and vulnerability detection (75% of vulnerabilities detected).

SOW Task 3.1.1.3 The contractor shall develop prototypes of the Behavior Equivalence
Detection (BED) and Test-Suite Evaluation Technology (TSET) components.

SOW Task 3.1.1.4 The contractor shall develop improved techniques for generating high
coverage test suites. The contactor shall investigate extensions to the concolic engine and the use
of more advanced techniques, such as adaptations of the DASH algorithm.

SOW Task 3.1.2 Confinement.

SOW Task 3.1.2.1 The contractor shall develop technology for fine-grained confinement of
Phase 1 vulnerabilities. The contractor shall enhance the chosen software dynamic translation
tool to provide confinement of the Phase 1 vulnerabilities based on the information in the
recovered IR. The goal is to achieve low overhead (less than 15%) with high recall (greater than
80% of exploits prevented).

SOW Task 3.1.2.2 The contractor shall perform migration of the Secure In-VM Monitoring
(SIM) to protect a guest Linux domain. The SIM prototype currently protects guest domains
running Windows. Under this task, the contractor will adapt SIM to protect Linux domains.

SOW Task 3.1.2.3 The contractor shall integrate the dynamic translator (e.g. Strata) with SIM.
The contractor shall adapt SIM to protect the translation technology in the Software Dynamic
Translation (SDT).

23
Approved for public release: distribution unlimited.

SOW Task 3.1.3 Diversification.

SOW Task 3.1.3.1 The contractor shall develop diversification transformations and the ability to
select program variants at run time. The diversification transformations will be performed by the
variant generator and will be guided by the IR. Variants will be selected at runtime in the
Execution.

SOW Task 3.1.3.2 The contractor shall investigate techniques for leveraging the Virtual Machine
(VM) to support diversification. Possible techniques include changing the system call mapping,
so that injected code cannot reliably invoke system calls.

SOW Task 3.1.4 Remediation. During Phase 1, work on automatic remediation shall be limited to
the development of efficient Virtual Machine Monitor (VMM)-based check pointing techniques.

SOW Task 3.1.5 Integration, evaluation, and transition.

SOW Task 3.1.5. 1 Architecture development and interface definition. The contractor shall
develop an overall architecture and maintain the definition of the interfaces between major
software components.

SOW Task 3.1.5.2 Software development support. The contactor shall provide support and
continually determine the state of software during development. The contractor shall perform
nightly regression tests, evaluate test coverage and track bugs in technology software. The
contractor shall perform and maintain software Configuration Management (CM) throughout the
phase. The contractor shall define and establish the CM process required and shall provide
mastery of the test corpus. The contractor shall document and describe vulnerabilities and
exploits found in the test corpus. The contractor shall extend the test corpus to include exploits
not provided in primary test corpus.

SOW Task 3.1.5.3 System integration. The contractor shall perform system integration for
PEASOUP and identify a lead technology integrator throughout the agile software development
process. The contractor shall plan and execute integration in increments in concert with the
development of software components.

SOW Task 3.1.5.4 Metrics Testing. The contractor shall periodically evaluate technology
performance with respect to vulnerabilities and metrics set forth in the BAA and with respect to
capabilities expected at the time of evaluation, and shall report test results to component
developers. An evaluation shall occur prior to each program milestone/waypoint after the kickoff
meeting.

SOW Task 3.1.5.5 Extended Analysis, Confinement, Diversification, and Remediation. The
contractor shall investigate further techniques for analysis, confinement, diversification, and remediation
specifically intended to address the following types of test results from independent testing and
evaluation, namely, tests in which a test program was not processed successfully, tests in which a test
input was not prevented from exploiting a test program, and tests in which the prototype technology
altered the intended benign functionality of a test program in unexpected ways.

24
Approved for public release: distribution unlimited.

SOW Task 3.1.5.6 Extended Testing. The contractor shall support independent testing and
evaluation as required, including on-site technical support and prototype interoperability with
Government test automation software.

2.8.2 Phase 2 Tasks
In Phase 2, the contractor shall orient their efforts towards further refining techniques for
handling the vulnerability classes selected in Phase 1. The contractor shall incorporate
protections against two additional vulnerability classes (C5–command injection and C8–null
pointer dereference); PEASOUP will be evaluated on its ability to prevent exploits of
vulnerabilities in these classes during Independent Phase 2 independent test and evaluation. The
contractor shall begin development of protections for vulnerabilities in additional vulnerability
classes that will be (independently) evaluated in Phase 3, beyond those included in the Phase 2
independent test and evaluation. As in Phase 1, the contractor shall be allowed to retain the
flexibility to replace or expand the anticipated vulnerability classes. The contractor shall
continue to expand on Phase 1 results and to significantly ramp up their efforts on remediation.
The goals of Phase 2 are to render 90% of the Phase 1 vulnerabilities unexploitable and 80% of
an additional two vulnerability classes that are evaluated during the Phase 2 independent test and
evaluation, with a runtime overhead of no more than 15%. The contractor shall document the
findings of the effort. The remainder of this section describes the following tasks for Phase 2.

SOW Task 3.2.1 Analysis.

SOW Task 3.2.1.1 The contractor shall continue to enhance IR recovery and vulnerability
detection initiated in Phase 1.

SOW Task 3.2.1.2 The contractor shall continue to enhance the test-case generation initiated in
Phase 1.

SOW Task 3.2.2 Confinement.

SOW Task 3.2.2.1 The contractor shall continue to enhance fine-grained confinement initiated in
Phase 1.

SOW Task 3.2.2.2 The contractor shall continue to enhance BED and TSET initiated in Phase 1.

SOW Task 3.2.2.3 The contractor shall develop and make enhancements to SIM. Tasking under
this effort shall include: developing enhanced protection for the monitoring code generated by
Strata; removing any residual vulnerabilities in the SIM prototype, including reliance on guest
OS; and developing techniques to dynamically alter the degree of monitoring performed by the
SIM based on security conditions.

SOW Task 3.2.3 Diversification.
The contractor shall continue to enhance diversification initiated in Phase 1.

SOW Task 3.2.4 Remediation.

25
Approved for public release: distribution unlimited.

SOW Task 3.2.4.1 The contractor shall continue work on automatic remediation initiated in
Phase I.

SOW Task 3.2.4.2 The contractor shall develop a database for storing remediation candidates.

SOW Task 3.2.4.3 The contractor shall develop a Remediation Strategist component and enhance
the Execution Manager with capability to select and apply remedies.

SOW Task 3.2.5 Integration, evaluation, and transition.
The contractor shall continue to perform system integration, evaluation, and transition activities
for Phase 2. Tasking shall include: proving updates to the system architecture; maintaining
interface definitions between major software components; managing CM, performing system
integration, conducting regression testing, performing metrics testing, and
documenting/describing vulnerabilities and exploits.

SOW Task 3.2.5.1 The contractor shall begin to port PEASOUP to run on an x86-64 platform
(OS and processor) and to protect x86-64 binary executables.

SOW Task 3.2.6 Support for Independent Testing and Evaluation. The contractor shall support
Phase 2 independent testing and evaluation as required, including on-site technical support and
prototype interoperability with Government test automation software.

2.8.3 Phase 3 Tasks
In this phase, the contractor shall incorporate protections against two additional vulnerability
classes (C2–tainted data and C3–error handling) and continue to refine the vulnerability classes
selected for Phases 1 and 2. As in the previous phases, the contractor shall retain the flexibility to
replace or expand the anticipated vulnerability classes with others. In addition to achieving the
final metrics required for Phase 3, the contractor shall also ensure that all developed technology
is ready for transition to end users. The contractor shall provide additional capabilities in Phase 3
as required, such as support for a 64-bit Operating System (OS). The goals of Phase 3 are to
render 95% of the Phase 1 and Phase 2 vulnerabilities unexploitable and 90% of an additional
two vulnerability classes, with a runtime overhead of no more than 10%. The contractor shall
document the findings of the overall effort.

SOW Task 3.3.1 Analysis.

SOW Task 3.3.1.1 The contractor shall continue to further enhance IR recovery and vulnerability
detection from Phase 2.

SOW Task 3.3.1.2 The contractor shall continue to further enhance test-case generation from
Phase 2.

SOW Task 3.3.2 Confinement.

SOW Task 3.3.2.1 The contractor shall continue to further enhance fine-grained confinement
from Phase 2.

26
Approved for public release: distribution unlimited.

SOW Task 3.3.2.2 The contractor shall enhance VMM-based confinement.

SOW Task 3.3.3 Diversification.
The contractor shall continue to enhance diversification from Phase 2.

SOW Task 3.3.4 Remediation.
The contractor shall continue to enhance automatic remediation from Phase 2.

SOW Task 3.3.5 Integration, evaluation, and transition.
The contractor shall continue to perform system integration, evaluation, and transition activities
required for Phase 3. Tasking shall include: proving final updates to the system architecture;
maintaining interface definitions between major software components; managing and performing
CM, performing system integration, conducting regression testing, performing metrics testing,
and documenting/describing vulnerabilities and exploits.

SOW Task 3.3.5.1 The contractor shall complete the port of PEASOUP to run on an x86-64
platform (OS and processor) and to protect x86-64 binary executables.

SOW Task 3.3.6 Support for Independent Testing and Evaluation. The contractor shall support
Phase 3 independent testing and evaluation as required, including on-site technical support and
prototype interoperability with Government test automation software.

2.8.4 Management Tasks
SOW Task 4.1 Program Management.
The contractor shall exercise administrative and financial management functions during the
course of this effort, such as scheduling of activities and milestones; describing status; outlining
contractor activity and progress toward accomplishment of objectives; and documenting in detail
the work performed and the results of the effort including technological breakthroughs. The
contractor shall facilitate Air Force access to internal data developed in compliance with
contractual tasks. The contractor shall provide technical and financial status reporting, including
participation in scheduled Principal Investigator (PI) meetings and providing project summary
information as required.

SOW Task 4.2 Deliverables.
SOW Task 4.2.1 The contractor shall deliver all reporting requirements in accordance with the Contract
Data Requirements List (CDRL), Exhibit A to the contract.

SOW Task 4.2.2 The contractor shall deliver all developed prototype software and corresponding
source code as identified in the project tasking. Delivery of the software shall be inclusive of software
source code and executable.

 Outline of Remainder of Report 2.9
This report is organized according to the guidelines provided in ANSI/NISO Z39.18-2005.
Section 3.0 describes the methods, assumptions, and procedures used to develop and evaluate
PEASOUP. Section 4.0 presents the results of the evaluation and discusses their significance.
Section 5.0 provides concluding remarks. Sections 6.0 and 0 list references and abbreviations,
respectively.

27
Approved for public release: distribution unlimited.

3.0 Methods, Assumptions, and Procedures
We built a prototype of the PEASOUP system and evaluated it in many different ways,
including: (i) measuring its ability to protect programs with known vulnerabilities, (ii) measuring
its ability to protect programs with vulnerabilities seeded by a third party, (iii) measuring its
effect on the attack surface of the programs in the SPEC 2010 benchmark suite, and (iv)
measuring the accuracy of recovered IR against ‘ground-truth’ IR for a suite of common utility
programs.

In the remainder of this section, we provide more details on the construction of the PEASOUP
and the experiments we used to evaluate it. Section 3.1 describes the approaches taken to
experimental evaluation of PEASOUP. Section 3.2 briefly describes the platform used to develop
and test PEASOUP and any assumptions used in the experimental evaluation of PEASOUP.
Section 3.3 provides additional details on the core components that are combined in PEASOUP
to implement program analysis, transformation, and protection. Sections 3.4–3.9 describe
defenses against exploits that target number-handling errors (C1), resource drains, command
injection, memory-safety errors, and null-pointer errors, respectively. Section 3.10 presents
generic defenses that prevent a variety of exploits.

 Evaluation Metrics and Methodology 3.1
The STONESOUP project defined three metrics for the project:

• The percent of programs that are successfully processed. As originally envisioned, this
was the percent of programs that PEASOUP declared successfully processed. However,
PEASOUP attempts to process almost all programs, so over the course of the project, this
metric was effectively replaced with a measure of Altered Functionality (AF), or the
percent of peasoupified programs that no longer worked correctly. In contrast to the
original metric, which should be to process 85% or more of programs, the AF measure
should ideally be zero.

• The percent of vulnerabilities (in targeted vulnerability classes) that are Rendered
Unexploitable, which we abbreviate as the RUE metric. The targeted RUE varied over
the three phases of the program.

• The percent overhead incurred by protection(s). The targeted overhead was 10%.
The project included an independent evaluation to collect metrics.

The project metrics are designed to evaluate the STONESOUP technologies as a whole. In
addition to participating in the independent evaluation, we also focused on gathering metrics
related to the performance of individual components and techniques used in PEASOUP. In
particular, we were interested in evaluating the following aspects of PEASOUP:

• Effectiveness of IR Recovery. One of the important innovations in PEASOUP is its
approach to IR recovery from unadorned executables. In order to better understand the
effectiveness of our IR recovery, we developed techniques for approximating “ground
truth” IR based on analysis of compilation artifacts.

• Effectiveness of Automatic Test-Case Generation. PEASOUP is designed to be robust if
individual modules behave poorly. Effective test-case generation allows PEASOUP to be
more aggressive in the protections it applies. We sought metrics to help us measure our
progress in the development of the test-case generation module.

28
Approved for public release: distribution unlimited.

• Effectiveness of Individual Protections. In some cases, defensive techniques used in
PEASOUP provided defenses beyond what are required for the program, and therefore
beyond what was evaluated during the independent evaluation. We sought to develop
more detailed metrics in these cases. Often, these more detailed metrics provide the best
possible evaluation for IR recovery: a recovered IR is only valuable in so far as it can be
used in defensive transformations. Measuring recovered IR against ground-truth IR lacks
this context and can be misleading for this reason.

In the remainder of this section, we provide some details on our approach to evaluation of the
PEASOUP technology. More details on evaluation techniques are provided in individual sections
describing those technologies.

3.1.1 Preliminary Phase 1 Test and Evaluation (December 2011)
All of the STONESOUP projects were subjected to an independent test and evaluation of their
Phase 1 prototypes. The Mitre Corporation developed a suite of tests for each of the weakness
classes that were defended by STONESOUP technologies. In the case of PEASOUP, this
included tests suites for integer-handling weaknesses and for memory-handling weaknesses. In
the remainder of this section, we provide details of how the independent test and evaluation of
PEASOUP was conducted. Section 4.1 describes our understanding of the preliminary results of
the Phase 1 test and evaluation, although we have not been privy to the final results.

3.1.1.1 Attendees
The evaluation team consisted of two Mitre employees. The PEASOUP team included two
representatives from the GrammaTech team, three from the Raytheon team, and one from the
University of Virginia team.

3.1.1.2 Setup
Raytheon hosted the PEASOUP Test & Evaluation at their Arlington, VA facility. Prior to Mitre
arriving, Raytheon set up all of the computers in the large conference room and performed a
complete regression test. Raytheon configured the test network with no single points of failure
(backup DHCP server, Network switch, XenCenter computer) and had all equipment on
Uninterruptable Power Supplies.

Raytheon developed scripts to control the Xen Virtual Machines that were used in the T&E. One
set of tools performed VM snapshots, resets, shutdowns and reboots. Another set of scripts allow
us to deploy new versions of PEASOUP and perform configuration changes on all VMs
concurrently. These tools were all used at the T&E and all worked as designed.

Raytheon also developed scripts to configure a computer to run PEASOUP and to build an
installable PEASOUP tar file. This allows for easy installation of PEASOUP on all Virtual
Machines.

On the first day of the T&E, Mitre set up their servers (laptops) and performed several dry run
tests. We also engineered and implemented the reset mechanism. The actual tests were
conducted on December 14-15, 2011. December 16th was reserved for contingency and was not
used.

3.1.1.3 Testing Parameters
There were 4 test “manifests” (collections of test cases). The four manifests were:

29
Approved for public release: distribution unlimited.

1. Number Handling – Engineered (nh-eng) with 10 tests cases.
2. Buffer Overflow – Engineered (bo-eng) with 209 tests cases.
3. Number handling – Real World (nh-rw) with 3 tests cases.
4. Buffer Overflow – Real World (bo-rw) with 2 tests cases.

However, we quickly noted that the nh-rw contained all the tests programs with the same test
inputs that bo-rw contained. Once noting this, we eliminated bo-rw from our testing to speed up
the testing process.

There were two configurations of PEASOUP tested:

1. Standard - all PEASOUP protections
2. Partial-C1 - PEASOUP with some (but not all) integer-handling checks disabled.

We added the second configuration after determining that some of the integer-handling checks
were overly protective and breaking correct functionality under the standard configuration. For
completeness, we ran all tests under both configurations.

3.1.1.4 Test and Test Input Descriptions
Most tests had “good” (non-malicious) and “bad” (malicious) inputs. Below is a description of
the inputs used:

1. We did not have time to examine the inputs for nh-eng and bo-eng in detail.
2. Nh-rw 3 programs

a. Testcase ngircd – Ngircd, an IRC server, had 2 inputs, one good and one bad. The
good input (sent from a perl-based client) allowed a user to log into the IRC
server and send 3 messages. The bad input was designed to exploit a flaw in the
program which allowed a user to login with an invalid user name.

b. Testcase bzip2 – There were several good inputs that asked bzip to compress and
decompress files. One bad compressed input caused bzip to issue a segmentation
fault.

c. Tinyproxy – We were asked to protect a tinyproxy server. The server was
configured to accept client connections, and forward them to a remote server.
One (allegedly) good input was provided that downloaded an html file from the
remote server, and forwarded that file to the client. (According to PEASOUP, the
provided input to tinyproxy triggered a double-free error. We believe PEASOUP
was probably correct in this assessment, in which case, the input is arguably not
benign.)

3. Bo-rw had2 programs, ngircd and bzip2 using the same inputs as for nh-rw.

3.1.1.5 Process Notes
For the most part, T&E went very smoothly. Of course, there were a few hiccups.

30
Approved for public release: distribution unlimited.

 What Worked Well 3.1.1.5.1
• Raytheon’s configuration of XenController and the large number of VMs were very

useful in being able to parallelize our testing efforts. In particular, the scripts to reset,
revert, and copy files to/from multiple VMs were invaluable.

• Raytheon’s configuration of isolated network, UPSes, etc. worked flawlessly.
• Mitre, GrammaTech, Raytheon, and UVa worked well together to diagnose and mitigate

issues.
• In an unplanned, but spectacular, coincidence, we had 2 machines connected to the closed

network. These machines allowed us to diagnose issues and log results without
interfering with running tests.

• Mitre allowed us to run two PEASOUP configurations since we had time.
• Even on-site examination of the test results was very informative.
• Mitre’s flexibility in allowing us to run tests multiple times, with multiple configurations,

and manual intervention when analysis or execution was hung was greatly appreciated
and necessary to generate valid and meaningful T&E results.

• The majority of the protections (HeapRand,P1/Pn, ILR, PC Confinement, and function
call monitoring) did not seem to produce many/any false positive messages. The one
exception was the checks on individual integer operations.

 Hiccups 3.1.1.5.2
• PEASOUP’s logging mechanism attempted to log the command that was executed.

Unfortunately, at least in some instances the logging mechanism attempted to interpret
the message to be logged. This resulted in error messages in stderr for the execute script.
Mitre will need to adjust for this in their scoring. Such messages can be identify as being
reported from “ps_tne_log.py.” (We can provide more details on this issue, if useful.)

• PEASOUP introduced significant startup delays, sometimes as much as 5 minutes. These
delays are an artifact of a poorly coded mechanism that could be addressed in a few days.
We considered attempting to address this issue during T&E, but decided the risk was not
worth the reward. This issue (introduced in the last 2 weeks of PEASOUP development)
completely invalidates all timing results from T&E.

• Several test cases had race conditions between the starting of the server and a client’s
attempt to connect. This issue was significantly exacerbated by PEASOUP’s long startup
delay. In particular, tinyproxy and ngIRCd test cases needed to have an artificial delay
added so that we could be assured that the server was ready to accept connections before
the client attempted its connect.

• VM resets generally were quite efficient and resulted in few problems. However, in at
least one case (ngIRCd) we noted that a previous test case execution resulted in a process
being left running, which invalidated the results from subsequent runs. Full resets
between each execute step would have helped.

31
Approved for public release: distribution unlimited.

• Mitre recorded the start and end time of the “execute” phase on the Test Harness
machines. Our test harness had to parse the command, and performed significant logging.
While not excessively time consuming, accurate overhead measurement requires that we
not time this logging, etc. For example, our logging invoked python at least 10 times for
each executable. This clearly can dominate the time for short-running executables.

• It took us some time to diagnose a performance issue in the test manager that limited the
number of test harnesses we could run in parallel. Ultimately, the test manager was able
to handle up to 21 test harnesses running simultaneously, although this was still short of
the 40 test harnesses we ran simultaneously with the dry-run release of the test manager.

• Stage 1 (test validation) was integrated with stage 2 (PEASOUP evaluation). In some
instances (mostly the real world tests), this caused significant problems. If stage 1 fails,
we need to triage the issue immediately and not wait until stage 2 (which can be lengthy)
finishes. This issue resulted in tinyproxy not working until the very last moment.

• The test cases for the client/server applications were particularly challenging to get
working correctly. A dry-run example that uses the client/server model would be useful.

3.1.2 Final Phase 1 Test and Evaluation (April, 2012)
The results yielded by test and evaluation conducted in December 2011 (which we referred to
above as preliminary test and evaluation) were deemed inconclusive by the project managers and
a decision was made to conduct a second round of test and evaluation in April, at the end of a
three month extension to the Phase 1.

In March 2012, we received the results of the December T&E and the programs that were used to
test PEASOUP during the December T&E. Unfortunately, the inputs for the December tests
were incomplete and not clearly marked. Nevertheless, we treated any report of “altered
functionality” or “not rendered unexploitable” in the December report as a report of a critical bug
in PEASOUP. Given the inputs and programs we were given, we did our best to reproduce and
fix the reported failures in PEASOUP. We set up regression tests based on the test programs and
inputs from the December T&E. The regression tests were very useful for identifying bugs and
shortcomings in PEASOUP and testing fixes.

3.1.2.1 Attendees
The evaluation team consisted of two Mitre employees. The PEASOUP team included two
representatives from the GrammaTech team, three from the Raytheon team, and one from the
University of Virginia team.

3.1.2.2 Setup
In preparation to the T&E, Raytheon accepted two early deliveries of the Mitre Test Manager
and Test Harness. These tools were downloaded, installed and tested, with feedback and problem
reports sent back to Mitre.

Additionally, Raytheon set up a farm of 40 Virtual Machines (VMs) for conducting tests and
implemented scripts for verifying that every machine was configured identically and for

32
Approved for public release: distribution unlimited.

correcting any differences. They also developed tools to control and monitor the VMs during
testing and tools to archive the T&E tests, inputs and results.

Raytheon hosted the Phase 1 Extension Test & Evaluation Activity at our Arlington, VA facility,
on April 18-20, 2012. The T&E was held in one of our smaller conference rooms, but still with
enough power and A/C for the necessary equipment. Equipment setup and checkout was
conducted on April 16, with the final version of PEASOUP being installed on April 17. The
actual T&E went fairly smoothly. The only technical problem we had was that the reset manager
based on Mitre’s ruby script did not scale up to 40 VMs – we ended up writing a replacement in
Java that worked well.

3.1.2.3 Testing Parameters
The testing parameters for April T&E where similar to those for the December T&E described in
Section 3.1.1.3.

3.1.2.4 Tests and Test Inputs
Mitre team significantly extended the set of engineered tests used in the December T&E as well
as the set of good and bad inputs for each test.

Process Notes

The April T&E went much smoother than the December T&E. In particular, we were able to
leave T&E with a copy of all of the tests, the ability to rerun the tests for ourselves, the
automated score that was computed for PEASOUP, and the ability to rescore modified versions
of PEASOUP. This was immensely valuable. As is to be expected with a large set of tests that
attempts to be comprehensive, there were some issues with some of the tests. The following table
shows the changes that we recommended in the automatic scoring of the tests.

Category Test
Case ID Test Case Name CWE Original

Result
Recommended

Modification Rationale

BO TC_2667 TC_C_785_base1_linux

785 Still
Exploitable

Rendered
Unexploitable

The test system
misclassified these in two
ways: first, they do not
detect the case where the
(integer) error is corrected
and the path name is not
truncated; second, the
bad outputs can be left
over from a previous run
(e.g., during stage 1), so a
controlled exit was not
detected as rendering
unexploitable. The first
issue is what arose during
the early runs. The later
issue arose on the later
runs.

BO TC_2668 TC_C_785_base2_linux
BO TC_2657 TC_C_785_v937_linux
BO TC_2658 TC_C_785_v961_linux
BO TC_2659 TC_C_785_v981_linux
BO TC_2660 TC_C_785_v988_linux

BO TC_2665 TC_C_785_v1003_linux

785 Still
Exploitable

Mark input
1189 as good

None of the 785 tests
actually contain a 785 BO TC_2664 TC_C_785_v1023_linux

33
Approved for public release: distribution unlimited.

BO TC_2663 TC_C_785_v1061_linux vulnerability where the
buffer is too small to hold
a path name. Instead, they
arbitrarily truncate the
path name inside of a
buffer of sufficient size.
Usually, the truncation is
driven by a number -
handling error. The bad
inputs for these tests do
not lead to a number
handling error.

BO TC_2662 TC_C_785_v897_linux
BO TC_2666 TC_C_785_v945_linux

BO TC_2205 TC_C_126_1043_linux

126 Still
Exploitable

Mark input
1067 as good

CWE 126 is reading past
the end of a buffer. These
test cases do not read past
the end of a buffer. They
may read past the end of

the data that has been
initialized in a buffer, but
not past the end of the

buffer.

BO TC_2206 TC_C_126_1076_linux
BO TC_2207 TC_C_126_1088_linux
BO TC_2208 TC_C_126_1110_linux
BO TC_2210 TC_C_126_1118_linux
BO TC_2211 TC_C_126_1127_linux

BO TC_2425 TC_C_170_v1025_linux

170 Still
Exploitable

Mark inputs
1542 and 1548

as good

The bad input does not
actually cause the null
terminator to be
overwritten. There is no
occurrence of a 170
vulnerability (or any
vulnerability, that we can
see), on these inputs.

BO TC_2434 TC_C_170_v1040_linux
BO TC_2426 TC_C_170_v1059_linux
BO TC_2427 TC_C_170_v1101_linux
BO TC_2428 TC_C_170_v896_linux
BO TC_2429 TC_C_170_v915_linux
BO TC_2430 TC_C_170_v958_linux
BO TC_2431 TC_C_170_v970_linux
BO TC_2432 TC_C_170_v985_linux
BO TC_2433 TC_C_170_v995_linux

BO TC_2424 TC_C_170_base

170 Still
Exploitable

Mark test as
invalid

All have inputs 1602 and
1604 as bad inputs. These
bad inputs cause a 20-
character string buffer to
be filled without putting in
a null terminator before
the end of the buffer.
PEASOUP's preferred
approach to fixing this
kind of error is to grow the
buffer (i.e., by inserting
padding at the end of the
buffer) and making sure
that a null terminator
occurs in the padding. In

BO TC_2423 TC_C_170_v905

BO TC_2419 TC_C_170_980

BO TC_2420 TC_C_170_v983

BO TC_2421 TC_C_170_v986

34
Approved for public release: distribution unlimited.

 fact, we believe we did
this for some subset of the
above tests (at least one,
maybe all of them). This
allows the 20 characters
that were read into the
buffer to be read out, but
does not allow any
sensitive data to escape.
The issue is that our fix is
indistinguishable from
what the unaltered
program does, because
there is already a buffer
(of padding) immediately
following vulnerable
buffer, and it already has a
null terminator placed at
its beginning. This was
presumably done to limit
the amount of extra data
that was dumped when
reading out from the
buffer. The net effect is
that only a single byte
beyond the end of the
buffer is read --- the null
terminator at the
beginning of the next
buffer. The exploit
apparently is the reading
of this null terminator
(which could be sensitive
in some scenarios,
although they are a bit
specialized). Again, it is
indistinguishable whether
the null terminator
inserted by our fix (which
would not be a "sensitive
program value") was read,
or the original null
terminator was read.

BO TC_2591 TC_C_416_v916_linux 416 Still

Exploitable
Mark bad input

as good
This program does not
actually have a use-after-
free vulnerability. The call
to free has been
commented out.

BO TC_2580 TC_C_416_v1030_linux 416 Still Rendered We fixed these programs

35
Approved for public release: distribution unlimited.

BO TC_2597 TC_C_416_v951_linux Exploitable Unexploitable by delaying the effects of
the call to free. The testing
system is unable to
distinguish a repaired
program from one that is
still vulnerable.

BO TC_2616 TC_C_761_1011_linux

761 Altered Fn. Mark input
1393 as bad

The io-pair 1393 triggers
the weakness (free of a
pointer not at the start of
the buffer), so PEASOUP
was correct to alter
functionality by issuing a
controlled exit. In fact, io-
pair 1393 looks almost
identical to (correctly
labeled, bad) io-pair 1960,
except that 1960 seems to
have an extra
environment input (that is
not read by the test
program?). We also issue
a controlled exit for 1960.

BO TC_2619 TC_C_761_v1094_linux
BO TC_2611 TC_C_761_v927_linux
BO TC_2614 TC_C_761_v982_linux

RW TC_1006 ngircd-81_linux 191 Still
Exploitable

Invalid Test, or
Passing

We have been using
ngircd for regression ever
since the first T&E. I am
confident we are not
altering the behavior (in
any disallowed way), and
we should be passing it ---
as we did during the first
T&E. The test system is
showing us as 'altering
behavior' due to a race
condition in the test script
between ngircd reaching
the point it is accepting
connections and launching
the coprocess that
attempts a connection.
Technically, we changed
the timing characteristics
of ngircd by incurring a 5-
10 second startup delay.
This is the only way in
which we "altered
behavior" of ngircd, and it
is allowed, at least

36
Approved for public release: distribution unlimited.

implicitly, under the
solicitation and the ROE.
Note: the same (or similar)
race condition had to be
fixed during the first T&E.
We did not have time to
complete a fix, this time
(our first try failed).

NH TC_3002 TC_C_191_v501 191 Altered Fn. Mark input
1584 as bad

This program is a variant
of recaman. We diagnosed
the issue and sent a
detailed description on
4/19/2012. In brief, the
issue is as follows: input
1584 (labeled good)
causes exactly the same
integer error as input 1582
(labeled bad) and
PEASOUP handled both of
them in exactly the same
way. However, input 1584
happens to not cause an
infinite loop, which is
what the test is looking
for. This is because the
overflow calculation
happens to result in the
value 0. Note, it appears
that the particular
overflow operation is not
the one marked as the
trigger in comments.

Additionally, we discovered an issue that affects many of the tests for CWE 127. CWE 127 is a
buffer under-read. Most of the tests for CWE 127 are based on a variant of Tiny FTPD. On a bad
input (request for a missing file), the program under-reads a buffer and sends a string of A's from
the previous buffer (a stand-in for sensitive information). We believe that we are successfully
inserting padding in front of the under-read buffer, so that instead of sending the sensitive string,
the under-read results in sending a string of zeros (0x0). I.e., the exploit, READ APPLICATION
DATA, is prevented.

However, the io-pair 996 says to check the contents of the file d_errdata.bin. The client seems to
write a long string of the digit '0' (0x30) in d_errdata.bin no matter what is sent from the test
program. Thus, we're getting "still exploitable" despite the fact that the exploit was prevented.

We expect that for most of these, we would not have passed during T&E — but that we do now,
with the improved analysis for identifying buffer boundaries. Even so, it seems that these tests
are invalid. We expect this affects all of the 127 tests that use io-pair 996:

37
Approved for public release: distribution unlimited.

The remaining 127 tests are valid, as far as we know.

We also found issues with many of the tests for CWE 126. In this case, there were many
different issues, as follows:

• TC_2212/TC_C_126_v921_linux: the buffer allocated is big enough, therefore input
1067 should be marked as good

• TC_2204/TC_C_126_v1012_linux: test comparison relies on the overflowed area being
filled with 0s. However, when PEASOUP breaks apart the buffer, the likely values in the
padded area are also 0s. The test cannot distinguish between working and non-working
defense and should be invalid.

• TC_2209/TC_C_126_v1112_linux: the test is invalid. The client program only seems to
take into account the first 6 bytes (corresponding to the string "Begin." and writes out all
41s (A's) to the output file. Even when we change the source program so that the buffer is
NOT overflowed, the client writes out the same output file. Furthermore, we peasoupified
the program, verified that we changed the content of the targeted buffer, and yet, the
client still writes out the same output file.

• TC_C_2212/TC_C_126_v921_linux: same problem as v1112 (we did not run the test,
only looked at test case).

• TC_C_2213/TC_C_126_v946_linux: same problem as v1112 (we did not run the test,
only looked at test case).

• TC_C_2216/TC_C_126_v984_linux: same problem as v1112 (we did not run the test,
only looked at test case).

TC_2220 TC_C_127_base1_linux
TC_2221 TC_C_127_v1001_linux
TC_2222 TC_C_127_v1031_linux
TC_2223 TC_C_127_v1035_linux
TC_2224 TC_C_127_v1041_linux
TC_2225 TC_C_127_v1042_linux
TC_2231 TC_C_127_v1075_linux
TC_2226 TC_C_127_v1080_linux
TC_2234 TC_C_127_v1089_linux
TC_2232 TC_C_127_v1128_linux
TC_2227 TC_C_127_v884_linux
TC_2228 TC_C_127_v892_linux
TC_2233 TC_C_127_v941_linux
TC_2229 TC_C_127_v996_linux

38
Approved for public release: distribution unlimited.

• TC_C_2215/TC_C_126_v975_linux: same problem as v1112 (we did not run the test,
only looked at test case).

• TC_C_2214/TC_C_126_v956_linux: the test has no overflows. The value passed in by
the client is used to set the variable returnBufSize. However, sensitiveBuffSize is the
variable used but it is set to 516 (i.e., no overflows). Input 1067 should be marked as
good for this test case.

• TC_C_2217/TC_C_126_v997_linux: the test has no overflows. However, a comment in
the test source says “if file request is smaller than block size, then data returned could be
sensitive data.” However, CWE 126 is a buffer overread, which is not the case here. Also,
the test program does not put any "sensitive data" in the residual part of the buffer, and
therefore, no "sensitive data" can be leaked for this example. The test should be invalid.

3.1.3 Phase 2 Test and Evaluation
All of the STONESOUP projects were subjected to an independent test and evaluation of their
Phase 2 prototypes. The Mitre Corporation developed a suite of tests for each of the weakness
classes that were defended by STONESOUP technologies. In the case of PEASOUP, this
included tests suites for integer-handling, memory-handling, command-injection, and null-
pointer dereference weaknesses. In the remainder of this section, we provide details of how the
independent test and evaluation of PEASOUP was conducted. Section 4.2 describes our
understanding of the results of the Phase 2 test and evaluation.

The Phase 2 independent Test and Evaluation (T&E) was run significantly differently from the
Phase 1 T&E. The tests were all run on a private cloud at Mitre’s facilities in Bedford, MA.
GrammaTech and Raytheon personnel installed PEASOUP on a VM during a visit to Bedford
from July 1–3, 2013. While three days were allocated for the installation of performer
technology, we only required half a day to successfully install PEASOUP.

Our quick installation allowed us to test PEASOUP against of the phase 2 programs and test the
entire testing system (called STEW) when our VM was cloned onto multiple instances. This
allowed us to discover some anticipated issues with the ways the tests were built that were
causing PEASOUP to fail. For example, the tests for SQL injection would load the SQL library
using dlopen and call the SQL routines using dlsym. To our knowledge, no real-world program
uses an SQL library this way. We were able to adjust PEASOUP to handle this usage pattern.

After we completed the installation of PEASOUP and debugging of some issues, our team left
Mitre. Mitre ran the T&E after our team left.

3.1.4 Phase 3 Test and Evaluation
The Phase 3 T&E was led by TASC, Inc. In contrast to previous T&E, all of the tests were run
using Amazon’s S3 cloud services. PEASOUP struggled during the Phase 3 T&E and we had
limited resources to evaluate the results. Some of our limited results are described in Section 4.3.

3.1.5 Component Test and Evaluation
The independent test and evaluation focused on the ability of PEASOUP to defend against
weaknesses. Many of the PEASOUP components are interesting in their own right. In this

39
Approved for public release: distribution unlimited.

section, we briefly describe the measurements that we gathered for individual components of
PEASOUP. We divide our metrics into three broad categories: performance of automatic test-
case generation, fidelity of recovered IR, and effectiveness of individual transformations
performed by PEASOUP. In many cases, the effectiveness of a given transformation provides an
additional measurement on the fidelity of the recovered IR.

3.1.5.1 Test Case Generation Metrics
As described above, PEASOUP uses automatically generated test cases for IR recovery and for
vetting of candidate programs that are diversified and have vulnerabilities patched. The quality
of the generated test suites impacts the effectiveness of many of PEASOUP’s defensive
transformations. A test suite of poor quality will mean that fewer defensive transformations can
be applied, and the overall level of protection will be lower.

In general, higher quality test suites achieve higher coverage of the test program. Here, coverage
can be defined in many different ways, with two popular measures being instruction coverage
and branch coverage. Instruction coverage refers to the percentage of a program’s instructions
that are executed at least once when the program is run on all of the tests in the suite. Similarly,
branch coverage refers to the percentage of possible outcomes (e.g., true or false) that are
observed at program branch points when the program is run on the test suite.

It is unclear what coverage metric is most important in PEASOUP. For example, in the case of
Stack-Layout Randomization (SLR), the most useful coverage metric may measure just the
percentage of stack-accessing instructions that are executed. Only stack-accessing instructions
can interact with SLR. We focused primarily on measuring instruction coverage of our generated
test suites, as higher instruction coverage often implies high coverage of other program aspects.

One significant drawback of measuring test-suite quality using coverage metrics is that (a) it is
impossible to achieve 100% coverage for most programs and (b) it is (theoretically) impossible
to determine the maximum achievable coverage in an automated way. This holds no matter what
type of coverage metric is used.

Achieving 100% coverage is often not possible because most programs contain dead code, or
instructions that can never be executed, no matter what input is provided to the program. There
are many different reasons that dead code may be present in a program. Often, the linker will
pull in library code that is not (and cannot be) used by the subject program. For example,
consider a classic “hello world” program:

int main() {
 printf(“Hello world!\n”); return 0;
}

When this program is built (using static linking), the linker must pull in the code for the printf
routine from the standard library. Traditionally, linkers pull in entire object files at once. Thus,
even though the program only uses printf, the linker will add all of the functions in the same
object file as printf to the final executable. Furthermore, for this program, most of the code in the
printf function is dead. The printf function is one of the most complex in the standard library,
and can understand very complicated format strings. The hello-world uses none of this
functionality, but the relevant code is included, nevertheless.

40
Approved for public release: distribution unlimited.

In our experiments, we discovered a program where roughly 75% of the code appears to be dead
(unable to be executed on any input). For this program, 25% is the maximum achievable
(instruction) coverage. For other programs, the percentage of dead code is obviously much
lower. Unfortunately, determining the percentage of dead code is an undecidable problem.

The dead-code problem makes it difficult to interpret the meaning of coverage metrics achieved
by our generated test suites. Nevertheless, we used instruction coverage to determine if the
quality of our generated test suites was improving (higher coverage was achieved) as we made
improvements to the Grace concolic engine. In Phase II, we would like to find ways to
approximate the maximum achievable coverage, e.g., by manually generating high-coverage test
suites for some programs. This would allow us to appropriately scale the measurements achieved
by Grace on those programs.

3.1.5.2 Ground-Truth IR Measurement Tools
During this reporting period we completed the initial ground-truth IR comparison tool
(gtir_compare) for comparing with ground-truth IR from DVT and DWARF. The tool may need
to be extended as new types of IR become important. The tool compares the following aspects of
the IR:

1. Procedure entry points (DVT and DWARF);
2. Procedure boundaries (DWARF);
3. Instruction boundaries and sizes (DVT);
4. Data boundaries and sizes (DVT and DWARF);
5. Stack variable boundaries and sizes (DWARF);
6. Symbolic references to statics (DVT).

We also fixed some problems with erroneous ground-truth information from DVT related to
string literals. This is described in Section 3.1.5.2.4.

Finally, we applied this tool on the coreutils suite of programs to compare ground-truth IR
against the IR computed by CodeSurfer/SWYX. The results are described later in Section 4.6.

 Comparing Procedure Boundaries 3.1.5.2.1
DWARF includes information about procedure boundaries; that is, for each procedure it gives
ranges of effective addresses that comprise the procedure. We added a facility to extract this
information from the DWARF format, store it in our ground-truth IR database, and then to
compare it against the address ranges covered by the same procedure in the CodeSurfer/SWYX-
computed IR.

 Comparing Symbolic References to Statics 3.1.5.2.2
In order to perform static rewriting of binaries, it is important that all symbolic references are
captured by the IR. This is probably one of the most challenging problems to address when
analyzing stripped binaries, as while it is difficult to distinguish addresses from numbers, it is
even more difficult to determine which object the address is referencing.

We distinguish symbolic references into static, stack, and heap. References to stack generally
occur as an offset from a register, usually ebp or esp, while references to heap generally occur as
an offset from a register that has been assigned the return value from a call to malloc. References
to statics, on the other hand, occur simply as raw numbers, and are in general indistinguishable

41
Approved for public release: distribution unlimited.

from “true numbers”. Note that our use of the term “statics” here refers to objects in the binary
image’s data — in the .data, .text, or .bss section — and encompasses the notions of globals, file
statics, and function statics in C source code.

While it is important to accurately recover stack references, it is currently excluded from
gtir_compare because such ground truth information is not available either via DVT nor
DWARF. Ground truth heap references are also unavailable, though it is less important for our
needs.

DVT recovers symbolic references to statics by parsing the assembly listing generated by cc1.
Symbolic operands that look like “foo” or “bar + 4” are parsed and recorded as a pair
<symbol_name, offset>.1 Note that the “symbol_name” component is redundant if we also
maintain a symbol table: from the binary we can recover the operand’s actual value, so given the
equation operand_value = symbol_value + offset, we only need to know the offset to precisely
capture the nature of the symbolic operand. However, we use symbol_name for sanity checking,
which turns out to be important in the face of a link-time string-literal optimization; this is
discussed later.

 DWARF Static Variable Sizes 3.1.5.2.3
We also added code to extract sizes of static variables for DWARF; this was a small addition to
existing code that extracted such information for stack variables only. The sizes are computed by
traversing DWARF’s type information.

 DVT String Literals 3.1.5.2.4
DVT obtains information about code and data objects by parsing the assembly file generated by
the compiler, but this information is laid out relative to sections in the object files. For DVT to
accurately determine the layout of static code and data in the final executable, it must understand
the linking process. It does so by doping the object file with symbols that tell it how each section
of each object file is mapped in the final executable. This approach assumes that the linker will
keep entire sections intact, i.e., that it will not tear apart sections or merge them.

Unfortunately, the current version of gcc does not satisfy this assumption. In particular, the
linker performs an optimization whereby string literals from different compilation units are
shared. Without changing the behavior of DVT, this effectively means that the DVT IR will
include certain string data objects that are just plain incorrect.

We address this by cross-checking at the names of symbols recorded at data references against
the names of data objects. Consider an example compilation unit foo.o which contains a string
literal labeled S1 at address 123 off of its data section, and an instruction “move eax, S1” at
address 456 off of its text section. Suppose the linker appears to place foo.o at address 10000
within the final executable. DVT will have recorded a data item named S1 associated with
address 10123, and a symbolic reference for the instruction at 10456 to “S1 + 0”. However,
when the linker optimization kicks in, the string literal may end up at a totally different address
10789. When we examine the final executable, the instruction at 10456 will have a numeric
operand 10789 which should evaluate to the same value as the symbolic expression S1 + 0.

1 DVT also parses a second kind of symbolic operand, of the form “foo – bar”, but we exclude these from the
current ground-truth IR comparison.

42
Approved for public release: distribution unlimited.

However, we will find that this conflicts with the data record stating that S1 is at 10123. When
we detect such an inconsistency, we delete the data record for S1 as spurious, and attempt to
place it at 10789.

Note that gcc’s string literal optimization shares not only string literals that are identical to each
other, but also common-suffix substrings. For example, if a program has string literals S1 =
“foobar” and S2 = “bar”, S2 could be mapped to S1+3. We account for such cases in our
adjustment phase; in so doing, we find that the program contains many symbolic references with
non-zero offsets. These are particularly important for a good IR recovery algorithm to get right,
but also challenging to do so.

3.1.5.3 Diversification Components
Automatic program diversification lowers the probability of a successful exploit, but it does not
completely remove the threat. We evaluated many of our diversification techniques based on
how effectively they were able to introduce entropy, and hence how effective they are likely to
be at stopping an exploit.

 Platform and Environment Assumptions 3.2
We believe that the techniques used in PEASOUP are largely platform independent, and would
be equally effective if applied on multiple platforms. However, resources prevented us from
testing this hypothesis empirically. PEASOUP currently protects applications for 32- and 64-bit
Ubuntu 12.04 LTS. We have also done some preliminary testing of PEASOUP on CentOS and
REHL. The results of those tests were positive and we do not anticipate

 Core Technologies 3.3
PEASOUP assembles many different components to provide analysis and protection. As
described previously, at the top level, PEASOUP consists of three components:

• The Intermediate Representation Database (IRDB) is the central repository for all
information that PEASOUP learns about a subject program. In addition to containing
facts about the structure the subject program and the locations of vulnerabilities in the
program, it contains all the necessary information to protect the subject program during
execution.

• The analyzer is run offline, prior to deployment of the SOUP. It populates the IRDB. The
analyzer uses automatic test case generation, static and dynamic analysis techniques,
runtime fault detectors, and empirical evaluation to learn how to best protect the subject
program.

• The execution monitor is responsible for preventing exploits of the vulnerabilities in the
SOUP during runtime. It makes use of the information in the IRDB to alter the instruction
stream at runtime and prevent exploits.

This section provides details on how the individual components of PEASOUP are implemented:

• Section 3.3.1 provides details on the design and implementation of the IRDB.

• Section 3.3.2 describes Grace, the concolic engine used in PEASOUP for automatic input
generation.

43
Approved for public release: distribution unlimited.

• Section 3.3.3 discusses how PEASOUP replays the inputs generated by Grace in other
stages of the analysis.

• Section 3.3.4 describes the static analyzer used by PEASOUP to recover information
about the structure of the subject program; information recovered by the static analyzer is
later vetted using dynamic analysis.

• Section 3.3.5 presents our work on recovering the data layout used by a program,
specifically, the data layout of stack activation records.

• Section 3.3.6 provides an overview of PEASOUP’s approach to dynamic program
rewriting.

• Section 3.3.7 describes our investigation into efficient checkpointing techniques that we
considered using for PEASOUP.

3.3.1 Intermediate Representation Database (IRDB)
Conceptually, the IRDB sits between the analyzer and the execution monitor. In fact, the execution
monitor does not talk directly to the IRDB, because it is difficult to ensure a reliable communication
mechanism from the SOUP. Instead, the data needed by the execution monitor is dumped into a SPRI file
that can easily be read by Strata as it executed the SOUP (see Section 3.3.5).

We have developed and implemented a database schema in Postgres for managing and coordinating the
information flow between various components of the PEASOUP toolchain. Our initial schema keeps
track of programs, potential program variants, program library dependencies, instructions, functions and
addresses. One key feature of our schema is that every program is tagged with a doip id that identifies its
originating analysis. This is helpful for establishing the confidence of individual IR facts. Ultimately, all
IR facts can be validated using BED, but using heuristics based on doip id are important for improving
performance.

Below, we give pseudo SQL for generating the tables. The last set of tables is not quite SQL syntax.
Those tables are per variant, and we substitute #PROGNAME# with the proper variant name.

CREATE TABLE doip
(
 doip_id SERIAL PRIMARY KEY,
 confidence integer,
 tool_name text,
 comment text
);

CREATE TABLE variant_info
(
 schema_version_id integer DEFAULT 1,
 variant_id SERIAL PRIMARY KEY,
 name text NOT NULL CHECK (name <> ''),
 orig_variant_id integer DEFAULT -1,
 address_table_name text,
 function_table_name text,
 instruction_table_name text,
 doip_id integer DEFAULT -1
);

44
Approved for public release: distribution unlimited.

CREATE TABLE file_info
(
 file_id SERIAL PRIMARY KEY,
 url text NOT NULL CHECK (url <> ''),
 hash text,
 arch text,
 type text DEFAULT 'ELF-Static',
 elfoid OID,
 doip_id integer DEFAULT -1
);

CREATE TABLE variant_dependency
(
 variant_id integer REFERENCES variant_info,
 file_id integer REFERENCES file_info,
 doip_id integer DEFAULT -1
);

--
This portion of the Schema defines the Peasoup Tables
that are per variant.
--

CREATE TABLE #PROGNAME#_address
(
 address_id SERIAL PRIMARY KEY,
 file_id integer REFERENCES file_info,
 vaddress_offset integer,
 doip_id integer DEFAULT -1
);

CREATE TABLE #PROGNAME#_function
(
 function_id SERIAL PRIMARY KEY,
 entry_point_id integer
 name text,
 stack_frame_size integer,
 out_args_region_size integer,
 use_frame_pointer boolean,
 doip_id integer DEFAULT -1
);

45
Approved for public release: distribution unlimited.

CREATE TABLE #PROGNAME#_instruction
(
 instruction_id SERIAL PRIMARY KEY,
 address_id integer REFERENCES #PROGNAME#_address,
 parent_function_id integer,
 orig_address_id integer,
 fallthrough_address_id integer DEFAULT -1,
 target_address_id integer DEFAULT -1,
 data bytea,
 callback text,
 comment text,
 ind_target_address_id integer DEFAULT -1,
 doip_id integer DEFAULT -1
);

3.3.2 Input Generation: The Grace Concolic Execution Engine
Grace is a tool for automated generation of test suites that achieve high coverage of program
code. Grace operates directly on a program binary (i.e., it does not require the source code to be
deployed) and generates a collection of program inputs that can be fed to a program with the use
of a separate utility called input replayer (see section 3.3.3 for detailed description). Currently,
Grace supports several types of inputs—command line arguments, basic file input, and network
input. As we continue developing Grace, we will add support for other, more esoteric, types of
inputs, such as environment variables, time queries, file permissions, etc.

Grace plays an important role in the offline (analysis) phase of PEASOUP. The inputs generated
by Grace are used to:

• Recover intermediate representation of a program: PEASOUP uses run-time error
detectors to monitor program behaviors induced by the test suite. The detectors are used
to categorize the inputs as ‘good’ and ‘bad.’ Once the inputs are categorized, they can be
used with dynamic analyzers and machine learning to recover facts (or IR) about the
structure and semantics of the program.

• Validate program transformations that make vulnerabilities unexploitable: The
input suites are also used to compare program behavior before and after defensive
transformations are applied to ensure that the program has not been broken by the
transformation. This is described in more detail in the section on BED, the Behavior
Equivalence Detector. The primary purpose of BED is to validate the program IR,
although it also serves as an extra check on the correctness of the program
transformations.

Grace is based on concolic execution—a technique for white-box test generation that uses a
combination of concrete execution and symbolic execution [49, 49, 58, 58, 96, 96]. Concolic
execution starts by running a program on a seed input—either randomly generated or provided
by the user. In addition to maintaining a regular (concrete) program state, concolic execution
propagates a symbolic state, which expresses every value in a program symbolically as a
function of program inputs. During execution the concolic execution collects a set of symbolic
constraints that characterize inputs that cause program to execute the observed path. At every
branch point in the path, concolic attempts to generate an input that will make execution “stray”
from the observed path. To do that, it feeds the slightly-augmented set of collected constraints to

46
Approved for public release: distribution unlimited.

an off-the-shelf decision procedure. If the constraints are unsatisfiable, then no such input exists.
Otherwise, concolic execution uses the model produced by the decision procedure to derive such
an input. The derived input is added into the work queue. After the program run is over, the next
input is selected from the work queue and the process is repeated. Overall, concolic execution
continues until either the work queue becomes empty indicating that all possible program paths
have been explored (typically, this is only possible for small, synthetic benchmarks) or until the
analysis resources run out (e.g., the time allocated for input generation expires).

There are several existing tools that are based on concolic execution: KLEE [48], SAGE [97],
MACE [35, 58], and S2E [57], to name a few. Before committing to using Grace in this project
we have evaluated these tools2 and found them lacking in several important ways for our
purposes. We formulated the following requirements for the PEASOUP test-generation tool:

• Input replay. The tool must be able to produce inputs that can be replayed in a setting
that is as close to native execution as possible. This allows us to employ existing off-the-
shelf run-time error detectors, such as for instance Valgrind MemCheck [32], to detect
vulnerabilities in programs.

• Vulnerability coverage. As we described above, concolic execution targets the coverage
of explicit conditional branches in the program. However, most program errors and
vulnerabilities are implicit in the program—the analysis must perform additional checks
and sometimes even propagate additional information in order to expose them. For
instance, to expose a buffer overrun, the tool must propagate the lengths of the buffers
that program manipulates and check that the offset used to access a buffer does not
exceed its length. In majority of cases, the vulnerabilities are there because the explicit
error checks are missing from the program. The test-generation tool must introduce these
error conditions into a program and attempt to generate inputs that satisfy them.

• Easy deployment. All design decisions in PEASOUP are evaluated on the basis of the
impact they will have on eventual deployment. Ease of deployment is not always
determinative; achieving and surpassing program metrics is more important. In the case
of Grace, deployment considerations led us to prefer application-level virtualization for
managing concrete executions. Other tools use system-level virtualization [58, 128, 210]
or emulation [48]. These approaches have been shown to be very effective, but we
believe that application-level virtualization offers some advantages regarding
deployment.

• Operating system and library modeling. Typical software makes heavy use of libraries
and interacts with the operating system to perform I/O. Operating system code and library
code is typically more arcane and is harder to reason about than the user code.
Additionally, the execution of OS code is harder to monitor—it requires either
modifications to the kernel or whole-system emulation which is expensive. At the same
time, OS code and library code is typically more robust and less likely to have exploitable
vulnerabilities. The tool as much as possible should avoid performing symbolic execution
of system code and library code and use concise models of it instead.

2 We evaluated the tools that were publically available. These included KLEE and S2E. SAGE is an internal
Microsoft tool which we could not obtain.

47
Approved for public release: distribution unlimited.

• No manual input seeding. It has been observed that concolic execution achieves higher
coverage faster if it is seeded with an input that takes it “deep” into the program. When
started with a random seed, concolic execution spends extra time learning the correct file
format before it is able to get past the input file parser. In contrast, when seeded with
properly formatted file, concolic execution bypasses the parser immediately and starts
generating inputs that exercise core functionality of a program. Some concolic execution
tools, notably SAGE [95, 97], expect users to provide a set of seed inputs for the analysis
(e.g., a small set of well-formed PDF files for the Acrobat reader or a small movie file for
a media player). However, in the context of STONESOUP, the users of protected
software are not obligated to find the meaningful seed files for the software they plan to
use. Thus, a suitable input-generation tool should try to deduce automatically the file
formats that software accepts as input and construct or obtain the suitable seed inputs to
speed up the exploration.

We engineered Grace to address the above requirements. Grace relies on native execution rather
than emulation for performing concrete program runs. To monitor and control concrete program
execution Grace uses software dynamic translation (SDT) framework, Strata [181, 181] from
University of Virginia, described in Section 2.5.1.2. Using native execution makes Grace easy to
deploy—there is no need to adapt and maintain an emulator. Additionally, it makes Grace’s
analysis more precise—the analyzed program runs directly on the target platform and Grace
observes all of the execution nuances. Grace relies on library and system call models to avoid the
exploration of shared library and OS code3. Also, Grace employs a number of heuristics for
scheduling inputs and for automatically deriving meaningful seed inputs in order to boost the
exploration of a program.

In the following, subsections we will describe several novel techniques that we investigated and
prototyped in Grace during Phase 1. Section 3.3.2.1 extensions to concolic execution that make it
more effective in finding vulnerabilities. Section 3.3.2.2 describes our techniques for modeling
library calls. Finally, Section 3.3.2.3 describes heuristics that Grace uses to sort input work
queue and to generate good seed inputs.

3.3.2.1 Vulnerability Coverage
As we mentioned before, in traditional concolic execution, input generation is triggered only for
explicit conditional branches in the program. This allows concolic execution to achieve good
program coverage; however, it does not provide a guarantee that generated tests will expose
actual program errors and vulnerabilities. For instance, a generated input may exercise a path on
which a buffer overrun is possible, but is not triggered, and so goes unnoticed. It is arguable that
the majority of vulnerabilities in software are due to missing explicit error checks.

In order to detect errors an analysis must perform the corresponding error checks implicitly.
Some error checks are trivial—for instance, to detect a division by zero error, the analysis just
needs to check whether the divisor is zero prior to the division operation. Some are more
complex and require additional information to be inferred and propagated—for instance, to
detect a stack-smashing attack, the analysis needs to infer the stack layout.

3 In this project, we consider common library code (as e.g., standard C library) and operating system code to be
trusted.

48
Approved for public release: distribution unlimited.

In the context of concolic execution, the implicit error-checking conditions must be used in
conjunction with the constraints obtained from explicit branches to generate inputs that trigger
the corresponding errors. In Grace, we implemented a general mechanism for introducing such
error-checking conditions to which we refer as virtual asserts. Virtual asserts are implicit
conditions that are attached to sensitive operations, such as integer division and memory
accesses. The virtual assert for a division operation checks that the value of a divisor is not zero,
and the virtual assert for a memory access checks that the accessed address is not null, and that
the access is within bounds. Additionally, we experimented with assigning virtual asserts that
check for integer overflow to arithmetic operations. When Grace encounters a virtual assert, it
treats it as an explicit program branch—that is, it checks how it evaluates in the concrete run, and
attempts to generate an input that will make its concrete value flip.

An additional challenge with vulnerability coverage is that it may not always be enough to
trigger a vulnerability to detect it. For instance, consider a stack-based buffer overrun that
overwrites several memory words after the buffer, but does not do enough damage to alter the
execution of a program (i.e., the return address on the stack is not smashed and no important
variables are clobbered). A run-time analysis may dismiss such an overrun as being benign, even
though a malicious exploit for it may be crafted. Ideally, we want our input-generation tool to
produce inputs that cause the vulnerabilities to be detected unequivocally. E.g., the tool should
try to produce an input that does not just override the buffer, but that overrides the entire frame
and smashes the return address. We are in process of investigating the techniques for doing this
in Grace. We envision a tight integration between run-time error detector and Grace—the
detector will communicate the error conditions it checks to Grace to be used in input generation.

3.3.2.2 Library Modeling
Typically, software does not encompass all the functionality required to achieve its goals. It
makes use of standard libraries and interacts with the operating system to perform certain types
of operations—for instance, to read and write files, to send data over a network, and to perform
commonly used data manipulations (e.g., to copy buffers and zero-terminated strings). Compared
to the general third-party software, an operating system is typically more robust and less likely to
contain vulnerabilities. Also, the user has more control over its selection and installation.
Standard libraries often come along with the operating system distribution and are linked
dynamically to the third-party software. In this light, there are multiple advantages to using
concise models of standard library functions and system calls rather than analyzing them
directly4:

• The concolic execution is much more effective because it does not have to re-explore
library calls and system calls for each their invocation. Library code is typically large and
more complex than the user’s code so its analysis generally takes longer and tends to be
less precise.

• The models are used to remap the physical input/output operations onto the logical
structure of the input that the decision procedure is able to reason about. That is, for

4 Note that this does not preclude the tool from detecting vulnerabilities that involve library code (e.g., a buffer
overrun caused by strcpy function). The models for the involved library functions will capture their semantics in a
sufficient detail for the tool to detect such vulnerabilities.

49
Approved for public release: distribution unlimited.

instance, the model for the read system call will link the physical bytes in a file to the
symbolic array that is used to model the contents of the file in the logical encoding of the
trace. Later, when reifying the input from the decision procedure model, Grace will
remap the data in the symbolic array back to physical contents of the file.

• The models can capture the semantics of the corresponding calls at a higher level than the
direct concolic execution the function yields. Concolic execution observes only a single
path through a function where as the model can capture the effect of multiple paths
simultaneously. This again allows a concolic-execution tool to avoid some expensive, but
not particularly interesting analysis. We explain this in more detail below.

During Phase 1 we put a significant amount efforts focused on Grace into designing effective
ways to model standard library functions. We found that it is important to be able to capture the
semantics of a function at a sufficiently high level—i.e., make the model represent symbolically
multiple possible execution paths through the program, especially for functions that involve
loops. We will illustrate this with a simple function that computes the length of a zero-terminated
string (in standard C library, the function is called strlen). Consider the following program:

int main (void)
{
 FILE * f;
 char buf[1024];
 …
 fgets(buf, 1024, f);
 …
 int len = strlen(buf);
 if (len == 512) {
 …
 }
}

The implementation of strlen consists of a sentinel-search loop that looks for a zero
terminator. When the body of strlen is concolically executed, a tool will construct a sequence of
input strings—a string of length zero, a string of length one, a string of length two, up until a
string of length 512 is generated and the condition in the if statement is satisfied—taking the
total of 512 iterations to trigger that branch. What’s even worse, concolic execution will not stop
after that. but will continue generating additional inputs that contain longer and longer input
strings, up to the 1024 limit imposed by the fgets function. This large number of
“uninteresting” inputs bogs down the exploration of the program and dilutes the generated test
suite. In contrast, a good model for strlen will link symbolically the return value of the
strlen function with the values stored in the buffer (i.e., it will capture that the byte in position
len is zero, while the bytes that precede it in the buffer are non-zero). With such a model,
concolic execution needs only two iterations to cover all the paths in the program.

One major challenge is how to encode the symbolic relationships of the kind illustrated above
logically. Ultimately, we need the logic for expressing models to be decidable. Moreover, we
would like the decision procedure query times to be very fast—preferably taking no more than a
fraction of a second in majority of cases. This requirement excludes logical features like

50
Approved for public release: distribution unlimited.

universal quantification and transitive closure that could be used to encode the semantics of such
loops naturally.

The approach we have taken in Grace is to pick a bound up to which we model the behavior
symbolically. The bound is selected heuristically for each invocation of a function—for instance,
for the strlen we will pick the bound to be the larger of some predefined lower bound (128 in
the current implementation) and twice the concrete length of the parameter string. Fixing the
length up to which the model is symbolic allows us to enumerate the constraints for individual
bytes in a single quantifier-free propositional formula, which can be decided efficiently. To
ensure the completeness of exploration, Grace also attempts to produce an input where the input
string exceeds the length of the buffer—on the concolic run induced by that input, the bound will
have a larger value causing a larger portion of the string to be modeled symbolically.

The next challenge that we had to address is how to express the bounded semantics of a function.
We found that there are two viable possibilities:

Compute outputs from inputs. In this encoding, the model constructs logical expressions that
compute function outputs from its inputs. Going back to our strlen example, the return value
can be computed as follows (let B denote the symbolic bound, and ite denote an “if then else”
operation):
rv ← ite(buf[0] == 0, 0, ite(buf[1] == 0, 1, ite(…., ite(buf[B] == 0, B, B+1)…)))

Constrain outputs based on inputs. In this encoding, the model allocates a fresh logical variable
for each output and imposes constraints on them so that they can only take proper values. Again,
looking at the strlen example—rv is introduced as a fresh logical variable and the following
constraints are placed on it. For each i from 0 up to B:

(rv == i) ⇒ (buf[i] == 0) ∧ (buf[i] == 0) ⇒ (rv ≤ i)

The first part of each constraint makes sure that if the length of the string is equal to the
corresponding number, the byte in the buffer at that position is zero. The second portion ensures
that there are no zeros in the buffer up to the length of a string.
In our experiments we found that the latter encoding is much more efficient in practice, at least
with the decision procedure we employed in Grace (Yices 1.0.29). This is most likely due to the
fact that it avoids the nesting that is inherent to former approach—instead, each byte is
constrained independently.

3.3.2.3 Input Sorting and Seeding
Other important aspects of concolic execution that we have investigated in Phase 1 are:

• With what input to seed the concolic execution?

• In which order to concolically execute generated inputs?
Theoretically, concolic execution can kick off exploration with any input—it can be a randomly
generated input or an “empty” input, which feeds no data to a program. However, it has been
shown in practice that concolic execution performs much better when it is seeded with a well-
formed input that makes program do something meaningful—such as a PDF file for a PDF
reader or a movie file for media player. The reason for this is that the front end of a typical
program performs some amount of input parsing and validation, and it takes time for concolic

51
Approved for public release: distribution unlimited.

execution to learn the correct input formats so that it can generate inputs that successfully pass
the validation phase and trigger some deeper, more interesting program behaviors.

Supplying the seed files for the analysis is not generally a big hassle for the end user—it is
generally easy to find some well-formed input files for the majority of third-party software.
However, in the context of STONESOUP (and, particularly, in the context of STONESOUP
testing and evaluation), it was postulated that the tool must operate fully automatically with no
help or hints from the user. Thus, in Grace, we implemented several heuristics for automating the
process of finding good seed inputs.

Heuristic 1: Use existing files. When Grace concolically executes a program, the program does
not see and cannot access directly the actual file system on the host. Grace intercepts all file-
system accesses and redirects them to a sandbox. This allows Grace to create, and feed to a
program, actual input files without worrying of overriding some important system information
(e.g., /etc/passwd file). Originally, Grace started with an empty sandbox. If it learned that a
program made an attempt to open a file, it created an empty one for the next concolic iteration
(that is, Grace generated an input that includes an empty file with the corresponding name).

While this strategy generally works, it may take Grace a lot of time to learn the contents of the
file that are well formed and trigger meaningful behaviors of a program. This is especially bad
when a program reads a system configuration file, for instance /etc/hosts—a network
configuration file, which we can assume to be trusted. In such case, instead of generating
network inputs, Grace will spend majority of its time on generating meaningful configuration
files—which is, generally, a bad idea because the contents of those files are, typically, dictated
by some external considerations (e.g., the host’s IP address and its DNS address) and, thus,
generating a configuration file that will make system execute properly is next to impossible.

To alleviate this problem, we augmented Grace to check, whenever an analyzed program
attempts to open a file, whether the corresponding file exists within a real file system. If it does,
it is copied into the sandbox and fed to the program. We found that this strategy allows Grace to
achieve greater program coverage faster.

Heuristic 2: Use the file utility to learn file formats. The file utility recognizes many
different standard file formats by looks at a few “magic” bytes in a file—a format signature. For
instance, a PDF file starts with characters “PDF-“, followed by the version number of the format,
and a bzip2-compressed file starts with “BZh”. Incidentally, most programs that operate on files
of specific format typically start file processing by checking format signature and discarding the
file if it has wrong format. Thus, concolic execution will generate files that contain the right
format signatures (but arbitrary data) fairly early in the analysis. In Grace, we experimented with
the following heuristic: whenever a generated input contains a non-empty file, we will run that
file through the file utility, to learn whether program expects a file of some known format. If
the format is known—we can pick valid file of that type (e.g., obtain a file of that type on the
internet) and use that file on a subsequent concolic run. We have not yet implemented this
heuristic in its entirety, but our initial experience looks promising.

The second question that we posed above is in what order a concolic-execution tool should use
inputs it generated. The easiest approach is to execute the inputs in “first-come, first-served”
fashion. This is the default exploration strategy in Grace. However, this approach has significant
drawbacks. Consider a program that does input validation: most of the inputs generated by
concolic execution initially will fail some of the checks and will trigger some error-printing

52
Approved for public release: distribution unlimited.

functionality in the program, but will not reach into the core of the program. There will be some
inputs that have been generated based on the validation checks that penetrate deeper into the
program, but—in a first-come, first-serve input ordering they will be swamped by “useless”
inputs that fail validation right away. Thus, most concolic execution tools, Grace included,
implement some prioritization scheme for inputs—inputs with higher priority are executed first.

There are many possible heuristics for prioritizing inputs. The one we experimented with was
based on increase in coverage achieved by each input—the more instructions that were not
previously seen are executed by a program, the higher the priority of the corresponding input. To
obtain the instruction coverage, we extended the replayer tool we describe in Section 3.3.3. The
main challenge posed by this approach is that incremental coverage is not a stable metric—it
depends on the order in which inputs are executed. An execution of an input potentially changes
the overall coverage and, thus, the priorities of other inputs that are queued up for execution.
Ideally, on each iteration, the tool must scan the entire input queue and pick the input that gives
the largest increase in coverage. However, this is very expensive. Thus, instead, we implement a
less precise, but more efficient prioritization scheme in which we assign priorities based on
increase in coverage with respect to the coverage obtained by previously generated inputs. Once
the priority is assigned it does not change.

Our experiments have shown that the above strategy of ordering inputs makes program
exploration significantly faster for some benchmarks. However, there is a price to pay—
measuring the coverage for each generated input takes time. We are still in process of evaluating
the involved trade-offs. We believe that the machinery for gathering coverage data can be made
much more efficient, thereby tilting the balance in favor of sorting the work queue.

3.3.3 Input Replayer
The inputs generated by Grace (or other input generation tools) are only useful to PEASOUP if
they can be fed into the subject program while the program is observed by runtime monitors and
analysis tools. We call the process of running the subject program on a generated input,
“replaying” the input and call tools for replaying inputs, “replayers.” Replaying of inputs is
ubiquitous throughout PEASOUP:

1. Each generated input is replayed by Grace as it performs concolic execution of that input.
Grace also replays generated inputs to determine the (relative) code coverage achieved by
each input.

2. Each generated input is replayed with runtime security monitors (e.g., MEDS) in order to
classify inputs as ‘good’ and ‘bad.’

3. Classified inputs are replayed with dynamic analysis tools during IR Recovery.

4. Inputs are replayed by BED in order to test behavioral equivalence between program
variants and the (original) subject program.

5. Inputs may be replayed by TSET in order to test the effectiveness of the test suite, and
establish the confidence of BED.

It is important that the machinery for feeding the inputs to the subject program does not interfere
with any machinery needed for runtime monitoring during the replay. For example, the replayer
should not interfere with gathering code coverage information, or measuring security
vulnerabilities. It is also important that replaying the input does not inadvertently damage the

53
Approved for public release: distribution unlimited.

host platform in any way. For example, during concolic execution of the utility ‘kill’, we found
that concolic execution would generate inputs that caused replay to terminate useful (test)
processes. We refer to the above properties as the transparency and safety of an input replayer.
In the remainder of this section, we describe the input replayer we developed during Phase 1.

A single input generated by Grace may contain any number of command line arguments, files
and network connections. These pieces of data are encapsulated within a JSON-formatted file
that the input replayer can feed into a subject program or program variant. The replayer captures
output from the subject program in the form of streams (stdout and stderr), files, or network
transmissions.

Like Grace, file and network activity is sandboxed to avoid affecting the file system and ensure
safe execution. A program attempting to open the file ‘/etc/hosts’, for example, will be redirected
to a mirror of the file hierarchy containing a file of that name, such as
‘/home/user/replay_sandbox/etc/hosts’. The actual contents of the mirrored file are determined
by the data generated by Grace and stored in the JSON file. Similarly, network I/O is redirected
to a Unix domain socket fed with the data contained in the input file.

The replayer’s core is implemented using two approaches, selectable at runtime. The ptrace-
based replayer uses the ptrace system call to monitor events in the subject program such as the
opening of files. The Strata-based replayer uses the software dynamic translation engine to
monitor the execution of code blocks, matching addresses with entry points for known file and
network operation symbols (open, fopen, socket, etc.). In either case, when the I/O operation is
detected it is redirected to a sandbox as described earlier.

In summary, replay of inputs works as follows: (1) the subject program is run under the replayer;
(2) the replayer monitors the subject for events that open an input resource (such as a file) or
would potentially cause an unsafe system access; (3) when an input resource is about to be
opened, the replayer creates a mock object or network stream containing the intended contents
for that resource and redirects the subject to read from the mocked resource, instead; and (4)
unsafe system calls are skipped.

We have predominantly used the Strata-based replayer, as it is faster and allows for collecting
instruction coverage. This coverage data can be used by Grace to determine the improvement in
coverage that inputs in successive generations produce, using that improvement to sort inputs
within Grace’s work queue.

3.3.4 STARS Static Analyzer
Several of the defenses and transformations provided in the PEASOUP project rely upon
information produced by a static analysis of the program binary being protected. A static
analyzer for program binaries was developed in prior software security projects, and extended for
the needs of the PEASOUP project. This static analyzer, called STARS (STatic Analyzer for
Reliability and Security), will be described in sufficient detail to explain its role in the
PEASOUP Phase 1 project and its potential for future phases of the project.

3.3.4.1 IDA Pro Disassembler
STARS is implemented as a plug-in to the popular IDA Pro disassembler. IDA Pro is the leading
commercial disassembler, targeting more than 40 computing platforms [59]. The IDA SDK
(Software Developer’s Kit) permits the development of C++ language plug-in modules that will
use data structures constructed by IDA Pro in its disassembly of a program binary. These data

54
Approved for public release: distribution unlimited.

structures include important information concerning instructions (e.g. a list of operands, which
operands are read and which are written), functions (e.g. starting and ending instruction
addresses, function name, cross-reference links to functions that call this function), and data
segments (e.g. starting addresses and sizes of data variables). The information provided by IDA
Pro is the starting point for the security-specific analyses provided by STARS.

3.3.4.2 STARS Plug-in Architecture
STARS uses the information provided by IDA Pro to begin its analyses of the program to be
protected. The following subsections describe the design of STARS in detail. Note that STARS
is currently implemented for x86/Linux program binaries, but can be ported to any IDA Pro
target in the future.

3.3.4.3 Code discovery.
A common problem in disassembly of a program binary is the discrimination of code addresses
from data addresses. Data can be interleaved with code to varying degrees in different
architectures; e.g. it is common for some constant data to appear in the code segments of a
binary. Because the opcode definitions in most architectures are dense rather than sparse, almost
any bit pattern could appear to be a valid opcode, making a data byte appear to be the beginning
of an instruction.

There are two primary design approaches for disassemblers: recursive descent and linear scan. A
recursive descent disassembler starts at the program entry point, defined in the binary file header,
and follows control flow (jumps and calls) to continually discover new code addresses. Because
the program will not jump to data addresses, this helps avoid false identification of data as code.
The pitfall in this approach is that some code addresses are only reached by indirect call
instructions that can be difficult to analyze statically. A linear scan disassembler begins with the
program entry point and moves linearly through the binary, applying some heuristics and
backtracking to detect and fix problems of false identification of code as data. This approach
detects code that is only reached by indirect calls, but the heuristics do not always fix the false
identification problems.

To make the code discovery process even more precise and sound, STARS parses the output
from the Linux objdump disassembler, which is a linear scan disassembler, and compares its
code discovery to the code addresses found by IDA Pro, which is a recursive descent
disassembler. STARS applies heuristics to determine which code addresses discovered by
objdump seem to be valid, based on analysis of factors such as whether the code addresses will
flow back to the existing code addresses, whether the code patterns fit the known function
prologue and epilogue patterns of compilers, etc. Valid code addresses that were missed by IDA
Pro are then sent to IDA Pro for re-analysis, integrating them into the program database that is
internal to IDA Pro. This integration causes IDA Pro to produce the information about the newly
discovered code that will be used later by STARS.

 Auditing IDA Pro information. 3.3.4.3.1
In addition to improving the code discovery results from IDA Pro, experience has shown that
certain code patterns and even certain opcodes cause problems in IDA Pro. STARS performs
certain audits of the information provided by IDA Pro to fix up control flow cross references, fix
operand lists with certain operands not marked as being written to for a few opcodes, etc. After

55
Approved for public release: distribution unlimited.

the code discovery and auditing phases are complete, STARS has reliable information from IDA
Pro to use in building its own object-oriented description of the complete program.

 Building a class hierarchy for the program. 3.3.4.3.2
STARS builds an object-oriented class hierarchy describing the program, with the levels of the
class hierarchy being Program, Function, Basic Block, and Instruction. A
Program consists of a collection of functions, plus data segments from the binary. A
Function consists of a collection of Basic Blocks, plus a description of the stack frame
data layout (local variables, incoming and outgoing arguments, saved return address, and saved
registers) and identification of stack allocation and de-allocation instructions. The Basic
Blocks are determined by STARS while making an initial pass over the instruction information
provided by IDA Pro, including control-flow cross-references to identify jump targets. A Basic
Block is a collection of Instructions, plus data sets produced by the data flow analyses
described in the next subsection. An Instruction encapsulates the address, size, disassembly
text, operand list and opcode information provided by IDA Pro, which is augmented by extensive
STARS analyses to identify attributes of interest to our security analyses, e.g. whether the
instruction has a memory operation that could be aliased to unknown memory addresses, whether
the instruction is a form of no-op inserted by a compiler for various purposes such as code
alignment, etc. After building the basic Instruction class information, STARS produces sets
of defined and used (e.g. written and read) operands, called DEF and USE sets, as well as a
register transfer list (RTL) that describes the operation of the instruction in binary tree form. The
interior nodes of the RTL tree are operators, while the leaf nodes are operands such as registers
or memory locations. The RTLs, DEF sets, and USE sets are the basic components upon which
the data flow analyses of the next subsection will operate.

 Data flow analyses 3.3.4.3.3
The key to performing security-specific static analyses in STARS is the data flow analysis phase.
STARS first performs LVA (Live Variable Analysis), in which four sets are built for each
Basic Block, identifying which registers and memory locations are Killed (i.e. written to),
Upward Exposed (i.e. read within the block before being written to), LiveOut (i.e. the value upon
exit from the basic block will be read before being written over), and LiveIn (i.e. the value upon
entry to the block is either Upward Exposed or passes through the block untouched and is
LiveOut) [3]. These LVA sets are useful in their own right, but are particularly needed in the
next data flow analysis.

The major data flow analysis is the construction of a fully-pruned SSA (Static Single Assignment)
form of the program. An SSA form defines which writes to registers or memory locations
correspond to which later reads from those registers or memory locations, implicitly creating a
complete set of def-use chains. In order to avoid extraneous def-use chains, the fully pruned SSA
form construction algorithm makes use of the LVA sets to avoid creation of SSA chains for
variables that are no longer live at the relevant program points [127]. The result is a set of SSA
def-use chains that are sound and precise, paving the way for analysis of the data types of each
chain.

 Type inferences and annotations 3.3.4.3.4
STARS uses the SSA chains to infer data types using a simplified type system, in which each
value in the program is one of the types POINTER, PTROFFSET (e.g. a difference between two

56
Approved for public release: distribution unlimited.

POINTER addresses), or NUMERIC (e.g. all non-POINTER data, whether it is integer, floating
point, character string, code address, or boolean). This simplified set of types was developed for
the MEDS (Memory Error Detection System) project, in which pointers are tracked dynamically
during program execution to ensure that memory writes cannot occur outside of the intended
memory referent for the pointer used in the memory write [105]. The NUMERIC type has
subtypes such as STRING and CODEPOINTER, and the POINTER type has subtypes such as
STACKPTR, HEAPPTR, and GLOBALPTR for different memory allocation types. The STARS
type lattice has a top value of UNINIT and a bottom value of UNKNOWN (meaning that a
mixture of NUMERIC and POINTER or PTROFFSET uses were detected). The type inference
process begins with certain provable inferences based on opcodes and operands (e.g. a memory
write through [ebx] implies that register ebx holds a POINTER at this point in the program).
STARS iterates over SSA chains, propagating the type of a DEF to all USEs in the chain, and
inferring the type of the DEF if all USEs have had a consistent type determined.

The results of STARS analyses are emitted into an annotations file, which can be read by other
tools (e.g., a run-time security monitor based on Strata). The annotations include hints on how to
monitor for memory overwriting errors, the basic locations of functions, stack frame layout info,
and stack allocation and de-allocation instruction locations. The set of annotations emitted by
STARS was enhanced during the PEASOUP project to support the defenses implemented in
Phase 1 of PEASOUP, as described next.

3.3.4.4 PEASOUP extensions to STARS
Annotations from STARS assisted in three different aspects of the PEASOUP defenses. First,
existing annotations concerning the stack layout, stack allocation and de-allocation instruction
locations, function locations and sizes, and instruction locations and sizes were deemed sufficient
to support the ILR (Instruction Layout Randomization) transformation. ILR can be supported
even more extensively in the future by improvements to STARS, as discussed in the next
subsection.

Second, stack frame layout randomization was supported by improving the precision of the
identification of sub-regions within each stack frame, such as the outgoings arguments area, the
local variables area, and the saved registers area. In addition, new annotations indicate that
certain functions had IDA Pro analyses that were incomplete and their stack frames might not be
properly partitioned in the STARS annotations, in which case the stack frame layout should not
be re-arranged or randomized because software errors (i.e. PEASOUP false positives) might
result.

Third, significant analyses were added to STARS to track the bit width and signedness of
registers and stack locations. The bit width is obtained from IDA Pro information. The
signedness is inferred from certain opcodes (e.g. a sign-extended load from memory indicates
that both the memory location and the target register are signed, while a zero-extended load
would indicate unsigned operands). Signedness and bit width are also inferred for the return
register of numerous standard library functions (e.g. atol() returns a signed long integer).
STARS then propagates signedness and bit width along def-use SSA chains. For any opcode that
could produce a truncation, overflow, or signedness error, annotations were emitted to inform
other PEASOUP tools how to instrument the binary to detect the potential integer errors at run
time. These annotations indicate the bit width and signedness to be tested.

57
Approved for public release: distribution unlimited.

3.3.5 Data Delineation Analysis (DDA)
One of the memory protections we have used in PEASOUP is Stack Layout Transformation (SLX). The
SLX protection relocates and pads stack objects to prevent attacks that are based on overwriting stack
data (e.g., return addresses, function pointers, and local variables). The effectiveness of SLX depends
upon inferring accurate stack layout data—a challenging problem for a stripped binary5. If SLX misses
some of the stack-object boundaries, then some of the objects will not be adequately protected. If, on the
other hand, SLX mistakenly breaks up a stack object that the program expects to be contiguous, then the
transformation will likely break the correct functionality of a program. Thus, we needed a robust and
precise analysis for identifying boundaries of stack objects.

We have considered a number of existing approaches and found that none of them provided an effective
and complete solution to our problem. Existing techniques for inferring object boundaries tend to fall
short in one of two ways. Some heuristic-based approaches, e.g., IDA Pro, often break large objects into
pieces [74]. This can result in false alarms if used for bounds checking, and may even disrupt program
functionality if used for program transformation. Other approaches, e.g., [36, 166], assume that a program
is memory safe, and thus derive bounds that include the potential overruns. The resulting information is
unhelpful for buffer-overrun detection.

To meet the needs of the SLX transformation, we have designed a novel, heuristic-based analysis for
inferring locations and sizes of stack objects in an arbitrary stripped executable. We call our analysis Data
Delineation Analysis (DDA)6. We use the term “object” to refer to any top-level datum, such as an array,
structure, or variable, regardless of whether or not the binary was created from an object-oriented
language. DDA first finds a set of object boundaries that is largely a superset of the desired result, and
then it systematically refines this set by eliminating boundaries that fall within larger aggregate objects,
such as structure instances and arrays. Insofar as the initial set of boundaries provides an over-
approximation to the ground truth, our goal is to eliminate as many boundaries that cause false-positive
buffer-overrun warnings as we can; at the same time, we want to retain as many boundaries that enable
overrun detection as possible.

For the identification of aggregate objects, we use a novel technique that we call Parameter-Offset
Analysis (POA). POA operates by identifying and symbolically propagating possible “base” pointers to
objects. For each base pointer, the set of constant offsets used in memory dereferences is collected to
estimate the extent of the object pointed to by the base pointer. That is, if the analysis sees an instruction
“mov eax, [ebx+128]” and the symbolic value of ebx is base pointer 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, the analysis infers that
the instruction is performing a field access and concludes that the object pointed to by 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is at least
132 bytes long (the memory access reads four bytes).

To avoid the pitfall of over-approximating object extent based on unsafe memory accesses, we rely on the
intuition that buffer overruns are more likely to be in loops where the address or offset changes each
iteration. Therefore, our analysis only makes use of offsets that appear as syntactic constants in the
program text.

In the subsequent sections we will present the individual pieces of the analysis and describe how they fit
together. A detailed description of the analysis can also be found in [98].

5 Even when the symbolic and/or debug information is available, not all of the stack-object boundaries are
immediately available. A complier typically allocates some amount of auxiliary storage on the stack (for e.g.,
register spills, temporary variables, canaries, etc.) the information about which is not retained in the debugging
information.
6 The analysis infers boundaries for both stack objects and global objects, though we did not get a chance to use the
information about global objects in the context of PEASOUP.

58
Approved for public release: distribution unlimited.

3.3.5.1 Initial Boundary Identification
The first step of DDA is to identify a superset of object boundaries. This set is later refined by removing
the spurious boundaries that partition the aggregate objects inferred by the Parameter Offset Analysis. To
build this set, our analysis collects all constant stack offsets that appear in the body of a function. That is,
the analysis scans each function’s instructions looking for memory dereferences of the form [reg+c],
where reg is the stack or frame pointer (esp or ebp on x86) and c is a constant. For each such access, we
add an object boundary derived from c. This approach is close in spirit to the heuristic employed by IDA
Pro.

3.3.5.2 Parameter Offset Analysis
The problem with using constant stack offsets as the set of object boundaries is that a compiler typically
computes all offsets within an activation record—including offsets of internal structure fields and array
elements—as constant offsets from the beginning of the frame. We illustrate this with the example shown
below.

Note that access to a local structure field "s.b[0]" in foo (at effective address 0x80453cd) is translated
into a single constant offset from the procedure frame (ebp-0x38). Thus, using the constant stack offset
heuristic from previous section will make the analysis flag the address of s.b as the boundary of an
object, breaking up the instance of struct S. If we were to transform the layout of foo's activation
record based on this information, we would have broken the program because function bar expects the
instance of S to be a single, contiguous object.

The Parameter Offset Analysis (POA) recognizes such compound objects as the instance of struct S in the
example above by detecting base object addresses, and for each identified base address, collecting a set of
constant offsets that are relative to that base address. The collected constant offsets allow our analysis to
estimate the extent of identified objects. The primary source of base addresses is the set of stack offsets
that are passed as the parameters to procedures. In our example, the stack address ebp-0x3c is passed as
a parameter to bar (at 0x80483d7), thus DDA learns that there may be an aggregate object at offset -60
from ebp.

struct S {
 int a;
 char b[50];
 int c;
};

void bar(struct S * s)
{
 s->a = s->c + 5;
}

void foo()
{
 struct S s;
 s.b[0] = 'a';
 bar(&s);
}

080483b4 <bar>:
 80483b4: push ebp
 80483b5: mov ebp, esp
 80483b7: mov eax, DWORD PTR [ebp+0x8]
 80483ba: mov eax, DWORD PTR [eax+0x38]
 80483bd: lea edx, [eax+0x5]
 80483c0: mov eax, DWORD PTR [ebp+0x8]
 80483c3: mov DWORD PTR [eax], edx
 80483c5: pop ebp
 80483c6: ret

080483c7 <foo>:
 80483c7: push ebp
 80483c8: mov ebp, esp
 80483ca: sub esp, 0x44
 80483cd: mov BYTE PTR [ebp-0x38], 0x61
 80483d1: lea eax, [ebp-0x3c]
 80483d4: mov DWORD PTR [esp], eax
 80483d7: call 80483b4 <bar>
 80483dc: leave
 80483dd: ret

59
Approved for public release: distribution unlimited.

Additionally, base object addresses are extracted from the following operations:

• Loading of a stack-based address into a register,
• Using a stack-based address as a source or destination of a hardware loop instruction, such as

REP STOS on x86.

The sets of constant offsets that are relative to the object base addresses are collected by computing for
each function parameter the set of constant offsets that are dereferenced based from that parameter. For
the function bar in the example above, the analysis derives the following set of offsets: 0-3 (field a access
at 0x80483c3, and 54-57 (field c access at 0x80483ba). Thus, the object passed by reference via the
first parameter of bar is expected to be at least 58 bytes long.

The DDA analysis then combines the information that a stack object at offset ebp-0x3c is passed as the
first argument to bar, which expects objects that are at least 58 bytes long, and learns that the constant
stack offset ebp-0x38 is not a true boundary and must be removed from the set of object boundaries.

We implemented the DDA analysis as follows:

• The analysis is static: it picks up program representation (control-flow graphs, call graph,
instructions) from the Intermediate Representation Database (IRDB) that is populated by other
PEASOUP analyses.

• The analysis is interprocedural and compositional: a summary of each function is computed in
separation; summaries of the callees are used to build up the summary of the caller. We wanted to
avoid fixed point computation for efficiency, so we eliminated recursion by removing back edges
from the call graph of the program. The augmented call graph is sorted in reverse topological
order and an intraprocedural analysis is applied to each function.

• An intraprocedural analysis performs symbolic execution of a procedure. The symbolic state is
used to identify memory dereferences that are based on parameters and that have scalar offsets.
Again, to avoid fix point computations, we perform the analysis on a spanning tree of control-
flow graph of a procedure.

There are two major simplifications that allowed us to make the analysis scalable:

• Ignoring recursion

• Analyzing spanning trees of control flow graphs (CFGs) rather than analyzing full CFGs.

While, in general, these simplifications may negatively affect the precision of the analysis, we believe that
our choice is justified: modeling loops precisely seems to be of little value for the analysis that targets
dereferences with constant offsets. The experimental evaluation of the DDA analysis indicates that
precision loses that are due to these simplifications are negligible.

Collapsing overlapping objects. Some stack objects that the Parameter Offset analysis identifies may
overlap. Consider the example below:

60
Approved for public release: distribution unlimited.

The Parameter Offset analysis will determine that functions foo and bar both dereference offsets [0, 11]
from the passed-in struct pointers. Let us assume that, in function foobar, the local variable t is
allocated at frame offset 24. The Parameter Offset analysis will identify two local objects in foobar—
both 12-byte long—one starting at offset 24 (an offset passed to bar) and one starting at 32 (the offset
passed to foo). Note that the two objects overlap, leading to an inconsistent frame view.

We extended the analysis to perform a post-processing step that collapses together the overlapping
objects. Our assumption is that objects that overlap are likely to be the parts of one large object and
should be kept together by transformations of SLX kind. Our implementation, does not simply collapse
the objects together, but rather constructs a tree of objects trying to infer the structure of the containing
object (i.e., a form of type inference). However, we do not yet use this extra information in the overall
Object Delineation analysis.

The above approach is conservative and may lead to extra false negatives, though we have not yet
observed any. As our study of DWARF debug information showed, GCC may reuse stack memory for
objects with disjoint live ranges (e.g., the variables from different lexical scopes). Our extended analysis
will collapse such objects together, even though, potentially, such objects could be untangled and
relocated separately by the SLX-like transformation for additional protection. If this issue poses
problems, we will address it by taking live ranges into consideration.

Summarizing system calls. We use the Parameter Offset analysis to automatically generate models for a
number of standard libraries (about 70 libraries found in /lib/i386-linux-gnu on 32-bit Ubuntu 12.04). The
models are serialized on disk as text files and are read in by the Parameter Offset analysis as needed.
Reusing standard library models allows us to reduce both the analysis time and used memory—standard
libraries are typically large. Our attempts to apply the Parameter Offset analysis to some of the T&E base
programs along with the standard libraries that they include routinely ran out of memory.

This modeling approach worked well for many of the library functions. However, some library functions
are implemented as thin wrappers on top of Linux system calls. One particular example of such function
is _xfstat64, which is used extensively in coreutils and often manipulates stack allocated instances of
stat64 structure. To handle such functions, we added the infrastructure for linking the manually-
constructed models for system calls and implemented models for a few dozens of system calls that appear
throughout libc implementation.

struct S {
 int a;
 int b;
 int c;
};

struct T {
 int u;
 int v;
 struct S s;
};

void foo(struct S * s) {
 … s->a … s->b … s->c…;
}

void bar(struct T * t) {
 … t->u … t->v …;
 … t->s.a;
}

void foobar() {
 struct T t;
 foo(&t.s);
 bar(&t);
}

61
Approved for public release: distribution unlimited.

3.3.5.3 DDA Implementation and Integration with SLX
We implemented the Data Delineation Analysis on 32-bit Ubuntu 12.04 and integrated it with the stack-
layout transformation infrastructure (SLX). SLX employs a hierarchy of sources that include constant
offsets from a stack pointer and analysis results from STARS. When aggressive transformations fail, SLX
backs off to a more conservative transformation and tries to validate again. We modified SLX to retrieve
the boundaries inferred by the DDA and use them as the starting point for the speculative refinement of
object boundaries used for the layout transformation. This setup allowed us to perform initial experiments
on using DDA results for program transformation. We describe the experimental results in Section 4.4.5.

In the course of Phase 3, we have ported DDA implementation to work on 64-bit Ubuntu and to analyze
64-bit binaries. The work primarily involved generalizing the DDA code to cover the specifics of 64-bit
platform:

• Register-based parameter passing: x64 uses primarily registers for parameter passing, whereas
x86 primarily passed parameters via stack. We had to extend the analysis to support that.

• Red zones: x64 ABI allows the compiler to not “allocate” stack space for leaf functions. That is,
locals and temps are stored above (at lower addresses than) the top of the stack (the rsp register).
Since we compute stack boundaries relative to to the top of the stack, we had to extend the
analysis to correctly handle negative offsets.

• System call handling: we had to adjust our handling of system calls which was primarily x86
specific to also support x64 system call convention.

• Library summarization: we automatically generated models for the x64 version of libc
(/lib/x86_64-linux-gnu/libc-2.15.so). This was sufficient for our initial experiments,
but given more time, we would want to generate models for all of the libraries under /lib/x86_64-
linux-gnu.

In the process of porting we have discovered and fixed several issues in our specifications for the syntax
and semantics of the x86_64 instruction set.

Unfortunately, we were not able to complete the SLX integration of DDA analysis prior to the start of
Phase 3 Test and Evaluation.

3.3.6 Dynamic Rewriting.
Figure 11 shows the high-level architecture of the off-line or redeployment portion of
PEASOUP. PEASOUP consists of a static analyzer, called STARS [63], that disassembles x86
binaries, performs extensive static analysis of the binary, and then stores the results of the
analysis along with the binary in a persistent store called the IRDB (Intermediate Representation
Database). The IRDB is the repository for all information known or determined about a binary.
A PEASOUP analysis and transformation phase uses information in the IRDB to create new
versions of a binary, called variants, where various armoring transformations and remediation
policies have been applied. Rather than statically rewrite the binary, PEASOUP produces
programs, called Sprockets, that are used by a software dynamic translation system to transform
the original binary into the corresponding variant at run time. Sprocket programs are specified
via the Sprocket Program Rewriting Interface (SPRI).

To ensure that the variants produced by PEASOUP run appropriately, they are then “vetted” by a
tool called BED (Behavior Equivalence Detection). BED runs each variant using a test suite (if
available) to ensure that the variant produces the same output as the original binary. In addition,

62
Approved for public release: distribution unlimited.

BED uses a fault injector to inject faults into the application to determine the effectiveness of the
remediation policies generated by PEASOUP.

Arbitrary
Binary

Static Analysis
for Reliability and Security

(STARS)

PEASOUP Analysis &
Transformation Phases Sprocket Generation

Intermediate
Representation

Database (IRDB)
Context
Switch

Fetch

Decode

Translate

New
PC

Finished?

No

Strata

Yes

Context
Capture

Cached?

Yes

New Fragment

Next PC

Good
Inputs

BED/TSET

. . .

. . .
Vetted Sprockets

BED Fault
Injector

Figure 11. PEASOUP Architecture: Offline Generation of Sprockets Programs

Figure 12 shows a deployed binary that is protected by PEASOUP. The vetted Sprocket
programs are applied to the binary by the software dynamic translator, Strata. PEASOUP has the
ability to dynamically select from the set of Sprocket programs to effect temporal change in the
protections that are applied.

Arbitrary
Binary

Context
Switch

Fetch

Decode

Translate

New
PC

Finished?

No

Strata

Yes

Context
Capture

Cached?

Yes

New Fragment

Next PC

. .
 .

V
et

te
d

S
pr

oc
ke

ts

S
procket

S
elector

Figure 12. PEASOUP Architecture: Online Selection of Sprocket Programs

Section 3.3.6.1 discusses the generation of Sprocket programs via the Sprocket Program
Rewriting Interface (SPRI) and how dynamic binary rewriting solves many problems associated
with static binary rewriting techniques to effect significant change in the binary.

3.3.6.1 Sprockets and SPRI
Sprocket programs are specified via the Sprocket Program Rewriting Interface (SPRI). SPRI
defines simple rewriting rules that come in two forms. The first form, the redirect form, transfers
control to a specified target address (lines 1 and 3 in Figure 13).

The second form, the instruction definition form, indicates that there is an instruction at a
particular location (line 2).

63
Approved for public release: distribution unlimited.

The net effect of applying the SPRI rules shown in Figure 13 is to rewrite the instruction sub
esp, 20 instruction at address 0x8000 to be sub esp, 40. The stack layout
transformation described in Section 3.8.2 uses such rules to transform stack frame allocations.

Original program fragment:
(a) 0x8000 sub esp, 20
Rewrite rule:
(1) 0x8000 -> 0xFF00
(2) 0xFF00 ** sub esp, 40
(3) 0xFF01 -> 0x8001

Figure 13. Sprocket Rewrite Rule to Change Stack Frame Allocation.

Together these two types of rules provide the foundation for building a wide range of Sprocket
programs. The example shown illustrates the equivalent of a small patch that modifies only 1
instruction. At the other end of the scale, transformations such as ILR (Instruction Location
Randomization) seek to rewrite all instructions in a binary.

Despite its conceptual simplicity, manually writing Sprockets in SPRI would be a tedious and
error-prone process. Instead, Sprocket developers encode their transformations using a high-level
C/C++ API to manage the creation and deletion of program variants, and to manipulate program
state, e.g. to insert, delete, or replace instructions and re-route control flow. The API
transparently interacts with the IRDB to commit any changes. With this architecture, the
composition of Sprockets is naturally performed by chaining together transformations: one
Sprocket encodes its transformation in the IRDB, the next Sprocket then takes as input the new
database state, and then effect its own transformations. PEASOUP will then automatically
generate SPRI rules for any program variants by essentially performing a ``smart diff'' between
the IRDB representation of a variant against the IRDB representation of the original binary.

3.3.7 Efficient Checkpointing for Remediation
Another major task for Phase 1 was to develop efficient VMM-based checkpointing technique
for automatic remediation. Besides remediation, checkpointing-based fast virtual machine
provision is also attractive for solving the scalability problem we are facing in offline analysis.

Checkpoint for Remediation
PEASOUP has a powerful offline analysis, but due to the limitation of offline analysis (complete
and soundness) and the vulnerability class coverage, not all vulnerabilities can be fixed at offline
phase. Currently, when unfixed vulnerability is exploited, our execution manager will detect this
and in most cases, perform a control exit. However, ideally we would like to have an efficient
remediation mechanism so our execution manager can restore the execution to a known good
state. In PEASOUP, we plan to use checkpointing technique to build our remediation
infrastructure.

Scalability Problem
During offline analysis, Grace performs concolic analysis on input SOUP to generate high
coverage test suite. One problem with Grace now is it does not scale well, so analyzing an input
could take a long time due to the path explosion problem. One promising approach to improve
the scalability is Hybrid Concolic Testing [136]:

64
Approved for public release: distribution unlimited.

From the initial program state, hybrid concolic testing starts by performing random testing
to improve coverage. When random testing saturates, that is, does not produce any new
coverage points after running some predetermined number of steps, the algorithm
automatically switches to concolic execution from the current program state to perform an
exhaustive bounded depth search for an uncovered coverage point.

By leveraging checkpointing technique, the performance of hybrid concolic test could be further
improved based on the following observations:

1. Since the concolic execution only begins after some predetermined number of steps, the
performance could be improved if we could checkpoint the test program before switching
to concolic execution thus avoiding re-execution the same steps over and over again;

2. After checkpointing current status, on current multi-core system, we could explore
different paths in parallel at the same time.

3.3.7.1 Related Work
Mainstream virtual machine monitors like VMware, Xen, KVM and VirtualBox all have
snapshot (checkpointing) support. Snapshot allows user to save the current state of a virtual
machine and revert to this state if something goes wrong. Therefore it has already been used for
remediation. The problem is, the performance of the snapshot mechanisms used in these systems
are not very good enough for PEASOUP: it usually takes tens of seconds to several minutes to
save or restore a snapshot. And a large portion of time is spent on I/O, i.e. writing or reading the
state to non-volatile storage like hard drive whose throughput is usually not very high.

To solve this problem, researchers form Georgia Tech have proposed a copy-on-write (COW)
based technique7 to reduce the VM’s downtime and the performance overhead incurred by other
forms of VM checkpointing. That is, instead of halting the VM and taking a whole memory
dump, this technique will use COW to protect the memory states at the snapshot time. So it
won’t impose a long downtime.

In Cloud computing and honeyfarm environment, another critical requirement is the ability to
provide a virtual machine as fast as possible. To meet this requirement, researchers have
proposed several solutions. Among these solutions, Potemkin8 and SnowFlock9 are the
representative ones. Their basic idea is similar, that is used a mechanism that is very similar to
*NIX fork, so they call this technique VM fork. By using this technique, they can create many
task-demanding and transitory VMs in seconds.

7 Michael H. Sun and Douglas M. Blough, Fast, Lightweight Virtual Machine Checkpointing, Technical Report,
Georgia Institute of Technology, 2010.
8 Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C. Snoeren, Geoffrey M. Voelker, and
Stefan Savage. 2005. Scalability, fidelity, and containment in the potemkin virtual honeyfarm. In Proceedings of
the twentieth ACM symposium on Operating systems principles (SOSP '05)
9 Horacio Andres Lagar-Cavilla, Joseph Andrew Whitney, Adin Matthew Scannell, Philip Patchin, Stephen M.
Rumble, Eyal de Lara, Michael Brudno, and Mahadev Satyanarayanan. 2009. SnowFlock: rapid virtual machine
cloning for cloud computing. In Proceedings of the 4th ACM European conference on Computer systems (EuroSys
'09).

65
Approved for public release: distribution unlimited.

3.3.7.2 Design
Since we will use KVM as the VMM, our design is based on KVM’s existing snapshot
mechanism.

Checkpointing
Because KVM already has the functionality to create checkpointing (savevm) and revert to a
checkpointing (loadvm), we plan to leverage these existing functionalities to build our
checkpointing mechanism by:

1. Adding a new hypercall to let Strata request a checkpointing creation (reverting);
2. Modifying KVM to trap this and notify the user mode controller (QEMU);
3. Modifying QEMU to handle this event and calling the corresponding function.

To keep the performance overhead low, especially keeps the downtime low, we plan to COW
based checkpointing technique similar to Fast, Lightweight Virtual Machine Checkpointing (Xen
based).

VM fork
To checkpoint the target program for Grace, there are two basic approaches: one is *nix system
fork based and the other is virtual machine based. Since Grace also relies on filesystem and
networking, VM-based solution (i.e. VM fork) is better. More specifically, we plan to add
following functionality:

• Add a new hypercall to let Grace clone a VM;
• When invoked, the VMM will

o Checkpoint current analyzing environment;
o Create multiple copies of the analyzing environment and let Grace choose which

ones to execute;
o And if possible, execute the select the copies in parallel.

3.3.7.3 Implementation
This section presents our primitive implementation.

Checkpointing
As discussed above, the ideal way to implement checkpointing is COW. The QCOW2 virtual
disk format already supports COW and the Linux system also supports memory COW. However,
on the other hand, as KVM kernel part is tightly integrated with the Linux kernel, even
duplicating the kernel VCPU state without COW is not easy. Therefore, to develop the prototype
quickly, we decided not to use memory COW, and just to reuse KVM’s existing checkpointing
mechanism.

But to solve the latency imposed by I/O thus emulate the result of COW, we modified KVM’s
checkpointing mechanism, so instead of checkpointing the memory image to hard disk, it will
save the image in a ramfile (file completely stored in memory). Although this strategy is not
spatial efficient and saving a whole memory image requires more time than COW individual
page, we think as it is appropriate for an engineering proof-of-concept implementation, because
1) memory is very cheap now and 2) the memory used by a VM is not large in our configuration.

66
Approved for public release: distribution unlimited.

VM fork
As of checkpointing, since the parent VM and the child VM share a large portion of system
states (memory and disk), the ideal way to implement VM-fork is using COW mechanism. But
as implementing a COW time consuming, our current strategy is: when the parent VM wants to
fork a child, we save its states into a checkpointing, then we create a new VM as the child VM
and after the child VM is booted, it loads the saved states from the checkpointing.

To implement this strategy, we reuse a large portion of KVM’s existing snapshot mechanism and
only made a small change:

1. We modified the savevm function so the snapshot can be saved to a dedicated checkpoint
file. To simplify configuration, recent KVM implementation saves the snapshot to a
virtual disk image instead of a separated file (like VMware does). However, this is bad
for us because we cannot share the created snapshot. So we modified KVM to let it save
the snapshot to the given checkpoint file (a dedicated virtual disk image).

2. We added another load checkpoint function to let the child load the saved snapshot. The
reason is, when creating the child VM, we cannot let it share the virtual disk image with
its parent VM. So we create a new virtual disk linked to the parent’s one. As a side effect,
we can no longer access the saved disk snapshot (the checkpoint file only contains CPU,
memory and other device states). But the original loadvm function will fail when it
cannot find the snapshot for the disk.

To improve the performance, we put the snapshot file in a tmpfs or fast SSD and also put the
swap file on the SSD.

In general, the workflow of forking a VM in this implementation is:

1. The parent VM calls savevm to create a snapshot which will be saved in an in-memory
checkpoint file;

2. After the snapshot is created, the VMM creates a new virtual disk for the child;
3. The VMM creates a new instance of the VM and resumes the execution of the parent

VM;
4. When the child VM is booted, the VMM loads the saved snapshot from the checkpoint

file.

3.3.7.4 Future Improvement
This section describes the updated design of our fast checkpoint/VM fork technique.

 Recent advances in checkpointing techniques 3.3.7.4.1
On VEE 2011, there are two papers on checkpointing techniques that both leverage page cache.

67
Approved for public release: distribution unlimited.

The first one10 is based on the observation that a large portion of the memory used by modern
OS is for page cache. Since page cache can be reconstructed from virtual disk file, it is
unnecessary to save those pages as part of a checkpoint, thus improving both speed and space
efficiency. The technique behind this is automatically and transparently tracking I/O operations
of the guest to the external storage and maintains a list of memory pages whose contents are
duplicated on non-volatile storage.

The second one11 proposed a fast warm-reboot technique to reduce the performance downgrade
caused by rebooting.

Inspired by these two papers, we proposed following mechanism to further improve our
checkpointing technique.

 Page cache combining 3.3.7.4.2
The intuition behind this is, for KVM, both the host Linux system and the guest VM has page
cache for the same content of virtual disk, thus one copy could be eliminated to improve the
virtual I/O performance. One simple way to eliminate the duplication is to use cache=none
option to disable host page cache. However, this has two major drawbacks. First, the
performance of a qcow2 format virtual disk is terrible when host page cache is disabled. Raw
format has good or better performance when host page cache is disabled, but it does not support
snapshot. Second, letting each virtual machine use its own page cache prevents common content
being shared. Therefore, we propose combining the host and guest page cache. Later we will see
that this may also benefit checkpointing.

The combination could be implemented by leveraging the transparent I/O tracking technique
mentioned above. That is, when the guest OS issues an I/O operation to read (write) a block from
(to) disk and allocate a page cache for it, instead of going through the traditional handling path
(i.e. notifying QEMU, parsing virtual disk format, issuing corresponding virtual disk operation
and putting the content in guest’s memory), the host kernel can directly map the host page cache
for the virtual disk file block into the guest address space. To handle a remapping event
generated inside the guest, we can modify the virtio paravirtualized block device driver to
indicate KVM to unmap the host page cache.

If we can further put the virtual disk parsing function into the kernel, we can also save context
switch between the host kernel and QEMU, e.g. by using raw format virtual disk. To solve the
problem of checkpoint support for raw virtual disk format, we can simply disable page cache
flush for virtual disk file on the host once the guest has been checkpointed.

[OPTIONAL] We can also share virtual disk page cache between different VMs based on a
COW manner. This multiplexing can be handled by adding another label to the page cache.

10 Eunbyung Park, Bernhard Egger and Jaejin Lee, Fast and Space Efficient Virtual Machine Checkpointing, VEE
2011.

11 Kenichi Kourai, Fast and Correct Performance Recovery of Operating Systems Using a Virtual Machine Monitor.
VEE 2011.

68
Approved for public release: distribution unlimited.

 Updated Design 3.3.7.4.3
Leveraging this technique, we update our design as:

Checkpointing
When checkpointing a VM, only two things will be save at the checkpoint time: the VCPU
context and the top level entry of the secondary translation structure (EPT/NPT). Then the whole
guest’s address space and associated host page cache will be COW protected. A new
checkpointing data structure is created to track further changes. Things need to be tracked
includes guest pages and host page caches that are modified.

Now a reverting means restore the saved VCPU context and the top level secondary translation
structure (since old pages are still there, there is no need to change the translation structure), and
the free all the pages that are COW. But committing a checkpoint is more complicated because
we need to walk the saved translation structure to free saved pages. However, if we track pages
being saved instead of pages being modified, then committing is optimized as simple freeing all
the saved pages but reverting will become complicated. Or maybe we could track both things.

To save memory, when a new checkpoint is created, the new one will be linked to the old one.
So when reverting the system, we can just begin with the change set associated with that
checkpoint and discard all the changes made by itself and its descendants.

VM fork
Forking will still be handled by passing the saved checkpoint to the child, but this time, only the
VCPU context and the top level secondary translation structure will be passed. The whole guest
physical address space will also be COW protected, but tracking is not needed.

 C1: Number-Handling Errors 3.4
3.4.1 Confinement of Incorrect Number-Handling Weaknesses
3.4.1.1 Integer Offline Analysis
PEASOUP uses STARS to analyze the binary and emit annotations for instructions that may
result in an integer weakness. Annotations include the address of the instruction being
instrument, bit-width information as well as sign information. The table below summarizes each
annotation type:

69
Approved for public release: distribution unlimited.

Address Annotation Type Bit Width Sign Description

<address> OVERFLOW,
UNDERFLOW

8, 16, 32 SIGNED,
UNSIGNED,
UNKNOWN

Annotation emitted for
x86 instructions that
may overflow or
underflow

<address> SIGNEDNESS 8, 16, 32 SIGNED Annotation emitted for
x86 instructions that
may result in a sign
conversion error

<address> TRUNCATION 8, 16, 32 SIGNED,
UNSIGNED,
UNKNOWN

Annotation emitted for
x86 instructions that
may result in a loss of
information

In addition, PEASOUP also identifies critical functions such as those manipulating memory,
strings and buffers. Overflowing variables that are directly or indirectly used as parameters to
such functions is a common attack vector. We monitor access to these functions and verify that
critical parameters fall within a reasonable range.

3.4.1.2 Integer Instrumentation
Instrumenting binaries to detect integer weaknesses is performed via an Integer Transform
sprocket. For each annotation generated by STARS, the Integer Transform sprocket adds
instrumentation to check for the occurrence of a realized integer weaknesses, e.g. an overflow
condition.

For example, STARS might emit the following annotation for an multiply instruction at address
0x8000:
 0x8000 INSTR CHECK OVERFLOW UNSIGNED 32 EAX

Assuming that the instruction at 0x8000 is the following:
0x8000 imul eax, ebx

 <nextIntruction>

The Integer Transform sprocket will then specify the following instrumentation:
0x8000 imul eax, ebx

 jno <nextInstruction> # jump not overflo

 call integerOverflowHandler

 <nextInstruction>

In this example, PEASOUP can test x86 condition codes directly. If the multiply instruction does
not overflow, then the cost of the instrumentation is the additional jno instruction. Other
annotation types may result in slightly more complicated instrumentation code.

70
Approved for public release: distribution unlimited.

Note that sprocket developers specify the instrumentation code needed via a high-level C++
interface. The actual generation of the SPRI rewriting rule for this transformation, and the safe
composition with potentially other rewriting rules, is automatically performed by the PEASOUP
toolchain.

3.4.1.3 Benign Weakness Detection
Instrumenting all instructions that might lead to an integer weakness would likely disrupt the
normal behavior of most programs as it is well-known that benign integer weaknesses abound in
any programs of significance. Recently, researchers have confirmed this observation for integer
overflows [218].

Common constructs such as hash functions, media decoders and encoders, encryption and
decryption routines, modulo arithmetic, random number generators, to name but a few, all make
deliberate use of integer operations that are instances of integer weaknesses. Further, compilers
may generate code that exhibits integer weaknesses even though none were present or intended
at the source code level. In addition, the C/C++ standards that define the semantics of integer
operation are on the one hand complicated to understand, even for experienced programmers,
and on the other hand, the standards are ill-defined. As a result, integer weaknesses are common.

Distinguishing security-critical integer weaknesses from benign weaknesses is therefore
necessary. PEASOUP identifies benign weaknesses using a two-step algorithm:

(1) In step 1, PEASOUP instruments the program to detect integer weaknesses such as
integer overflows, underflows, signedness errors, and truncation. PEASOUP then replays
all inputs generated and categorized as benign by the GRACE concolic engine.
Instructions that result in an integer warning are categorized as benign.

(2) In step 2, PEASOUP only instruments instructions that are not marked as benign.

If aggressive detection of integer weaknesses is the goal, then PEASOUP can be configured to
instrument all instructions that were not marked as benign, even those that were not executed
during replay. The disadvantage of aggressive detection is the increased probability of false
positives, i.e., raising an error and potentially interfering with the normal continued operation of
a binary. Alternatively, PEASOUP can also be configured to instrument only instructions that
were covered by the inputs generated by the GRACE concolic engine. While this policy reduces
false positives, it may also increase false negatives.

3.4.1.4 Saturating Arithmetic Policy
PEASOUP can be configured to effect various policies whenever an integer weakness is detected
via the instrumentation described previously. The saturating arithmetic policy seeks to ensure
that arithmetic operations stay within a fixed range. If an operation results in a value that exceeds
the minimum or maximum value allowed, then this policy would replace this value with the
corresponding minimum or maximum value. PEASOUP uses the bit-width and sign information
contained in an annotation to determine the value to use for the saturation policy. For example, if
an operation results in a negative number and is assigned to an unsigned quantity, then this
quantity would be saturated to the value 0.

71
Approved for public release: distribution unlimited.

3.4.1.5 Final Integer Transformation
The current PEASOUP configuration is to implement the following set of policies.

Integer weakness type Policy

Abuse of API Emit error message and perform a controlled exit

Benign weakness Emit warning message with no program alteration

Non-benign weaknesses Remediate using saturating arithmetic, continue
execution

These policies were selected to aggressively detect integer weaknesses. For a real-world
deployment, these policies would need to be adjusted to be less aggressive so as to not raise false
alarms when non-attack inputs. We are currently in the process of using TSET (Test Suite
Evaluation Technology) to instrument only instructions that are covered by Grace, the
PEASOUP high-coverage input generator.

72
Approved for public release: distribution unlimited.

3.4.1.7 Evaluation
We have evaluated the number handling framework using both synthetic programs to test each
type of potential weakness as well as using real programs. The table below summarizes are
results.

CWE Test
Examples

Attack Vector Benign
Weakness
(Offline)

Online
Detection

Result Remediation

196 smartfuzz
example

Integer sign
conversion error
➜ unreachable
code

 ✔

✔

Saturating arithmetic,
continued execution

191 recaman,
countlines

Integer sign
conversion error
➜ negative
buffer indexing

 ✔ ✔

Saturating arithmetic,
continued execution

121,
680

solitaire
encryption

Integer error ➜
buffer overflow
➜ overwrite

return address ➜
crash

 ✔

✔

Saturating arithmetic,
continued execution

189,
680

bzip2 Integer
vulnerability +
overflow ➜
crash

✔ ✔

✗ Detected integer
weakness.
* Should have identified
as benign.

119,
189

3 html
utilities

None known ✔ ✔

✔ 2 benign weaknesses
detected;1 weakness
compensated with
saturating arithmetic,
continued execution

These tests cover a wide range of CWE. As expected, our aggressive configuration was able to
detect integer weaknesses for all these tests. However, for bzip2, the aggressive policy also
resulted in applying a remediation action, thereby disrupting the normal functionality of bzip2.
We hypothesize that given additional time Grace would have generated inputs to cover the
remediated instruction. It would then have been classified as a benign integer weakness and
would not have resulted in the remediation policy being applied.

For the html utilities test provided by MITRE, PEASOUP detected two benign weaknesses, and
one non-benign weakness. The saturating arithmetic remediation policy resulted in the
application emitting a parser warning (the utilities parse HTML) with the final output being the
same.

We are in the process of tuning our default configuration to reduce potential false positives (as
was the case with bzip2). Specifically, we believe that the following changes would result in a
policy that would achieve the “sweet spot” for real-world deployments:

73
Approved for public release: distribution unlimited.

• increase the coverage of our test input suite by both using file seeding and by increasing
the time allotted for test input generation

• use TSET to instrument only instructions that are covered by our test suite
These policies would reduce false positive rates as PEASOUP would apply remediation policies
only to instructions covered during replay. The extent to which false negatives is reduced would
be proportional to the time allotted for the test input generation phase.

 C4: Resource Drains 3.5
We classify resource drains along several dimensions:

1. The type of resource that is drained, which can include memory, disk, file descriptors,
sockets, and CPU.

2. The cause of the drain, which can include repeatedly allocating small ammounts, or
allocating too much all at once.

3. The behavior of the resource drain. We identify four categories:
a. Leaks occur when all references to the resource is lost before it is released.
b. Drags occur when references still exist, but no possible continuation from the

current execution still will result in a use the resource.
c. Over-ownership occur when an execution simply allocates too much of a

resource, even if the execution will technically use them eventually.
d. Overallocation occus when too much of a resource is allocated all at once.

Different defenses are appropriate depending on the classification of the different resources. We
explored a two stage approach for handling resource drains. The first stage was designed to
detect and defend the first time an attack against a resource occurred. During this stage,
PEASOUP would execute the following steps:

1. Deploy a resource monitor on vulnerable resources (e.g., loops that could be controlled
by an attacker).

2. Deploy an anomaly detector to deter unusual drains on the resource (e.g., not leaving an
inner loop after a long time.

3. When an anomaly is detected, attempt to generate a signature for the malicious behavior
that caused the resource drain. Then kill the thread causing the drain.

4. Run a conservative garbage collector to attempt to reclaim any drained resources.
5. If conservative collection failed to reclaim enough of the resource, restart the process.

The second stage was designed to use signatures gathered during the first stage. As in the first
stage, it would use a resource monitor and an anomaly detector. However, it would also monitor
for the signature of the attack. If the signature was again detected, it would start to insert
execution delays to slow the rate of resource consumption, long before the resource drain would
affect other connections.

We completed partial implementations of the above strategy for file handles, heap memory, and
infinite loops. Unfortunately, we were not able to complete integration with the rest of
PEASOUP.

74
Approved for public release: distribution unlimited.

 C5: Command Injection 3.6
The material in this section was also published in EDCC’14 [150].

Software weaknesses that lead to OS Command Injection Attacks are the #2 entry in MITRE’s
2011 CWE/SANS list of Top 25 Most Dangerous Software Errors [60]. The high ranking makes
intuitive sense: attackers that compromise an application can issue arbitrary commands to the
underlying operating system, as if they were the owner of the application. The potential damages
are especially catastrophic when the targeted applications are network-facing servers running
with high privileges, e.g., file servers, mail servers, routers and even security appliances [1],
CVE-2007-3572}, [7], [12].

In recent years, various taint-tracking techniques have been developed to thwart command
injection attacks in general [129], [46], [165], [120], [155], [162], [149], [100], [56]. These
techniques typically work by tracking the flow of data from an external source as it propagates
through a program to a securitysensitive operation, such as network input flowing to a database
command. Prior to issuing a security-sensitive operation, a command is first checked against its
taint markings to ensure that critical parts of the command are not tainted. Modern taint trackers
provide fine-grained resolution and keep track of taint markings at the level of individual
characters. The resulting accuracy leads to few false alarms (false positives) and few undetected
attacks (false negatives) [149], [162], [90], [221], [103], [101], [56].

Unfortunately, taint-tracking techniques are not practical for software binaries as keeping track
of taint markings incurs high run-time overhead. Even state-of-the-art optimized taint trackers
exhibit performance overhead between 50% and 200% [46]. In this section, we use OS command
injection attacks for program binaries as a motivating example. PEASOUP also employs this
technique to defend against SQL, XPATH, and LDAP injections. Our solution solution has the
following characteristics12:

• Operates on binaries. The technique should operate directly on binaries, without
requiring access to source code. In many deployment scenarios, source code will not be
available, e.g., due to intellectual property protection measures, binary distribution, or use
of legacy code.

• Easy deployment. The technique should be easy to apply and deploy. For example, it
should not require the installation of a custom interpreter or significant changes in
software development processes [149], [162], [90].

• Low/no overhead. A protected binary should incur very low overhead (< 1%) in attack-
free mode.

• Low rates of missed attacks and altered functionality. The technique should be effective
at stopping attacks but it should not modify the functionality of protected binaries under
normal operation.

The design landscape for run-time, taint-based defensive techniques is summarized in the
following table:

12 These attributes were inspired by address space layout randomization, a security technique widely deployed
across major commodity operating systems [2].

75
Approved for public release: distribution unlimited.

 negative taint positive taint

taint tracking Haldar ’05 [100]
Newsome ’05 [148]

Nguyen-Tuong ’05 [149]
Pietraszek ’06 [162]
Futoransky ’07 [90]

Qin ’06 [165], Xu ’06 [221]
Chin ’09 [56]

Bosman ’11 [46]
Papagiannis ’11 [155]

Halfond ’06 [103]

Halfond ’08 [101]

taint inference Sekar ’09 [184] S3

In one dimension, the focus is on keeping track of either untrusted data (negative taint) or trusted
data (positive taint). In the other dimension, taint markings are derived either from tracking the
flow of data through a program (taint tracking), or by inference (taint inference). S3 investigates
a combination of positive tainting and taint inference, the previously unexplored quadrant in this
design space.

To meet our design goals, S3 draws inspiration from taint inference, a technique described by
Sekar [184]. Instead of instrumenting programs to keep track of the propagation of taint
markings, Sekar’s technique simply infers taint marking by correlating inputs to substrings in
security-critical operations using an approximate string matching algorithm. By obviating the
need to propagate taint, taint inference achieves low overhead. Sekar’s taint inference technique
relies on two main assumptions: (1) the accurate identification of external input data, and (2)
external data is mostly used verbatim when used in a command. These assumptions hold true for
most web applications, but not for binary programs. For example, consider a server that uses
various forms of data encoding or proprietary protocols to read input, and possibly uses shared
memory to communicate with other programs. In this case, it is difficult and expensive to
identify and monitor sources of input. Furthermore, if the input is encrypted or encoded, as is
often the case with servers that use SSL, inferring taint markings based on the program’s input
becomes impossible.

S3 captures the primary benefit of taint inference, i.e., low overhead, but uses positive tainting to
obviate the needs of identifying sources of external data or relying on a readily observable
correspondence between external input and critical commands.

The primary contributions of this paper are:

• We identify positive taint inference, a previously unexplored design point in the
landscape of taint-based dynamic techniques.

• We demonstrate a realization of positive taint inference that we call software DNA
shotgun sequencing (S3). S3 forgoes in-depth and expensive program monitoring to infer
taint markings.

• We highlight weaknesses in taint-based detections of OS command injection attacks,
which motivates the need for better program specifications.

• We present and evaluate a working prototype of S3, which effectively thwarts OS
command injection attacks. S3 has essentially no performance overhead and operates on

76
Approved for public release: distribution unlimited.

binary programs, making it a practical, deployable solution to OS command injection
attacks.

3.6.1 Threat Model
Before describing S3 in detail, it is necessary to understand the threat model of OS command
injections that positive taint inference addresses.

The threat model assumes software is intended to be benign, but also that it likely contains flaws.
The program, when run, reads untrusted user input possibly from many sources such as files,
environment variables, shared memory, or network sockets. The input is used to create
commands that are issued to the OS. Most inputs to the program are benign and cause the OS
command to behave as intended by the programmer, but malicious inputs may exploit the
program flaw to violate the security policy intended for the OS command. An OS command
injection occurs when attackercontrolled inputs change the programmer-intended syntactic
structure of a command [202], [184]. Further, the program may be performance sensitive, and
cannot tolerate high run-time overhead.

This threat model includes the common “remote attacker” model where malicious input is
specified over the network to a server-type program. However, it also includes privilege
escalation attacks where a local user attempts to gain additional privileges (such as root access),
by providing a malicious command line, environment variable, etc. to a program.

3.6.2 Software DNA Shotgun Sequencing: High-Level Overview
Software DNA Shotgun Sequencing (S3) is a technique inspired by genetic research [216]. In
genetics, DNA shotgun sequencing breaks up very long DNA strands into short snippets,
operates on (e.g., sequences) the snippets, and then recombines the results. Software DNA
Shotgun Sequencing is similar in that we extract string fragments from a program, operate on
them, and then later recombine them to validate some aspect of the program. Based on this idea,
we invented the S3 technique described in this paper. S3 can thwart OS command injection attacks
by matching the program’s DNA fragments to the commands it attempts to issue. If commands
cannot be matched, S3 assumes that the DNA that has been injected into the program is
potentionally dangerous.

S3 differs from traditional taint-based techniques in two fundamental ways:

• S3 does not seek to propagate taint markings as a program executes. Instead, it uses taint
inference, a concept introduced by Sekar [184].

• However, in contrast to Sekar, S3 infers taint markings for trusted data instead of
untrusted data. The emphasis on trusted data is referred to as positive tainting and was
developed by Halfond et al. [103], [101].

S3 combines taint inference and positive tainting. We use the term positive taint inference to
distinguish our work from Sekar’s negative taint inference technique.

3.6.2.1 S3 Architecture
S3 consists of five major compoments. The goal of the DNA Fragment Extraction component is
to extract string literals, i.e, DNA fragments, from the binary and its associated libraries. This
analysis is done once, prior to program execution, and the analysis time is not counted against
the run-time overhead.

77
Approved for public release: distribution unlimited.

The Command Interception component intercepts security-critical commands so that they can
be vetted.

The Positive Taint Inference component determines which characters in the intercepted
command should be trusted by matching the command against the extracted DNA string
fragments. Any unmatched character is deemed untrusted. Combining DNA fragments native to
the protected binary to infer taint is a novel form of taint inference and one of the key
contributions of the S3 architecture.

The Command Parsing component parses the intercepted command to identify critical tokens
and keywords.

The Attack Detection component combines the output of the Positive Taint Inference and
Command Parsing component to determine whether an attack has occurred. A command is
deemed an attack if a critical token or keyword is marked as untrusted.

Upon attack detection, S3 either rejects the command outright and returns an error code, or it
alters the command before passing it on to the operating system. The current prototype uses a
simple form of error virtualization that simulates a failed command invocation by substituting an
error code in place of the actual command [194], [192].

To illustrate how S3 works, we use the following vulnerable program as a working example:

char *path = "/bin"; int main(int argc, char** argv) {
char cmd[100];
snprintf(cmd, 100,

 "%s/cat %s", path, argv[1]);
 system(cmd);
}

3.6.2.2 Example with Benign Input

78
Approved for public release: distribution unlimited.

When the program in the working example is passed a benign input such as "README", the
resulting command is shown in the first line of Figure 14a. The Positive Taint Inference
component annotates each character in the command (B denotes that the character is trusted or
blessed, U denotes untrusted), as denoted by the second line of the figure. In this case, /bin/cat is
trusted as it matches the composition of the DNA fragments "/bin" and "/cat" extracted in the
offline DNA Fragment Extraction process. The Command Parsing component identifies critical
tokens and keywords (C denotes critical), as shown in the third line of the figure. Lastly, the
Attack Detection component takes as input the intercepted commands along with all annotations,
and marks any critical command that is not blessed. Since all critical commands are blessed, the
command is determined to be legitimate and is allowed to execute.

3.6.2.3 Example with Attack Input
Consider the malicious input README; rm -fr * that seeks to recursively delete user files. The
resulting command is shown in Figure 14b. Like the other example, the Positive Taint Inference
component annotates each character in the command. Again, only /bin/cat matches the extracted
fragments. The Command Parsing component identifies critical tokens and keywords, like
before, except that this time the semicolon, rm command, and the -fr flags are also detected, as
shown on line 3. Lastly, the Attack Detection component is invoked, and detects that there are
critical command characters that are untrusted (shown with asterisks on line 4 of Figure 14b).
Since S3 has detected the attack, an appropriate remediation technique can be applied. The
program can be shut down or /bin/cat the command can be blocked or sanitized before allowing
it to be passed to the operating system.

3.6.3 Software DNA Shotgun Sequencing: Detailed Overview
While the S3 architecture is generic, e.g., it could be applied to web applications, we present
details and discuss challenges encountered as we map S3 into a practical instantiation to defeat
OS command injection attacks for binary programs.

/bin/cat README
BBBBBBBBBUUUUUU
CCCCCCCC-------

(a)

/bin/cat README; rm -fr *
BBBBBBBBBUUUUUUUUUUUUUUUU
CCCCCCCC-------C-CC-CCC--
 * ** ***

(b)

 Figure 14. Sample command, with S3’s “blessed” and “critical” markings

79
Approved for public release: distribution unlimited.

3.6.3.1 DNA Fragment Extraction
The accuracy of the fragment extraction process is crucial. If fragments are missed, valid
commands might be flagged as injections. If extra fragments are extracted, malicious command
injections might not be flagged (See Section VI-B for further discussion).

1) String extraction: Extracting string fragments from binary programs is more difficult than it
first appears. Our first attempt used the Linux program strings, which linearly scans a binary
program and extracts null-terminated sequences of ASCII characters that have a length larger
than a given threshold. Unfortunately, short strings are sometimes important. Consider this C++
snippet:

string q = "rm ";
q += "-f ";
q += filename;
system(q.c_str());

which creates and executes an OS command.

Using strings, the threshold needs to be sufficiently low to find short strings. Unfortunately, low
thresholds tend to yield lots of garbage strings, which affects accuracy. Furthermore, compilers
use many optimizations that can make strings harder to detect. For example, to initialize a string
on the stack, a compiler might use a sequence of store instructions:

mov [esp+28], 0x2d206d72 # "rm -"
mov [esp+32], 0x00002066 # "f \0\0"

Each move stores four bytes onto the stack, ultimately creating the proper null-terminated string.
Other compiler idioms may complicate accurately finding all strings, as well. We have seen
examples of the compiler inlining some standard library functions that have constant operands,
such as memcpy(dst,"rm -f ", 6). This optimization yields inlined constants much like the
previous string initialization example. Lastly, strings reports all strings in the executable file,
which can include debug information, shared library names, compiler-version identifiers, etc. As
these types of strings cannot be used to form OS commands, they should be excluded from
consideration.
To deal with these issues, we use static analysis of the program to derive the string fragments.
The static analysis starts by fully disassembling the program into a database which holds each
instruction in the program, indexable by address, function, and control flow information. We use
a hybrid linearscan disassembler and recursive-descent disassembler to ensure we get good
coverage of all instructions, as described by Hiser, et al. [107], [106].

80
Approved for public release: distribution unlimited.

After disassembly is complete, the instructions are scanned for accesses or creation of string
values. We analyze each instruction’s immediate operands and apply three heuristics to identify
string fragments:

• Check if the immediate value holds the address of a program location and the location is
the beginning of a sequence of printable characters or one printable character terminated
by a null byte.

• Check immediate values to see if they contain a string fragment. Attempt to combine
immediate values of sequential instructions to form one string fragment. This heuristic
handles the case of strings constructed via sequential store instructions, as described in the
previous example.

3: Usage: spamass-milter -p socket
 [-b|-B bucket] [-d xx[,yy...]]
 [-D host]
11: popen: failed(%s). Will not send a copy to spambucket
33: recipients; spamc gets default username
34:). Will not send a copy to spambucket
46: Could not extract score from <%s> 56: error. could not replace

body.
57: Could not extract score from <
173: popen failed(
273: hX
274: hx
279: h8
281: h@
282: h(
287: ><
286: @+
288: Z
304: 0
305: 8
306: @
307: (
308: "
309: .
310: /
311: :
312: ’
313: _
314: >
315: ‘

Figure 15. Sample fragments manually extracted from SpamAssassin Milter Plugin (28
shown out of 315 fragments total)

81
Approved for public release: distribution unlimited.

• Check immediate values for PIC-relative addressing that might point to a string in PIC
code.

Finally, we check for other string fragments or string pointers in data sections.

2) Post-processing of DNA Fragments: Programs compiled from C or C++ often contain
statements that use format specifiers, e.g. %d, %f, %s, %x. We split such fragments into their
constituent sub-fragments using the format specifiers as delimiters. A fragment such as

"/bin/rm -f \%s; /bin/touch \%s"

would be split into the sub-fragments "/bin/rm -f ", and "; /bin/touch". As the analysis cannot be
sure that such fragments are used as format strings, the original fragment as well as the sub-
fragments are retained in the list of signatures.

Figure 15 shows a representative sampling of the DNA fragments from the Spam Assassin
program. The length of the fragments range from 1-111 characters. Because of the %s specifier,
Fragment 11 expands into sub-fragments 34 and 173. Likewise, fragment 46 expands into
fragment 57 and 314. Fragments 273–282 are likely spurious and result from the inherent
imprecision of static analysis on binaries.

Astute readers will notice the short fragments that contain potentially dangerous shell
metacharacters (fragments 306–315), or short fragments that could be composed in an attack
(fragments 273-288). In Sections IV-E and VI, we discuss how the S3 policies deal with short and
potentially dangerous fragments.

3.6.3.2 Command Interception
For binaries derived from C/C++, commands are typically encapsulated in an Application
Programming Interface (API) and accessed via dynamically-linked shared libraries.

The S3 prototype leverages standard library interposition facilities to transparently intercept and
wrap function calls to the underlying operating system. S3 intercepts the system, popen, rcmd,
and exec family of functions. Other functions could obviously be intercepted as well, but we
have identified these as the primary candidates for OS command injection.

3.6.3.3 Command Parsing
This component is responsible for identifying the security critical parts of a command. For OS
commands, the critical parts consist of command names, options, delimiters, and the setting of
environment variables.

The S3 prototype uses a simple, combined lexical analyzer and parser. The parser is careful to
identify special characters which could indicate the start of a new command (such as the
semicolon character), match quotation marks and parentheses, etc. Ideally, one would use a full,
formally-verified lexical analyzer and distinct parser to detect keywords, etc. However, it is
impossible due to the nature of the shell language (bash in our case). Consider this command:

echo Touching ${file}; touch `foobar`

What are the “correct” lexical analysis and parse for this command? The answer depends on the
value of the file variable and the output of the foobar executable. If file is set to a single quote
character and foobar returns the same thing, then there is exactly one command, echo. Since

82
Approved for public release: distribution unlimited.

variables are expanded and sub-processes are executed before the command is parsed, the correct
parse cannot be determined a priori. Under most circumstances, though, such odd substitutions
are not the case.

For the purposes of detecting OS command injections, we need to know the possible places
where a command could be invoked. Our simple parser assumes that the structure of the
command is not changed by the results of executing subcommands. In the case of our simple
example, the parser marks the command like so:

echo Touching ${file}; touch `foobar`
CCCC CCCCCCCC CCCCC CCCCCCCC

where C indicates that a critical command character exists at the given location.

3.6.3.4 Positive Taint Inference
Conceptually, the Positive Taint Inference component infers which portions of the command
come from within the program, and which ones come from external sources. To accomplish this
step, it checks each substring in the command to determine if that location is within the set of
DNA fragments. This pseudocode illustrates the process:

for each DNA fragment, f
 for each position, i, in the command
 l=len(f) i
 if f==command[i .. i+l-1]
 mark_blessed(command[i .. i+l-1]);

<commandName>
;[\s]<commandName>
$(<commandName>
||[\s]<commandName>
&&[\s]<commandName>
‘<commandName>
<environmentVar>[\s]=
-<optionFlags>
--<optionFlags>

 Figure 16. Attack detection policies using
the same fragment origin policy ([\s]

denotes an optional whitespace).

/bin/cat README; rm –fr *
BBBBBBBBBUUUUUUUUUUUUUUUU
CCCCCCCCC C CC CCC

Figure 17. Overlapping policies to detect
attacks.

83
Approved for public release: distribution unlimited.

Conceptually, this algorithm could be quite expensive, O(n3) where
n = max(len(sig), #sigs, len(command)). In practice, though, we use a move-to-front heuristic
to organize the DNA fragments required to trust commands and exit the outermost loop when
enough of the command is trusted to verify its safety. Further, each command and each DNA
fragment is typically short, on the orders of tens or hundreds of characters. These simple
observations and adjustments dramatically reduce the time necessary to make the inference.

3.6.3.5 Attack Detection
Attack detection consists of scanning the command for any character that has been marked as
untrusted by the Positive Taint Inference component and critical by the Command Parsing
component. In addition, we impose the constraints shown in Figure 16 that command names,
shell metacharacters used for starting subcommands and their associated command names, option
flags, and environment variable names must come from a single DNA fragment (same fragment
origin policy).

This policy helps to compensate for the case when a short, critical token, such as a semi-colon or
a quotation mark, is present in the set of DNA fragments. Such fragments allow attackers great
latitude to create strings that append new commands, as in “; rm -rf”. Unfortunately, these DNA
fragments cannot simply be discarded, because many programs do use such fragments to
terminate their commands. However, it appears uncommon for a program to use such fragments
to introduce a new command, so we disallow this behavior entirely.

Figure 17 illustrates how these policies provide overlapping means to detect attacks. The core
policy of checking for untrusted critical characters (shown in boldface red) is augmented with the
same fragment origin policy (shown with rectangles). Note that rm is covered by three separate
policies. Thus, even if ; and rm were somehow both extracted as fragments, the attack would still
be detected correctly.

When no attack is detected, S3 passes the command to the operating system to execute. However,
if an attack is detected, S3 does not pass through the command, but can enact any one of a variety
of remediation responses, such as shutting down the program, warning the user and asking for
permission to continue, or logging the attack. For the prototype described in this paper, we chose
to return an error code as if the library call had failed. This policy makes sense in many cases, as
well-written programs are designed to gracefully handle error conditions.

3.6.4 Related Work
We focus our discussion on software-based, run-time defensive techniques.

3.6.4.1 Taint tracking
1) Taint tracking in Managed Runtimes: Livshits provides an extensive review of dynamic

taint tracking projects [129]. Most projects use a form of negative taint tracking, i.e., these
projects keep track of external (untrusted) data as it flows through a program, and check whether
such data is used in a security-sensitive operation [100], [149], [162], [221], [101], [101], [56].
The notable exception is the WASP project by Halfond et al. which uses positive taint tracking to
keep track of internal (trusted) data [101]. The primary tradeoff is that positive taint tracking
favors false positives (breaking application functionality) whereas negative taint tracking favors

84
Approved for public release: distribution unlimited.

false negatives (missing attacks). Halfond advocates the use of positive taint tracking as it
provides a more conservative security posture.
Unfortunately, both positive and negative taint tracking are seldom used in practice. Perl and
Ruby are the only two major languages that we are aware of that provide support for dynamic
taint tracking out of the box [21], [18]. Several projects modified the PHP run-time engine to
support taint tracking at the level of individual characters [149], [162], [90]. To avoid modifying
the PHP run-time engine, PHP Aspis applies source code transformations selectively to only
parts of a web application. This scheme maps well to extensible applications whose core is well-
maintained but where the quality of thirdparty plugins is unknown [155], [23]. Despite the
selective application of taint markings, Aspis incurs high overhead of 2.2X on Wordpress. Haldar
et al. provided coarse-grained taint tracking for Java strings [100]. Chin and Wagner
implemented taint tracking at the level of characters for Java [56]. In general, fine-grained
approaches to taint tracking result in higher precision and fewer false positives.

2) Taint-tracking for Binaries: The overhead numbers reported for the systems highlighted
below are illustrative of the rapid rate of progress in reducing the overhead of taint-tracking
techniques on binaries. However, they should not be directly compared to one another as the
benchmarks and hardware used vary across these projects.
TaintCheck, one of the early pioneering projects for using taint tracking to detect memory-
overwriting attacks on binaries incurred overhead as high as 37X for CPU-bound applications,
and from 2.5X to 25X for I/O bound workloads for a typical web server [148]. TaintCheck was
built on top of Valgrind, a flexible but relatively slow dynamic binary rewriter [145]. The LIFT
project achieved overhead of 3.6X on several SPEC INT2000 benchmarks and 6.2% on server
applications [165]. The order of magnitude improvement resulted from several optimizations,
including using a more efficient binary rewriter, eliminating instrumentation on provably safe
code paths, coalescing checks and reducing the overhead of context switching between the
application code and the dynamic binary rewriter. Bosman et al. reported overhead of 2.4X for
SPEC INT2006 and 1.5X-3X for real-world applications using an emulator custom-built for taint
analysis [46]. Unlike the previous approaches, Saxena et al. use static rewriting as the
mechanism for instrumenting binary code [179]. They reported average overhead of 1.95X on
several CPU-intensive SPEC95 INT benchmarks. Dytan [63] and libdft [120] incorporate years
of experiences with taint tracking to provide easily customizable and generic taint analysis
frameworks.

Despite steady and impressive progress in improving the performance of taint-tracking
techniques, our stringent overhead requirements (< 1% on binaries [140]) led us to bypass taint-
tracking techniques altogether.

3.6.4.2 Taint Inference
S3 was heavily influenced by Sekar’s taint inference technique for protecting web applications
against command injection attacks [184]. Sekar’s insight of establishing taint markings by
correlating inputs to observable commands obviated the need for taint tracking and was the key
to enabling practical performance. Instead of inferring taint markings for untrusted data, S3 seeks
to infer trusted data used in OS commands. To highlight this fundamental difference, we view S3

as an embodiment of positive taint inference, in contrast to Sekar’s use of negative taint
inference.

85
Approved for public release: distribution unlimited.

3.6.4.3 Model-based Approaches
Christensen et al. perform static analysis to model possible string values at any point in a Java
program [61]. The model extracted represents an over-approximation of the programmers’
intended specification for benign commands. The AMNESIA project leverages these models to
detect and prevent SQL injection attacks [102]. We believe that AMNESIA can be extended to
cover OS command injections. The overhead reported on a set of Java web applications was
negligible.

String analysis for binaries is much more challenging as binary code does not retain as much type
information as Java byte code. Christodorescu et al. modeled strings for x86 binaries, though the
precision of the analysis is limited by the lack of interprocedural analysis [62]. Sophisticated
memory-analysis techniques such as Value-Set Analysis (VSA) could also be applied to string
extraction [169]. However, it seems likely that string extraction requires abstract domains that
are designed for reasoning about strings. VSA uses an abstract domain based on reduced interval
congruences which is excellent for reasoning about (strided increments of) pointer values, but
likely to lead to imprecise representation of string values.

By extracting and allowing for the arbitrary combination of string fragments, S3 makes a
conscious tradeoff between model complexity and model accuracy. S3 combines a very simple
(but over-approximated) string model with additional policies based on the origin of string
fragments for its attack detection policies.

 C6: Concurrency Errors 3.7
Concurrency errors are bugs that manifest (usually rarely) when certain thread or process
scheduling conditions are met. For our category of STONESOUP, binaries, the T&E team
determined that there were 17 CWEs that pertain to concurrency errors. We then grouped these
into four broad categories:

• File system TOCTOU vulnerabilities

• Deadlocks

• Signal handler errors

• Atomicity violations

We designed and implemented four detection and mitigation approaches to cover these
categories. There were two CWEs (412 and 765) which do not fall neatly into any of these
categories. Below we discuss why this is the case, and possible mitigations for these CWEs. We
were unable to complete a solution for CWE-412, and CWE-765 was only partially covered by
our solutions.

Table 1 shows all the CWEs in scope for C6, and lists which category each CWE goes in.

86
Approved for public release: distribution unlimited.

Table 1: Categorization of Concurrency-Related CWEs

Category CWE Description
Other 412 Unrestricted Externally Accessible Lock

765 Multiple Unlocks of a Critical Resource
Atomicity
Violation

367 Time of Check Time of Use (TOCTOU) Race Condition
414 Missing Lock Check
543 Use of Singleton Pattern Without Synchronization in a

Multithreaded Context
567 Unsynchronized Access to Shared Data in a Multithreaded

Context
609 Double Check Locking
663 Use of a Non-reentrant Function in a Concurrent Context
820 Missing Synchronization
821 Incorrect Synchronization

File System
TOCTOU

363 Race Condition Enabling Link Following

Signal Handling 479 Signal Handler Use of a Non-reentrant Function
828 Signal Handler with Functionality that is not Asynchronous-Safe
831 Signal Handler Function Associated with Multiple Signals

Deadlock 764 Multiple Lock of a Critical Resource
832 Unlock of a Resource that is not Locked
833 Deadlock

In each of the following sections we describe some relevant background, our design and
implementation, and our evaluation of each component of PEASOUP’s concurrency mitigations.

3.7.1 Unhandled CWEs
3.7.1.1 CWE-765: Multiple Unlocks of a Critical resource
We handle the mutex case (also, CWE-832) with the deadlock tool. The case for counted
resources, such as semaphores, is more complex. Semaphores can either be used to count up
(e.g., for signaling units of work available between threads) or count down (e.g., for limiting the
number of connections to a shared resource). In the latter case, there is a semaphore initialized
with a non-zero value C, and it should never exceed the value C. If one of the threads does a
multiple unlock then the value will exceed C, and we may be able to detect this. The other case,
counting up, is essentially using a semaphore as a signaling mechanism. Most code is robust to
extra signals; if not, it is not clear how to infer that a sent signal is “extra.”

We did not implement any functionality to handle this CWE.

3.7.1.2 CWE-412: Unrestricted Externally Accessible Lock
An unrestricted externally accessible lock is one whose state (locked or unlocked) can be
controlled by an attacker. This category of attack is most relevant to server software, where
denial of service is a possibility. In many ways this functionality fits into the “Resource Drains”
categorization better than concurrency errors. The issue is not that concurrent access is causing
errors, but that a resource is being hijacked by an untrusted user or process.

87
Approved for public release: distribution unlimited.

We did not implement any functionality to handle this CWE. Adapting the resource drains
approach by tracking suspicious callstacks that lead to a lock that is held for a significant amount
of time, may be a viable solution.

3.7.2 File System TOCTOU
3.7.2.1 Background
File system Time of Check to Time of Use (TOCTOU) vulnerabilities occur when two
operations reference the same file system path, with the intention that the underlying file system
object (e.g., inode on Linux) is also the same. This is ultimately a name resolution vulnerability
[208], as the vulnerability manifests when the same name resolves to different objects. Table 2
shows a simple example.

Table 2: Code snippet demonstrating a potential file system TOCTOU vulnerability.

1 // Open the file
2 int fd = open(“myfile.txt”, “w”);
3 // Write something
4 write(fd, mydata, mydata_size);
5 // Give everyone full permissions on the file
6 chmod(“myfile.txt”, 511);
7 // Close the file
8 close(fd);

In this example “myfile.txt” is opened, data is written to it, and then permissions on the file are
changed so that any user on the system can read, write, or execute it. Clearly the intention is that
the permissions are changed on the same object that was opened and written. However, there is a
race condition between lines 2 and 6, where an external actor can change the file system object
that “myfile.txt” refers to. A common attack would be to change “myfile.txt” to be a symbol link
to a sensitive file that most users cannot access (like /etc/shadow). If this symbolic link can be
created after line 2 executes and before line 6 executes, all users will be able to read and change
the sensitive file.

In the standard terminology the first operation is referred to as the “check” and the second
operation is referred to as the “use”. In our example, open() is the check operation and chmod()
is the use operation.

Unlike many other vulnerability classes, file system TOCTOU vulnerabilities are highly
dependent on the system environment. The code snippet in Table 2 could be perfectly safe if it is
executed in a protected sub-directory on the file system; the attacker will be unable to create a
symbolic link in that case.

Statically identifying potential file system TOCTOU vulnerabilities is feasible; for example,
CodeSonar13 can flag such bugs in both C/C++ source and x86 binaries. However the False
Positive (or “Don’t Care”) rate can be high, because many of the races will be unexploitable
given the actual environment the program will run in.

13 CodeSonar is GrammaTech’s commercial bug finding tool; CodeSonar is not a part of the PEASOUP tool chain.

88
Approved for public release: distribution unlimited.

For this reason, we focused on purely dynamic approaches. One approach we looked into was
the use of the “safefile” API described by Kupsch and Miller [124]. Their approach validates the
file system objects that each component of the point resolves to. However, there are two
fundamental issues with using their approach in PEASOUP:

1. Their validation requires some notion of “trusted path”. A prerequisite for using this
approach is then to provide a table listing the trusted paths for a given program.

2. They require that the last component of a file path is not a symbolic link. This assumption
breaks many existing programs/configurations.

In general, the “safefile” API is applicable to new development (i.e., you design your software to
make use of it) rather than as a vulnerability mitigation tool applied after the fact.

3.7.2.2 Our Approach
Our approach is dynamic: we implemented a library which gets injected into the application at
runtime, and hooks POSIX file system API calls. We track metadata about these calls (e.g., the
filename to inode mapping that was used) and use it to either fail the function call or to mitigate
the race by avoiding name resolution altogether.

We separated the Linux file system time-of-check to time-of-use (TOCTOU) vulnerabilities into
four categories:

1. Privilege-droppable pairs: access()/open() (and creat(), etc.) vulnerabilities in setuid
programs.

2. FD-checkable pairs: there exists a safe file descriptor version of the use operation, and
the check operation generates a file descriptor.

3. Double-checkable pairs: the check operation is a stat() and the use operation generates a
file descriptor (e.g., open()).

4. Other TOCTOU pairs

We used a similar breakdown of TOCTOU pairs as in [214], but we expanded the pairs to
include modern and less portable functions that were not in [214]. Currently we have a
breakdown of 222 unique pairs. [214] claimed 224, but when we reproduced their sets we
discovered they were counting some pairs multiple times. Of these potential TOCTOU pairs,
many are probably unexploitable or unlikely to be found in many programs. For example, the
pair (chmod(), chmod()) is unlikely to be exploitable by itself – it requires some assumptions
prior, since the “check” operation is really only checking that the program has permissions to
perform the chmod(), and that the given file system node exists. I.e. the vulnerability in such a
case is not a TOCTOU, it is most likely a missing permissions check.

Below we provide some brief examples of our current TOCTOU mitigations.

Privilege-droppable
The access function checks whether the calling process can access a file using the programs real
user ID and group ID. It is usually paired with a call to open, to open the file if the permissions
check succeeds. Since both functions use the file name (path really), there is a TOCTOU race
here.

89
Approved for public release: distribution unlimited.

There have been attempts in the literature to devise probabilistic solutions to this problem
(namely [76] and [205]), but also attacks that successfully always win races against them ([45]
and [50]).

Linux and other modern POSIX systems support saved set-user-IDs, which means there is a
simple work-around for this problem: drop the privilege to the real UID/GUID before calling
open and then re-elevate privileges.

We recognize the pair (access(), open()), and prior to the open() operation we drop the process
privilege and then re-escalate the privilege upon completion. This approach is not portable across
all Unix variants, but does work for all the modern Unix-like operating systems. The Linux
manual page for access() recommends this approach in lieu of using the access() function.

FD-checkable
We recognize that given the pair (creat(), chmod()), we can save the file descriptor from creat()
and rewrite the chmod() to be an fchmod() at runtime.

Double-checkable
Any pair that starts with stat() and ends with a file descriptor creation, like (stat(), open()), can
be “double checked” by doing an additional fstat(). The inode and device of the stat()/fstat() calls
are then compared, and the open() call is forced to fail if they mismatch.

Other Pairs
Many of the remaining pairs are either not exploitable (like the chmod(),chmod() example given
above) or at least seem less common based on many of the bugs referenced in the literature [214]
[208].

For mitigating races on these pairs, we take inspiration from the work done on portably
preventing races between the access(),open() TOCTOU pair. As mentioned above, we have a
mostly portable solution that deterministically prevents access(),open() races. However, the k-
race approach from [76] can be extended to apply to any TOCTOU pair, not just access(),open().
Furthermore, the attack against this approach that was described in [45] is no longer
deterministic on modern Linux kernels.

Determistically attacking k-races requires generating a file-maze: a huge set of nested directories,
where the last component of the path is a symlink to another set of nested directories. Requiring
a file system operation to go through a file maze slows it down noticeably. In order to get
determinism, the attacking process monitors the access time attribute on the file mazes.
However, modern Linux kernels mount file systems with noatime by default, meaning the access
time attribute is not updated. Even if you manually mount a file system with atime enabled, the
kernel only updates access time at very large intervals. The deterministic attack against k-race is
no longer possible.

It is still possible to probabilistically attack a k-race-protected TOCTOU pair, and file system
mazes help increase the odds. However, that probability drops drastically as k increases.

The original k-race approach was specific to access()/open() pairs. It performed extra calls to
fstat() on the file descriptor associated with the open() result. The inode and device of the
resulting “struct stat” object were then compared for each of k iterations; any mismatch resulted

90
Approved for public release: distribution unlimited.

in failure. This approach requires that the ‘use’ operation in the TOCTOU pair generate a file
descriptor, and so is not directly applicable to all pairs.

We extend k-race to all TOCTOU pairs by performing 4*k races, as shown in Figure 18.

Figure 18: Extending k-race to arbitrary check/use TOCTOU pairs.

The function doRace() takes a file system pathname and returns a stat object containing inode,
device, and other metadata information. doRace() performs k calls to stat() and compares the
results: if any of the results are different, the function fails, and we force the file system
operation (either the check or use operation) to return a failure. We then compare the results
between k-races as well, since we don’t have a file descriptor that guarantees that we are calling
stat() on the same file system object that the check or use operation are using.

Leaving out any of the four k-races leaves a hole where an attacker can possibly win a single race
to exploit the TOCTOU. The only time we leave out some of the k-races is when one of the
operations generates a file descriptor, where we can simply use fstat() instead of a k-race.

Note that we are not comparing for strict equality of all file object metadata properties. The
check or the use operation may mutate some of those properties, and we take that into account in
our comparison.

3.7.3 Deadlocks
3.7.3.1 Background
Approaches in the literature for preventing or mitigating deadlock mostly fall into two
categories:

1. Statically re-ordering locks in a way that is provably deadlock-free, e.g. Gadara [212].
This is not always a completely automatic process.

2. Dynamically detecting a deadlock and preventing it from occurring again. Dimmunix
[117] is the only example we are aware of for this type of approach.

A dynamic approach is more in line with the rest of the PEASOUP tool-chain, and Dimmunix
has the advantage of being completely automated. Dimmunix is a system that maintains a
resource allocation graph (RAG) at runtime to detect deadlock. It remembers which function call
stacks, and in what order, lead to deadlock and tries to avoid those orderings in the future. A
resource allocation graph is only applicable for tracking boolean resources, such a mutexes. It
does not work for counted resources like semaphores.

The majority of deadlock detection/prevention approaches deal with resource deadlocks, such as
deadlocks when acquiring mutexes. The distributed database literature also deals with
communication deadlocks, which are deadlocks that can occur due with message passing
systems. The difference is that in a resource deadlock the processes/threads (entities) are waiting

91
Approved for public release: distribution unlimited.

to acquire a resource that another entity holds. In a communication deadlock, an entity is waiting
for a message that will never come.

Traditionally, the operating systems literature has dealt with resource deadlocks. The classical
definition of a resource deadlock is that it requires four conditions to hold [195]:

1. Mutual exclusion: the resource(s) in question cannot be simultaneously acquired by two
threads.

2. Hold and wait: the threads must hold at least one resource and be willing to wait
indefinitely for another resource.

3. No preemption: no thread can preempt a resource from another thread.

4. Circular wait: each thread involved in the deadlock must be waiting for a resource held
by another thread in the deadlock, in a circular fashion.

We briefly looked into handling communication deadlocks, specifically for two common
synchronization idioms: conditional variables (e.g., pthread_cond_wait()) and semaphores that
count up and are used for signaling. However, as we describe in the next section, we only
implemented support for resource deadlocks.

3.7.3.2 Our Approach
Our approach is dynamic: we implemented a library which gets injected into the application at
runtime, and hooks pthreads synchronization operations. Our approach is very similar to
Dimmunix in that it tries to remember deadlocks that it has seen and avoid them the next time.
However, our approach improves upon Dimmunix in a few key ways:

• We use a variant of the Banker’s Algorithm instead of a resource allocation graph, to
support counted resources.

• We monitor the deadlock state within each application thread, instead of externally. This
allows us to mitigate the deadlock on the first time we see it, without terminating the
program.

• We use dynamic semaphores to prevent a deadlock from re-occurring, which guarantees
that the same deadlock will not occur twice, and also (we believe) prevents some of the
starvation problems that Dimmunix could suffer.

We hook all pthreads and POSIX synchronization APIs, and track resource requests, allocations,
and releases. For example, consider the sequence shown below.

Thread 1 Thread 2
pthread_mutex_lock(m1); // acquires

pthread_mutex_unlock(m1)

pthread_mutex_lock(m1); // waits

pthread_mutex_unlock(m1);

Thread 1 requests one element of lock m1 (since it is a mutex, there is only one element) and no
one else holds it, so it successfully allocates m1. Thread 2 then requests m1 and blocks. Thread 1

92
Approved for public release: distribution unlimited.

then releases m1, allowing Thread 2 to unblock and allocate m1, and then finally Thread 2
releases m1.

We track the current request, allocate, and release operations for each thread and resource (e.g.,
mutex) in the process. We then use the deadlock detection algorithm based on the Banker’s
Algorithm [64] to determine if the process is in a deadlocked state. When a deadlock is detected
we force the operation to fail gracefully. For example, if the last operation that occurred to cause
deadlock a pthread_mutex_lock(), we will return a non-zero (error) value from this function.
Ideally, the process would expect potential errors from these synchronization APIs and handle
them properly. In practice, very few open source programs that we have looked at do handle
errors from pthread properly. For this reason, we additionally implement deadlock avoidance,
which lets us protect against known (previously seen) deadlocks.

We avoid known deadlocks by relying on information learned in the online “learning” phase
(where we are run with a few good and bad inputs). In this phase we detect deadlocks and save
pertinent information about the order and the callstacks14 of operations that led to the deadlock.

For example, Figure 19 shows the simplest deadlock scenario. There are two mutexes, A and B.
Two threads acquire these locks in different orders, and if the acquisitions overlap in time (i.e.,
T1 gets A before T2 asks for A, and T2 gets B before T1 asks for A), deadlock occurs.

Figure 19: Simple deadlock scenario

The high-level idea of our mitigation is that we can prevent such deadlocks by introducing
another mutex only for this scenario. We will save the calling context of the lock operations and
their orders, and when we see execution which matches that pattern we will dynamically enable
the new lock (called C in our example). This saved information is a deadlock trace. Figure 20
below shows how adding an additional lock for just this scenario creates mutual exclusion
between the potentially poorly ordered locking operations. This approach is similar to Dimmunix
[117], except that we explicitly use dynamic locks instead of the thread suspension approach
Dimmunix used.

There are a variety of choices for what to include in deadlock traces. On one hand we can track
very coarse information, such as the calling context and thread of each lock operation involved in
the deadlock. This coarseness has the advantage of protecting against variations on a deadlock
that we haven’t previously seen, but the disadvantage of potentially slowing the program down if
the involved calling contexts are very frequently used. This trade-off can be skewed the other

14 We actually just save a hash of the last K functions on the callstack. By default K=5.

93
Approved for public release: distribution unlimited.

direction by adding more information to the trace, such as intermediate unlock() operations or
other common system calls and their contexts.

Figure 20: Potential deadlock mitigated by an additional lock

Note that we do not use dynamic mutexes in our implementation; instead we use counting-down
semaphores. When we have a deadlock with N threads involved, they form a chain of operations:
each thread is in a hold-and-wait state. In order to prevent such an N thread deadlock we only
need to break one link of the chain. Our avoidance strategy generalizes to this N thread scenario
by making use of a count-down semaphore initialized to N-1. This allows N-1 of the problematic
threads to obtain whatever resources they want, but prevents the Nth thread from doing so
simultaneously, thus avoiding the deadlock.

Our deadlock tool also handles CWE-764 (Multiple Locks of a Critical Resource) and partially
handles CWE-765 (Multiple Unlocks of a Critical Resource). CWE-764 simply manifests as a
single-threaded deadlock, so our normal algorithm applies. CWE-765 is handled for binary
resources and semaphores that are used to count-down. Whenever we detect a deadlock and
force a lock() operation to fail we are in the scenario where an extra unlock could occur, so we
must handle it. We do so by tracking the failing lock() operation and watching for a subsequent
unnecessary unlock, which we ignore.

3.7.4 Signal Handler Errors
3.7.4.1 Background
Coding errors related to signal handlers often result in deadlocks or memory errors, but can
sometimes result in more subtle application-specific problems. The associated CWEs (479, 828,
and 831) attempt to describe some common causes of signal handler problems. Certain static
analysis tools, like CodeSonar, attempt to flag problems like data races that might occur inside of
signal handlers. We did not find any dynamic approaches to signal handler errors in the
literature.

94
Approved for public release: distribution unlimited.

3.7.4.2 Our Approach
We use a primarily dynamic approach to mitigating signal handler errors. Note that many signal
handler issues will manifest in ways that other PEASOUP mitigations already handle, e.g.
memory errors. However it is also important to realize that dynamic approaches to other errors
can be thwarted by signals if they get interrupted during mitigation activities.

All three signal handling error CWEs are handled by a simple concept we’re calling signal
buffering. We have a core component that hooks all signal handlers, and exposes two functions
in an API: buffer_signals() and flush_signals(). When buffer_signals() is called all signals sent
after that point will be put on a queue instead of being handled by the processes handlers. When
flush_signals() is subsequently called, all those queued signals will get sent to the appropriate
threads.

This general mechanism allows us to mitigate the three CWEs in the following ways:

• CWE-479, “Signal Handle Use of a Non-reentrant Function”: hook common non-
reentrant POSIX functions and buffer signals around the original functionality. E.g.,
printf() buffers signals before calling the actual printf() implementation, so no deadlock
can occur.

• CWE-828, “Signal Handler with Functionality that is not Asynchronous-Safe”: we
statically identify atomic sets of variables that may be accessed from other threads and
the signal handler. We then surround accesses to these variables by buffer_signals() and
flush_signals() to prevent atomicity violations.15

• CWE-831, “Signal Handler Function Associated with Multiple Signals”: since we are
hooking all signal handlers we can dynamically identify when multiple signals share a
handler. These handlers are then wrapped by buffer_signals() and flush_signals() to
prevent adverse interactions between the handler and itself.

There are certain signals that we cannot handle in this way, such as SIGSEGV and SIGFPE.
These signals are caused by faulting instructions which are re-executed after the handler
completes. Buffering these signals would result in an infinite loop.

In addition to buffering the signals themselves, we need to buffer changes to signal handlers. For
example, if the program does something that causes signals to be buffered and then calls either
sigaction() or signal() to change the handler for that signal, we need to make sure that signals are
processed by the correct handler.

Consider the following sequence of operations in a program:

15 We were unable to complete implementation of this functionality for the PEASOUP deliverable.

95
Approved for public release: distribution unlimited.

sigaction(1, handlerA)

send signal 1 // Handled by handlerA

sigaction(1, handlerB)

send signal 1 // Handled by handlerB

sigaction(1, handlerA)

send signal 1 // Handler by handlerA

We will get the function call sequence {handlerA(), handlerB(), handlerA()} when executing this
program. Now consider the same program where we are currently buffering signals to mitigate
potential vulnerabilities.

buffer_signals()

sigaction(1, handlerA)

send signal 1 // Put on queue

sigaction(1, handlerB)

send signal 1 // Put on queue

sigaction(1, handlerA)

send signal 1 // Put on queue

flush_signals() // Send the three signals

 // in the same order.

If we only buffer the signals and not the changes to the handlers, flush_signals() will use the last
handler (handlerA) for all three signals. This can cause altered functionality in certain programs,
such as gdb.

The correct thing to do is put the signal handler change information on the queue, so that when
we flush the queue we process the changes in signal handlers, and get the correct function call
sequence {handlerA(), handlerB(), handlerA()}.

As mentioned above, one of the ways that we handle CWE-479 (“Signal Handle Use of a Non-
reentrant Function”) is by signal buffering around common non-reentrant POSIX functions. This
CWE can also manifest with user-written functions that use mutexes and are called from signal
handlers. The deadlock tool can handle these situations, assuming that it does not get interrupted
by a signal while it is detecting or mitigating deadlocks.
For this reason, we ended up integrating the deadlock and signal handling concurrency
components. This integration was motivated by the example illustrated in Figure 21.

96
Approved for public release: distribution unlimited.

Figure 21: Deadlock with a single thread and interrupt handlers.

As Figure 21 shows, there is a single thread in this scenario. That thread gets interrupted by a
signal, and sighand1() starts executing. Then that signal handler gets interrupted by another
signals, and sighand2() starts executing. Both sighand1() and sighand2() lock mutex m1, so a
deadlock ensues. This bug falls under both CWE-833 (Deadlock) and CWE-479 (Signal Handler
Use of a Non-reentrant Function).

Now consider the same scenario with the deadlock detection involved. When the operation
lock(m1) occurs, the deadlock tool intercepts it and does some extra bookkeeping needed for
deadlock detection. If the deadlock tool’s bookkeeping is interrupted by the second signal, it will
be unable to prevent this deadlock. This is illustrated below in Figure 22.

Figure 22: Deadlock with signal handlers; PEASOUP's deadlock detection gets interrupted
The solution to this problem is to have the deadlock detection and signal buffering integrated.
Whenever the deadlock detection needs to intercept a lock() operation it turns on signal buffering
so that it cannot be interrupted.

97
Approved for public release: distribution unlimited.

3.7.5 Atomicity Violations
3.7.5.1 Background
Many of the CWEs associated with concurrency errors are due to improper or missing mutual
exclusion for code that is executed in parallel. These types of errors are typically characterized as
either data races or atomicity violations.

A data race occurs when two concurrency threads access the same memory where one access is a
write and there is no explicit mechanism to prevent “simultaneous” access. An atomicity
violation mostly subsumes the concept of a data race. An atomicity violation occurs if a section
of code that was intended to be serial is interleaved in a way that causes a bug or alters
functionality in an undesirable manner.

An atomicity violation may be a data race on a single memory location (variable), or it may be a
bad interleaving between multiple memory locations. In the latter case, these memory locations
are said to form an atomic set [104]. Memory locations in an atomic set that are read or written
together must be done so atomically. This is a slightly fuzzy definition because it does not
specify the scope of what “read or written together” means.

Dynamic data race detectors attempt to detect races at runtime by monitoring execution, such as
in ERASER [178] and FastTrack [86]. These tools require high-coverage program traces to get
good results, e.g., when attempting to find bugs during a product’s testing cycle. Further, these
approaches only detect data races, which can be both intentional (e.g. in lock-free algorithms)
and innocuous. Data race detection tools that use the lock-set approach (such as ERASER) tend
to suffer from high false positive rates, where-as happens-before based race detectors are more
conservative.

Atomicity violations are more difficult to detect than data races, because the definition is not as
straight-forward. An atomicity violation is defined in terms of intended serialized execution;
determining the programmer’s intention is difficult. Most of the automatic atomicity violation
detection tools described in the literature only handle single variable violations [133], [157],
[55]. There are four problematic scenarios when considering single variables, as shown in Figure
23.

Figure 23: Problematic thread interleaving for single-variable atomicity violations
(diagram is from [157], though much of the literature references these same scenarios).
Vaziri et. al. [206] expanded the set of problematic scenarios to 14 when dealing with multiple
variable atomic sets (sets of variables that should always be updated together, atomically), but
did not present an approach to automatically find such sets. In [131] Lu et. al. present MUVI, a
tool for inferring correlations between variables, and describe how to extend existing atomicity
violation detectors to handle multiple variables. SVD [219] handles multiple variables by
heuristically identifying regions of code that should be serializable. This is in contrast to the

98
Approved for public release: distribution unlimited.

previously mentioned approaches, which attempt to enforce atomicity for all uses of correlated
variables.

Handling atomicity violations between multiple variables is important for both detection of real-
world bugs (34% of non-deadlock concurrency bugs surveyed in [132] depended on multiple
variable accesses) and coverage of concurrency CWEs (just one example is CWE-609 “Double
Check Locking”).

Detecting atomicity violations is necessary but not sufficient. We need to prevent the
exploitation of atomicity violations. To this end we examined the following approaches for
inclusion in PEASOUP:

1. Detection of suspected atomicity violations, with a limited number of rollbacks for
recovery (similar to the approach of ConAir [228], but expanded to detect more general
violations).

2. Opportunistically increasing the serialization of code regions that access shared variables.

3. Opportunistically increasing memory order determinism

4. Using dynamic race detection between variables in an atomic set, and protecting those
sets dynamically.

Ultimately we decided on approach #4 (which we call Avert), and generating a design that we
will outline in the next section. However, we ran out of time to complete implementation of
Avert, and ultimately implemented some minimal thread schedule diversification to lower
exploitability of atomicity violations.

3.7.5.2 Our Approach

 Avert 3.7.5.2.1
Avert uses dynamic race detection to find possible atomicity violations, and then enables
instrumentation that protects the inferred atomic region with a mutex. It starts by statically
identifying sets of related memory accesses that should be grouped into an atomic set. It then
instruments the binary to watch accesses to these memory locations, and feeds this information
into a dynamic data race detector. It also instruments the binary with mutex lock/unlock
operations surrounded the identified memory accesses. These lock/unlock operations are
disabled by default; when a race is detected they become enabled.

We use data race detection because there exist relatively fast techniques for dynamically
detecting data races. False positives can hopefully be filtered using a set of heuristics that
identify adhoc synchronizations and lock-free code idioms.

Avert is based on a happens-before race detector similar to what is implemented in
ThreadSanitizer2 (TSAN2)16. TSAN2’s happens-before algorithm is based on Fasttrack [86],
which uses a set of optimizations to achieve better performance than most vector-clock-based
algorithms.

TSAN2 shadows all of memory with state that tracks the last 4 access operations. This means
that for every 8 bytes the process references, TSAN2 uses another 32 bytes overhead to track

16 https://code.google.com/p/data-race-test/wiki/ThreadSanitizerAlgorithm

99
Approved for public release: distribution unlimited.

reads and writes to that 8 byte address. It requires that executables have been compiled as
position independent executables (PIE) in order to perform this shadowing.

Every time a read or a write to an address A occurs, a new entry is inserted into the table at
shadow(A). If the table is full then a previous entry is randomly chosen and overwritten. Figure
24 shows the information kept in each row of the table.

Figure 24: Data kept in shadow memory entries.

TSAN2 keeps information about the last 4 accesses to each address. If there exists two entries
that are from different threads, one of them is a write, and there is no happens-before relationship
between the events, then a data race is reported.

Figure 25: Illustration of the happens-before relationship

 (from: https://code.google.com/p/data-race-test/wiki/ThreadSanitizerAlgorithm)
Figure 25 illustrates the happens-before relationship that is tracked by TSAN2 and similar
algorithms. Each fork (e.g. thread creation), join, or signal/wait operation imposes an ordering
between certain threads. For example, when a mutex in thread A is locked and then released, and
later that same mutex is locked by thread B, we can order those threads. We know that anything
after locking the mutex in thread B comes after anything that was before unlocking the mutex in
thread A. Notice that the happens-before relationship holds only for an execution trace: the order
of who locks the mutex first (thread A or B) may not be deterministic, and may depend on how
the operation system schedules the threads.

Avert keeps track of the same information as TSAN2, but with some significant differences:

• Only global data memory (ELF sections .data and .bss) is fully shadowed. This allows us
to keep memory overhead low and avoid the requirement of PIE compiled binaries.

• Heap is shadowed in a compressed format, using Twitcher Malloc. Figure 26 shows a
sketch of our approach for heaps.

• The stack is not handled. We do not believe stack-based data races are a concern in most
real-world programs.

100
Approved for public release: distribution unlimited.

Figure 26: Sketch of Avert's data race detection on heap memory.

Heap memory is not shadowed with 4x memory overhead, like TSAN2 does. Instead for every
heap allocation of size S we reserve S/L extra bytes to serve as a compressed TSAN2 table. This
means that multiple addresses with the heap allocation will share data race metadata. It also
means that we need to change the meta data as shown in Figure 26; this will cause a slight loss in
precision for the happens-before relationship.

Another difference between Avert and TSAN2 is that Avert groups memory addresses into
atomic sets, and has one shadow memory location for the entire set. E.g., if you have two
memory addresses A1 and A2 that are determined to be in an atomic set, Avert will detect a race
where A1 is accessed from one thread and A2 is accessed from another.

Atomic sets are inferred statically. There are two conditions needed for memory addresses to be
grouped together. First, they must be accessed close by in the machine code (within T
instructions of each other, and within the same procedure). Second, for global memory the
following can be in an atomic set:

• A global g

• Any dereferences of g, e.g. *(g + C)

• Any global boolean h, such that writes to g are control dependent on h

These will be heuristically inferred atomic sets, and may be incorrect. The boolean condition is
meant to capture the idiom of using initialization flags, such as with the global singleton pattern.

Our goals with Avert were to reduce the memory and runtime overhead associated with state-of-
the-art dynamic data race detection. We believe that only full shadowing the global data segment
and shadowing the heap in a compressed way help meet this goal. To further reduce the runtime
overhead, turning off race detection on heap allocations that are clearly not shared may help.

We started implementation of Avert, but halted development when we realized the
implementation effort exceeded the remaining available contract effort.

 Perturbing Thread Schedules 3.7.5.2.2
Race conditions and atomicity violations are rarely deterministic. To exploit these conditions
attackers must either (a) be able to execute the racy code a large number of times or (b) increase
the window of time between the operations that constitute the race.

Our approach is to inject a random delay prior to certain synchronization operations. The
operations include thread creation, the first lock of each mutex (or decrement of a semaphore,

101
Approved for public release: distribution unlimited.

etc.), and the joining of threads. In order to limit the overall impact on performance, we
randomly choose a delay d in the range (0, MAX_DELAY). When then subtract that delay from
the overall remaining delay, so MAX_DELAY = MAX_DELAY – d. This causes most of the
changes in the schedule to happen early during process execution, and keeps the performance
impact low.

Anecdotally, perturbing the thread schedule seemed to decrease the reliability of the atomicity
violations present in our synthetic test suite. Additionally, the thought was that perturbing the
schedule early in process execution might have a “ripple down” effect, i.e. it would make the
schedule deeper in the process execution more non-deterministic.

 C7: Memory-Safety Errors 3.8
3.8.1 Twitcher: Efficient Memory-Safety Enforcement
Twitcher is a sub-system in PEASOUP for automatically protecting against exploits of memory-
corruption vulnerabilities. A software application may contain flawed logic, or faults. A carefully
crafted malicious input may exploit the faults in an application to cause it to deviate from its
intended behavior, possibly with dangerous consequences for the application’s user. When this is
possible, the faults are called vulnerabilities. Twitcher focuses on an important class of software
vulnerabilities that lead to corruption of an application’s in-memory data, also known as
memory-corruption vulnerabilities. MITRE’s Common Weakness Enumeration (CWE) provides
a taxonomy of possible vulnerabilities [141]. A partial list of the vulnerabilities that Twitcher
guards against includes:

• CWE-120: Buffer Copy without Checking Size of Input (“Classic Buffer Overflow”)
• CWE-121: Stack-based Buffer Overflow
• CWE-122: Heap-based Buffer Overflow
• CWE-124: Buffer Underwrite (“Buffer Underflow”)
• CWE-126: Buffer Over-read
• CWE-127: Buffer Under-read
• CWE-129: Improper Validation of Array Index
• CWE-134: Uncontrolled Format String
• CWE-170: Improper Null Termination
• CWE-415: Double Free
• CWE-416: Use After Free
• CWE-457: Use of Uninitialized Variable
• CWE-590: Free of Memory not on the Heap
• CWE-665: Improper Initialization
• CWE-761: Free of Pointer not at Start of Buffer
• CWE-762: Mismatched Memory Management Routines
• CWE-805: Buffer Access with Incorrect Length Value
• CWE-806: Buffer Access Using Size of Source Buffer
• CWE-824: Access of Uninitialized Pointer
• CWE-908: Use of Uninitialized Resource

102
Approved for public release: distribution unlimited.

3.8.1.1 Idealized Platform (System Architecture)
Twitcher protects software that runs on general purpose electronic computing hardware,
including personal computers, servers, and embedded devices such as smart phones or gaming
consoles. Twitcher protects software that manually manages memory resources, typically by
using a combination of a system library procedure, such as malloc, and a runtime stack that is
typically maintained by updating one or more dedicated hardware registers.

3.8.1.2 Twitcher Architecture
Like PEASOUP, Twitcher operates in two stages: the Preparation Stage and the Runtime-
Monitoring Stage. Figure 27 shows the flowchart for an offline implementation of the
preparation stage, which is what is currently used by PEASOUP. During the preparation stage,
Twitcher first uses program analysis (Figure 27, Box 1) to learn facts about the program that the
user wants to protect, called the subject program. Many different types of analysis can be
applied, including static and dynamic analysis and source code and machine-code analysis.
Twitcher uses the program analyzer(s) to construct an intermediate representation (Figure 27,
Box 2) that captures information such as the following:

1. What instructions perform potentially dangerous memory operations? A simple analysis
to do this disassembles all possible instructions in the binary file and identifies any
instructions that access memory. One implementation refines this analysis by assuming
that instructions that access a fixed memory location or stack offset is/are safe.

2. What instructions allocate and de-allocate memory regions?
3. What is the data layout of the program?
4. Which instructions directly address globally allocated or stack-allocated data?
5. What functions “recycle” heap-allocated buffers?
6. What functions are “wrappers” for the system’s heap-management library?
7. What functions implement custom memory-management libraries on top of the system’s

heap-management library?
In an example embodiment, all of this information is present. In alternate embodiments, some of
this information may be missing or incorrect. In many such cases, Twitcher can still function;
however, it may provide less protection, or require more extensive testing to ensure that the
intended functionality of the subject program is not broken. PEASOUP primarily uses STARS
(Section 3.3.4) and speculative transformation (Section 3.8.2) to discover the IR for items 1–4

Source
Files

Binaries

Compiler
1. Program
Analyzer 2. Program IR 4. Hardened

Binaries

3. Program
Rewriter

Figure 27 (Offline) Twitcher Preparation Stage

103
Approved for public release: distribution unlimited.

listed above; IR for 5–7 is not currently recovered nor used in PEASOUP. Twitcher uses
PEASOUP’s rewriting facilities (Section 3.3.5) to insert Twitcher’s defenses (which are
described below).

The Runtime-Monitoring Stage of Twitcher’s defenses occurs each time the protected
application is used. The Twitcher defenses are implemented by the hardened libraries, hardened
executable(s), and dedicated libraries. The dedicated libraries perform checks for memory-safety
violations by interposing between the application and common system libraries, such as libc.so.
As the hardened binaries run, they execute the protections inserted during the preparation stage.
For example, the hardened binaries will use a modified data layout that includes guard regions
that should not be accessed by the application code, maintain Twitcher metadata, including
current locations of guard regions, and check for unsafe memory accesses, including accesses
that should access the program’s data but are accessing a guard region. When the hardened
binaries call procedures in system libraries that manipulate memory, Twitcher will intercept the
call in its hardened libraries, perform additional checking and updating of metadata, and call the
underlying library procedure, if it is judged to be safe. Further detail is provided below.

Twitcher uses a combination of strategies to defend against memory corruption. These include:

• Guard Regions: Twitcher identifies regions of memory that the program has no legitimate
reason to access; these are called guard(ed) regions. Furthermore, it transforms the layout
of the program’s data so that guard regions are interspersed with the program’s
legitimate data. The placement of guard regions is based on the IR that is recovered
during the preparation stage: guard regions may be placed at the ends of heap blocks,
between procedure activation records, between data objects on the stack, and/or between
global data objects. Twitcher also replaces instructions or procedure calls that may
perform unsafe memory accesses with code that checks that the locations to be accessed
are not in guard regions before performing the accesses (See Section 3.8.1.2.1). Doing so
helps ensure that the hardened program accesses data in a safe manner.

• Clearing stale data: Twitcher uses various techniques to recognize when a program is
reusing a region of memory (see Section 3.8.1.2.3). Before reuse occurs, the old data is
cleared and/or the region is converted to a class of guard region that indicates the region
should be initialized before being read (see Sections 3.8.1.2.1 and 3.8.1.2.4). Certain
example embodiments thus may supplement the garbage collector in a garbage-collected
environment such as Java, e.g., by inferring and marking used memory segments itself.
Doing so helps to ensure that data is scrubbed once it is no longer needed, e.g., reducing
the likelihood that malicious programs will be able to access forgotten-about and/or
leaked memory areas and the data stored therein. For example, this mechanism allows
Twitcher to repair the infamous Heartbleed vulnerability in many instances.

• Altering de-allocation patterns and actions: When the program explicitly de-allocates a
memory region by calling free(), Twitcher may delay the return of the memory to the
pool of memory available for reuse. This is similar to the free quarantine mechanism
used by AddressSanitizer [186]. As soon as a block is placed in quarantine, it is converted
to a class of guard region that indicates it has been freed and should not be accessed by
the subject program. If Twitcher detects an access to a guard region that is in the free
quarantine, it indicates a use-after-free error. Twitcher is able to repair the error by
avoiding re-allocation of the block (see Sections 3.8.1.2.1 and 3.8.1.2.4).

104
Approved for public release: distribution unlimited.

• Taint inference and propagation: Twitcher can use a combination of lightweight taint
inference and taint propagation to recognize and repair certain classes of dangerous
memory-usage errors such as use of unitialized memory and buffer overruns (see
Section 3.8.1.2.3).

• Repair strategies: When Twitcher detects that a memory-corruption error is about to
occur, it may use a variety of strategies to avoid the error. These include replacing the
values that would be returned by an errant memory read and early termination of a
computation (e.g., a loop, thread, or process). Twitcher will also report potential memory-
corruption errors, which allows administrators to check for attacks and developers to
repair faults. Twitcher’s repair mechanisms are described in more detail in
Section 3.8.1.2.4.

Some or all of these and/or other strategies are implemented by the modifications made to the
subject program and in the Twitcher libraries. In the remainder of this section, details are
provided regarding how Twitcher can implement the above strategies.

 Checking Potential Dangerous Memory Accesses 3.8.1.2.1
As described above, Twitcher uses guard regions to check for potentially unsafe memory
accesses. Twitcher modifies the subject program (1) to intersperse guard region with the
program’s data, (2) to update Twitcher’s data about where the guard regions are located, and (3)
to check that potentially unsafe instructions do not access a guard region in a disallowed manner
(see 3.1.7 for a partial classification of allowed and disallowed accesses). Parts (1) and (2)
involve modifications to the steps the program takes to allocate and deallocate memory. Part (3)
involves modifications to instructions used to access memory.

In general, the modifications for part (3) reasonably can be expected to incur much higher
runtime overhead than parts (1) and (2) in example implementations, as memory accesses may
be expected to occur orders of magnitude more often than memory allocation and deallocation.
However, Twitcher has multiple techniques for implementing (1)–(3). The exact techniques that
are selected may depend on factors such as, for example, the performance characteristics of each
subject platform, the context of individual instructions in the subject program to be instrumented,
and/or the like. In order to make (3) effective, Twitcher in some respects follows the work of
Hasabnis et al. in [152] by using a series of nested tests to check if the subject program should be
allowed to access the values at a given address. The earlier tests are expected to be extremely
cheap, but have a small false positive rate: it is possible the check will report that an address
should not be accessed when it is safe to do so. Subsequent checks are more expensive, but have
a lower false positive rate. The final check should have a vanishingly small probability of a false
positive.

Guard Values
Twitcher fills guard regions with known guard values and the first check Twitcher performs to
determine if an address A is safe is to check if the value stored at A is a guard value: if the value
at A is not a guard value, A is assumed to not be in a guard region, and is assumed to be safe; if
the value at A is a guard value, further checking is necessary. Twitcher performs the check for
the guard value, performs subsequent checks, and selects guard values, in accordance with the
procedures identified below. It will be appreciated that there are multiple strategies that can be
used for various ones of these steps and, in certain example embodiments, multiple strategies

105
Approved for public release: distribution unlimited.

may be used in any suitable combination, sub-combination, or combination of sub-combinations,
e.g., to protect a single binary, e.g., as is made more clear below.

Suppose the subject program contains an instruction instr that accesses n bytes at address A. The
following pseudo-code shows a technique to check for a guard value at A:

 Save registers and flags needed for comparison

 If (get_n_bytes(A) != n_byte_guard_value)

 goto SAFE;

 Perform additional checks

SAFE:

 Restore registers and flags used in comparison

 instr ;; the original instruction

It has the advantage of being simple and relatively cheap. Depending on the machine
architecture, it may incur overhead for introducing additional memory accesses (to save and
restore program state) and an additional conditional-branch instruction.

Checking Guard Values with Hardware Exceptions
Twitcher may opt to use a branchless implementation of some check for guard values at an
address A. The idea is to read the value v stored at A and perform a calculation that will cause a
hardware exception if v is a guard value. For example, to use a SIGSEGV fault for a check,
before beginning execution of the subject program, Twitcher may initialize some static data as
follows:

int dummy = 0;

int dummy_ptrs[256] = { & dummy, };

dummy_ptrs[guard_value] = nullptr;

Then, to perform the desired check (“does A contain a guard-value byte?”), Twitcher could insert
instrumentation that does the following:

save contents of register r

load byte at address A into r

load dummy_ptrs[r] into r

load *r into r ;; faults iff r==guard_value

restore the contents of r

In addition to avoiding the use of branches, this style of instrumentation may require saving and
restoring less state. If Twitcher can identify a free register at the location where it wants to insert
the check, it is possible no state will need to be saved or restored.

Twitcher may use a mixture of different checking strategies for different instructions in the
subject program.

106
Approved for public release: distribution unlimited.

Mixing Guard-Value Checks
For each instruction with a potentially unsafe memory access in the subject program, Twitcher
may use a customized instruction sequence to check if the instruction is safe. For some
dangerous instructions, Twitcher may use a chain of compare-and-branch instructions; for others,
it may use one of the hardware-exception mechanisms described in the previous section. An
implementation of Twitcher that uses dynamic instrumentation to insert the checks may even
change the checking instrumentation based on online profiling information.

Bipartite Guard Values
As described above, Twitcher typically checks for a guard value for its initial, quick-but-faulty
check. Using the technique of bipartite guard values, the initial check is for a 1-byte small-guard
value, and the subsequent more expensive check is for a full 8-byte full-guard value. If the
memory access to be checked is for 8-bytes, then the small-guard check may be skipped, as the
full-guard check should add no measurable overhead. The full (bipartite) guard is constructed at
the beginning of program execution, as follows (assuming a little-endian machine):

Randomly select a small-guard value (from infrequent 1-byte values)

Set the bytes at offsets 0, 4, 6, and 7 to the small-guard value

Set the bytes at offsets 1–3 and 5 randomly

Figure 28 shows the layout of a bipartite guard on a little-endian machine. This layout is
motivated by the observations that compilers usually try to align data on word boundaries, and
that loops that overrun or underrun a buffer are usually accessing the buffer in a power-of-two
stride (1-byte, 2-bytes, 4-bytes, or 8-bytes on an 8-byte machine). As shown in Figure 29, the
layout of the bipartite guard, including the repetition of the small-guard value, ensures that
aligned, strided buffer accesses will land on a small-guard value in the bipartite guard. The other
bytes of the bipartite guard (at offsets 1, 2, 3, and 5) make it hard to guess the value of the full
guard and vanishingly unlikely that the full guard value will arise by chance during the execution
of the subject program.

 0 1 2 3 4 5 6 7 8 9 A B C D E F 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1 * *

2 * *

4 * *

8 *

Figure 28 Layout of a Bipartite Guard on a Little-Endian Machine.

Figure 29 Strided Accesses Hit Small-Guard Values

107
Approved for public release: distribution unlimited.

One disadvantage of the bipartite guards is that they may be easier to circumvent: if an attacker
can arrange a misaligned access, then the small-guard check will not detect the presence of the
guard, and the attack may be able to corrupt the guard value. On the other hand, if the attacker
can arrange misaligned accesses, she may already be able to side-step the guards.

Guard Maps
An alternative to using bipartite guards, or an approach that may be used with it, is to maintain
guard maps. Using this approach, Twitcher maintains one or more maps of where in memory the
guard regions are located. The maps are updated every time memory is allocated or deallocated.
The guard value includes repeated copies of a randomly selected 1-byte value. The initial safety
check always checks for n-copies of the (small-)guard value, where n is the number of bytes that
are accessed in the instruction that is being checked. The more expensive check consults the
maps for the presence of the untrusted address: if it is in a guard region, then the attempted
access is unsafe.

Twitcher may use a trie or other data structure to implement a single guard map for the entire
program. However, in more secure embodiments, Twitcher may use different types of maps, e.g.,
for different memory regions:

• For each thread stack, Twitcher may use a direct map cache, e.g., that contains a single
bit for each byte in the stack. A direct-map cache is similar to a one-level trie. One
advantage of using the direct-map cache is speed of update and access. Twitcher
leverages the fact that every time an activation record for procedure foo is created on the
stack, it will use exactly the same data layout, and hence, the guard regions will be
exactly the same. This means that Twitcher can prepare a template that contains the
appropriate bit pattern representing the locations of the guard regions in foo’s activation
record and simply copy it to the end of the map for the currently running thread.
Similarly, a template can be used for initializing the guard values in the activation record.

• For heap-allocated memory, Twitcher may leverage the internal data structures of the
heap-manager to also keep track of the guard regions in the heap. Because Twitcher’s
implementation of the heap-manager already maintains the requisite information, no
additional overhead or data structure is necessary (e.g., see [85]).

• Finally, for statically-allocated memory (such as, for example, the program’s “global
data”), Twitcher may simply use a hash table or similar data structure to store the
locations of the guard regions, which do not change during the program’s execution.

To implement the more expensive check, Twitcher may have to check each map.

Protecting Guard Maps
One danger in using guard maps is that the attacker may be able to force an errant-memory
update that corrupts the map, thereby allowing more latitude in forcing other unsafe memory
accesses. We have observed that with a straight-forward implementation of a guard map (e.g.,
using a direct-map cache), the majority of locations in a guard map may contain the value zero.
We can leverage this observation by storing the bytes of the guard map after exclusive-or’ing
them with the small-guard value, so that the majority of bytes in the guard map are the small-
guard value. Furthermore, Twitcher marks the entire guard map as a “guard region.” In this
fashion, Twitcher uses its checks on potential errant-memory updates to protect the integrity of
its own guard maps. Similar techniques may be used to guard other critical data.

108
Approved for public release: distribution unlimited.

Hybrid Guard implementations
Twitcher may use different guard implementations for different regions of memory. One
attractive solution may be to protect stack memory with bipartite guards (thereby potentially
obviating the need for guard-map updates when allocating/deallocating stack frames), and use
homogenous guards to guard heap memory (where the guard map may be provided by the native
heap manager). Using this configuration, the instrumentation to check if address A is safe could
be implemented using the following pseudo-code:

 Save program registers and flags needed for check

 If (byte stored at A differs from the small-guard value)

 goto SAFE;

 If ((16-bytes stored at A differs from the full-guard value) AND

 (A is not in guard maps for heap and static data))

 goto SAFE;

 Initiate response for unsafe access

SAFE:

 Continue with execution of dangerous instruction

This particular configuration can be extended in such a way that we use both types of guards in
the heap: when the program requests a heap block with N bytes, Twitcher increases N to allow
space for (one) guard value and then rounds up to the next power of two; it actually reserves M >
N bytes. Twitcher places a homogenous guard at the end of the M reserved bytes. Twitcher’s
heap manager provides a capability to look up an arbitrary address and determine if it is in an
allocated block, and if so, the location and size of the block. Using this capability Twitcher
implements a guard map for the homogenous guards placed at the end of blocks: if an address is
at the end of the block, it is in the guard region. However,Twitcher’s malloc implementation
need not necessarily record the original requested size, N, anywhere. Consequently, overruns that
exceed N but still do not hit the guard at the end of the M-byte block will not be detected. To
detect such overruns, Twitcher may place a bipartite guard after the Nth byte of the allocated
block and prior to the homogenous guard at the end of the block. As described above, this
provides the full strength of the homogenous guard (which provides better protection against
misaligned accesses) for the end of the allocated block, while still providing some protection for
overruns that surpass the Nth byte in the middle of the buffer.

In some cases, M may be greater than or equal to 2*N. In these cases, Twitcher may place a
homogenous guard at the (M/2)th byte, which is still easily located using the heap-management
data structures. The presence or absence of a second, middle-of-buffer guard can be indicated
with a single bit, which is much less than the amount of space needed to store N.

Guard Semantics
Up to this point, guard regions have been described generically and without explicitly defining
the significance of an attempted access to a guard region. In some example implementations, any
access to a guard region is disallowed. In Twitcher, there different classes of guard region, or
different guard classes. Different guard classes are given different semantic interpretations, e.g.,

109
Approved for public release: distribution unlimited.

as to what types of memory accesses (read or write) should be allowed for guard of a given class.
The guard classes used by Twitcher may include:

• Read/Write Guards: any attempted read or write access indicates an error or attempted
exploit of the subject program. Read/write guards correspond to the guards of prior work
[186], [152].

• Read Guards: any attempted read access indicates an error or attempted exploit, but write
accesses are allowed and cause Twitcher to remove the guard. Read guards are useful for
detecting when the program attempts to read memory it has not yet initialized.

• Page Guards: any attempted read or write access of any byte on the page containing the
guard indicates an error or attempted exploit. Twitcher may place page guards on code
pages and use them to detect attempts to scan code pages, e.g., for return-oriented
programming (ROP) gadgets [43].

• Unallocated-Mem Guards: any attempted read or write access indicates an error or
attempted exploit of the subject program. Twitcher places unallocated-mem guards on
(heap) memory that the program was previously using but subsequently returned to the
heap manager. An access of an unallocated-mem guard indicates a use-after-free error,
which Twitcher will attempt to repair (see Section 3.8.1.2.4).

• Cloneable Read Guards: cloneable read guards disallow read accesses, except for the
purpose of cloning the protected memory region. Cloneable read guards may be valuable
for avoiding false positives in the presence of certain types of initialization patterns.

The implementation discussed above is modified as follows to support different guard classes:

• Small guard values are the same for all guard classes.
• There are different bipartite guards for each guard class, indicated by a few bits in one of

the “random” bytes of the guard class.
• Guard maps are extended to indicate the class of each mapped guard.
• Guard checks are extended to consider the guard class. The initial, cheap check can be

the same for all checked memory accesses. The secondary check will differ depending on
the type of access:

o read access: fails if any type of guard is found.
o write access: fails if any class of guard except a read guard is found; read guards

are removed but check passes.
o bulk access (i.e., a library call that reads or writes to a range of memory): fails for

page accesses that include a page guard.

Twitcher’s response when a check fails will also depend on the class of guard that caused the
check to fail (see Section 3.8.1.2.4). For example, upon an attempted access of an unalloc-mem
guard, Twitcher will attempt to restore the memory block, mark the block as allocated, and
continue execution (see Section 3.8.1.2.4).

In addition, Twitcher places different guard classes in different situations:

o Twitcher (optionally) uses read/write guards to delineate program data, e.g., at the end of
heap blocks.

o Twitcher (optionally) places read guards:
o In some or all of newly allocated heap or stack memory.

110
Approved for public release: distribution unlimited.

o In memory that could have been (over)written by a library call, but was not. For
example, a call read(fd,buf,M) will read up to M bytes from fd into buf. If
n<M bytes are actually read, then Twitcher may place read guards in the (n-M)
bytes of buf after the portion that was filled by the call to read (see
Section 3.8.1.2.3).

o Twitcher (optionally) places page guards on pages holding code or other sensitive
metadata, such as guard maps or heap maps.

o Twitcher (optionally) places unalloc-mem guards on heap blocks before they are placed
into a free quarantine or they are returned to the heap manager.

 Maintaining Guards 3.8.1.2.2
As the subject program executes, the layout of its data in memory will change: memory regions
are constantly allocated and released, or deallocated. Memory that has been deallocated may
subsequently be reused to fulfill a new memory-allocation need. During the preparation stage,
Twitcher learns the program’s intended data layouts and modifies them to allow room for guard
regions. During the monitoring stage, Twitcher helps ensure that the guards are properly
maintained as memory is allocated and deallocated. As mentioned above, different mechanisms
may be utilized for stack memory, heap memory, and static memory.

Maintaining Guards in Stack Memory
The subject program may have multiple threads, each with a runtime stack that is typically used
to store temporary data, such as the arguments and variables for a function invocation. On a
function call to a function foo, a new region is allocated on the “top” of calling thread’s stack,
called the activation record for foo. When foo’s execution completes, its activation record is
(implicitly) deallocated; the memory may be reused on subsequent function calls. At any time
during execution, Twitcher helps ensure (a) that there are guard regions delineating the data
objects on the “live” portions of the runtime stacks and (b) that it can reliably determine where
these guard regions are. Ideally, any used memory on the stack (e.g., memory past the current
stack top) would be tracked as belonging to one or more guard region(s).

One strategy is to update the guards and guard maps on every allocation and deallocation of an
activation record. On a function call to a function foo (causing the creation of an activation
record), Twitcher modifies the initialization of foo’s activation record to initialize the desired
guard regions in the activation record with guard values. It also updates the guard maps with the
locations of the new guard regions. When foo’s activation record is deallocated (either by a
normal return or a non-local control transfer, such as an exception), the guard values are cleared,
and the guard maps are updated to indicate those guard regions have been removed.

In some cases, the above strategy may have the lowest possible runtime overhead. In other cases,
it may be inefficient, and it is overly conservative. In particular, the above strategy assumes that
when an activation record is deallocated, none of the memory is protected (in a guard region). In
fact, it may be desirable to protect all of that memory.

One option is to fill the entire deallocated region with guard values and update the guard map (if
any) appropriately, although this is likely to incur significant additional overhead.

Another option is to simply leave the guard values and guard map alone during deallocation.
This is extremely cheap, and provides partial protection for the deallocated region. In both of
these cases, the extra guards are removed at any time before that region of the stack is re-used for

111
Approved for public release: distribution unlimited.

a different allocation record. This can be done when new activation records are allocated, for
instance.

Maintaining Guards in Heap Memory
Twitcher intercepts calls from the subject program to system libraries, such as the heap-
management library (malloc, realloc, free, etc.). Twitcher may entirely replace the heap-
management library with an implementation that provides greater security such as the DieHard
and DieHarder libraries [85, 92]. On a call to allocate heap memory, Twitcher increases the size
of the requested allocations to allow room for a guard value, and it places a guard at the end of
the allocated block. It also optionally clears the other bytes in the heap block to ensure that no
stale data is leaked. Other aspects of Twitcher’s mechanism for maintaining guards in heap
memory depend on the heap-management library that is ultimately used.

Some heap-management libraries (such as DieHard) are able to efficiently determine if an
address resides in a heap block, and if so, what are the properties of that block (i.e., start and end
addresses, size, is it currently allocated, etc.). Twitcher uses this capability to implement a guard
map for the heap. If for some reason Twitcher’s heap-management library cannot be used, then
Twitcher will use an external data structure, such as a trie, to implement the guard map for the
heap; using this approach, the trie is updated every time a call to allocate or free memory is
intercepted. A third option is to use bipartite guards in the heap, and not bother with a guard
map.

Guarding Deallocated Blocks
When the program requests that a block of heap memory be deallocated, or freed, it indicates that
the program does not intend to access that block again. Existing references to the block at the
time it is freed are considered to be stale. The heap-management library is free to use the block
to satisfy future requests for memory. Use of a stale reference can lead to use-after-free
vulnerabilities (e.g., as described in CWE 416), which cause the stale references to be aliased
with new references when the block is re-allocated to fulfill a new allocation request. Twitcher
uses many different techniques to reduce the likelihood of exploits of use-after-free
vulnerabilities:

1. Twitcher may queue the program’s requests for deallocation of blocks, temporarily
prolonging the “lifetime” of the block allocation before it is reclaimed for reuse; an
exploit cannot succeed until the block is reallocated.

2. Twitcher may randomize the order in which deallocation requests are processed from the
free list. This makes it difficult to predict the circumstances under which a block will be
reallocated, which is an operational principle behind many successful exploits.

3. At some point before Twitcher allows the block to be re-allocated (e.g., before it
officially deallocates the block by marking it available for allocation), Twitcher may
store a copy of some bytes of the block into the extra padding at the end of the block
and/or overwrite some or all of the block with unalloc-mem guard values.

a. One strategy is to only place an unalloc-mem guard at the beginning of the heap
block, although some implementations for checking for guards may not always
catch accesses past the first word of the block. One approach to compensate for
this is based on the observation that frequently it is possible to infer the beginning
of a block for a memory access that will access the middle of the block. For
example, given a memory address (base + offset), often base will point to the

112
Approved for public release: distribution unlimited.

beginning of the block, while (base + offset) will be in the middle of the block.
Given a potentially unsafe memory access to (base + offset), Twitcher may check
base for an unalloc-mem guard.

b. If the guard values are accessed before the block is reallocated, (i) it indicates a
use after free and (ii) it will be detected. At that point, Twitcher may execute any
one of several repair strategies (see Section 3.8.1.2.4).

4. Finally, Twitcher’s heap-management implementation allocates from the set of free
blocks at random. As with some of the above defenses, this makes it difficult to predict
when the block will be reallocated, and it prolongs the time before the block is
reallocated. Only when the block has finally been reallocated does a use-after-free exploit
become possible.

Maintaining Guards in Static Memory
A program’s static memory includes global variables and file-scope and function-scope static
variables that have a fixed location potentially for the lifetime of the program. Each dynamic
library used by the subject program may have its own static data segment, which has a fixed
layout while the library is loaded. During the Preparation Stage, Twitcher should modify the
layout of static data to insert guard regions; this is not yet implemented. During the Monitoring
Stage, Twitcher could use a hash table (or other suitable data structure) to track the locations of
guard regions in the program’s static memory; again, this is not yet implemented. When the
program’s image or a dynamic library is loaded into memory, Twitcher initializes the guard
regions in the static memory with guard values and it updates the guard map for static memory.
When a dynamic library is unloaded from memory, the guard map for static memory is adjusted
appropriately.

 Detecting Memory Reuse and Use of Uninitialized Memory 3.8.1.2.3
Most programs use multiple mechanisms to recycle their memory and keep their overall memory
footprint low: when the program is done using a memory block for one purpose, it is repurposed
for a different use, e.g., by being “released” and then “reallocated.” Many programs also contain
defects such as “use of uninitialized memory” that can lead to sensitive data being exfiltrated
from recycled memory regions. For example, here is one sequence of actions that might exfiltrate
sensitive information to an attacker:

1. The program allocates a block of memory.

2. The program fills the block with sensitive information, e.g., a password.

3. The program releases the block (without clearing its contents).

4. The program reallocates the block for a new purpose.

5. The program reads and reports the contents of the block before overwriting some or all of
the contents (i.e., the program reads contents that are “uninitialized” since the
reallocation in step 4); as a result, the sensitive contents of the block from its last use are
reported to the attacker.

Twitcher uses various heuristics to detect when memory is being reused and there may be a risk
of leaking the old contents of the memory. Twitcher may use combinations of the following
analyses and heuristics to determine when a buffer is being partially or completely reused:

113
Approved for public release: distribution unlimited.

• Explicit allocation: when Twitcher sees memory being (re)allocated via a call to malloc()
or the creation of a new procedure frame, it may assume the new memory is being reused
and should be considered “uninitialized.”

• Inferred recycling functions: when a function might return uninitialized heap memory
(obtained via a call to malloc) or some other heap block, then Twitcher may assume the
function is implements heap-block recycling. A function that implements heap-block
recycling arranges for reuse of heap blocks without returning them to the heap manager.
Twitcher relies on its implementation of malloc to dynamically check if a value returned
by a potential recycling function is the beginning of a heap block.

• Fill gaps: many library procedures will fill a variable amount of a buffer, up to some
maximum number of bytes, M. At runtime, when the function actually fills just n bytes
where n < M, the remaining (M-n) bytes are called the fill gap. Twitcher may assume that
fill gaps should be considered to be uninitialized.

• File-Descriptor Taint: Twitcher hooks calls to read(), memcpy(), and other memory-
copying functions. It may use space at the end of each heap block to record some file-
descriptor taint about each heap block. When the application reads input into a buffer and
overwrites pre-existing data with tainted data from a different file descriptor, Twitcher
may conclude that the block is being reused, and the old data can be cleared. This may
happen during a call to read() or to memcpy() or some later functions.

When Twitcher determines that memory is being reused — e.g., that the current contents are
stale and the memory should be overwritten before it is reused — it may use a combination of
the following strategies: (1) clear the memory; (2) place a read guard in the memory and modify
unsafe read instructions to first check for the read guard.

 Repair Strategies 3.8.1.2.4
Often, Twitcher is able to detect when an error has occurred. In these situations, Twitcher uses
different strategies to attempt to repair the error and continue the program’s execution.

Reallocation on Use-After-Free
As noted above in Section 3.8.1.2.2, Twitcher may sometimes detect an attempt to access a block
that the application previously freed (indicated that it was done with the block). In these cases,
Twitcher may attempt to restore the values in the block, if they’ve been saved, or clear the block,
mark the block as allocated and then allow the program to continue execution. Marking the block
as allocated has the effect of reviving the stale references and ensuring that no new references
will be made that alias the stale references; the stale references can be safely used as if the
requested deallocation never happened. The program execution will likely continue normally,
and no use-after-free exploit will be possible.

Twitcher may also note the calling context that caused the use-after-free. If a particular use-after-
free pattern is observed frequently, Twitcher may start tagging blocks according to where they
were allocated, correlate the allocation tag with the use-after-free errors, and then take
appropriate responses when a free is performed on a block with an allocation-tag correlated with
frequent use-after-free errors, e.g., by increasing the delay for that free.

Automatically Growing Buffers
In some cases, Twitcher may detect an attempted overrun of a heap-allocated buffer. In these
situations, there are several steps Twitcher may take to attempt to “grow” the buffer, essentially

114
Approved for public release: distribution unlimited.

by performing a “realloc()” on the buffer. There are two possibilities, based on whether or not
the neighboring heap block is allocated, or not. If the block is not allocated, Twitcher may mark
the block as allocated, and allow the “overrun” to proceed into the neighboring block.
Effectively, the heap block is increased in size.

If the neighboring block is already allocated, then Twitcher may take the following steps:

1. Allocate a larger block at some other location is memory.

2. Copy all of the data in the original heap block to the new heap block.

3. Overwrite all of the data in the original heap block with a homogeneous guard value. This

guarantees that any attempted access to the original heap block will be detected.

4. Redirect all future attempts to access the original block to instead access the new block.

Replacing Over-Reads with Manufactured Data
When Twitcher detects an attempt to read past the end of a buffer, instead of performing the read
(and potentially releasing sensitive information), it may replace the results of the read with
manufactured data and allow the program to continue execution. For example, it may return
common sentinel values, such as 0 and -1, or random data.

Early Loop Termination for Over-Writes
When Twitcher detects an attempt to write past the end of a buffer, instead of performing the
write, it may terminate the loop that is attempting the write.

3.8.2 Stack-Layout Randomization Transformation (SLX)
In this section, we present an approach to stack-layout randomization that does not require access
to the source program or other development artifacts. Randomization of the layout of local
variables in the stack frame is implemented using dynamic binary translation. The goal of our
approach to stack-layout randomization is to enhance the security of a software system using
only the binary form of the software. The ability to randomize based on limited information is
especially important, because having software of unknown quality and for which only the binary
form is available is a common circumstance.

Many attacks on vulnerable software succeed because the perpetrators have knowledge of the
layout of program elements in memory. Thus, one important form of artificial diversity is
address space layout randomization (ASLR) in which the layout of elements in memory is
randomized. Implementations that are currently deployed for binary programs [159] are coarse
gained; they randomize details such as the base addresses of the stack, the heap, and the code.
More aggressive fine-grained randomizations have been developed that randomize details such
as the order of functions and the stack layout. These approaches rely, however, on the
availability of the source program [70, 175, 176, 201].

The security benefits of randomizing the stack layout are many; exploits might be completely
thwarted or severely limited. The benefits realized depend on the nature of the exploit, the
vulnerability, and the randomization used.

115
Approved for public release: distribution unlimited.

There is a need, then, for a stack-layout randomization technique that can provide fine-grained
randomization without using information from the program source. We sought to develop a
technique that would meet the following goals:

• Operate on binary programs designed to execute on a common target platform (x86)
using only data gathered from the binaries themselves.

• Require only relatively simple analysis of the binary program.
• Provide a fine-grained transformation; that is, randomize stack frames of functions so that

the order of variables is changed.
• Apply to real programs and scale to large programs.
• Incur a small overhead during execution.

In this section we describe our technique, called Stack-Layout Randomization (SLR), and show
that it achieves these goals.

SLR uses static analysis to develop a hypothesis about the layout of local variables in the stack
frame for each function. It transforms each function to reorder the stack based on this hypothesis,
then evaluates the hypothesis by executing the transformed program. In this sense, SLR is a
speculative technique; static analysis of binary code rarely determines the stack layout perfectly,
so static analyses must be verified empirically. If an analysis prescribes a transformation that
changes the semantics of a function, different and less fine-grained randomizations are tested
until a behavior- and semantics-preserving randomization is found.

The key contributions of this section are: (a) the use of a speculative and dynamically verified
approach to the determination of the stack-frame layout, and (b) the use of dynamic binary
translation to implement stack-frame randomization.

The way in which SLR develops the hypothesis about the stack layout is presented in
Section 3.8.2.1. In Section 3.8.2.2 we describe the overall process by which the hypothesis is
evaluated and modified if needs be. We describe the implementation of stack randomization in
Section 3.8.2.3. Our approach to evaluation is described in Section 3.8.2.4.

3.8.2.1 Evaluating Stack Layout Hypotheses
Randomization of the stack frame layout for a function requires determination of:

• The current layout of the stack frame, i.e., the addresses of the function's local variables
as set by the compiler.

• The instructions that manipulate the different variables in the stack frame.
In principle, if this information were available, the layout of the stack frame could be changed
and the instructions that access the stack frame modified to reflect the new layout.

The new layout of the stack frame could be based on any security-relevant criteria. For example,
memory objects could be placed in random order, padding introduced before, after or within the
stack, canaries included, encryption applied, or scalars placed at lower addresses than arrays.
Items on the stack could also be removed and promoted to the heap. In our current approach, we
limit transformations to placement of memory objects in random order and the introduction of
random length padding. This choice was made so as to gain information about the potential of
simple stack-layout randomization.

116
Approved for public release: distribution unlimited.

Starting with a binary program, precise determination of the stack layout and the instructions that
reference the stack is problematic. Modern compilers employ a wide range of techniques to
minimize both the use of storage and program execution time. The result is binary programs with
unpredictable structures. For example, when generating code for the x86 architecture, compilers
frequently inline functions, fold constants, pack stack frames, unroll loops, and include hand-
written assembly for common functions like memcpy.

Our approach to SLR is based on two assumptions:

• Knowledge of the size of variables is all that is needed to determine boundaries. Type
information of stack variables is useful for SLR, because type information helps to
determine the size of variables. This benefit from type information is especially important
for determining fields in records (structs in C). However, our goal with this work was to
assess the possibility of using simple heuristics for boundary determination, and so we do
not determine nor use variable type information.

• The predominant mechanism by which instructions access stack variables is through
scaled or direct addressing based on an offset indicating the variable starting location.
Where indirect addressing is used, that use is for access to variables whose locations can
be inferred from previous direct or scaled addressing based on an offset indicating the
variable starting location.

117
Approved for public release: distribution unlimited.

The second assumption does not necessarily hold, and so we use a speculative approach. The
assumption is used to create an initial layout inference and an inference of which instructions
access variables in this layout. These inferences are then evolved and refined.

Layout inferences are produced using (a) a set of simple heuristics, (b) assumptions about the
manner in which the stack is allocated and deallocated, and (c) assumptions about the general
stack frame layout. These assumptions hold for binaries produced by C/C++ compilers that use
the cdecl x86 calling convention in which stack frames are in the form seen in Figure 30.

A key requirement for the heuristics is the use of an out arguments region for outgoing
parameters for called functions. In principle, any calling convention where this general structure
is maintained could be supported. Dynamically allocated stacks are out of scope for this work, as
are compiler conventions where the out arguments region is not used and the stack expands and
contracts before and after each function call.

To support the modification of instructions that access the stack, in the implementation of stack-
layout randomization, all of the instructions in the binary program are inserted individually into a
database. During static analysis, the binary program is processed by a static analysis system. We
use a recursive descent disassembler (IDAPro) [9] and a linear scan disassembler (objdump). To
ensure we have all instructions in the database, we added a disassembly validator module. The
disassembly validator iterates over every instruction found by both IDA Pro and objdump, and

Return Address

Saved Frame Pointer

Local Variables

Parameter N

Parameter 1

Out Arguments

…

ebp

esp

Saved Registers

Figure 30. General Form of the Stack Layout

118
Approved for public release: distribution unlimited.

verifies that both the fallthrough and (direct) target instructions are inserted into the instruction
database. This information in the database allows the control-flow graph to be constructed.

Since exact instruction start locations in the executable segment are not known, some of the
instructions in the instruction database may not represent instructions that were intended by the
program's original assembly code. We make no attempt to determine which are the intended
instructions and which are not. Instead, SLR modifies all instructions matching patterns of local
variable access (see below). Any data address that is mis-identified as a code address will not be
executed and will result in corrupted data if transformed by SLR. We rely on testing to catch
those cases. We believe the probability of data being interpreted as a stack accessing instruction
is low.

Finally, static analysis determines the functions and the out-arguments region size that IDA Pro
detects. Once static analysis is complete, the next part of the approach is to find out if the subject
function has a stack frame. The presence of a local-variable region in the stack is detected by
scanning each instruction in the entry block of the function's control-flow graph for a stack
allocation instruction:

sub esp,<constant>

Scanning only the entry block avoids cases where a stack may be allocated differently depending
on some condition. If the entry block does not contain this pattern, the function is determined to
be non-transformable and is skipped, and the transformation process is restarted for the next
function. Otherwise the stack size, the number of saved registers, and the out argument region
size are recorded. The size of the out-argument region is determined during static analysis.

Once the existence of the local-variable region is established, each instruction of the function is
analyzed and a set of local variable boundary inferences are determined based on instruction
patterns accessing the stack. Memory access patterns accessing the stack can take one of three
forms:

• Direct: A constant value added to esp or subtracted from ebp (e.g., [esp+0x10]).
• Scaled: A constant value added to an indexed (variable) offset from esp or ebp (e.g.,

[esp+eax+0x10]).
• Indirect: The stack is accessed by means other than through offsets to esp or ebp (e.g.,

[ebx]).

Inferring a boundary interface for every constant offset found in both direct and scaled memory
accesses is a naïve approach but surprisingly high levels of accuracy have been reported [36].

The possibility of inaccuracy is the reason we describe SLR as speculative. SLR assumes these
inferred boundaries are correct and determines their validity by testing. If testing reveals that the
program's semantics have been changed, three additional heuristics are used: (1) variable
boundaries are assumed for direct memory access offsets only, (2) variable boundaries are
assumed for scaled memory accesses only, and (3) the entire stack frame is treated as one large
variable as a “catch all” case.

In summary, the four inferences are:

• All Offset Inference (AOI): Any constant offsets of ebp and esp for direct and scaled
accesses that access the local variables region of the stack are considered local variable
boundaries.

119
Approved for public release: distribution unlimited.

• Scaled Offset Inference (SOI): Any constant offset used in scaled stack access
instructions is considered a local variable boundary.

• Direct Offset Inference (DOI): Any constant offset used in direct stack access instructions
is considered a local variable boundary.

• Entire Stack (ESI): The entire stack frame is considered one local variable.

A memory access relative to esp or ebp may access incoming parameters to the function, since
the size of the frame is known, if a boundary exceeds the stack frame these offsets are ignored.
Additionally, the out arguments region contains reusable space, and so any offset accessing this
region is omitted from the layout inference.

For each function, all four inferences are applied to form four individual hypotheses. These four
hypotheses are sorted by the number of variables detected and applied in order, highest to lowest.
In practice, as might be expected, the order is almost always AOI, DOI, SOI, and ESI.

3.8.2.2 Stack-Layout Randomization Algorithm
The overall SLR process is shown in Figure 31. This process is applied to each function in the
program independently. Thus, the whole process shown in Figure 31 is repeated a number of
times equal to the number of functions in the program.

The four hypotheses of the stack layout for the subject function are created for each function in
the binary program using the four inferences described above, and test data is created or acquired
for the program. Recall that the layout hypotheses are limited to the boundary address between
individual variables in the stack frame, and that no attempt is made to determine the types of the
variables.

The dependence of this approach on testing raises the question of where test cases will come
from. The approach has no specific requirements that constrain the test data. Existing test cases
can be used or new tests developed using any test-case development technology. Novel test-
coverage metrics are suggested by the SLR concept. When assessing the effects of a
transformation by testing, measurement of the extent to which stack variables have been
referenced or set would provide insight into the degree to which the randomization has been
assessed. We do not presently capture this coverage information.

Using the hypothesized stack layout determined by AOI (AOI is the heuristic that detects the
largest number of variables because it is the most aggressive), a new layout is created by
randomizing the hypothesized layout for the subject function (randomization 1 in Figure 31). In
this randomization, space for variables is contiguous, i.e., there is no padding between variables.

Once the randomization has been created, the necessary binary rewriting rules for dynamic
binary translation are defined to transform the binary function from its original stack layout to
the new, randomized layout, and then the program is tested.

If testing is successful, then the entire process is repeated for the subject function with the same
hypothesis about the stack layout but a different randomization (randomization 2 in the Figure
31), again without padding. The program is then tested again. This second transformation is
carried out to check the results of the first transformation. The claim is that, if two
randomizations leave the program in a form that passes the available test cases, the chances of
the randomizations having altered the program's semantics are small.

120
Approved for public release: distribution unlimited.

Figure 31. Overall Approach to Stack Randomization

If testing with the second randomization is successful, a third transformation is applied to the
subject function, again starting with the original binary program and the original stack-layout
hypothesis. In this third transformation, random padding whose length lies between 4096 and
8192 is added between local variables, before the stack frame, and after the out arguments region
(if one exists). This third randomization is then tested as the other two were. If testing is
successful, this is the randomization of the stack that is used in the transformed program.

If testing fails for any of the three randomizations of the subject function, then the semantics of
the program have been changed by the stack randomization, and so the hypothesized stack layout
must have been wrong. In that case, the hypothesized stack layout that detected the next largest

121
Approved for public release: distribution unlimited.

number of variables in the function is selected, and the three-phase test process is repeated.
Again, any failing tests lead to abandoning of the hypothesized layout, and the process resumes
with the next one.

In the worst case, all four hypothesized stack layouts from the four different inferences will
affect the program's semantics and be rejected. In that case, the subject function is left
unmodified. We present data on the application success with these four approaches to stack
layout analysis below.

This speculative transformation and assessment process is repeated for each function in the
program. Needless to say, for a large program with many functions, this process requires a lot of
resources. Fortunately, the process can be conducted in parallel for all the functions in a
program, and so the time taken for the analysis can be reduced by using additional equipment.
Also, optimizations are possible in the transformation mechanism. For example, since transforms
have a high success rate, processing more than one function at a time might be possible.

3.8.2.3 Randomization by Dynamic Binary Translation
SLR uses the dynamic rewriting technique described in Section 3.3.5. The translations in SLR
that the PVM applies are the modifications to instructions that are needed to implement the
randomization of the stack layout. These modifications are documented as a list of rewrite rules.
The rewrite rules define the instructions that have to be modified, the associated modifications,
and the fallthrough map, i.e., the address of the next instruction. The rewrite rules are written by
the stack randomization system based on a randomization of a stack-layout hypothesis.

In SLR, the PVM loads the rewrite rules and the PVM's instruction-fetching mechanism checks
and then reads the SLR rewrite rules as appropriate. After modifying an instruction, the PVM
modifies the PC from the fallthrough map that SLR provides in the rewrite rules. (see Hiser et al
[113] for further PVM details).

3.8.2.4 Experimental Evaluation
To evaluate SLR we conducted three assessment experiments:

• We measured the effectiveness of the transformation mechanism for a set of open-source
programs for which accepted regression tests are available.

• We measured the performance overhead imposed by the transform using SPEC 2006
benchmarks [199].

• We applied SLR to a set of test programs designed to measure protection against buffer-
overflow attacks.

The results of our evaluation are described in Section 4.2.

3.8.3 Phase 2 Heap Randomization
Memory management errors in the allocation, deallocation, and use of dynamically allocated
memory leave applications vulnerable to attack. Heap exploits use knowledge of the heap layout
and take advantage of memory management errors to launch arbitrary attacks such as denial of
service or arbitrary code execution.

Memory management errors can be divided into several categories. Heap overflows and
underflows occur when a buffer’s boundaries are breached. Dangling pointers is a situation that
arises when a program frees an object that is still in use. A double free occurs when an object is

122
Approved for public release: distribution unlimited.

de-allocated multiple times. Invalid frees occur when a program attempts to de-allocate objects
that were not previously allocated.

Memory allocation functions such as malloc and free for C and new and delete for C++
are implemented in the runtime libraries. The implementation of these functions depends on the
operating system. PEASOUP does not implement a full memory allocator. Rather, heap
protection techniques are implemented in PEASOUP using the Strata software dynamic
translator. The techniques implemented are similar to existing published heap protection
techniques [85, 92, 93, 209]. These protection techniques are included to add depth to the
defenses offered by PEASOUP.

3.8.3.1 Randomizing Heap Object Sizes

PEASOUP intercepts library calls which allocate dynamic memory such as malloc,
calloc, and realloc. A randomized amount of additional padding above the size
requested is added to the memory allocation. This padding technique gives probabilistic
protection that a heap buffer overrun will not reach the allocated object's metadata or an adjacent
heap-allocated object.

3.8.3.2 Randomizing Heap Memory De-allocation
PEASOUP also adds randomization to the time at which memory is de-allocated. This is
discussed in further detail in the following section.

3.8.4 Phase 1–2 Heap-Usage Confinement
PEASOUP implements several known techniques for confining heap usage. Delaying frees
prevents dangling pointer/use-after-free errors. Monitoring excessive allocations counteracts
potential heap exhaustion attacks. Preventing frees of non-heap memory addresses potential
memory corruption errors. Monitoring for and protecting against double free attempts prevents
corruption of memory management data structures. These techniques are discussed in more
detail in the following sections.

3.8.4.1 Delayed Frees

In PEASOUP, when a call to free is encountered to de-allocate memory, the memory is marked
as free, but de-allocation of the memory chunk is delayed for a randomized time period. Actual
freeing of the memory chunk occurs at PEASOUP's discretion. If the heap is deemed to be
“overfull” (over a threshold value), then chunks that are marked as free, but have not yet been
freed will be freed. This technique probabilistically addresses dangling pointer (“use after free”)
errors by extending the effective lifetime of the freed object.

3.8.4.2 Excessive Allocation Sizes
The size parameter passed to heap allocation functions is monitored for excessive size requests.
If the requested memory allocation size is over threshold, various policies might be enforced. For
Phase 1, the enforcement policy printed a warning message describing the potential excessive
allocation and effected a controlled exit of the application. Monitoring the requested allocation
sizes addresses the scenario when a sign conversion and/or integer wraparound error occurs and
that value is then passed to a memory allocation function.

123
Approved for public release: distribution unlimited.

3.8.4.3 Frees of Non-Heap Memory

All heap allocations are tracked during runtime. When a call to free is encountered for a
particular address, the list of currently allocated heap memory is searched. If the address is not in
the allocation list, PEASOUP produces a warning message describing the error encountered.
Continued execution could be attempted, but for Phase 1, controlled exit was the policy used.

3.8.4.4 Double Frees
A double free error occurs when heap-allocated memory which has been previously freed is
freed another time. PEASOUP addresses this error by maintaining a list of existing heap
allocations. When free is called for a particular memory address, the allocation list is checked.
If the address is not in the list, then an appropriate policy can be applied. For Phase 1, recording
a warning message and affecting a controlled exit of the application was the policy selected.

3.8.5 The Twim Allocator: Phase 3 Heap Protection
In Phase 3, we changed PEASOUP’s approach to protecting the heap. PEASOUP provides a
heap manager, called the Twim Allocator, which is used in place of the standard heap allocator.
Twim is closely based on the DieHard Allocator [85, 92]. For small and medium-sized requests,
Twim uses the following strategy: each request is rounded to a power of two. A separate pool of
block is maintained for each block size (i.e., each power of two up to the configurable cutoff,
currently 64k). Within each pool, Twim allows reserves at least a constant factor greater than the
maximum amount requested by the application from that pool. When fulfilling a request, Twim
selects a free block from the pool at random.

For large requests, Twim uses a strategy that is closer to that used by glibc malloc. However, in
Twim, all metadata, for all block sizes, is kept separate from the blocks returned to the
application.

Like DieHard, Twim offers substantial protection against heap exploits: the random allocations
complicate exploits based on the exact layout of the heap and make use-after-free exploits
unlikely to succeed. The fact that metadata is not incline makes exploits based on corrupting the
metadata significantly more difficult. Compared to the heap protections used in Phase 1 and 2,
Twim’s offers the following advantages:

1. The protections are easier to quantify (see [85]).
2. It provides an efficient mechanism to check if a given address is in a currently

allocated block, and if so at what address. This capability is used by DieHard.
3. It is more robust against (unsafe) allocations from a signal handler, due to its

extensive use of lock-free data algorithms and data structures.
4. It provides a garbage collection capability which can be used to survive in the face of

extensive memory leaks.

Twim also imports some of the heap protections developed during Phase 1 and 2. In particular, it
supports a free quarantine that is used to queue freed blocks and delay the time of their actual
return to the heap [186].

124
Approved for public release: distribution unlimited.

 C8: Null-Pointer Errors 3.9
PEASOUP focuses on defending against Null-Pointer Dereferences (NPDs) in server
applications. Users can usually tolerate premature termination of a non-server application.
PEASOUP’s primary defense against NPDs is based on the observation that most server
applications may tolerate the loss of a thread better than an uncaught SIGSEGV. Based on this
observation, PEASOUP catches the SIGSEGV and performs a controlled-exit from the thread
that caused the NPD. The controlled exit is performed by calling exit(-1).

Some applications may already be prepared to handle a SIGSEGV. In order to limit altered
functionality, PEASOUP only enables its defenses against NPDs (i) after a program indicates it
is a server by listening for a socket connection and (ii) if the program does not install its own
SIGSEGV handler.

 General Defenses 3.10
Some PEASOUP defenses prevent many different types of exploits, regardless of the type of
weakness being exploited. We describe some of those defenses in this section.

3.10.1 Instruction-Layout Location Randomization (ILR)
In this section we describe a novel technique, called Instruction Location Randomization (ILR)
that conceptually randomizes the location of every instruction in a program. ILR can use the full
address space of the process (e.g., 32-bits on 32-bit processors such as the x86). Information
leakage attacks that discover information about the location of a code block (e.g., the randomized
base address of a dynamically loaded module, the start of a function) are infeasible for two
reasons: 1) the randomized code addresses are protected from leakage and 2) a leak provides no
information about the location of other code blocks.

ILR changes a fundamental characteristic typically used by attackers---predictable code layout.
For example, programs are arranged sequentially in memory starting at a base address, as shown
in the left of Figure 32.17

In this example, the address used to return from function foo (7003) might be leaked if there is a
vulnerability in the function. An attacker that learns this information can easily determine the
location of all other instructions. Attackers routinely rely on the fundamental assumption of
predictable code layout to craft attacks such as arc-injection and the various forms of return-
oriented programming. In the example, an attacker might use the address of the add instruction
to mount an ROP attack using add eax, \#1;ret as an ROP gadget.18 For a detailed
explanation of ROP gadgets and how they are combined to form an attack, please see Shacham's
prior work [110].

ILR adopts an execution model where each instruction has an explicitly specified successor.
Thus, each instruction's successor is independent of its location. This model of execution allows
instructions to be randomly scattered throughout the memory space. Hiding the explicit

17 For simplicity, the figure and discussion assume all instructions are one byte. Our general approach, prototype
implementation, and security discussion do not rely on this fact.
18 ROP gadgets are short sequences of code, typically ending in a return instruction, that perform some small portion
of the attack.

125
Approved for public release: distribution unlimited.

successor information prevents an attacker from predicting the location of an instruction based
on the location of another instruction.

ILR’s “non-sequential” execution model is provided through the use of a process-level virtual
machine (PVM) based on highly efficient software dynamic translation technology [89, 138,
182]. The PVM handles executing the non-sequential, randomized code on the host machine.

Figure 32. Traditional Program Versus an ILR Program

Several key contributions of the PEASOUP effort are presented in the remainder of this section.
In particular, this section

• presents Instruction Location Randomization (ILR), a technique that provides high-
entropy diversity for relocating instructions with low run-time performance overhead.

• demonstrates that ILR defeats arc-injection and ROP attacks on arbitrary binaries without
need for compiler, linker, operating system or hypervisor support.

• provides a complete description of how ILR can achieve its goals despite inherent
uncertainty about a program’s structure, such as where code and data reside.

This section has been written to be self-contained. As such, it repeats some background
information described elsewhere in the report.

3.10.1.1 Threat Model
ILR uses a very similar threat model to the threat model supposed by STONESOUP. Like
STONESOUP, ILR assumes that the unprotected program is created and distributed to an end
user (and possibly the attacker) in binary form. The program has been tested, but not guaranteed
to be free from programmatic errors that might allow malicious exploit, such as memory errors.
The program is assumed to be free from intentionally planted back doors, Trojans, etc.
Furthermore, the program is to be protected and deployed in a setting where the other software
on the system is believed to be operating correctly, and the system administrator is trusted. An
attacker does not have direct access to the system or the protected program, but understands the
protection methodology and may have access to tools for applying ILR protections. However,

126
Approved for public release: distribution unlimited.

the attacker does have access to the unprotected version of the program, and can specify
malicious input to the protected program.

ILR does not make any assumption about the type of vulnerabilities that the attacker may be able
to exploit. In particular, ILR focuses on preventing attacks which rely on code being located
predictably. This threat model includes a large range of possible attacks against a program. For
example, many attacks against client and server software fit this model. Document
viewers/editors (Adobe PDF viewer, Microsoft Word), e-mail clients (Microsoft Outlook,
Mozilla Thunderbird), and web browsers (Mozilla Firefox, Microsoft Internet Explorer, Google
Chrome) need to be protected from these types of threats anytime a user requests the program to
examine data from an untrusted source.

3.10.1.2 ILR Implementation
ILR's goals are to achieve high randomization and low run-time overhead. An attacker, through
knowledge of the instruction-set architecture and the executable format, can easily locate
portions of code that may be useful in crafting an attack. For example, the attacker may identify
the instruction sequence at locations 7004 and 7005 as being a gadget useful in crafting an ROP
attack. This particular gadget adds one to register eax. By identifying a set of gadgets and
exploiting a vulnerability, an attacker can cause a set of gadgets to be executed that effect the
attack.

The right side of the figure shows the layout of the code when ILR is applied. The program
instructions are randomly scattered through memory. With an address space of 32 bits, it is
infeasible for an attacker to locate a set of gadgets that could be used to craft an attack.

To execute the randomized program, we employ a highly efficient PVM that fetches and
executes the instructions in the proper order even though they are randomly scattered throughout
memory. This process is accomplished via a specification that describes the execution successor
of each instruction in the program. The PVM interprets the fallthrough map to fetch and execute
instructions on the host hardware. The following subsections describe the process of
automatically producing an ILR executable and its execution.

Figure 33. High-Level Overview of ILR

 ILR Architecture 3.10.1.2.1
Figure 33 shows the high-level architecture of the ILR process. ILR has an offline analysis phase
to relocate instructions in the binary and generate a set of rewriting rules that describe how and
where the newly located instructions are to be executed, and how control should flow between

127
Approved for public release: distribution unlimited.

them. The randomized program is executed on the native hardware by a PVM that uses the
fallthrough map to guide execution.

The rewriting rules come in two forms, as described in Section 3.3.6.1. The first form, the
instruction definition form, indicates that there is an instruction at a particular location. The first
line of Figure 34 gives an example. In this example, address 0x39bc has the instruction cmp
eax, #24. Note that the rule indicates that if an instruction is fetched from address 0x39bc,
that it should be the cmp instruction. However, data fetches from address 0x39bc are unaffected.
This distinction allows ILR to relocate instructions even if instructions and data are overlapped.

An example of the second form of an ILR rewrite rule, the redirect form, is shown in the second
line of Figure 34. This line specifies the fallthrough instruction for the cmp at location 0x39bc.
A normal processor would immediately fetch from the location 0x39bd after fetching the cmp
instruction. Instead, ILR execution checks for a redirection of the fallthrough. In this case, the
fallthrough instruction is at 0xd27e. The remaining lines show the full set of rewrite rules for the
example in Figure 34.

Figure 34. Example ILR Rewrite Rules

The ILR architecture fetches, decodes and executes instructions in the traditional style, but
checks for rewriting rules before fetching an instruction or calculating an instruction’s
fallthrough address.

 Offline Analysis 3.10.1.2.2
The static analysis phase creates an ILR program with random placement of every instruction in
the program. For such randomization, the static analysis locates instructions, indirect branch
targets, and identifies call sites for additional analysis. Figure 35 shows the organization of the
static analysis used for ILR.

39bc ** cmp eax, #24

39bd -> d27e

d27e ** jeq a96b

d27f -> cb20

cb20 ** call 5f32

cb21 -> 67f3

67f3 ** mov [0x8000], 0

67f4 -> a96b

224a ** add eax, #1

224b -> 67f3

a96b ** ret

128
Approved for public release: distribution unlimited.

Figure 35. High-Level Overview of the STARS Analysis Engine Used in ILR

3.10.1.2.2.1 Disassembly Engine
The goal of the ILR disassembly engine is to locate any byte that might be the start of an
instruction. We use a recursive descent disassembler (IDA Pro) and a linear scan disassembler
(objdump) [9]. To ensure that all instructions are identified, we added the disassembly validator
module. The disassembly validator iterates over every instruction found by either IDA Pro and
objdump and verifies that both the fallthrough and (direct) target instructions are inserted into
the instruction database.

Since exact instruction start locations in the executable segment are not known, some of the
instructions in the instruction database may not represent instructions that were intended by the
program’s original assembly code. We make no attempt to determine which are the intended
instructions, and which are not. We simply choose to relocate all of them. Any data address that
is mis-identified as a code address will not be executed, therefore the corresponding rewrite rules
will simply never be accessed.

One last responsibility of the Disassembly Engine is to record the functions that IDA Pro detects.
We record each function as a set of instructions.

3.10.1.2.2.2 Indirect Branch Target Analysis
The goal of the indirect branch target analysis Phase 1s to detect any location in the program that
might be the target of an Indirect Branch (IB). IBs create a distinct problem for ILR. The
problem is that Indirect Branch Targets (IBTs) may be encoded in the instructions or data of a
program, and it is challenging to determine which program bytes represent an IBT and which do
not. Since we wish to randomize any arbitrary binary, our technique must tolerate imprecision in
detecting which constants are an IBT in the program and which are not. Our solution is to
perform a byte-by-byte scan of the program’s data, and further scan the disassembled code to
determine any pointer-sized constant which could feasibly be an indirect branch target.

We find that in most programs, this simple heuristic is sufficient (see Section 4.2 for details).
However, when C++ programs use exception handling (try-catch blocks), the compiler uses
location-relative addressing to encode IBTs for properly unwinding the stack, and invoking

129
Approved for public release: distribution unlimited.

exception handlers. Our technique parses the portions of the ELF file that contain the tables used
to drive the unwinding and exception throwing process, and records IBTs appropriately.

Rewriting the bytes in the program that encode an IBT might induce an error in the program if
those bytes are used for something besides jumping to an instruction. To avoid breaking the
program when the analysis is wrong, we choose to leave those program bytes unmodified.
Unfortunately, not rewriting the IBTs encoded in the program means that the program might
jump to the address of an original program (and hence unrandomized) instruction.

To accommodate indirect branches jumping to unrandomized addresses, each instruction that
might be an IBT generates an additional ILR rule in the program. The additional rule uses the
redirect form to map the unrandomized address to the new, randomized address. Thus, any
indirect branch that targets an unrandomized address, correctly continues execution at the
randomized address.

Unfortunately, attackers may know the unrandomized addresses in a program, and if they can
inject a control transfer to one of these addresses, they might be able to successfully perform an
attack.

The evaluation in Section 4.2 shows the number of IBTs detected in most programs is very
limited, and restricting attacks to only these targets significantly reduces the attack surface.

3.10.1.2.2.3 Call Site Analysis
Since unrandomized instructions may allow attacks, we wish to randomize the return address for
function calls. The call site analysis phase analyzes the call instructions in a program to
determine if the return address can be randomized. Typically, a call instruction stores a return
address, and when execution of the function completes, a ret instruction jumps to the address
that was stored. Most functions obey these semantics. Unfortunately, call instructions can be
used for other purposes, such as obtaining the current program counter when position-
independent code or data is found in a library. Such a call instruction is often called a thunk.
Numerous other uses of a return addresses are possible.

The analysis proceeds as follows. If the call instruction is to a known location that starts a
function, we analyze the function further. If the function can be analyzed as having only standard
function exits (using the return instruction), having only entrances via the function's entry
instruction, and having no direct accesses to the return value (such as with a mov eax,
[ebp+4] instruction), then ILR declares that it is safe to rewrite the call instruction to store a
randomized return address.

Our heuristic makes the assumption that indirect memory accesses should not access the return
address. While not strictly true for all programs, we find that the heuristic generally holds for
programs compiled from high-level languages. One exception to our heuristic is again the C++
exception handling routines that “walk the stack.” The routines use the return address to locate
the appropriate unwinding, cleanup, and exception handling codes to invoke. Like with the IBT
analysis, we adjust the call site analysis to take into account the exception handling tables, so that
call sites with exception handling cannot push a randomized return address.

Once the analysis is complete, the ILR rules for calls need to be emitted. If the call site analysis
determines that the call can randomize the return address, no additional rules are required, and
the call instruction's location is randomized by simply emitting the standard rewrite rules. If,
however, the non-randomized return address must be stored, we have two choices: 1) we could

130
Approved for public release: distribution unlimited.

choose to pin the call instruction to its original location, so that the nonrandomized return
address is stored, or 2) rewrite the call (using ILR rewrite rules) into a sequence of instructions
that stores the unrandomized return address and transfers control appropriately. Since pinning
instructions leads to a decrease in randomization, we choose the second option. Most machines
can efficiently store the return address and perform the control transfer necessary to mimic a call
instruction, typically using only 2-3 instructions. For example, on the IA32 instruction set
architecture, a call foo instruction can be replaced with two instructions, push
<unrandomized address>; jmp foo, resulting in only one extra instruction. This
transformation is exactly what is performed by our call site analysis when we detect that a call
instruction cannot push a randomized return address. Furthermore, the unrandomized return
address is marked as a possible indirect branch target, since we are not sure how the return
address in question will be used.

3.10.1.2.2.4 Reassembly Engine
After completely analyzing the program's instructions, IBTs, and call sites, the reassembly
engine gets invoked. The reassembly engine's purpose is to create the rewrite rules necessary to
create the randomized program. For each instruction in the database, the engine emits a set of
rewrite rules. First, it emits the rules necessary to relocate the instruction. Note that if the
instruction has a direct branch target encoded in it (such as a jmp L1), that branch target is
rewritten to the randomized address of the branch target. Then, the reassembly engine emits the
rule to map the instruction’s fallthrough address to the randomized location for the fallthrough
instruction.

As a post-processing step, each byte of the original executable text gets an additional rule. If the
address of the program text is marked as a possible IBT, the reassembly engine adds a rule to
redirect that address to the randomized address for that instruction, effectively pinning the
instruction. Any other byte of the executable code segment gets a rule to map its address to a
handler that prints an error message and exits in a controlled manner. Thus, any possible arc-
injection or ROP attacks must jump to the start of a instruction, and not bytes located within an
instruction.

 Running an ILR Program 3.10.1.2.3
To apply the rewrite rules generated by the static analysis steps, ILR uses a specific ILR VM.
We believe that a per-process virtual machine (PVM) is the best choice for the ILR VM since it
can be easily deployed and has low performance and runtime overheads [135, 139, 182]. As
described above, we use Strata to implement a PVM in PEASOUP.

3.10.1.3 Related Work
In this section, we focus on work specifically related to ILR.

 ROP Defenses 3.10.1.3.1
The original authors of ROP have described ROP's salient feature as “Turing completeness
without code injection” [200]. ROP invalidates the assumption that attack payloads are
intrinsically external by nature as ROP re-uses code fragments already present in a target
program. Defensive techniques such as various forms of instruction-set randomization that target
code injection attacks directly are completely circumvented by arc-injection attacks in general
[84, 112, 119], of which ROP, return-to-libc [144, 174], partial overwriting attacks of return

131
Approved for public release: distribution unlimited.

addresses [82] are special cases. 𝑊𝑊⨁𝑋𝑋 is also circumvented as it implicitly assumes that external
code will be executed from data pages [159].

Since the original seminal work on ROP [110], several defensive techniques have been proposed.
Early defenses targeted what would emerge to be non-essential features of ROP attacks. For
example, DROP [163] instruments binaries searching for short consecutive sequences of
instructions ending in a return instruction. Li et al. avoid return instructions altogether when
generating code [116]. ROPDefender [134] and TRUSS [177] look for mismatched calls and
returns essentially using a shadow stack.

Checkoway et al. showed that the use of the return instruction is not a necessary condition in
building ROP gadgets, thereby bypassing such ad-hoc defenses [200]. The balance against ad
hoc defenses is further tilted by recent works that have automated the process of gadget
discovery [10] [204] [173] and ROP exploit compilation and hardening [83].

TRUSS [177], ROPDefender [134], DROP [163], TaintCheck [115] use software dynamic
translation frameworks for instrumenting code and implementing their respective defenses.
TaintCheck uses dynamic taint analysis and provides a comprehensive approach to thwarting
ROP attacks by detecting attempts at control-flow hijacking, though it suffers from high
overhead (over 20X). Performance overhead for ROPDefender is approximately 2X overhead on
the SPEC2006 benchmarks, while preliminary performances measurements for DROP range
from 1.9X to 21X. While not directly comparable, ILR achieves average performance overhead
of only 13–16%, which makes it practical for deployment.

 Defenses based on randomization 3.10.1.3.2
In contrast to approaches that look for specific ROP patterns, ILR provides a comprehensive
defense based on high-entropy diversification to thwart attacks. ILR provides 31 bits of entropy
(out of a maximum of 32 for our experimental prototype) which makes derandomizing attacks
impractical. ASLR on a 32-bit architecture only provides 16 bits of entropy and is susceptible to
brute-force attacks [190]. Even on 64-bit architectures, there would be two potential problems.

The first is that ASLR is not applied universally throughout the address space. Even when using
dynamically-linked libraries, it is common for the main program text to start at a known fixed
location. Red Hat developed Position Independent Executable to remedy this situation [31].
However, PIE requires recompilation.

The second problem is that ASLR and other coarse-grained technology such as PIE do not
randomize intra-library. Any information leaked as to the location of one function, or even one
address, could be used to infer the complete layout of a library. Roglia et al. demonstrated a
single-shot return-to-libc attack that used ROP gadgets to leak information about the base
address of libc, and bootstrapped this information into all other libc functions [94]. Their
proposed remedy of encrypting the Global Offset Table was specific to their attacks and leaves
open the possibility of other leakage attacks.

Bhatkar, et al. use source-to-source transformation techniques to produce self-randomizing
programs (SRP) to combat memory error exploits [175]. Unlike other compiler-based
randomization techniques [114], SRP produces a single program image, which makes it more
practical for deployment. SRP randomizes code at the granularity of individual functions and
therefore retains a larger attack surface than the ILR approach of randomizing at the instruction
level.

132
Approved for public release: distribution unlimited.

 Control Flow Integrity 3.10.1.3.3
Control flow integrity (CFI) is designed to ensure the control flow of a program is not hijacked
[24]. CFI relies on the Vulcan instrumentation system. The Vulcan system allows instruction
discovery, static analysis, and binary rewriting.

Figure 36 shows an example program. In the figure, CFI enforces that the return instruction (in
function log) can only jump to the instruction after a call to the log function. In this case, this
policy allows an arc-injection attack if the log function is vulnerable. An attacker might be able
to overwrite the return address to erroneously jump to L2, thereby granting additional access.
Even the best static analysis cannot mitigate these threats using CFI.

Further, a partial overwrite attack might defeat ASLR in this example, since the distance between
the two return sites is fixed. Since ILR randomizes this distance, ILR can defeat partial-overwrite
attacks.

Figure 36. Example Weakness with CFI

3.10.2 Secure In-process Monitoring (SIM): Phase 2 Protection of PEASOUP
This section discusses the techniques we used to protect PEASOUP, itself, from attack in
Phases 1–2. These protections were superseded by the dual-process architecture described in the
following section.

As shown in Figure 37, the Phase 2 execution manager is constituted of two major components,
the Strata software binary translator (SDT) and the SIM sandbox. In this architecture, Strata is in
charge of providing fine-grained confinement for the SOUP. However, as it is a user-level
component, it is running in the same process address space as the SOUP. This means it is
vulnerable to attacks once SOUP is compromised due to unhandled weakness class. That is,
instead of try to compromise the SOUP (which is extremely difficult under Strata’s
confinement), an attacker could try to compromise Strata first. To overcome this limitation, we
include an out layer sandbox, SIM to protect Strata from being attacked by SOUP.

 call log
L1: cmp [isRoot], #1
 jeq L3
 ...
 call log
L2: call grantAccess
L3: ...
log: ...
 ret

133
Approved for public release: distribution unlimited.

SIM was original refer to our Secure In-VM Monitoring framework, which is designed to work
with kernel-mode monitors. Because Strata is a user-mode SDT, to make them work together
requires tremendous work, i.e., porting Strata to the kernel. Besides, the “untrusted kernel”
assumption in the original Secure In-VM Monitoring work also makes it overkill for PEASOUP
project, where the OS kernel is trusted. For this reason, we designed a new confinement
technique called Secure In-process Monitoring.

3.10.2.1 Desgin
In this section, we present the design of our Secure In-process Monitoring technique.

 Threat Model 3.10.2.1.1
In Phase 1, we assumed the analysis process and the protection provided by Strata is not perfect,
therefore allowing an adversary to exploit vulnerabilities in the SOUP. The result of a successful
exploit is not limited. And the adversary can launch complicated, multiple step attacks that may
involve several vulnerabilities. Besides, we also assume the adversary knows of the existence of
Strata, therefore can perform Strata-aware attacks.

However, we assume the whole environment besides the SOUP is trusted. The environment
includes the virtual machine monitor (VMM), the operating system (OS), and the third party
libraries and other processes that run inside the same virtual machine (VM). We assume these
components cannot be exploited, nor be used to launch attacks targeting SOUP.

 Security Requirement 3.10.2.1.2
The successfully confine attacks against Strata, we have following security requirements for our
SIM technique:

• Isolation.
o S1: Strata’s code and data must be isolated from SOUP
o S2: Strata’s code cache can only be modified by Strata

• Secure Invocation
o S3: Strata’s code should only be invoked from designated point

• Integrity
o S4: The behavior of Strata should not be maliciously alterable

Figure 37. Phase 2 Execution Manager

134
Approved for public release: distribution unlimited.

 Bi-view based Confinement 3.10.2.1.3
Under our threat model for Phase 1, we satisfied the above security requirements through a bi-
view based confinement technique. In this design, a single process address space will have two
different memory access permission schemes, called views. The view corresponds to SOUP’s
context is called SOUP view, and the view corresponds to Strata’s context is called SIM view.
The differences between these two views are (Figure 38):

SOUP view. Under this view, the original SOUP code will be mapped non-executable and
the SOUP data will be mapped writable but not executable. The only executable code is the
translated code in Strata’s code cache and the entry/exit gate, but all kept un-writable. To
protect Strata, its code and data will be mapped inaccessible.

SIM view. Under this view, the code of Strata will be executable and the data will be
writable, which allows Strata to perform the translation. And the gate will be both writable
and executable. However, to avoid any execution of untrusted code, the original SOUP code
will be kept non-executable.

View is switched via entry gates and exit gates. When translation is needed, the control flow will
go through an entry gate and switch the context to Strata. And after the translation is done, the
control flow will go through an exit gate so the context will be switched back to SOUP.

135
Approved for public release: distribution unlimited.

Figure 38. Bi-View Based Confinement

136
Approved for public release: distribution unlimited.

This confinement technique is built upon the hardware’s memory protection support (i.e. page
access permission). Since the only overhead is from the context switching, and context switching
is rare due to Strata’s optimization, as will show in the evaluation section, the performance
overhead is very low.

 Security Analysis 3.10.2.1.4
By using this bi-view based confinement technique, we can achieve following securing
properties:

• Isolation
o Strata’s code and data are mapped inaccessible under SOUP view, this satisfies

requirement S1;
o Strata’s code cache is mapped writable only under SIM view, this satisfies

requirement S2;
o SOUP cannot change access permissions of memory regions belong to Strata, this

means the confinement cannot be break by SOUP.
• Secure Invocation

o Strata’s code is executable only after going through an entry gate; and
o The destination of an entry gate is not modifiable for SOUP. By these two, our

design satisfies requirement S3.
• Integrity

o Strata is self-contained, combined with the isolation, this means Strata’s behavior
cannot be changed by SOUP;

o While translation, Strata will mask-off signals, this means Strata’s execution
cannot be interrupted by SOUP. Together, this satisfies requirement S4.

 System Components 3.10.2.1.5
SIM has three main components:

Memory Tracking Module. The memory tracking module tracks the virtual memory
regions used by Strata and updates the view data structures accordingly. This information
will be used to build the two different views.

Permission Change Checking Module. The permission change checking module has two
jobs: first, it uses information collected by the tracking module to prevent the SOUP from
changing the permission of the memory regions that belong to Strata; second, it prevents the
SOUP from creating executable memory regions.

Entry and Exit Gates. Entry and exit gates are in charge of changing access permissions
correctly during a context switch.

 Integration with Strata 3.10.2.1.6
The interaction between Strata and SIM happens in two areas: memory usage tracking and
context switch.

Memory Usage Tracking. The main difference between the SOUP view and SIM view relates
to the access permissions of Strata’s code, data and code cache. Therefore, to correctly change
permissions during a context switch, SIM needs to know which memory region is used by Strata.

137
Approved for public release: distribution unlimited.

Moreover, since some regions allocated by Strata should be readable or writable under SOUP
view, SIM also needs to know which regions should be given what access permissions under
each view. Based on the fact that Strata uses mmap/munmap syscall to allocate/free memory
from the system, SIM provides following functions to help Strata provide the required
information:

sim_mmap(void *addr, size_t length, int prot_strata, int prot_soup, int
flags, int fd, off_t offset);

sim_munmap(void *addr, size_t length);
The parameters are generally the same as in mmap/munmap syscall, the only difference is
prot_soup, which tells SIM what access permission should be granted to the allocated memory
region under the SOUP View.

Context Switch. Strata has its own context switch mechanisms. Each has different purpose.
Among them, the most important and most frequently used one is the trampoline. It is used when
execution in the code cache has met a piece of code that has not been translated yet. A
trampoline will save the current context and switch to Strata (in most cases, the translation
entry). After the translation is done, the context will be restored and the execution will continue
from the newly translated code. Some other cases like syscall monitoring and signal handling
also requires context switch.

Once protected by SIM, these old context switch mechanisms will not work because the view is
has not been changed yet. Therefore, another kind of interaction between SIM and Strata is
context switch: when switching the context to Strata, a call to SIM (i.e. entry gate) must be made
to also switch the view to SIM view; and before the context is switched back to SOUP, another
call to SIM (i.e. exit gate) must be made to switch the current view back to SOUP view again.

3.10.2.2 Implementations
In Phase 2, we had two implementations of SIM: one is purely implemented at user-mode, and
another one is implemented at kernel-mode. The user-mode implementation is easier to deploy
because it is compatible with vanilla Linux kernel, while the kernel-mode implementation is
more efficient, has more restricted access scheme for SOUP view and has more atomic context
switch.

 User-Mode Implementation 3.10.2.2.1
This section describes user-mode implementation of SIM.

View Data. The View Data is composed of memory area descriptors. Each memory area
descriptor describes a memory area used by Strata, including the starting address, the length of
the area, the permission under the SOUP View and the permission under the SIM View.

struct sim_vm_struct {
void* addr;
size_t length;
int prot_strata;
int prot_soup;

};

Based on the observation (from the source code) that Strata does not allocate/free memory
frequently, we use an array to arrange the descriptors and use linear search to update the View

138
Approved for public release: distribution unlimited.

Data. If performance is detrimentally affected in the future, we will switch to binary search tree
(e.g. RBTree) to store these descriptors.

We used three functions to allocate (sim_vm_init) the memory for the view data, to insert
(sim_vm_insert) a new region, and to remove a region (sim_vm_remove). The view data is kept
read-only except for updating (insert & remove) to prevent tampering.

Memory Tracking Module. In user-mode implementation, this module is implemented as a
wrapper over the mmap/munmap syscall and is linked as part of Strata.

sim_mmap: when Strata allocates memory through this interface, it first calls the real system
service to allocate the memory; and if the allocation is successful, it then updates the view
data according to the given permission and the result of the syscall.

sim_unmmap: when Strata frees memory through this interface, it first calls the real system
service to delete the memory mapping; if the call is successful, it then remove the
corresponding record from the view data.

To make use of the above functions, we modified two functions of Strata:

strata_get_mem: use sim_mmap to allocate memory, the permission for SIM view is read-
write, and the permission for SOUP view is read-only;

strata_get_executable_mem: use sim_mmap to allocate memory, the permission for SIM
view is read-write-executable (the trampoline has not finished executing after the view is
changed, therefore needs to be kept executable) and the permission for SOUP view is read-
executable.

Important information related to Strata’s memory usage is where the .strata section is mapped.
This ELF section contains all the code and static data of Strata hence should be protected at
runtime. In user-mode implementation, this information is retrieved at stratafy time. That is, we
modified the stratafier to save this information in two global variables:
strata_section_entry and strata_section_size. The limitations of this approach
are: 1) if the section is relocated at runtime, then this information will be incorrect; and 2) it only
works for stratafied program, if the program wants to statically link Strata, then this information
is missing.

Permission Change Checking Module. To prevent SOUP from maliciously modify the access
permission scheme (i.e. view), we intercept the two related syscalls, namely mmap and
mprotect. In user-mode implementation, this module will be implemented using the syscall
watching mechanism provided by Strata. In particular, it registers two callback functions:

intercept_mmap: this function masks off the PROT_EXEC permission, so the SOUP cannot
allocate any executable memory region;

intercept_mprotect: this function does two things, 1) it checks the ownership of the target
memory region, if it belongs the Strata, then the syscall is aborted and an error code is
returned, this prevents the SOUP from changing access permission of Strata’s code, data,
code cache and the entry/exit gates; 2) it masks off the PROT_EXEC permission, so SOUP
cannot make a memory region executable.

139
Approved for public release: distribution unlimited.

Entry/Exit Gates. In user-mode implementation, because SIM is linked as part of Strata, we
relaxed the access permission of SOUP view, for the convenience of implementation. This
scheme is called read-only scheme:

Under this scheme, instead of being completely inaccessible, Strata’s code and static data
(i.e. the .strata section) will be mapped as read-only under SOUP view, and the code will
remain executable. The executable permission is left for the entry/exit gates which are now
part of the .strata section. And the readable permission is left for the entry/exit gates to read
the necessary metadata to locate the view data. Although the permission is relaxed, since that
ELF section is still un-writable under SOUP view, we think it is secure enough in most
scenarios.

Another problem in user-mode implementation is signal. To satisfy the security requirements, the
view switch must be atomic and the execution of Strata cannot be alterable by SOUP. Since in
user-mode, the execution can be interrupted by signals, we need to mask off uncritical signals
before switching the view to SIM view and keep them masked off until the view is switched
back to SOUP view. As a result, the entry/exit gates in user-mode implementation work as:

When entering Strata context, the entry gate will:

1. Mask off signals;
2. Change the current view to the SIM view and;
3. Jump to the handler function.

When leaving Strata context, the exit gate will:

1. Change the current view to the SOUP View;
2. Turn on signals and;
3. Jump to the target address in the code cache.

For this purpose, we implemented four functions:

strata_maks_sigs: this function masks the unnecessary signals, it is extracted from
targ_mutex_lock, and relies on init_new_sigset to initialize the mask;

strata_unmask_sigs: this function restores the signals before entering Strata, it is extracted
from targ_mutex_unlock;

sim_unprotect: this function first turns on the write permission of the .strata section; it then
iterates the view data and changes the access permission of each virtual memory region to
prot_strata;

sim_protect: this function first iterates the view data and changes the access permission of
each virtual memory region to prot_soup; and then turns off the write permission of the
.strata section.

Since Strata already has its own context switch mechanisms, we extended these mechanisms
with above functions to create entry/exit gates. For example, we would like to modify the
trampoline to make it an entry gate and modify targ_exec to make it an exit gate. The context
switching would be changed to act as follows.

For translation trampolines:

140
Approved for public release: distribution unlimited.

They all will use an entry gate similar to following:
LEA ESP, ESP-32
PUSHAD
PUSHFD
CALL sim_mask_sigs
CALL sim_unprotect
PUSH frag
PUSH target_addr
PUSH &targ_exec
JMP handler

This also means that the responsibility for signal masking and memory access permission will be
moved from strata_enter_builder to the entry gate. The function targ_exec will be modified to
be an exit gate and works as:

MOV [ESP+52], EAX
ADD ESP, 8
CALL sim_protect
CALL sim_unmask_sigs
POPFD
POPAD
LEA ESP, [ESP+32]
JMP [ESP-24]

For known syscall watching and unknown syscall watching:
We use a pair of entry/exit gate to wrap the calling to the callback function:

CALL sim_mask_sigs
CALL sim_unprotect
CALL callback
CALL sim_protect
CALL sim_unmask_sigs

For signal handler:

Since signals cannot be delivered during execution of the signal handler, we do not need
to mask signal here, so we just simply added a call to sim_unprotect at the beginning of
the function.

 Kernel-Mode Implementation 3.10.2.2.2
This section describes kernel-mode implementation of SIM.

Limitations of user-mode SIM implementation. When SIM is implemented as part of Strata,
the implementation strategy has following drawbacks:

• To change the view, SIM has to make multiple syscalls.
o One mprotect call to make Strata section writable;
o One sigprocmask call to mask signals;
o One mprotect call to make code cache non-executable;
o And several mprotect calls to change access permissions of other memory pools.

141
Approved for public release: distribution unlimited.

• The view switch is not fully atomic.
• The tight integration makes it harder to separate permissions (i.e. making Strata fully

inaccessible while keeping the entry/exit gates executable).

Moving SIM to the kernel. To overcome these limitations, we can move SIM to the OS kernel:

• Only one syscall is required to change the view, saving lots of context switch.
• Syscall is atomic from the perspective of process.
• Turning off all access permission to Strata under SOUP’s view is straightforward, as all

the entry/exit gates now reside in the kernel.

View Data. The data structure of view data and its manipulation algorithm is the same as in user-
mode implementation. The difference is, the related metadata (e.g. the pointer to the view data
array, the current size etc.) is now stored inside the task_struct, the data structure Linux
kernel used to keep process related data. The reason to store the metadata inside this data
structure is, 1) this data structure can be easily located using the get_current() macro, and
2) no lock is required.

Memory Tracking Module. Memory tracking module has been completely moved into kernel,
though the interaction interface for Strata remains the same (sim_mmap & sim_munmap). The
difference is, in user-mode SIM, these two functions are wrappers over the libc mmap and
munmap; but in kernel-mode SIM, they are implemented as two new syscalls:

#define __NR_sim_mmap 337
#define __NR_sim_munmap 338

The implementation of these two syscalls is similar to user-mode:

sys_sim_mmap: when this syscall is called, it first calls the handler for SYS_mmap (i.e.
sys_mmap_pgoff) to allocate the memory; if the allocation is successful, it then
updates the view data according to the given permission and the result of the allocation.

sim_unmmap: when this syscall is called, it first calls the handler for SYS_munmap
(i.e. sys_munmap) to delete the memory mapping; if the call is successful, it then
remove the corresponding record from the view data.

Another difference in kernel-mode implementation is, in user mode SIM, the information of the
.strata section (start address and size) is gotten when stratafying the target binary; but in kernel
mode SIM, this information is gotten when the executable is loaded into the process’ address
space. More specifically, when new process is created, the Linux kernel will call
load_elf_binary to map the executable file. We therefore modified this function to let SIM
parse the ELF header to located the .strata section (using the name “strata”) and record where
this section is mapped address at runtime. This solution is better than user-mode implementation
because it can get the accurate mapping address.

Permission Change Checking Module. For performance optimization, the checking module is
separated into two parts:

142
Approved for public release: distribution unlimited.

• The mmap checking, which prevents the SOUP from mapping any executable region is
still done through Strata’s syscall monitoring mechanism.

• And the mprotect checking, which prevents the SOUP from changing access permission
of Strata’s memory regions (code, data and code cache) is moved to kernel. More
specifically, SIM intercepts the mprotect syscall and performs the checking before the
original handler is called. The reason is because the required information (view data) now
resides in kernel.

We decided to leave mmap checking at user-mode because syscall monitoring will impose
performance overhead on all processes, but Strata’s syscall monitoring will only affect the very
process.

Entry/Exit Gates. In kernel-mode implementation, we applied the restricted access permission
to SOUP view as in the original design. That is, unlike in user-mode implementation, Strata’s
code and data will be mapped completely inaccessible under SOUP view.

As a result of this restricted access mode, the entry and exit gates can no longer be part of Strata.
Therefore, during initialization, SIM will allocate a special memory region, which is also
guarded by the kernel component, to store the gates. Each gate will call one of the following
syscalls to switch the view:

#define __NR_sim_enter 339
#define __NR_sim_exit 338

The implementation of these two syscall is similar to user-mode implementation:

sys_sim_enter: this function first turns on the access permission (read, write & execute)
of the .strata section; it then iterates the view data and changes the access permission of
each virtual memory region to prot_strata;

sys_sim_exit: this function first iterates the view data and changes the access permission
of each virtual memory region to prot_soup; and then completely turns off the access
permission of the .strata section.

Because Strata do not have existing support for emitting syscalls (i.e. int 0x80), so we still
implemented two user level functions (sim_enter and sim_exit) to call above syscalls to
switch the view. This also makes SIM’s integration with Strata more unified between user-mode
implementation and kernel-mode implementation. However, as mentioned above, the .strata
section will be mapped inaccessible, so these two functions will be copied to the special gate
memory region to construct entry/exit gates. Another difference from user-mode implementation
is, since the view is switched through syscall and syscall is atomic to process, so we don’t need
to mask signals before changing the view.

As of user-mode implementation, we implemented several entry/exit gates for the integration of
Strata’s context switch mechanism:

For translation trampolines:

They all will use an entry gate similar to following:
LEA ESP, ESP-32

143
Approved for public release: distribution unlimited.

PUSHAD
PUSHFD
CALL sim_unprotect
PUSH frag
PUSH target_addr
PUSH sim_exec
JMP handler

Since targ_exec is no longer executable once the view is switched, we do not use it as the
exit gate. Instead, we build the exit gate sim_exec for translation as:

PUSH EAX
MOV EAX, __NR_sim_exit
INT 0x80
POP EAX
MOV [ESP+52], EAX
ADD ESP, 8
POPFD
POPAD
LEA ESP, [ESP+32]
JMP [ESP-24]

For known syscall watching and unknown syscall watching:
We use a pair of entry/exit gate to wrap the calling to the callback function:

CALL sim_unprotect
CALL callback
CALL sim_protect

For signal handler:

As Strata’s signal handlers (intercept_signal & intercept_signal_act)
will be inaccessible when the signal is triggered under SOUP view, we replaced them
with two entry gates, namely sim_intercept_signal and sim_intercept_signal_act. Each
gate will first call sim_enter to switch the view, then jumps to Strata’s corresponding
handler.

 Protection Switch 3.10.2.2.3
As part of the requirement (in Phase II), we implemented two options to turn-off the protection
of SIM. One is compile time option: all SIM integration related code is surrounded by SIM
macro (kernel-mode integration is surrounded by SIM_KERNEL macro). And the other option is
runtime: by setting the environment variable SIM_PROTECTION as 1 (default) or 0, user can
turn on or turn off SIM’s protection.

3.10.2.3 Correctness Validation
The evaluation includes two parts: the first part is the regression test set buildup, and the second
part is the performance test and optimization.

144
Approved for public release: distribution unlimited.

 Regression Test Buildup 3.10.2.3.1
The test set for SIM has two parts: the correctness tests which demonstrate the correctness of the
implementation; and the functional tests which demonstrate the effectiveness of the protection,
i.e. prevention of attacks against Strata.

Correctness Test. SIM shares the same correctness test set as Strata. The main purpose for these
tests is to ensure SIM does not break the functionality of Strata and other protection mechanisms.
Correctness test includes:

• SIM branch test lists: all test scripts under STRATA_SIM_BRANCH.
• Strata trunk test list: all test scripts after merged into STRATA_TRUNK.

In addition, SIM includes following correctness test for verifying the correctness of the newly
added four syscalls in kernel-mode implementation. These tests are:

• Memory usage tracking
o sim_mmap: make sure sim_mmap syscall can correctly allocate virtual memory

regions with correct permissions;
o sim_munmap: make sure sim_munmap syscall can correctly unmap given

memory regions.
• Permission change checking

o mmap: make sure SOUP cannot allocate executable memory regions
o mprotect: make sure SOUP cannot modify memory regions protected by SIM

• Entry/Exit gates
o sim_exit: make sure all protected memory regions are under SOUP view after

sim_exit
o sim_enter: make sure all protected memory regions are under SIM view after

sim_enter

Functional Test. To demonstrate SIM’s protection capability, we classify all potential attacks
under our threat model into two major categories: primitive attacks and advanced attacks.
Primitive attacks represent the simplest attacks an adversary may launch to compromise Strata,
they include:

• Strata data overwritten: a compromised SOUP tries to modify Strata’s data to disable its
confinement;

• Strata code overwritten: a compromised SOUP tries to modify Strata’s code to disable its
confinement;

• Strata code cache overwritten: a compromised SOUP tries to modify Strata’s code cache
to disable its confinement;

• SOUP code overwritten: a compromised SOUP tries to modify the original SOUP’s code
to disguise itself;

• Strata code execution: a compromised SOUP tries to execute Strata’s code;
• SOUP code execution: a compromised SOUP tries to execute the original SOUP’s code

without Strata’s translation.

145
Approved for public release: distribution unlimited.

Advanced attacks include but are not limited to:

• ROP to Strata: use Strata’s code as code gadgets to launch return-oriented programming
(ROP) attack;

• ROP to SOUP: use original SOUP’s code as gadgets to launch ROP attack;
• ROP to libc: when the SOUP is dynamically linked, use libc’s code as gadgets to launch

ROP attack;
• Two-step attack: use one attack to learn runtime information about our execution

manager, then launch specified attack to bypass some protections.

We believe all advanced attacks can be break into one or more successful primitive attack, so in
Phase 1, we will focus on demonstrating the successfulness of SIM’s protection against primitive
attacks. For this reason, we built following test cases:

• strata_tracing
o Purpose: test if SIM can correctly protect Strata’s global (static) data.
o Attack: the test program will try to overwrite Strata’s global variable

strata_tracing to 1, thus making Strata output tracing information.
o Expected behavior: with SIM_PROTECTION=0, the test program will output

tracing information; but with SIM_PROTECTION=1, the attack will be prevented
and test program will do a controlled exit

• strata_pc_confine
o Purpose: test if SIM can correctly protect Strata’s dynamic data.
o Attack: the test program is an extended version of the dumbledore grading

program, but before calling the vulnerable function, it will try to modify Strata’s
PC confinement metadata to mark the shellcode region as legitimate.

o Expected result: with SIM_PROTECTION=0, the test program will give Jack an
A even with STRATA_PC_CONFINE=1 (but without
STRATA_PC_CONFINE_XOR); but with SIM_PROTECTION=1, the attack
will be prevented and test program will do a controlled exit.

• strata_build_main
o Purpose: test if SIM can correctly protect Strata’s code.
o Attack: the test program will try to overwrite strata_build_main function to print

evil hello message and then exit
o Expected behavior: with SIM_PROTECTION=0 the test program will print an

evil hello message and exit; but with SIM_PROTECTION=1, the attack will be
prevented and test program will do a controlled exit.

• strata_code_cache
o Purpose: test if SIM can correctly protect Strata’s code cache.
o Attack: the test program will try to overwrite its translated code in Strata’s code

fragment and jump back to execute the un-translated code (original code)

146
Approved for public release: distribution unlimited.

o Expected behavior: with SIM_PROTECTION=0 the test program will tell it
“jailbreaks” Strata’s containment; but with SIM_PROTECTION=1, the attack
will be prevented and test program will do a controlled exit.

Current Test Result. By the date of this report, the test results of the above tests are:

• For kernel-mode implementation
o All correctness tests are passed;
o All functional tests are passed.

• For user-mode implementation
o All suitable correctness tests (except tests statically linked to Strata and tests for

SIM kernel-mode implementation) are passed;
o All functional tests are passed.

3.10.3 Secure Dynamic Code Generation (SDCG): Phase 3 Protection of PEASOUP

Figure 40. A permission switching based W⊕X enforcement. The code cache is kept as
read-only when the generated code is executing. When the code generator is invoked (t1),
the permission is changed to writable; and when the generator finishes its task (t2), the
permission is changed back to read-only.

Figure 39. Race-condition-based attack using two threads. With switching based W⊕X
enforcement, a single thread (A) can no longer attack the code cache (access 1). But the
code cache can still be attacked using multiple threads. As when the code generator is
serving one thread (access 2), the code cache will also become writable for other thread
(access 3). The attack window refers to t2 - t1, as once the code generator finishes its task,
the code cache becomes read-only again (access 4).

147
Approved for public release: distribution unlimited.

The material in this section was also published in NDSS 2015 [198]. We address the more
general problem of protecting a software dynamic translator, such as Strata, which is at the heart
of PEASOUP.

Exploits against software vulnerabilities remain one of the most severe threats to cyber security.
To mitigate this threat, many techniques have been proposed, including data execution
prevention (DEP) [27] and address space layout randomization (ASLR) [159], which have been
widely deployed and very successful. DEP is a subset of the more general security policy W⊕X,
which enforces that memory should either be writable but not executable (e.g., data segments), or
be executable but read-only (e.g., code segments). This enforcement can completely mitigate
traditional exploits that inject malicious shellcode into data segments. Consequently, attackers
have to leverage more complicated exploit techniques, such as return-to-libc [190] and return-
oriented-programming (ROP) [110]. Moreover, W⊕X memory has become the foundation of

many other protection techniques, such as control flow integrity (CFI) [24], [226], [225].

However, the effectiveness of W⊕X can be undermined by another important compilation
technique – dynamic code generation (DCG). With the ability to generate and execute native
machine code at runtime, DCG is widely used in JIT compilers [34] and dynamic binary
translators (DBT) [181], [164], [135] to improve performance, portability, and security. For
example, JIT compilers for dynamic languages (e.g., JavaScript and ActionScript) can leverage
platform information and runtime execution profile information to generate faster native code.
And DBTs can leverage DCG to provide dynamic analysis capability [135], cross-platform or
cross-architecture portability [182], [41], bug diagnostic [145], [165], and better security [39],
[148], [53], [111], [107].

A fundamental challenge posed by DCG is that, the code cache, in which the dynamically
generated code is stored, needs to be both writable (for code emitting, code patching and garbage
collection) and executable. This violates the W⊕X policy and enables a new attack vector. We
have observed a real world exploit that delivers shellcode into the writable code cache and
successfully compromises the Chrome web browser [161].

Solving this problem seems trivial. A straightforward idea, which has been adopted in browsers
like mobile Safari, is demonstrated in Figure 40. This technique keeps the code cache as read-
only and executable (RX) when the generated code is executing; switches to writable but not
executable (WR) when it needs to be modified (t1); and switches back to RX when the write

148
Approved for public release: distribution unlimited.

operation finishes (t2). As a result, the code cache will remain read-only when the generated
code is executing; and the attack demonstrated in [161] can thus be mitigated.

Unfortunately, in addition to performance overhead, this simple mechanism does not work well
with multi-threaded programs. First, if the code generator uses a shared code cache for all
threads (e.g., PIN [135]), then obviously the code cache cannot be switched to WR, because other
concurrently running threads require the executable permission. Second, even if the code
generator uses dedicated code cache for each thread (e.g., JS engines), the protection is still
flawed and is subject to race condition attacks [146], as shown in Figure 39. More specifically,
memory access permissions are applied to the whole process and are shared among all threads.
When one thread, say thread A, turns on the writable permission for its code cache (e.g., for code
emitting), the code cache also becomes writable to all other threads. Once the protection is gone,
another concurrently running thread, thread B, can (maliciously) overwrite thread A’s code cache
to launch attacks. This is similar to the classic time-to-check-time-to-use (TOCTOU) attacks
[207], where the resource to be accessed is modified between the check and the use, by
exploiting race conditions.

In this section, we demonstrate the feasibility of such racecondition-based code cache injection
attacks, through a proofof-concept exploit against modern browsers that support the Web Worker
[11] specification. Rather than relying on a permanently writable code cache [161], our attack
leverages the race condition and can bypass the permission switching based W⊕X enforcement
(Figure 40). In this attack, the malicious JS code utilizes web workers to create a multi-threaded
environment. After forcing a worker thread into the compilation state, the main JS thread can
exploit vulnerabilities of the browser to inject shellcode into the worker thread’s code cache.

To fundamentally prevent such attacks, we propose secure dynamic code generation (SDCG), a
new architecture that 1) enables dynamic code generation to comply with the W⊕X policy; 2)
eliminates the race condition; 3) can be easily adopted; and 4) introduces more acceptable
performance overhead compared with alternative solutions. SDCG achieves these goals through a
multi-process-based architecture. Specifically, instead of generating and modifying the code in
the same process as the generated code, SDCG relocates the DCG functionality to another trusted
process. The code cache is built upon memory shared between the original process and the
trusted process. In the original process, the code cache is mapped as RX; and in the trusted
process, the same memory is mapped as WR. By doing so, the code cache remains read-only
under all circumstances in the untrusted process, eliminating the race condition that allows the
code cache to be writable to untrusted thread(s). At the same time, the code generator in the
trusted process can freely perform code generation, patching and garbage collection as usual. To
enable transparent interaction between the code generator and the generated code, we only need
to add a few wrappers that make the code generator invocable through remote procedure calls
(RPC). Since only functions that modify code cache need to be handled, the effort for adding
wrappers is small.

We have implemented SDCG for two types of popular code generators: JS engine and DBT. For
JS engine, our implementation is based on V8 [5]. For DBT, our implementation is based on
Strata [181]. Our implementation experience showed that porting code generators to SDCG only
requires a small modification: besides the shareable part, which is about 500 lines of C code
(LoC), we only added about 2,500 LoC for V8 and about 1,000 LoC for Strata. We evaluated the
security of SDCG and the performance overhead of our two prototype implementations. The

149
Approved for public release: distribution unlimited.

results showed that SDCG are secure under our threat model and the performance overhead
introduced by our prototype implementations is small: around 6.90% (32-bit) and 5.65% (64-bit)
for V8 benchmark suite; and around 1.64% for SPEC CINT 2006 (additional to Strata’s own
overhead).

In summary, we made the following contributions:
• Beyond the known exploit technique against permanently writable code cache [161], we

demonstrated the feasibility of exploiting race conditions to maliciously modify the code
cache that is protected by permission switching based W⊕X enforcement; and discussed
the severity of such attacks.

• We proposed secure dynamic code generation (SDCG), a multi-process-based architecture
that provides better security (mandatory, non-bypassible W⊕X enforcement), low
performance overhead, and easy adoption.

• We implemented two prototypes of SDCG, one for V8 JS engine and one for Strata
dynamic binary translator.

• We evaluated the performance overhead of our two prototype implementations.

3.10.3.1 Related Work
In this section, we discuss the techniques that could be used to protect the code cache from being
maliciously modified and explain their disadvantages. We also discuss other forms of attacks
against the JIT engines and their countermeasures.

Software-based Fault Isolation
Software-based fault isolation (SFI) [211] can be used to confine a program’s ability to access
memory resources. On 32-bit x86 platforms, SFI implementations usually leverage segment
registers [87], [222] to confine memory accesses, for the benefit of low runtime overhead. On
other platforms without segment support (e.g., x86-64, ARM), SFI implementations use either
address masking [183] or access control list (ACL) [51], introducing higher runtime overhead.

Once memory accesses — especially write accesses — are confined SFI can prevent untrusted
code from overwriting security sensitive data, such as the code cache. Our SDCG solution differs
from SFI in several respects. First, SFI’s overhead comes from the execution of the extra inline
checks; but SDCG’s overhead comes from the remote procedure call and cache synchronization
on multi-core systems. Therefore, if the execution mostly stays within the code cache, SDCG will
introduce less overhead than SFI. On the other hand, if the execution needs to be frequently
switched between the code generator and the generated code, then SFI could be faster. Since
most modern code generators try to make the execution stay as long as possible in the code
cache, our approach is more suitable in this scenario.

Second, to reduce the overhead of address masking, many SFI solutions [183] use ILP32 (32-bit
integer, long, pointer) primitive data types, limiting data access to 4GB space, even on a 64-bit
platform. On the other hand, SDCG does not have this limitation.

It is worth noting that, some efforts have been made to apply SFI to JIT engines [29], [153].
Despite relatively higher overhead, the threat model of these approaches usually did not consider
scenarios where the JIT compiler is only a component of a larger software, such as a web

150
Approved for public release: distribution unlimited.

browser. Since most vulnerabilities of web browsers are found outside the JIT engines [15], to
apply such techniques, one would have to apply SFI to other browser components as well. This
could result in even higher performance overhead. From this perspective, we argue that our
solution is more realistic in practice.

Memory Safety
The attacks on the code caches (at randomized locations) rely on the ability to write to memory
area specified by attacker. Therefore, such attacks could be defeated by memory safety
enforcement, which prevents all unexpected memory read and write. However, many programs
are written in lowlevel languages like C/C++ that are prone to memory corruption bugs, leading
to a majority of security vulnerabilities. Unfortunately, existing memory safety solutions [189],
[80], [33], [158], [220], [142], [143] for C/C++ programs tend to have much higher performance
overhead than SFI or other solutions, prohibiting their adoptions. For example, the combination
of Softbound [143] and CETS [142] provides a strong spatial and temporal memory safety
guarantee, but they were reported to have 116% average overhead on SPEC CPU 2000
benchmark. Compared with this direction of research, even though SDCG provides less security
guarantees, it is still valuable because it fully blocks a powerful attack vector with minimal
runtime overhead.

Control Flow Integrity
Control flow hijacking is a key step in many real world attacks. As DEP becomes ubiquitous,
more and more attacks rely on return-to-libc [190] or ROP [110] to hijack control flow. Many
solutions [24], [226], [225] are thus proposed to enforce control flow integrity (CFI) policy. With
the CFI policy, the program’s control flow cannot be hijacked to unexpected locations. It can
protect the code cache in some way, e.g., attackers cannot overwrite the code cache by jumping
to arbitrary address of the code generator.

However, attackers can still utilize arbitrary memory write vulnerabilities to overwrite the code
cache without breaking CFI. Once code cache is overwritten, the injected code could be invoked
through normal function invocations, without breaking the static CFI policy.

Moreover, when extending CFI to dynamically generated code, without proper write protection,
the embedded enforcement checks can also be removed once attackers can overwrite the code.
From this perspective, SDCG is complementary to CFI because it guarantees one basic
assumption of CFI: code integrity protection.

Process Sandbox
Delegation-based sandbox architecture, a.k.a. the broker model [91], has been widely adopted by
the industry and used in Google Chrome [20], Windows 8 [14], Adobe Reader [8], and etc. In
this architecture, the sandboxed process drops most of its privileges and delegates all security
sensitive operations to the broker process. The broker process in turn, checks whether the request
complies with the security policy. SDCG is also based on the same architecture. Using this
architecture, we 1) delegate all the operations that will modify the code cache (e.g., code
installation, patching and deletion) to the translator process; and 2) make sure the W⊕X policy
is mandatory.

151
Approved for public release: distribution unlimited.

Attacks on JIT engines
Attacker have targeted the code cache for its writable and executable property. Currently, the
most popular exploit technique is JIT spray [196], an extension to classic heap spray attacks [73].
Heap spray is used to bypass ASLR without guessing the address of injected shellcode. This
technique became unreliable after DEP is deployed because the heap is no longer executable. To
bypass this, attackers turned to JIT engines, The JIT spray attack abuses the JIT engine to emit
chunks of predictable code, and then hijacks the control to the entry or middle of one of these
code chunks. DEP or W⊕X is thus bypassed because these code chunks reside in the executable
code cache. Most JIT engines have since deployed different mitigation techniques to make the
layout of the code cache unpredictable, e.g., random NOP insertion, constant splitting, and etc.
And researchers have also proposed more robust technique [215], [29] to prevent such attacks.

Rather than abusing the JIT engines to create expected code, attackers can also abuse the writable
property of the code cache and directly overwrite the generated code [161]. In this paper, we first
extend the attack [161] to show that, even with a permission switching based W⊕X
enforcement, attackers can still leverage race conditions to bypass such enforcement. Then we
propose a solution can fundamentally defeats all codecache injection based attacks.

3.10.3.2 Attacking the Code Cache
In this section, we describe in detail the code cache injection threat we are addressing in this
paper. We begin this section with our assumptions and threat model. Next, we show how code
cache can be attacked to bypass the state-of-the-art exploit mitigation techniques. Finally, we
demonstrate how a

naive W⊕X enforcement can be bypassed by exploiting race conditions.

Assumptions and Threat Model
SDCG focuses on preventing remote attackers from leveraging the code cache as an attack vector
to trigger arbitrary code execution. We focus on two classic attack scenarios discussed as
follows. In both scenarios, we assume the code generator itself is trusted and does not have
security vulnerabilities.

• Foreign Attacks. In this scenario, the code generator is a component of a program (e.g., a
web browser). The program is benign, but components other than the code generator are
assumed to be vulnerable when handling input or contents provided by attacker (e.g., a
malicious web page). Attackers can then exploit the vulnerable components to attack the
code cache.

• Jail-break Attacks. In this scenario, the code generator is used to sandbox or monitor an
untrusted program, and attacks are launched within the code cache. This could happen under
two circumstances. First, the sandboxed program itself is malicious. Second, the program is
benign, but the dynamically generated code has vulnerabilities that can be exploited by
attackers to jailbreak.

Without loss of generality, we assume that the following mitigation mechanisms for both general
and JIT-based exploits have been deployed on the target system.

152
Approved for public release: distribution unlimited.

• Address Space Layout Randomization. We assume that the target system has deployed at
least the base address randomization, and all the predictable memory mappings have been
eliminated.

• JIT Spray Mitigation. For JIT engines, we assume that they have deployed a full-suite of JIT
spray mitigation mechanisms, including but not limited to random NOP insertion, constant
splitting and those proposed in [215], [29].

• Guard Pages. We assume the target system creates guard pages (i.e., pages without access
permission) to wrap each pool of the code cache, like the Google V8 JS engine does. These
guard pages can prevent buffer overflows, both overflows out of the code cache, and
overflows into the code cache.

• Page Permissions. We assume that the underlying hardware has the support for mapping
memory as nonexecutable (NX). And writable data memory like stack and normal heap are
set to be non-executable. Furthermore, we assume that all the statically generated code has
been set to non-writable to prevent overwriting. However, almost all JIT compilers map the
code cache as both writable and executable.

The target system can further deploy the following advanced mitigation mechanisms for the
purpose of sandboxing and monitoring:

• Fine-grained Randomization. The target system can enforce fine-grained randomization by
permuting the order of functions [121] or basic blocks [213], randomizing location of each
instruction [156], or even randomizing the instruction set [156], [84].

• Control Flow Hijacking Mitigation. The target system can deploy different kinds of control
flow hijacking mitigation mechanisms, including (but not limited to): control flow integrity
enforcement, either coarse-grained [225], [226] or fine-grained [24], [154]; return-oriented
programming detection [75], [54]; and dynamic taint analysis based hijacking detection
[148].

To allow overwriting of the code cache, we assume there is at least one vulnerability that allows
attackers to write to attacker-specified address with attacker-provided contents. We believe this
is a realistic assumption, because many types of vulnerabilities can be exploited to achieve this
goal, such as format string [147], heap overflow [65], use-afterfree [16], integer overflow [17],
and etc. For example, the attack described in [161] obtained this capability by exploiting an
integer overflow vulnerability (CVE-2013-6632); and in [52], the author described how 5 use-
after-free vulnerabilities (CVE-2013-0640, CVE-2013-0634, CVE-2013-3163, CVE-2013-1690,
CVE-2013-1493) can be exploited to perform arbitrary memory write. It is worth noting that, in
many attack scenarios, the ability to do arbitrary memory write can easily lead to arbitrary
memory read and information disclosure abilities.

Overwriting the Code Cache
1) Software Dynamic Translator: For the ease of discussion, we use the term software

dynamic translator (SDT) to represent software that leverages dynamic code generation to
translate code in one format into another format. Before describing the attacks, we first give a
brief introduction on SDT. A core task of all SDTs is to maintain a mapping between
untranslated code and translated code. Whenever a SDT encounters a new execution unit
(depending on the SDT, the execution unit could be a basic block, a function or a larger chunk of

153
Approved for public release: distribution unlimited.

code), it first checks whether the execution unit has already been translated. If so, it switches to
execute the already translated code residing in the code cache; otherwise, it translates this new
execution unit and installs the translated code into the code cache.

2) Exploit Primitives: In this section, we describe how code cache with full WRX permission
can be overwritten. This is done in two steps. First, we need to bypass ASLR and find out where
the code cache locates. Second, we need to be able to write to the identified location.

a) Bypassing ASLR: The effectiveness of ASLR or any randomization based
mitigation mechanism relies on two assumptions: i) the entropy is large enough to stop brute-
force attacks; and ii) the adversary cannot learn the random value (e.g., module base, instruction
set).
Unfortunately, these two assumptions rarely hold in practice. First, on 32-bit platforms, user
space programs only have 8 bits of entropy for heap memory, which is subject to brute-force
guessing [190] and spray attacks [73]. Second, with widely available information disclosure
vulnerabilities, attackers can easily find out the random value [187], [172]. In fact, researchers
have demonstrated that even with a single restricted information disclosure vulnerability, it is
possible to traverse a large portion of the memory content [197].

In the scenario of attacking code cache, this status quo implies that we can either launch JIT
spray attack to prepare a large number of WRX pages on platforms with low entropy; or leverage
an information disclosure vulnerability to pinpoint exactly where the code cache is. Note that, as
one only needs to know the location of the code cache, most fine-grained randomizations that try
to further randomize the content of the memory are ineffective for this attack. Since the content
of code cache will be overwritten in the next step (described below), none of the JIT spray
mitigation mechanisms can provide effective protection against this attack.

b) Writing to Code Cache: Once obtaining the location of the code cache, the next
step is to inject shellcode to the code cache. In most cases, the code cache will not be adjacent to
other writable heap memory (due to ASLR), and may also be surrounded by guard pages. For
these reasons, we cannot directly exploit a buffer overflow vulnerability to overwrite the code
cache. However, as our assumption section suggests, besides logic errors that directly allow one
to write to anywhere in the memory, several kinds of memory corruption vulnerabilities can also
provide the arbitrary memory write ability. In the following example, an integer overflow
vulnerability is exploited to acquire this capability.

3) An In-the-Wild Attack: We have observed one disclosed attack [161] that leveraged the
code cache to achieve reliable arbitrary code execution. This attack targeted the mobile Chrome
browser. By exploiting an integer overflow vulnerability, the attack first gained reliable arbitrary
memory read and write capabilities. Using these two capabilities, the attack subsequently
bypassed ASLR and located the permanently writable and executable code cache. Finally, it
injected shellcode into the code cache and turned control flow to the shellcode.

4) Security Implication: In practice, we have only observed this single attack that injects
code into the code cache. We believe this is mainly due to the convenience of a popular ROP
attack pattern, which works as: i) preparing a traditional shellcode in memory; ii) exploiting
vulnerabilities to launch ROP attack; iii) using the ROP gadgets to turn on the execution
permission of the memory where the traditional shellcode resides; and iv) jumping to the
traditional shellcode to finish the intended malicious tasks. However, once advanced control flow
hijacking prevention mechanisms such as fine-grained CFI are deployed, this attack pattern will
be much more difficult to launch.

154
Approved for public release: distribution unlimited.

On the contrary, the code cache injection attack can easily bypass most of the existing exploit
mitigation mechanisms. First, all control flow hijacking detection/prevention mechanisms such
as CFI and ROP detection rely on the assumption that the code cannot be modified. When this
assumption is broken, these mitigation mechanisms are no longer effective. Second, any inline
reference monitor based security solution is not effective because the injected code is not
monitored.

Exploiting A Race Condition
A naive defense against the code cache injection attack is to enforce W⊕X by manipulating page
permissions (Figure 40). More specifically, when the code cache is about to be modified (e.g., for
new code generation or runtime garbage collection), it turns on the write permission but turning
off the execution permission (t1). And when the code cache is about to be executed, it turns off
write permission but turn on execution permission (t2).
This solution prohibits the code cache to be both writable and executable at the same time. If the
target program is single-threaded, this approach can prevent code cache injection attacks. Since
the code cache is only writable when the SDT is executing and we assume that the SDT itself is
trusted and not vulnerable, attackers cannot hijack or interrupt the SDT to overwrite the code
cache. However, as illustrated in Figure 39, in more general multi-threaded programming
environment, even if the SDT is trusted, the code cache can still be overwritten by other insecure
threads (Thread B) when the the code cache is set to be writable for one thread (Thread A).

In this section, we use a concrete attack to demonstrate the feasibility of such attack, i.e., with the
naive W⊕X enforcement, it is still possible to overwrite the code cache with the same exploit
primitives described above.

1) Secure Page Permissions: Since the V8 JS engine does not have the expected page permission
protection, i.e., the naive W⊕X enforcement, we implemented one in V8 for the demonstration
of our attack.

Specifically, by default, when a memory region is allocated from the OS (e.g., via mmap) for the
code cache, it is allocated as executable but not writable. We will turn on the write permission
and turn off the execution permission of the code cache for:
• New Code Installation. Usually, the JavaScript program (e.g., a function) is first compiled

into native code, and then copied into the code cache. To allow the copy operation, we need
to turn on the write permission of the code cache.

• Code Patching. Existing code in the code cache is patched under certain circumstances. For
instance, after a new code is copied into the code cache, its absolution address is thus
determined; then instructions that require absolution address operands from this new code
fragment is resolved and patched.

• Runtime Inline Caching. Inline caching is a special patching mechanism introduced to
provide better performance for the JIT compiled programs written in dynamic typed
languages. With runtime execution profile information, the JIT compiler caches/patches the
result (e.g., the result of object property resolving) into the instructions in the code cache at
runtime.

155
Approved for public release: distribution unlimited.

• Runtime Garbage Collection. The JavaScript engine needs to manage the target JavaScript
program’s memory, especially the garbage collection. The code cache needs to be modified
for two main reasons. First, when unused code fragment needs to be removed from the code
cache. Second, when a data object is moved to new addresses by the garbage collector,
instructions referencing it have to be updated.

When these operations finish, or any code in the code cache needs to be invoked, we turn off the
write permission of the code cache and turn on the execution permission.

To further reduce the attack surface, all the above policies are enforced in a fine-grained
granularity. That is, 1) each permission change only covers memory pages that are accessed by
the write or execution operations; and 2) the write permission is turned on only when an write
operation is performed, and is turned off immediately after the write operation finishes. This
fine-grained implementation provides a maximum protection for code caches.

2) Multi-threaded Programming in SDT: To launch the race-condition-based attack, we need two
more programming primitives. First we need the ability to write multi-threaded programs. Note,
some SDTs such as Adobe Flash Player also allows “multi-threaded” programming, but each
“thread” is implemented as a standalone OS process. For these SDTs, since the code cache is
only writable to the corresponding thread, our proposed exploit technique would not work.
Second, since the attack window is generally small, we need the ability to coordinate threads
before launching the attack.

• Thread Primitives. A majority of SDTs have multithreaded programming support. JavaScript
(JS) used to be single-threaded and event-driven. With the new HTML5 specification, JS
also supports multithreaded programming, through the specification of WebWorker [11].
There are two types of WebWorker: dedicated worker and shared worker. In V8, the
dedicated worker is implemented as a thread within the same process; and shared worker is
implemented as a thread in a separated process. Since we want to attack one JS thread’s code
cache with another JS thread, we leverage the dedicated worker. Note that although each
worker thread has its own code cache, it is still possible to launch the attack, because
memory access permissions are shared by all threads in the same process.

• Synchronization Primitives. To exploit the race condition, two attacker-controlled threads
need to synchronize their operations so that the overwritten can happen within the exact time
window when the code cache is writable. Since synchronization is an essential part of
multithreaded programming, almost all SDTs support thread synchronization. In JS, thread
synchronization uses the postMessage function.

3) A Proof-of-Concept Attack: Based on the vulnerability disclosed in the previous real-world
exploit, we built a proofof-concept race-condition-based attack on the Chrome browser. Since the
disclosed attack [161] already demonstrated how ASLR can be bypassed and how arbitrary
memory write capability can be acquired, our attack focuses on how race conditions can be
exploited to bypass naive W⊕X enforcement. The high level workflow of our attack is as
follows:

i) Creating a Worker. The main JS thread creates a web worker, and thus a worker thread is
created.

156
Approved for public release: distribution unlimited.

ii) Initialize the Worker. The worker thread initializes its environment, making sure the code
cache is created. And then, it sends a message to the main thread through postMessage to
inform that it is ready.

iii) Locating the Worker’s Code Cache. Upon receiving the worker’s message, the main JS
thread locates the worker thread’s code cache, e.g., by exploiting an information disclosure
vulnerability. In Chrome V8 engine, attackers can locate the code cache like the previous
disclosed exploit. But instead of following the pointers for the current thread, attackers
should go through the thread list the JS engine maintains and follow pointers for the worker
thread. Then, it informs the worker that it is ready too.

iv) Making Code Cache Writable. Upon receiving the main thread’s message, the worker thread
begins to execute another piece of code, forcing the SDT to update its code cache. In V8, the
worker can execute a function that is big enough, forcing the SDT to create a new
MemoryChunk as the code fragment and set it to be writable (for a short time).

v) Monitor and Overwrite the Code Cache. At the same time, the main thread keeps monitoring
the status of the code cache, and tries to overwrite the code cache once its status is updated.
In V8, the main thread can keep polling the head of MemoryChunk linked list to identify the
creation of a new code fragment. Once a new code fragment is created, the main thread can
then monitor its content. Once the first few bytes (e.g., the function prolog) are updated, the
main thread can try to overwrite the code cache to inject shellcode. After overwriting, the
main thread informs the worker it has finished.

vi) Executing the Shellcode. Upon receiving the main thread’s new message, the worker calls
the function whose content has already been overwritten. In this way, the injected shellcode
gets executed.

It is worth noting that, the roles of the main thread and the worker thread cannot be swapped in
practice. The reason is, worker threads do not have access to the document object model (DOM).
Since lots of vulnerabilities are within the rendering engine instead of the JS engine, this means
only the main thread who has the access to the DOM can exploit those vulnerabilities.

4) Reliability of Race Condition: One important question for any race-condition-based attack is its
reliability. The first factor that can affect the reliability of our attack is synchronization, i.e., the
synchronization primitive should be fast enough so that the two threads can carry out the attack
within the relatively small attack window. To measure the speed of the

synchronization between the worker and the main thread, we ran another simple experiment:

i) The main thread creates a worker thread;
ii) The worker thread gets a timestamp and sends it to the main thread;
iii) Upon receiving the message, the main thread sends an echo to the worker;
iv) Upon receiving the message, the worker thread sends back an echo;
v) The main thread and the worker repeatedly send echoes to each other in this way for 1,000

times.
vi) The main thread gets another timestamp and computes the time difference.

157
Approved for public release: distribution unlimited.

The result shows that the average synchronization delay is around 23 µs. Comparing with this,
the average attack window (t2−t1 in Figure 39) of our fine-grained naive W⊕X protection is
about 43 µs. Thus in theory, the postMessage method is sufficiently fast to launch a race
condition attack.

The second and more important factor that can affect the reliability of our attack is task
scheduling. Specifically, if the thread under the SDT context (e.g., the worker thread) is
descheduled by the OS while the attacking thread (e.g., the main thread) keeps executing, then
the attacking window will be enlarged. The bad news (for defenders) is that, the only way to
change the code cache’s memory permission is through a system call, and a context switch is
likely to happen during the system call. For example, the system call for changing memory
access permission on Linux is mprotect. During the invocation of mprotect, since we are using
fine-grained protection, the virtual memory area needs to be split or merged, it will trigger the
thread to be de-scheduled. As a result, the main thread (with higher priority than the worker) can
gain control to launch attacks.

Combining these two factors, our demo’s result shows that the race-condition-based attack can
succeed with a very high probability. We have tested the browser for 100 times, and the attack
succeeded for 91 times.

3.10.3.3 System Design

In this section, we present the design of SDCG. We have two design goals: 1) SDCG should
prevent all possible code injection attacks against the code cache under our adversary model; and
2) SDCG should only introduce trivial performance overhead. In addition, SDCG is designed to be
integrated with the targeted SDT, and we assume that the source code of the SDT is available.

Overview and Challenges
Since the root cause of the attack is writable code cache (either permanently or temporarily), we
can be prevent such attacks by two design choices: 1) ensuring that no one but the SDT can write
to the code cache, e.g., through SFI or memory safety; and 2) ensuring that the memory occupied

Figure 41. Overview of SDCG’ multi-process-based architecture. The gray memory
areas are shared memory, other are mapped as private (copy-on-write). Depending
on the requirement, the SDT’s code and data can be mapped differently.

158
Approved for public release: distribution unlimited.

by the code cache is always mapped as RX. We chose the second choice for two major reasons.
First, we expect that the performance overhead of applying SFI or memory safety to an entire,
large, complex program (e.g., the web browser) would be very high. Second, implementing the
first choice requires significant engineering effort.

Figure 41 shows the high level design of SDCG. The key idea is that, through shared memory, the
same memory content will be mapped into two (or more) different processes, with different
access permissions. In the untrusted process(es), the code cache will be mapped as RX; but in the
SDT process, it will be mapped as WR. By doing so, SDCG prevents any untrusted code from
modifying the code cache. At the same time, it allows the SDT to modify the code cache as
usual. The only difference is, whenever the SDT needs to be invoked, e.g., to install a new code
fragment, the request will be served through remote procedure call (RPC) instead of a normal
function call.

To build and maintain this memory model, we need to solve following technical and engineering
challenges.

i) Memory Map Synchronization. Since the memory regions occupied by the code cache are
dynamically allocated and can grow and shrink freely, we need an effective way to
dynamically synchronize memory mapping between the untrusted process(es) and the SDT
process. More importantly, to make SDCG’s protection mechanism work transparently, we
have to make sure that the memory is mapped at exactly the same virtual address in all
processes.

ii) Remote Procedure Call. After relocating the SDT to another process, we need to make it
remotely invocable, by wrapping former local invocations with RPC stubs. Since RPC is
expensive, we need to reduce the frequency of invocations, which also reduces the attack
surface.

iii) Permission Enforcement. Since SDCG’s protection is based on memory access permissions,
we must make sure that untrusted code cannot tamper with our permission scheme.
Specifically, no memory content can be mapped as both writable and executable, neither at
the same time nor alternately.

Memory Map Synchronization
Synchronizing memory mapping between the untrusted process(es) and the SDT process is a bi-
directional issue. On the one hand, when the SDT allocates a new code fragment in the SDT
process, we should map the same memory region in the untrusted process(es) at exactly the same
address; otherwise the translated code will not work correctly (e.g., creating incorrect branching
target). On the other hand, the untrusted process may also allocate some resources that are
critical to the SDT. For example, in the scenario of binary translation, when the untrusted process
loads a dynamically linked module, we should also load the same module at the same address in
the SDT process; otherwise the SDT will not be able to locate the correct code to be translated.
Moreover, we want this synchronization to be as transparent to the SDT as possible, so we can
keep the changes minimal.

When creating the shared memory, there are two possible strategies: on-demand and reservation-
based. On-demand mapping creates the shared memory at the very moment a new memory

159
Approved for public release: distribution unlimited.

region is required, e.g., when the SDT wants to add a new memory region to the code cache.
However, as the process address space is shared by all modules of a

program, the expected address may not always be available in both the untrusted process and the
SDT process. For this reason, we choose the reservation-based strategy. That is, when the
process is initialized, we reserve (map) a large chunk of shared memory in both the untrusted
process(es) and the SDT process. Later, any request for shared memory will be allocated from
this shared memory pool. Note that, in modern operation systems, physical memory resources are
not mapped until the reserved memory is really accessed, so our reservation-based strategy does
not impose significant memory overhead.

Once the shared memory pool is created, synchronization can be done via inter-process
communication (IPC). Specifically, when the SDT allocates a new memory region for the code
cache, it informs the untrusted process(es) about the base address and the size of this new
memory region. Having received this event, the untrusted process(es) maps a memory region
with the same size at the same base address with the expected permission (RX). Similarly,
whenever the untrusted process allocates memory that needs to be shared, a synchronization
event is sent to the SDT process.

Remote Procedure Call
Writing RPC stubs for the SDT faces two problems: argument passing and performance.
Argument passing can be problematic because of pointers. If a pointer points to a memory that is
different between the untrusted process and the SDT process, then the SDT ends up using
incorrect data and causes run-time errors. Vise versa, if the returned value from the SDT process
contains pointers that point to data not copied back, the untrusted code ends up running
incorrectly. One possible solution is that, instead of passing the pointer to the remote process, the
stub serializes the object before passing it to the remote process. Unfortunately, not all arguments
have builtin serialization functionality. In addition, when an argument is a large object,
performing serialization and copy for every RPC invocation introduces high performance
overhead. Thus, in general, stub generation is not easy without the support from the SDT or
support from program analysis.

To avoid this problem, SDCG takes a more systematic approach. Specifically, based on the
observation that a majority of data that the SDT depends on is either read-only, or resides in
dynamically mapped memory, we extend the shared memory to also include the dynamic data
the SDT depends on. According to the required security guarantee, the data should be mapped
with different permissions. By default, SDCG maps the SDT’s dynamic data as read-only in the
untrusted process, to prevent tamper from the untrusted code. However, if noncontrol data
attacks are not considered, the SDT’s dynamic data can be mapped as WR in the untrusted
process. After sharing the data, we only need to handle a few cases where writable data (e.g.,
pointers within global variables) is not shared/synchronized.

Since RPC invocations are much more expensive than normal function calls, we want to
minimize the frequency of RPC invocation. To do so, we take a passive approach. That is, we do
not convert an entry to the SDT to RPC unless it modifies the code cache. Again, we try to
achieve this goal without involving heavy program analysis. Instead, we leverage the regression
tests that are usually distributed along with the source code. More specifically, we begin with no
entries being converted to RPC and gradually convert them until all the regression tests can pass.

160
Approved for public release: distribution unlimited.

While our approach can be improved with more automation and program analysis, we leave
these as future work because our main goal here is to design and validate that our solution is
effective against the new cod cache injection attacks.

Permission Enforcement
To enforce mandatory W⊕X, we leverage the delegationbased sandbox architecture [91].
Specifically, we intercept all system calls related to virtual memory management, and enforce
the following policies in the SDT process:

(I) No memory can be mapped as both writable and executable.
(II) When mapping a memory region as executable, the base address and the size must come

from the SDT process, and the memory is always mapped as RX.
(III) The permission of non-writable memory cannot be changed.

3.10.3.4 Implementation

We implemented two prototypes of SDCG, one for Google V8 JS engine [5], and the other for
Strata DBT [181]. Both prototypes were implemented on Linux. We chose these two SDTs for
the following reasons. First, JS engine is one of the most widely deployed SDT. At the same
time, it is also one of the most popular stepping stone for launching attacks. Among all JS
engines, we chose V8 because it is open sourced, highly ranked, and there is disclosed exploit
[161]. Second, DBT have been widely used by security researchers to build various security
solutions [39], [148], [53], [111], [107]. Among all the DBTs, we chose Strata because 1) it has
been used to implement many promising security mechanisms, such as instruction set
randomization [111], instruction layout randomization [107], etc.; and 2) its academic
background allowed us to have access to its source code, which is required for implemented
SDCG.

Shared Infrastructure
The memory synchronization mechanism and the system call filtering mechanism are specific to
the target platform; but they can be shared among all SDTs.

1) Seccomp-Sandbox: Our delegation-based sandbox is built upon the seccomp-sandbox
[19] from Google Chrome. Although Google Chrome has switched to a less complicated process
sandbox based on seccomp-bpf [68], we found that the architecture of seccomp-sandbox serves
our goal better. Specifically, since seccomp [67] only allows four system calls once enabled, and
not all system calls can be fulfilled by the broker (e.g., mmap), the seccomp-sandbox introduced
a trusted thread to perform system calls that cannot be delegated to the broker. To prevent attacks
on the trusted thread, the trusted thread operates entirely on CPU registers and does not trust any
memory that is writable to the untrusted code. When the trusted thread makes a system call, the
system call parameters are first verified by the broker, and then passed through a shared memory
that is mapped as read-only in the untrusted process. As a result, even if the other threads in the
same process are compromised, they cannot affect the execution of the trusted thread. This
provides us a perfect foundation to securely build our memory synchronization mechanism and
system call filtering mechanism.
To enforce the mandatory W⊕X policy, we modified the sandbox so that, before entering the
sandbox mode, SDCG enumerates all memory regions and converts any WRX region to RX.

161
Approved for public release: distribution unlimited.

For RPC invocation, we also reused seccomp-sandbox’s domain socket based communication
channel. However, we did not leverage the seccomp mode in our current implementation. There
are several reasons. First, it is not compatible with the new seccomp-bpf-based sandbox used in
Google Chrome. Second, it intercepts too many system calls that are not required by SDCG. More
importantly, both Strata and seccompbpf provide enough capability for system call filtering.

2) Shared Memory Pool: During initialization, SDCG reserves a large amount of consecutive
memory as a pool. This pool is mapped as shared (MAP_SHARED), not file backed
(MAP_ANONYMOUS) and with no permission (PROT_NONE). After this, any mmap request from
the SDT allocates memory from this pool (by changing the access permission), instead of going
to the mmap system call. This guarantees any SDT allocated region can be mapped at exactly the
same address in both the SDT process and the untrusted process(es).

After the sandbox is enabled, whenever the SDT calls mmap, SDCG generates a synchronized
request to the untrusted process(es), and wait until the synchronization is done before returning
to the SDT. In the untrusted process, the synchronization event is handled by the trusted thread.
It reads synchronization request from the IPC channel and then changes the access permission of
the given region to the given value. Since the parameters (base address, size and permission) are
passed through the read-only IPC channel and the trusted thread does not use stack, it satisfies
our security policy for mapping executable memory.

Memory mapping in the untrusted process(es) is forwarded to the SDT process by the system call
interception mechanism of the sandbox. The request first goes through the system call filtering to
make sure the security policy in enforced. SDCG then checks where the request comes from. If
the request is from the SDT, or is a special resource the SDT depends on (e.g., mapping new
modules needs to be synchronized for Strata), the request is fulfilled from the shared memory
pool. If it is a legitimate request from the untrusted code, the request is fulfilled normally.

3) System Call Filtering: SDCG rejects the following types of system calls.

• mmap with writable (PROT_WRITE) and executable (PROT_EXEC) permission.

• mprotect or mremap with target region falls into a protected memory region.

• mprotect with executable (PROT_EXEC) permission.

SDCG maintains a list of protected memory regions. After the SDT process is forked, it
enumerates the memory mapping list through /proc/self/maps, and any region that is executable
is included in the list. During runtime, when a new executable region is created, it is added to the
list; and when a region is unmapped, it is removed from the list. If necessary, the SDT’s dynamic
data can also be added to this list.

For Strata, this filtering is implemented by intercepting the related system calls (mmap, mremap
and mprotect). For V8 (integrated with the Google Chrome browser), we rely on the seccomp-
bpf filtering policies.

SDT Specific Handling
Next, we describe some implementation details that are specific to the target SDT.

1) Implementation for Strata: Besides the code cache, many Strata-based security
mechanisms also involve some critical metadata (e.g., the key to decrypt randomized instruction

162
Approved for public release: distribution unlimited.

set) that needs to be protected. Otherwise, attackers can compromise such data to disable or
mislead critical functionalities of the security mechanisms. Thus, we extended the protection to
Strata’s code, data, and the binary to be translated. Fortunately, since Strata directly allocates
memory from mmap and manages its own heap, this additional protection can be easily
supported by SDCG. Specifically, SDCG ensures that all the memory regions allocated by Strata is
mapped as either read-only or inaccessible. Note that, we do not need to protect Strata’s static
data, because once the SDT process is forked, the static data is copy-on-write protected, i.e.,
while the untrusted code could modify Strata’s static data, the modification cannot affect the
copy in the SDT process.
Writing RPC stubs for Strata also reflects the differences in attack model: since all dynamic data
are mapped as readonly, any functionality that modified the data also needs to be handled in the
SDT process.

Another special case for Strata is the handling of process creation, i.e., the clone system call. The
seccomp-sandbox only handles the case for thread creation, which is sufficient for Google
Chrome (and V8). But for Strata, we also need to handle process creation. The challenge for
process creation is that, once a memory region is mapped as shared, the newly created child
process will also inherit this memory regions as shared. Thus, once the untrusted code forks a
new process, this process also shares the same memory pool, with its parent and the SDT
process. If we want to enforce an 1 : 1 serving model, then we need to un-share the memory.
Unfortunately, un-sharing memory under Linux is not easy: one needs to 1) map a temporary
memory region, 2) copy the shared content to this temporary region, 3) unmap the original
shared memory, 4) map a new shared memory region at exactly the same address, 5) copy the
content back, and 6) unmap the temporary memory region. At the same time, the child process is
very likely to either share the same binary as its parent, which means it can be served by the
same SDT; or call execve immediately after the fork, which completely destroys the virtual
address space it inherited from its parent. For these reasons, we implemented a N : 1 serving
model for Strata, i.e., one SDT process serves multiple untrusted processes. And the clone
system call can then be handled in the same way for both thread creation and process creation.
The only difference is that, when a new memory region is allocated from the shared memory
pool, all processes need to be synchronized.

2) Implementation for V8: Compared with Strata, the biggest challenge for porting V8 to
SDCG is the dynamic data used by V8. Specifically, V8 has on two types of dynamic data: JS
related data, and its own internal data. The first type of data is allocated from custom heaps that
are managed by V8 itself. Similar to Strata’s heap, these heaps directly allocate memory from
mmap, thus SDCG can easily handle this type of data. The difficulty is from the second type of
data, which is allocated from the standard C library (glibc on Linux). This makes it very
challenging to track which memory region is used by the JS engine, and which is not. Clearly,
we cannot make the standard C library to allocate all the memory from the shared memory pool.
However, as mentioned earlier in the design section, we have to share data that is involved in the
RPC so as to avoid serializing objects, especially C++ objects, which can be very complicated.
To solve this problem, in our prototype implementation, we implemented a simple arenabased
heap that is backed by the shared memory pool; and modified V8 to allocate certain objects from
this heap. That is, only objects that are involved in the RPC need to be allocated from this heap,
the rest can still be allocated from the standard C library.

163
Approved for public release: distribution unlimited.

Another problem is stack. Strata does not share the same stack as the translated program, so it
never reads data from the program’s stack. This is not true for V8. In fact, many objects used by
V8 are allocated on the stack. Thus, during RPC handling, the STD process may dereference
pointers pointing to the stack. Moreover, since the stack is assigned during thread creation, it is
very difficult to enforce that the program always allocates stack from our shared memory pool.
As a result, we ended up copying stack content between the two processes. Fortunately, only 3
RPCs require stack copy. Note that, because the content is copied to/from the same address,
when creating the trusted SDT process, we must assign it a new stack, instead of relying on
copy-on-write.

Writing RPC stubs for V8 is more flexible than Strata because the dynamic data is not protected.
For this reason, we would prefer to convert functions that are invoked less frequently. To achieve
this goal, we followed two general principles. First, between the entry of the JS engine and the
point where the code cache is modified, many functions could be invoked. If we convert a
function too high in the calling chain, and the function does not result in modification of the code
cache under other context, we end up introducing unnecessary RPC overhead. For instance, the
first time a regular expression is evaluated, it is compiled; but the next time, the compiled code
can be retrieved from the cache. Thus, we want to convert functions that are post-dominated by
operations that modify the code cache. On the other hand, if we convert a function that is too low
in the calling chain, even though the invocation of this function always result in modification of
the code cache, the function may be called from a loop, e.g., marking process during garbage
collection. This also introduces unnecessary overhead. Thus, the second principle is that we want
to convert functions that dominate as many modifications as possible. In our prototype
implementation, since we did not use program analysis, these principles were followed
empirically. In the end, we added a total of 20 RPC stubs.

Evaluation and discussion of the

3.10.4 Program-Counter Confinement
PEASOUP confines the subject program to only execute instructions that are intended to be
executed by the programmers. In particular, PEASOUP uses program shepherding [122] to
confine the program counter (PC) to only be within areas that are explicitly marked an code. The
protection provided by program shepherding is redundant with SIM and ILR, but may sometimes
provide for a cleaner exit.

3.10.5 Instruction Set Randomization (ISR)
PEASOUP integrates the technique for instruction-set randomization developed by the
University of Virginia [112]. [3] demonstrated that software-dynamic translation is the key to
efficient instruction-set randomization. Furthermore, the techniques in [3] were efficient enough
to allow for strong cryptographic encoding (via AES) of the instructions.

We consider ILR to provide much greater protective strength than ISR. ISR is an effective
defense against code-injection attacks. ILR is equally effective against code-injection attacks, but
also prevents arc-injection attacks. For these reasons, we do not discuss ISR further in this report.

164
Approved for public release: distribution unlimited.

4.0 Results and Discussion
This section presents results and discussion of those results.

 Phase 1 Independent Test and Evaluation Results 4.1
As we mentioned in Section 3.1, the independent test and evaluation for the PEASOUP project
was conducted twice—a preliminary T&E run in December 2011 and the final T&E run in April
2012. In this section, we describe and discuss the T&E results.

4.1.1 Preliminary Test and Evaluation Results (December 2011)
The test case composition for the December T&E was as follows:

• 3 real-world test cases: bzip2, ngircd, and tinyproxy,

• 141 engineered benchmarks with memory-corruption vulnerabilities,

• 76 engineered benchmarks with number-handling problems
Below we present the results.

4.1.1.1 Real-world Test Cases
In the preliminary T&E run, PEASOUP successfully defended two of the real-world test cases
and may have discovered an unknown bug in the third real-world test case. These results were
obtained after disabling some overly protective number-handling checks. More specifically:

• PEASOUP appeared to correct the behavior of bzip2 on the malicious test input.
Normally, the malicious input exploited a number-handling error and a buffer overrun to
crash the program. Under PEASOUP, bzip2 recognized that the malicious input was
malformed, printed an error message, and exited. In addition, bzip2 appeared to correctly
process all of the benign inputs.

• PEASOUP appeared to correct the behavior of ngircd on the malicious test input. As
with bzip2, the malicious input to ngircd exploited a combination of a number-handling
error and a buffer-overrun error. The malicious input allowed a login to ngircd with an
invalid password. Under PEASOUP, ngircd refused to create a connection and appeared
to continue operating when provided with the malicious input. As with bzip2, it still
handled the benign inputs correctly.

• PEASOUP seemed to discover an unknown double-free weakness in tinyproxy. This
test case only had a single input. PEASOUP reported a double free error and initiated a
controlled exit, although this may not have been reported properly.

165
Approved for public release: distribution unlimited.

The table below summarizes the findings for T&E’s real world test cases.

Test Case \ PEASOUP Config Standard Partial-C1

ngIRCd PEASOUP changed behavior
on good inputs, exploits
defeated with continued
execution.

Good inputs, unchanged.
Exploit input defeated with
continued execution.

Bzip2 PEASOUP changed behavior
on good inputs, exploits
defeated with continued
execution.

Good inputs, unchanged.
Exploit input defeated with
continued execution.

Tinyproxy PEASOUP reported a double-
free error and caused a
controlled exit (a change in
behavior).

PEASOUP reported a double-
free error and caused a
controlled exit (a change in
behavior).

4.1.1.2 Engineered Test Cases
According to the scores that were released by the Mitre team in March 2012, PEASOUP
rendered unexploitable 65.5% percent of vulnerable memory-corruption test cases and 18.9% of
vulnerable number-handling test cases. In some cases, PEASOUP defenses were overly
conservative affecting the functionality of a program on good inputs. This happened for 13.2% of
memory corruption test cases and for 28.9% of number-handling cases.

Mitre released the test cases along with the scores allowing us to conduct a thorough evaluation
of PEASOUP in house. This resulted in many fixes and enhancements to the tool. Additionally,
the analysis of test cases showed that many of the benchmarks were malformed and many of the
test inputs for exposing good and bad program behaviors were mislabeled. This fact was
observed by all other STONESOUP research teams as well. As the result, Phase 1 of the
STONESOUP was extended by 3 month and a second T&E run was scheduled to obtain more
definitive results.

4.1.2 Final Test and Evaluation Results (April, 2012)
The second and final test and evaluation run was conducted in April, 2012. In the interim
between the T&E runs, the independent evaluation team significantly revised the body of
engineered test cases and extended the set of good and bad inputs for them. PEASOUP tool
chain was evaluated on the following corpus of tests:

• 2 real-world programs: bzip2 and ngircd,

• 30 engineered number-handling test cases,

• 211 engineered memory-corruption test cases.
Below, we present and discuss the evaluation results.

166
Approved for public release: distribution unlimited.

4.1.2.1 Real-World Test Cases
The evaluation results indicated that PEASOUP successfully rendered unexploitable the
vulnerabilities in both of the real-world programs. However, it altered the functionality of one of
them (ngircd) when applied to certain good inputs. The altered-functionality issue came as a
surprise for us—we have been using ngircd for regression ever since the December T&E and
were confident that we are not altering the behavior in any disallowed way. In fact, we
successfully passed ngircd during the first T&E.

Our investigation of this issue indicated that the test system is showing PEASOUP as 'altering
behavior' due to a race condition in the test script. The race condition is between ngircd proper
and the coprocess that attempts to make a connection to ngircd to feed it predefined input.
PEASOUP protections changed the timing characteristics of ngircd by incurring a 5-10 second
startup delay, which caused the communication with the input-feeding coprocess to fail. This is
the only way in which PEASOUP "altered behavior" of ngircd, and we believe it is allowed, at
least implicitly, under the solicitation and the ROE. Note: we had to fix the same (or similar)
race condition during the December T&E; however, we did not have time to complete a fix,
during April T&E.

4.1.2.2 Engineered Test Cases
The following table shows the results of PEASOUP evaluation on the set of engineered test
cases:

 Number Handling Memory Corruption

Valid Test Cases 30 211

Successfully Processed 27 (90%) 211

Vulnerable Test Cases (test
cases that are supplied with
“bad” inputs that exploit the
vulnerability)

27 210

Rendered Unexploitable 24 (88.9%) 132 (62.9%)

Altered Functionality 2 (7.4%) 11 (5.2%)

167
Approved for public release: distribution unlimited.

After the final test and evaluation run, we received all of the tests used by the independent
evaluation team and the test system for automatic running and scoring of the test cases. We set it
up locally and conducted an in-depth investigation of the cases where PEASOUP failed to meet
our expectations. As the result we identified a number of malformed test cases and a number of
invalid input/output pairs. We gave the detailed list and discussion of those test cases in Section
3.1.2. After accounting for malformed test cases and input, the overall results look as follows:

 Number Handling Memory Corruption

Valid Test Cases 30 211

Successfully Processed 27 (90%) 211

Vulnerable Test Cases (test
cases that are supplied with
“bad” inputs that exploit the
vulnerability)

27 210

Rendered Unexploitable 24 (88.9%) 140 (75.5%)

Altered Functionality 1 (3.7%) 5 (2.5%)

4.1.3 Post T&E Work
We continued working on improving our analysis after the April T&E. We observed that the use
of a fixed stack address as the argument to certain libc functions could be a very good indicator
of an object boundary. We incorporated this into our analysis and used it to insert padding and
canaries in between stack-allocated data. As a result, we believe that we are rendering
unexploitable an additional 14 of the memory-corruption tests. We confirmed these numbers by
running these tests with T&E test system.

We believe that the improvement is even more dramatic and that we are also rendering
unexploitable all or most of the 14 tests for CWE 127. There appears to be an issue in the part of
test harness that supplies input for these tests that prevents them from being scored properly.
This issue may have affected our original T&E results, although we suspect that is unlikely (the
padding we inserted during T&E was too small to be effective on these tests).

In summary, we calculate PEASOUP rendered-unexploitable rate on the memory-corruption
tests would be as follows:

• 83.8% if we include the 14 tests that were protected by better object-boundary
identification heuristics (we have confirmed that those were rendered unexploitable by
running T&E test apparatus).

• 87.1% if the 14 problematic tests for CWE 127 are marked invalid.

• 87.6% if we mark the 14 problematic tests for CWE 127 as passing (as we believe they
are).

168
Approved for public release: distribution unlimited.

Overall, our infrastructure and technology seemed to behave well during T&E. Furthermore,
Mitre brought some very useful technology to T&E and demonstrated superb flexibility in
obtaining valid test results.

 Phase 2 Independent Test and Evaluation 4.2
This section summarizes our evaluation of the Phase 2 Test and Evaluation Results.

4.2.1 Preserved Functionality
The primary reason PEASOUP was scored as altering functionality was because of tests that
require malloc to return adjacent allocations. In total, this affects 386 tests.

We believe the altered functionality in the remaining tests will be due to a small number of
PEASOUP bugs, maybe as few as one.

4.2.2 C1: x86 Binary Number Handling

 MITRE
Score

GrammaTech
Adjusted Score

Rendered Unexploitable 79.9% 83.0%
Preserved Functionality 87.6% 97.5%
The majority of failures in rendering unexploitable (RUE) for the number-handling tests were for
CWE-196, unsigned to signed conversion error. It accounts for 75% of our failures to render
unexploitable (in the GrammaTech adjusted scores). If these tests were handled, our adjusted
RUE metric would be 95.7%.

All of the CWE-196 tests seem to be based on the same code pattern, and it is a pattern that
PEASOUP cannot currently handle. We have plans to make the necessary extensions to
PEASOUP needed to handle this pattern (primarily interprocedural numeric analysis), but we did
not complete them in Phase 2.

The remainder of the RUE failures are for DOS_UNCONTROLLED_EXIT attacks against
Cherokee tests. These might be handled by improving our management of process-crashing
events. PEASOUP is already capable of preventing most these types of DoS attacks against
Cherokee.

4.2.3 C7: x86 Binary Memory Corruption

 MITRE
Score

GrammaTech
Adjusted Score
with CWE-126 !RUE

GrammaTech
Adjusted Score
with CWE-126 INVALID

Rendered Unexploitable 90.4% 89.0% 93.6%
Preserved Functionality 69.3% 96.7% 96.7%

All but 4 of the !RUE (Not Rendered UnExploitable) failures in the memory-corruption class
were for the tests of CWE-126 and 127, buffer over- and under-read. The scoring for the CWE-
126 tests is invalid, however, PEASOUP probably also failed to prevent the exploits.

The fundamental failure was in the analysis to delineate stack-allocated objects. This has been a
major focus of our Phase 2 research, and we have made substantial progress: for unoptimized
executables, for those portions of the stack that are mapped by debugging information, we are

169
Approved for public release: distribution unlimited.

now able to get over 98% recall and precision on data boundaries. We may be doing equally well
for optimized executables, but we need to improve our measurement capabilities.

Besides improving the data delineation analysis, we have other strategies to explore for
improving our defenses against information leaks based on improved use of canary values. We
are confident these tests can be addressed in Phase 3.

4.2.4 x86 Binary Injection

 MITRE
Score

GrammaTech
Adjusted Score
just bug fixes

GrammaTech
Adjusted Score
bug fixes + grammar
extensions

Rendered Unexploitable 76.8% 91.5% 95.5%
Preserved Functionality 84.4% 98.6% 98.4%
PEASOUP had several bugs in the parsing of strings in DLLs. These caused both altered
functionality and failures to render unexploitable. The third column above shows the results of
fixing these bugs.

The OS command injection attacks did identify some shortcomings with the approach taken by
PEASOUP. These shortcoming were addressed by feature extensions that effectively improved
the grammar that PEASOUP uses for parsing command injections. The fourth column shows the
results of adding these extensions. We have planned further improvements in string matching
that should eliminate the remaining failures to render unexploitable.

4.2.5 x86 Binary Null Pointer Errors

 MITRE
Score

GrammaTech
Adjusted Score

Rendered Unexploitable 90.8% 94.9%
Preserved Functionality 96.2% 96.2%
All of the failures to render unexploitable in the null-pointer-errors class were for
DOS_UNCONTROLLED_EXIT attacks against Cherokee. These might be addressed by
improving PEASOUP’s policies for handling process-crashing events.

Investigating the Cherokee tests was challenging, for many reasons. Cherokee has some built in
robustness, which PEASOUP further improves. In many cases, PEASOUP is able to entirely
prevent DOS_UNCONTROLLED_EXIT attacks: the client’s requests are still serviced,
connections running concurrently with the attacked connection are not affected, and the server
remains alive and servicing requests after the attack.

However, this did not always happen. Unfortunately, determining what happened with which
tests was time consuming and error prone. In the end, MITRE did not have much time to review
our suggested scoring changes for these tests.

 Phase 3 Independent Test and Evaluation 4.3
Unfortunately, there were insufficient remaining funds for a close examination of the Phase3
Test and Evaluation results.

170
Approved for public release: distribution unlimited.

 Data Delineation Analysis 4.4
This section outlines the results of the experimental evaluation of various aspect of Data
Delineation Analysis (DDA) and its integration into the stack-layout transformation (SLX). DDA
is also described in [98].

4.4.1 DDA Evaluation: 32-bit
Our paper submission to the International Conference on Software Engineering (ICSE), which is
attached to this report, provides a detailed coverage of the experimental evaluation of DDA on
32-bit binaries. Here we present a high-level recap of the results.

There are two types of imprecisions that the DDA analysis yields. False positives correspond to
inferred object boundaries that do not have counterparts in the ground truth. False negatives
correspond to ground-truth object boundaries that are missed by the analysis. We measure both
of these:

• Precision: is a measure of how many spurious boundaries the analysis infers (i.e., a
measure of false positive rate).

• Recall: is a measure of how many true objects the analysis misses (i.e., the measure of
false negative rate).

We use the following formulas to compute the two metrics. Let 𝑀𝑀 denote the number of object
boundaries that the analysis correctly identified, 𝐹𝐹𝑃𝑃 denote the number of false positives, and
𝐹𝐹𝐹𝐹 denote the number of false negatives. Also, let 𝐺𝐺𝐺𝐺 = 𝑀𝑀 + 𝐹𝐹𝐹𝐹 denote the number of ground-
truth object boundaries.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
𝐺𝐺𝐺𝐺

𝐺𝐺𝐺𝐺 + 𝐹𝐹𝑃𝑃
× 100% 𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 =

𝑀𝑀
𝐺𝐺𝐺𝐺

× 100%

The two metrics must be used together to assess the accuracy of the analysis: for an accurate
analysis, both precision and recall should be close to 100%. In separation, the metrics could be
easily misinterpreted: e.g., finding no boundaries at all yields 100% precision, but 0% recall;
similarly, inferring that each byte in the activation record is a separate object, yields 100% recall,
but low precision.

We have applied the DDA analysis to programs from Coreutils suite (about a 100 of small
programs that share a common library), to the set of Phase 2 T&E base programs, and to a subset
of LLVM utilities (large programs written in C++). We indicate the sizes of the benchmarks by
stating the number of stack variables in the ground truth and compare the DDA results against
IDA Pro. The table below shows the summary of the results that we obtained (a complete table is
in the attached ICSE paper submission):

171
Approved for public release: distribution unlimited.

 Precision (%) Recall (%)

Benchmark Vars IDA DDA 64-Bit IDA DDA 64-Bits

Coreutils 214 81.46 88.23 94.36 95.00 98.91 97.66

Coreutils (-O1) 76 59.03 74.45 85.37 77.23 85.86 84.29

Coreutils (-O2) 86 38.98 55.80 77.96 74.79 80.48 80.16

Ph. 2 T&E
(base)

2193 79.30 89.84 93.45 98.68 99.41 98.32

LLVM utils 9504 90.16 93.28 96.44 99.76 99.80 98.46

The IDA column shows the precision and recall obtained by using internal IDA Pro variable
identification. DDA column gives the results of DDA analysis as described in this report. 64-bit
column shows the extension of DDA with a simple heuristic for identifying 64-bit integers in the
32-bit code: GCC implements 64-bit integers by using two 32-bit words that are manipulated
separately, thus causing DDA to yield false positives. Our heuristic finds pairs of adjacent words
in each stack frame that are always read or written together within a basic block and marks them
as 64-bit words. As the results indicate, this simple heuristic proved to be very effective for
detecting such 64-bit integers: the precision is significantly improved, while the decreases in
recall are modest.

Overall, the evaluation showed that the DDA analysis significantly more precise than the
mechanisms used by IDA Pro. Surprisingly, DDA also has better recall than IDA Pro does. Our
investigation showed that it was caused by IDA Pro’s failure to recognize variables in function
main(...) for some of the benchmarks, possibly due to the presence of stack-alignment
operations.

4.4.2 DDA Evaluation: 64-bit
In Phase 3, we extended DDA to support 64-bit binaries. We conducted an initial investigation
on several benchmarks, though we did not have time to perform an in-depth analysis of the
results. The table below shows the preliminary results we obtained:

 Precision (%) Recall (%)

Benchmark Vars IBI DDA IBI DDA

Coreutils - 90.77 94.67 96.97 96.93

Coreutils (-O1) - 82.66 84.86 84.92 84.92

Coreutils (-O2) - 60.84 68.00 75.19 75.17

OpenSSL 4728 75.78 82.13 85.43 84.20

Postgres 63048 92.47 95.83 97.13 97.08

We did not collect IDA Pro data for the 64-bit benchmarks, so we used the Initial Boundary
Identification (see Section 3.3.5.1) results as the base line. Our IBI heuristic is similar in spirit to
the IDA Pro internal mechanisms, though IDA Pro (on 32-bits) had a slightly better precision
compared to IBI due to relying on information inferred by FLIRT (IDA Pro technique for

172
Approved for public release: distribution unlimited.

recognizing standard library calls). Since DDA works by refining the boundaries identified by
the IBI, the data for IBI represents the lowest possible precision and the highest possible recall
that DDA, in its current incarnation, can achieve.

The results in the table show that for unoptimized code (OpenSSL and Postgres were built
without optimizations), DDA eliminated from a third to half of IBI false positives without
significantly affecting the recall. We investigated in more details the causes for DDA false
positives in OpenSSL. It turned out that one of the main causes of false positives were the low-
level encryption routines. Those routines use sets of local arrays that are accessed both in loops
and with constant indices, which confuses the parameter offset analysis. Ultimately, more
detailed investigation of analysis results on 64-bit binaries is necessary.

4.4.3 Investigation of False Positives
We performed an extensive study of the false positives yielded by our analysis. Below we briefly
summarize the main source of false positives. While some of the false positive classes can be
addressed with general infrastructure improvements, others require additional approached and
techniques to be designed and integrated into the DDA.

Incomplete ground truth. Incomplete ground truth causes some of the identified valid object
boundaries to be reported as false positives. The two main sources of imprecision in the ground
truth are:

• Compiler-introduced variables—such as locations where intermediate computation
results are stored—do not show up in DWARF information. Our analysis however
identifies them as independent objects, which are the labeled as false positives during the
evaluation of the analysis results. To avoid this imprecision, we chose to exclude from
consideration the stack regions for which no DWARF information is given.

• Some variables are instances of the structures or aggregate types, but are only used
locally and thus can be broken down by the stack layout transformation.

We need improved ground truth to account for these shortcomings of DWARF information. In a
separate effort within the PEASOUP project, we worked on extracting the true object boundary
information from the RTL (Register Transfer List) structures built internally by the GCC
compiler. Our initial experiences with this approach where positive, but we did not have time to
fully integrate the RTL-based ground truth extraction into out framework for evaluating DDA’s
precision. Instead, in all our experiments, we evaluated the precision of the analysis only in the
areas of the stack that are covered by the DWARF information.

Indirect control transfers: The intermediate representation the Parameter Offset Analysis
operates on does not have good information for indirect control transfers such as indirect
function calls and even jump tables that are often used to implement C switch statements. As a
result, the Parameter Offset analysis misses some of the function calls and subsequently some of
the information about dereferenced offsets. For this issue, the improvements to the IR will
automatically improve the precision of the object delineation analysis.

Local arrays that are both iterated and accessed with constant offsets. The false positives of
this kind pose a serious challenge for our analysis because they requires sophisticated loop
analyses to address. We may be able to use intra-procedural numeric analyses to conservatively
identify portions of activation records that should be left contiguous. Our investigation however

173
Approved for public release: distribution unlimited.

showed that such cases are fairly rare: we only so them in encryption routines, such as sha1sum
and md5sum.

Passing and returning structures by value. There are several routines in the shared coreutil
library that pass and return structures by value rather than by reference. This is often results in
code that copies structures a word at a time. Such structure instances are not identified by our
Parameter Offset analysis.

4.4.4 Investigation of False Negatives
The number of false negatives yielded by the DDA analysis is much smaller compared to the
number of false positives. As a result, we spent less efforts on precisely characterizing their
causes. The primary cause that we have observed is the incomplete intermediate program
representation in the IRDB. Since our analysis does not see parts of the code it fails to collect the
candidate object boundaries from that code. Note that this issue serves as both the source of false
negatives (skipping code by the initial boundary identification (Section 3.3.5.1)) and the source
of false positives (skipping code by the Parameter Offset Analysis (Section 3.3.5.2)). The root
cause for this issue is a deficiency in IDA Pro that is used for disassembly by the STARS
analysis which populates the IRDB.

Another source of false negatives that we have encountered is the lack of path sensitivity of the
Parameter Offset Analysis. The following example illustrates the problem:

int foo(char * str) {
 if (strlen(str) > 16) {
 … str[15] …;
 }
 …
}

The parameter offset analysis will infer that the object passed to foo is at least 16 bytes long and
will use that information at every call site of foo, even for objects that are potentially smaller.
We have only seen a handful of false negatives that are due to this issue—not enough to justify
extending the analysis to be path sensitive.

4.4.5 Evaluation DDA/SLX Integration
As we mentioned previously, unfortunately, we only had time to integrate together 32-bit
versions of SLX and DDA. We have used the resulting tool to perform several experiments that
tested the precision of DDA-inferred boundaries when used for program transformation. We
picked nginx and apache, the web servers used as base programs in Phase 2 Test and Evaluation,
as the benchmarks for our experiments. We used DDA-inferred boundaries to transform the
stack layout for a large subset of the functions in the two benchmarks, and ran the transformed
programs on the respective regression suites to check if the functionality has been altered. We
used delta-debugging-like approach [224] to recursively narrow down the list of functions that
are broken by the transformation.

For the unoptimized nginx, out of about 450 functions, only 8 were broken by the DDA-based
SLX transformation. One of the functions was broken due to imprecision in the SLX
transformation, which failed to handle properly a complex address computation. All other
functions performed low-level string manipulations that combined standard string- and memory-

174
Approved for public release: distribution unlimited.

manipulation operations with direct access to strings with constant offsets. The low-level string
manipulation is definitely an area where DDA falls short and requires additional enhancements.

To investigate the effect of the optimization on the effectiveness of DDA-based SLX, we
preformed the above experiment on nginx built with “-O2” option. In this experiment, the
fraction of broken functions was higher: 22 out of 297. This result was predictable: the optimized
code is harder to analyze and DDA consistently yields a higher false positive rate for optimized
binaries (see Sections 4.4.1 and 4.4.2). However, we did not have an opportunity to investigate
the exact causes for the breaks.

For the apache webserver, our evaluation showed that out of 1938 transformed functions 7
caused failures in the execution of the regression suite. On one hand, this shows that the
precision of our analysis is high. On the other hand, we have poor understanding of the exact
coverage provided by the test suite thus it is feasible that only a small portion of the code was
exercised.

 Checkpointing Test and Evaluation 4.5
To test the performance and stability of this primitive implementation of VM fork, we did the
following test.

Hardware setup

• CPU: Intel Xeon X3450, 4 cores, 8 threads
• Memory: 16GB
• Disk: OCZ Revodrive X2 240G
• Swap: 32GB (on Revodrive)

Software setup

• Host OS: Debian 6.0.1 x64
• KVM-QEMU: 0.14.0
• KVM-KMOD: latest git checkout
• Guest OS: Ubuntu 10.04.2 LST server, clean install
• Guest CPU Number: 1
• Guest Memory Size: 512MB

Test Method
1. Start the base VM, run burnP6 stress test program;
2. Fork a child VM
3. After the child has loaded the snapshot, login through SSH and execution top command
4. Repeat until the VM is extremely slow or the forking is instable

Metrics
1. The time interval between creating the snapshot and the parent VM is resumed

(performance)

175
Approved for public release: distribution unlimited.

2. The time interval of loading the snapshot (performance)
3. The ability to login into the child VM (stability)
4. The ability to find burnP6 in the child VM (stability)

4.5.1 Width-first Forking

Forking VMs from the same parent.

• Round 1: manually fork a VM, record the time and check if succeeded
o VM successfully forked: 41
o Fork time: 0.71s ± 0.08s
o Load time19: 0.64s ± 0.05s
o Memory used: 16371300k
o Swap used: 0k

The fork failed on the 42nd VM because the checkpoint file is full (8G).
• Round 2: increase the checkpoint file size to 32G, automatically forks a child every 30s

for 63 times
o VM successfully forked: 42
o Fork time: 0.70s ± 0.07s
o Load time: 0.61s ± 0.09s

The fork failed on the 43rd VM because the default tmpfs size is 8G.
• Round 3: increase the tmpfs size to 32G, rest is the same as round 2.

o VM successfully forked: 63
o Fork time: 0.71s ± 0.11s
o Load time: 0.62s ± 0.11s
o Memory used: 16376008k
o Swap used: 7468512k

After the main memory was used up, the forking and loading time moderately increase by
about 0.2s.

4.5.2 Depth-first Forking

Recursively fork child VM (i.e. parent fork a child, then the child fork another)

• Round 1: automatically forks up to 64 child VMs
o VM successfully forked: 64
o Fork time: 0.72s ± 0.14s
o Load time: 0.64s ± 0.10s
o Memory used: 16371228k
o Swap used: 8487568k

The max forking time is 1.04s and the max loading time is 0.87s.

19 This is only the load time. Before loading the snapshot, we let the VM run for 2s, so the empirical start time for
child VM is around 3s.

176
Approved for public release: distribution unlimited.

 Ground-Truth IR Evaluation 4.6
The following table gives a snapshot of the current state of the (static) CodeSurfer/SWYX
analysis of the 104 programs that constitute the coreutils suite. While these numbers were
gathered using CodeSurfer/SWYX, we expect them to be similar to the measurements that we
would obtain from STARS. We first compile each program with, –O2 and –gdwarf-2, under the
DVT framework to produce an optimized executable with DWARF debugging information and
ground truth IR. We then stripped this executable of its debugging information and analyzed it
with CodeSurfer/SWYX, and compared its IR against ground truth.

average minimum avg. min.

prec
%

recall
%

prec
%

recall
%

match
%

match
%

1. Proc. Entry
(DVT)

100.0 97.5 100.0 76.4

2. Proc. Entry
(DWARF)

100.0 97.5 97.6 75.8 3. Proc. Ranges
(DWARF)

58.7 42.3

4. Instructions
(DVT)

100.0 100.0 100.0 100.0 5. Instr. sizes
(DVT)

100.0 100.0

6. Data objects
(DVT)

100.0 90.3 100.0 56.5 7. Data sizes
(DVT)

87.5 67.6

8. Data objects
(DWARF)

100.0 100.0 100.0 100.0 9. Data sizes
(DWARF)

100.0 100.0

10. Stack
Variables
(DWARF)

100.0 93.0 100.0 87.5 11. Stack
Variable Sizes
(DWARF)

92.8 80.9

12. DVT Instruction numeric/symbolic
operands

99.6 98.0

 13. DVT instruction symbolic references 98.5 94.5
 14. DVT Data numeric/symbolic operands 43.6 22.2
 15. DVT Data symbolic references 3.9 1.7

For the items in the left column we show the average precision and recall over the 104 programs,
and the minimum precision and recall among the 104 programs. Precision shows the proportion
of CodeSurfer/SWYX IR that matched ground truth, while recall shows the proportion of ground
truth that was discovered by CodeSurfer/SWYX. It is important to mention that the domain of
the precision computation only includes the regions of the program covered by ground truth.
This is because we only have ground truth information for a subset of the final executable
(generally ground truth is lacking for statically-linked libraries), and it is not possible to classify
any IR outside of the ground truth region as good or bad. In previous versions of the ground truth
tool, we were only reporting on precision.

Items in the right column include only a single match percentage, showing both the average over
the 104 programs and the minimum (worst match percentage among the 104 programs).

Items 1 and 2 compare procedure entry points, with ground truth from both DVT and DWARF.
The precision and recall are all above 94% with the exception of three outliers with recall at

177
Approved for public release: distribution unlimited.

around 75%. These outliers are for the programs dir, ls, and vdir (essentially the same program
with different names and slightly different behavior), and are due to 52 sort functions that are
stored in an array of function pointers and are only ever called indirectly. The
CodeSurfer/SWYX IR recovery currently fails to recognize these 52 function entry points, due to
a faulty heuristic.

Item 3 compares the procedure boundaries (address ranges). Currently the match rate is not very
good. This is due mostly to the granularity of the CodeSurfer/SWYX IR, which excludes
padding bytes from its computed ranges. We believe that with a minor tweak to account for these
padding bytes we will achieve a much higher rate.

Items 4 and 5 compare instruction starting points and sizes respectively. Encouragingly our
precision, recall, and match rate for identifying code is 100% within the ground truth region.

Items 6-9 compare (static) data objects and sizes, with ground truth from both DVT and
DWARF. The numbers for DWARF are 100% across the board, but the data object ground truth
available from DWARF is a much smaller subset of the static data; in particular, it excludes
string literals. The recall and match rate with DVT is worse, though reasonably good. We believe
many of the mismatches are still related to string literals.

Items 10 and 11 compare stack variables and their sizes, with a reasonable percentage and room
for improvement. It is worth noting for stack variable ground truth two issues which we are
ignoring for the moment. First, we assume a unique stack layout for a given procedure; but with
a C function includes subscopes, this assumption does not hold. Among the 17499 stack
variables in 9205 procedures in the coreutils suite covered in the DWARF ground truth region,
there were 893 “conflicting” stack variables occurring in 367 procedures. Of the 893 conflicting
stack variables, 277 had different sizes. In these cases we take the larger of the conflicting
variables as ground truth.

The second noteworthy issue is that coreutils makes heavy use of inlined functions, and the stack
variable layout of such functions – which now occur within the context of the procedure into
which the function is inlined – is a bit trickier to define, and are currently excluded from the
ground-truth comparison. We do not currently see a way to deal with this issue and may have to
live with some noise in the ground truth measurements.

Items 12–15 compare symbolic references, distinguishing between references from code and
from data. For code, we consider only immediate and memory-reference operand, while for data
we consider data object up to a word size. We measure our match rate by two methods. First, we
consider every potentially symbolic operand, and count each such operand as a match if both
ground truth and SWYX agree on whether the operand is symbolic, and if so what offset value
that symbolic operand has. These are presented in items 12 and 14 in the table. The numbers are
good for references in code, and not very good for references in data (at just under 50%).
However, we soon realized that since most operands are non-symbolic (which is easier for IR
recovery to get right), this method of counting actually skewed the numbers in favor of the IR
recovery.

We therefore measured our match rate by a second method, which is to only consider operands
for which either ground truth or SWYX determined that it is symbolic. Across the 104 coreutils
program, this covers 26% of the code operands and 51% of the data objects. With this method,
an operand is counted as a failure if one side determines it to be symbolic while the other

178
Approved for public release: distribution unlimited.

doesn’t, or if both sides determine it to be symbolic but with different offsets. Items 13 and 15
give the match percentages when considering only this subset of operands. For code the match is
still quite good, but for data the match rate is very poor. An initial investigation shows some of
these to be jump tables that failed to be recognized as such by SWYX.

4.6.1 Improved Object-Boundary Recovery
Precise object-boundary recovery is important for effective stack-layout randomization. In the
extension of Phase 1, we started investigating novel techniques for improving the precision of
object-boundary identification. We judge the effectiveness of object boundary identification by
both precision and recall. Precision and recall are affected by the false positives (stack offsets
that are incorrectly marked as separating two data objects) and false negatives (stack offsets that
are on the boundary of a data object but are not identified as such). For our purposes, we define
precision and recall as follows:

• Precision measures the percentage of hypothesized object boundaries that are actually
object boundaries. PEASOUP requires perfect precision to ensure that SLR does not
break correct programs.

• Recall measures the percentage of object boundaries that are correctly identified. A
higher recall rate means that PEASOUP will be more effective at providing protection. (If
an object boundary is missed, than SLR cannot protect overruns or underruns that cross
the unidentified boundary.)

PEASOUP mostly relies on the analyses in IDA Pro to generate candidate object boundaries and
then uses BED and TSET to improve precision by discarding boundaries that are crossed during
“normal” execution. Unfortunately, there are cases where we incorrectly removed real object
boundaries, causing recall to suffer while maintaining precision.

The primary heuristic used in IDA Pro to determine object boundaries is to look for instruction
operands that refer to a constant offset from the stack pointer. Each such offset is assumed to be
the boundary of an object. Unfortunately, this heuristic can frequently be wrong, which is why
BED and TSET are important for achieving high precision. Last month, we observed that there
are variations of this heuristic that are likely to be much more precise such as:

• Assume that constant stack pointer offsets that are passed as function parameters
correspond to stack object boundaries.

• Assume that constant stack pointer offsets that are passed to specific functions (such as
memset) as parameters correspond to stack object boundaries.

Many other variations are possible. These refinements are more effective than the original
heuristic because they eliminate some of the common causes of false positives incurred by the
first heuristic, such as an instruction that wrings a prophylactic sentinel at the end of an array. In
Phase 1 extension, we implemented the second refinement for the memset function. The memset
function is often used to initialize entire objects, and therefore its first argument is very likely to
be the beginning of an object. In Phase 2, we intend to explore many different variations of the
above heuristics and use a Bayesian learner to determine which heuristics are most effective.

179
Approved for public release: distribution unlimited.

 C5: Command Injection 4.7
To evaluate the security and performance of S3, we applied our system to a variety of engineered
and real-world benchmarks. The following sections describe the Experimental Setup,
Benchmarks, Performance Evaluation and Security Evaluation in more detail.

4.7.1 Experimental Setup

For our evaluation, we used a 32-bit VirtualBox virtual machine running Ubuntu 12.04 with 4
GB of RAM and a 2GHz Xeon E5-2620 processor.

4.7.2 Benchmarks
To evaluate the performance and security of S3, we have collected a variety of benchmarks. For
real-world benchmarks with CVE reports, we used the SpamAssassin Milter Plugin [99], an
email filter interface for detecting spam, and cbrPager [66] version 0.9.16, a program to
decompress and view high-resolution images. We configured SpamAssassin Milter version 0.3.1
with SpamAssassin version 3.3.2 and Postfix version 2.9.6. Both of these programs have real-
world OS command injection vulnerabilities.

We also used a set of vulnerable programs independently developed by MITRE Corporation
from real-world, opensource software. Each program was seeded with a command injection
vulnerability. This process was repeated to create many variants with the vulnerability at many
locations. Each variant has inputs that represent normal program input, as well as exploit inputs.

Finally, we used a set of small exploitable programs, most less than 100 lines, that were
developed by Raytheon. Like the MITRE programs, normal and exploit inputs are provided.

Lastly, to help evaluate performance, we developed a series of microbenchmarks. These
benchmarks create an OS command from command line input, and use a tight loop to execute
that command as frequently as possible, doing no other work. There are two dimensions of
variation in the micro benchmarks: 1) the command to be executed and 2) the primitive used to
invoke the command. There are two possible commands to be executed. The command to be
executed in one case is echo hello, and in the second case is bzip2 dickens.txt [188], [81]. The
two cases represent a fast command and a somewhat more reasonable workload that compresses
a 775 KB file. Each microbenchmark uses one of the following primitives to invoke the
command: execv, popen, or system.

4.7.3 Security Evaluation
We used a combination of programs with reported realworld vulnerabilities, synthetic test
programs, and real-world programs seeded with vulnerabilities by an independent testing team to
evaluate the strength of the S3 approach.

1) Real-World Attacks: We evaluated S3 against two reported command-injection
vulnerabilities that we were able to reproduce in open-source binaries.
The first attack, based on CVE-2008-2575, is a command injection in cbrPager [4]. To extract
images, cbrPager invokes the system library call to execute unzip or unrar on the archive,
without sanitizing the filename. By crafting an input such as ";rm -rf *;".cbr and providing it
where a filename is expected, cbrPager is tricked into executing a malicious command when it
attempts to open the putative file. S3 is able to detect attempts to open a malicious filename and

180
Approved for public release: distribution unlimited.

return an error from the system library call. These actions result in the program displaying a
message that the file cannot be opened, and exiting harmlessly.

The second attack, based on CVE-2010-1132, is a remote exploit in the SpamAssassin Milter
Plugin [7] (spamassmilter), which integrates the SpamAssassin spam filter with either sendmail
or Postfix. The vulnerability occurs when the milter is invoked with the -x “expand” option, to
pass the email address through alias and virtusertable expansion to allow emails to be redirected
to other accounts. In this case, the popen function is invoked on sendmail with the email address
provided from SMTP as an argument, without properly sanitizing the email address, which can
contain a pipe character. With an SMTP command such as RCPT TO:<username+:"|rm
/var/spool/mail">, arbitrary commands can be executed; with careful crafting, these may be
sufficient to open a remote shell. Our technology was able to harmlessly block any command
injections. The signatures extracted from spamassmilter do not include the vertical bar (pipe)
character, foiling any attempt to exploit this weakness. Moreover, the Milter plugin properly
error-checks the popen function call, so it continues to function without loss of service in the face
of an attempted exploit.

1) Synthetic Attacks: We evaluated S3 against engineered test suites developed by Raytheon
and independently by MITRE. The Raytheon engineered suite consists of 18 microtests
demonstrating command injections with 22 good inputs and 35 bad inputs, using 9 different
function calls ([f]exec[l,le,lp,v,ve,vp], system and popen) and a variety of input-processing
techniques. S3 mitigates all of the bad inputs while breaking none of the good inputs in this test
suite.
The MITRE test suite includes 477 OS command injection (based on CWE-78) and 516 OS
argument injection (based on CWE-88) test cases [141]. These test cases are based on inserting
vulnerabilities into seven base programs: Cherokee, grep, nginx, tcpdump, wget, w3c (from
libwww), and zsh. Each test case involves inserting a vulnerable call to popen at various
locations in the base program. For the CWE-78 test cases, this call invokes nslookup with an
unsanitized argument specified from an environment variable or untrusted file. For the CWE88,
the program builds the command using the format string “find / -iname %s.” Semicolon
characters are properly sanitized when constructing the command, but the user can still include
input that has a -exec argument that is ultimately passed to find. Consequently, they could use an
input such as “* -exec rm {} \;” to remove files or execute other commands. For each test case,

Benchmark Type Benchmark Native (ms ±95%CI) S3 (ms ±95%CI) Absolute Diff. (ms) % difference
MITRE Seeded C-C078-NGIN-04-DT03-02 10.6±1.5 10.8±1.8 0.2* 2.1%*
MITRE Seeded C-C078-CHER-04-DF09-02 11.7±3.3 11.5±1.4 −0.2* −1.5%*
Real world spamass-milter 0.3.1 87±70 82±43 −4.4* −5%*
Real world cbrPager 0.9.16 121.3±11.6 121.2±9.0 −0.1* −0.1%*
Micro echo (system) 1,126±18 1,222±5 96 8.4%
Micro echo (popen) 1,236±12 1,240±6 4 0.32%
Micro echo (execv) 1,243±4 1,514±11 271 22%
Micro bzip2 (system) 1,377±13 1,380±14 2.8 0.2%
Micro bzip2 (popen) 1,379±12 1,381±12 3.0 0.2%
Micro bzip2 (execv) 1,366±14 1,373±13 7.2 0.5%

Table 3. Performance overhead in milliseconds. Asterisks indicate the differences are not
statistically siginifacnt from the 50 trial runs performed.

181
Approved for public release: distribution unlimited.

ten good inputs and two bad inputs are provided. In each case, S3 was able to intercept the bad
inputs without altering behavior on the good inputs.

4.7.4 Performance Evaluation
Table I shows the performance overhead of S3. The columns show the type of benchmark,
benchmark name, performance timing without and with S3 and finally an absolute and percentage
difference, indicating the slowdown S3 introduces. A 95% confidence interval is shown where
appropriate.

We selected two of the benchmarks from the MITRE suite where the seeded vulnerability was in
the main loop of a server; most vulnerabilities were injected into startup or shutdown code, and
there was no significant performance difference. The seeded vulnerability was set to execute only
once, but for timing purposes we modified the code slightly so that it executed on every request
to the server. The benchmarks are based on Cherokee (C-C078-CHER-04-DF09-02) and nginx
(C-C078-NGIN-04-DT03-02), two production-quality web servers. We performed 50 timings,
each consisting of downloading a small html file (574 bytes). Even with the seeded vulnerability

Number of signatures

Figure 42. Average time to invoke system
versus number of signatures.

Number of signatures

Figure 43. Average time for email transaction
versus number of milter signatures.

182
Approved for public release: distribution unlimited.

in the main loop and the small download size, no statistically significant difference in timing was
observed with S3.

For SpamAssassin Milter, we wrote a simple client that uses gettimeofday to measure the time
spent in processing an email transaction. We also modified cbrPager to measure the time to
render the first page of a 49 MB input file. Like the MITRE benchmarks, these benchmarks
show no statistically significant overhead.

Unfortunately, the server applications have relatively high variance due to network latencies,
disk caching, etc. To deal with this issue and benchmark worst-case overhead, we use the
microbenchmarks described in Section V-C2. For these benchmarks, we perform 50 timings,
where each timing invokes 10 or 1,000 OS commands for the bzip2 or echo microbenchmark,
respectively. The microbenchmarks that invoke bzip2 to compress a file show that S3 causes
practically no overhead, only 0.2%. The true worst-case performance overhead is when the
program does nothing but issue OS commands, and each OS command invocation completes
extremely quickly. This case is represented by the microbenchmark that issues the echo hello
command. These benchmarks show that the absolute worst case overhead might be as high as
22%. However, in practice the actual work performed by the program and by executing the OS
command clearly dominates the overall runtime. Only our worst-case microbenchmarks
demonstrate that S3 generates any measurable overhead.

To verify the move-to-front heuristic was working properly, we measured the overhead of the
echo microbenchmark that uses the system function to invoke OS commands as we vary the
number of DNA fragments. We automatically added randomly generated strings to the program’s
DNA fragments. Figure 42 shows the average time in microseconds for the microbenchmark to
execute the system call 100 times, using from 300 to 10,000 signatures (timing starts after steady
state has been reached). There is a very slight positive correlation as shown by the line of best fit
y = 0.002x + 1194. Our investigation indicates that the command processing and matching time
after initialization was fixed across the differing number of signatures, but that as there are more
signatures in the process’s address space, the fork system call (used to implement system) takes
longer. We suspect this is a result of taking slightly longer to copy additional page table entries
for the new process.

In practice, this additional overhead is negligible since most programs have few signatures. For
example, SpamAssassin Milter has 316 signatures and nginx has 2,017. Figure 43 shows the
average time in milliseconds to process an email transaction over 50 trials applying S3 with from
320 to 10,000 signatures to SpamAssassin Milter, which shows no trend. We would not have
expected to see any correlation, given an expected increase of only 20 microseconds based on
our microbenchmark and the higher time variance of the email benchmark.

Benchmark Size (KiB) Total (s) Extraction (s)
spamass-milter 0.3.1 142 17.3 0.60
cbrPager 0.9.16 198 25.8 0.69
C-C078-NGIN-04-DT03-02 708 238.6 8.3
C-C078-CHER-04-DF09-02 548 224.2 4.8

Table 4. Analysis time in seconds

183
Approved for public release: distribution unlimited.

Based on these microbenchmark and real-world benchmark performance results, we believe that
in practice the S3 system would introduce no measurable overhead, and is the fastest OS
command injection detector to date.

4.7.5 Analysis Time
We measured the time for offline analysis (i.e., DNA Fragment Extraction) of the real-world
benchmarks. The results are shown in Table II. This table shows the size of the analyzed
executables and libraries, the entire static analysis time, and the portion of that time spent in
fragment extraction and processing. This analysis needs to be performed only once. Our results
show the analysis taking up to four minutes for nginx. The time is dominated by the disassembly
and IR recovery steps that can be shared by other binary analyses and protections. The actual
time devoted to string extraction and post-processing amounts to about 2% of the analysis,
completing in between 0.5 to 8 seconds on our benchmarks.

4.7.6 Security Discussion
4.7.6.1 Spurious Attack Detection (False Positives)
The current S3 prototype makes the assumption that command words originate from static strings
in the binary or dependent libraries. If this assumption is violated, S3 may incorrectly flag a
benign command as an attack, thereby breaking programs. As observed by Halfond et al., these
situations can often be detected easily during a pre-deployment testing phase [101]. Since the S3

architecture cleanly separates the specification of fragments from their use at run-time, additional
fragments can be incorporated simply by appending to the DNA fragment list. This step could be
done manually or automatically through further tool support.

Another possibility is that the strings in the program that form commands cannot be detected via
static analysis of the binary program. Such a situation might occur if the program is encrypted or
highly obfuscated. Such situations are expected to be uncommon. However, we do not have
experimental evaluation of the prevalence of obfuscated binaries and our evaluation suite may
not be representative in this respect.

4.7.6.2 Missed Attack Detection (False Negatives)
The extraction heuristic introduced in Section IV-A may lead to spurious fragments, i.e., string
fragments that do not actually exist in the binary’s source code. Spurious fragments may also be
introduced as a result of separating of fragments containing format string specifiers into sub-
fragments (Section IV-A2). For example, the fragment "echo ’%s’" would be sub-divided into
the fragments "echo ’" and "’". These spurious fragments may inadvertently match special shell
operators or command words that might be useful in an attack, e.g., ’, ‘, <, >, $(, |, ;, &.

Another issue is that a binary may truly contain dangerous string fragments. Consider the
following code snippet used for filtering out dangerous characters:

if (strstr(s, "’") || strstr(s, "‘") || strstr(s, ">")) ...
Or code that uses concatenation to assemble strings:

string s = "echo ’"; s += name; s += "’";
Such strings may thwart the ability of S3 to detect all attacks. The current S3 system handles this
situation by using the policies described in Section IV-E. These policies enforce the constraints
that critical command names, along with shell characters that start sub-command, must come

184
Approved for public release: distribution unlimited.

from a single signature. These policies also handle the case where there may be fragments for
each character in the alphabet, which could be reassembled to form any command name. Such a
situation might be common for some programs that utilize many different command line options:
programs often contain each command line option as a single character string! Despite this, S3

has been able to detect all command injections in practice using the policies described
previously.

1) Future Work: Reducing the Attack Surface: We plan on investigating simple data flow
analyses methods to prune the fragments to just the set which might reach an OS command site.
We would omit a fragment if we could prove that it never flowed into a critical command, as is
the case with the strstr example above. Furthermore, we plan on refining our fragment matching
algorithm to allow for regular expressions. Instead of breaking up fragments when they contain a
format string specifier, we would instead substitute the corresponding regular expression pattern
specifier, e.g., [0-9]+ for %d.

4.7.6.3 Subtle Injections
Some “command injections” are particularly difficult to detect using tainting information.
Consider this program snippet:

system("make");

The parameter to the command execution library is constant. However, if the program has root
privileges and the user has the ability to control the executable search path, they can modify the
make command to do as they wish, and avoid the programmer’s intended security policies.
Likewise, consider this program snippet:

sprintf(buf,"cat %s", argv[60]); system(buf);

The user is presumably allowed to specify a file to be displayed by the program. However, if the
user specifies a file with a relative or absolute pathname, a security policy may be violated.
Perhaps even trickier is if the user specifies no file at all, and the command becomes simply cat
with no parameter. Terminal input is then used instead of a file on the file system. Again, no
command is “injected” into the program.

Lastly, if the program specifies that an external intepreter should be used to interpret commands,
detection may be challenging. Consider this program snippet:

sprintf(buf,"echo %s | bc", argv[60]); system(buf);

The program snippet indicates that the user should be able to specify input to the bc program.
However, bc accepts a large variety of commands, which may have effects that were not
anticipated by the programmer. Many programs in a standard Linux install have this
characteristic, e.g. bash -c, zsh, find -exec, psql -c, printf, etc., all have flags that allow them to
interpret arbitrary commands. Furthermore, there are many non-standard interpreters. There is no
a priori way to establish whether a program is an interpreter or not, which language it might
accept, and which parts of the language are intended by the programmer.

While each of these cases are hard to detect with S3, they also represent the most challenging
command injections to handle automatically. They represent the fundamental problem that

185
Approved for public release: distribution unlimited.

programmer intent is not typically available. Without clear, correct, and formally represented
programmer intent, no tool can detect all OS command injections. Even expensive taint
propagation systems, which are considered largely effective, would be ineffective against the
attacks shown.

 C6: Concurrency-Error Defenses 4.8
This section presents the results of our evaluation of the defenses against concurrency
vulnerabilities discussed in Section 3.7

4.8.1 TOCTOU Defenses
In all real-world programs we tested, injecting our TOCTOU tool produced no noticeable
runtime overhead. Presumably this is because we are hooking file system operations which are
typically infrequent and already slow, since they are accessing persistent storage.

We were unable to obtain a real-world program with a file system TOCTOU vulnerability and a
corresponding exploit. As such, we evaluated our mitigations against synthetic tests that exhibit
TOCTOU vulnerabilities for file operations that we support.

4.8.2 Deadlock Defenses
We evaluated the effectiveness of our deadlock tool against many synthetic tests, as well as
against a real-world deadlock from the sqlite database library. It effectively detected and
recovered from all deadlocks, and was able to avoid them on the second run of the program.

Performance was an important consideration for our approach. Our use of a completely dynamic
technique meant that we had to run the deadlock detection algorithm at every lock() operation,
which can be quite expensive. Initially performance was quite bad: approximately 800% on some
applications. We then modified our approach to attempt a few non-blocking calls to the lock()
operation before performing deadlock detection. If any non-blocking lock() call succeeds then
we are clearly not in a deadlock, and the detection step can be skipped. This drastically reduced
overhead, as you can see below.

We evaluated performance on parallel bzip2 (Pbzip2) and Apache. We ran PBZip2 on a 20MB
compressed file, and varied the number of threads. We ran each test 10 times. Table 5 shows the
results, where “Protected” means it was run using the deadlock tool. Overhead ranges from <1%
to about 13% (mostly due to particularly large outlier in one of the runs).

Table 5: PBZip2 experiments with a 20MB bz2 file. Times are in
seconds, and are averaged over 10 runs.

Threads 2 4 6 8
Compress (Unprotected) 13.48 7.29 6.32 5.73
Compress (Protected) 13.54 7.50 6.54 5.98
Compress Overhead 0.4% 2.9% 3.5% 4.3%
Decompress (Unprotected) 3.01 1.78 1.50 1.30
Decompress (Protected) 3.07 2.02 1.56 1.42
Decompress Overhead 2.0% 13.5% 4.0% 9.1%

186
Approved for public release: distribution unlimited.

For testing on Apache, we used the ab (Apache Bench) utility and the default home page. For
each test we did 10 runs of 10000 requests each. These are short, frequent requests so it exercises
the deadlock code very heavily. From Table 6 you can see that the tests with fewer threads have
lower overhead, probably because of less lock contention.

Table 6: Apache tests, for a variety of simultaneous connections (threads).
Times are in seconds, and are averaged over 10 runs.

Connections 20 40 60 80 100
Average Time
(Unprotected) 0.6911 0.6643 0.633 0.6024 0.6479
Average Time
(Protected) 0.9568 0.927 0.9182 0.876 0.9367
Increase 38.4% 39.5% 45.1% 45.4% 44.6%

Our profiling indicates that the primary remaining cause of performance overhead is our
collection of stack traces at synchronization operations. This is upwards of 90% of the time the
process spends inside the deadlock tool. To improve upon this we would look into extending an
approach like Probabilistic Calling Context [44] to do only the last K functions on the stack.
Unwinding the stack on the fly (which is what we do now) is simply an expensive operation.

4.8.3 Signal-Handler Defenses
We evaluated our signal handling against many synthetic tests. Errors related to CWEs 479 and
831 were handled very nicely by this approach. It further has the advantage of protecting our
other mitigations (namely, Twitcher malloc and our deadlock detection) from signal handler
interruption.

Our testing indicates that buffering signals has essentially no overhead for most programs. In
some of our micro tests (which process significant numbers of signals) we actually noticed that
buffering improved execution time. The deadlock performance numbers in the previous section
actually include signal buffering enabled as well.

4.8.4 Atomicity-Violation Defenses
The preliminary evidence indicates that perturbing the schedule early in process execution does
not necessarily change the schedule later in process execution. Below we describe a simple
experiment where we attempted to roughly measure the overall impact of early, random delays
on the thread schedule.

In [72] they describe a Deterministic Multi-Threading (DMT) approach where part of their
evaluation is based on memory order determinism. The referenced DMT approach perturbs the
schedule only at synchronization API calls (e.g., pthread_mutex_lock()) and shows that this
correlates significantly with changes to the order in which memory accesses occur between
threads. Other DMT approaches [71] have also used synchronization API-based determinism as
a proxy for actual schedule determinism. We use this connection between synchronization API
ordering and schedule determinism to measure the impact of our random delays.

We performed the experiment using Parallel BZip2 (pbzip2) with 8 threads. We traced all
pthreads synchronization API calls, along with their argument (e.g., which mutex) and the thread
that performed the operation. Thread IDs were normalized in a first-come, first-served fashion.

187
Approved for public release: distribution unlimited.

ASLR was disabled to get determinism run-to-run in the API arguments. We then used diffutils
as an approximation for computing the edit distance between these traces (since they were line-
based traces). We tested delays of none, 0.5 seconds, 1 second, 2 seconds, and 4 seconds. We did
30 runs for each delay value.

Figure 44 shows the average of taking the pair-wise trace differences between the runs, at each
delay level. As you can see, these results seem to indicate that determinism actually increased
with any introduced delay.

Delay None 0.5 s 1s 2s 4s
Average Pair-Wise Trace Difference 4022.12 3800.74 3887.67 3789.73 3773.63

Figure 44: Average pthreads trace difference between 30 runs of pbzip2 with 8 threads.
One possibility is that using a trace of pthreads operations as a proxy for determinism is not
valid, or simply not a fine enough granularity measurement. The real proof of whether this
technique is effective would be to test against actual, exploitable atomicity violations. On real,
deployed systems, the non-determinism inherent in the system may outweigh any injected delays
and be sufficient to prevent the repeatable exploitation of races.

 C7: Stack-Layout Randomization Evaluation 4.9
4.9.1 Transformation Metrics
To evaluate the effectiveness of SLR on real programs, we transformed 18 Unix core utilities
version 7.4. Stack layout randomization depends on regression tests to validate layout inferences,
and so we selected eighteen based on the availability of regression tests provided by the vendor.

We compiled all 18 utilities using gcc version 4.4.3 with O3 optimizations and dynamic linking
on Linux kernel 2.6.32-35-generic as part of Ubuntu 10.04.03 LTS.

188
Approved for public release: distribution unlimited.

Figure 45. Statistics for the Binary Programs Used for Assessment

189
Approved for public release: distribution unlimited.

Figure 46. Performance of the All Offsets Inference Heuristic

Only those functions that were not dynamically linked were transformed, i.e., only those
functions whose definitions can be found statically in the binary. Libraries should be transformed
and evaluated separately as separate regression tests are needed to properly test all library
functions. Additionally, libraries should only need to be transformed once and reused by any
number of binaries.

Figure 45 shows the statistics of the binaries used and the way in which functions were
transformed. For each program, all but one of the transformable functions were transformed
using one of the layout inference heuristics. The exception was present in all programs and
removed from transformation through regression testing.

Also present in every program was a function that was always reverted to using ESI, the most
conservative layout heuristic. The vast majority of transformations, 93.6%, were based on
layouts produced by our most aggressive heuristic, AOI. Thus 6.4% of all functions initially
transformed with AOI resulted in semantic changes detected by regression testing that triggered
a transformation rollback.

Figure 46, Figure 47, and Figure 48 show the distribution of the number of memory objects
detected on the stack by each layout heuristic used for each function randomization, where a
memory object may be a local variable or the out arguments region. In Figure 46, the distribution
for AOI shows that 56.9% of all AOI inferences used found only one or two stack memory
objects per function. Since AOI is the first inference used by default, this result suggests most

190
Approved for public release: distribution unlimited.

functions use few or no local variables, perhaps leaving the stack with only an out-arguments
region.

Figure 47. Performance of the Direct Access Inference Heuristic

191
Approved for public release: distribution unlimited.

Figure 48. Performance of the Scaled Access Inference Heuristic

The distributions for both DOI and SOI, Figure 47 and Figure 48, show that DOI is generally
more aggressive than SOI. Bhatkar et al [42] report dynamic analysis performed on a suite of
eight programs for which they find an average of 87% of the stack accesses made are to non-
buffer stack variables. If non-buffer stack variables are most prevalent, then prevalence of direct
accesses is also expected since this is the typical access mechanism for non-buffer variables.
DOI would also be expected to infer the presence of larger numbers of variables than SOI
because direct references are more common.

If a layout inference is only able to find one stack memory object, then the layout is reducible to
the most conservative layout inference, ESI. In many cases SOI is either reducible to ESI, see
Figure 48, or produces a very course grained layout consisting of only two memory objects
usually indicating the separation between the out arguments region and the remaining stack. This
might explain why few functions (at most two unique functions) are transformed with ESI.
Course-grained inferences are less likely to break expected behavior, and by default if ESI and
SOI produce the same number of memory objects, the scaled-offset inference is attempted first.

4.9.2 Performance Metrics
To evaluate run-time overhead, SLR was applied to a set of seven SPEC CPU2006 C
benchmarks. Execution-time overhead (wall clock time) was measured on a system with a
dedicated 4-core, AMD Phenom II B55 processor, running at 3.2 GHz. The machine has a
512KB L1 cache, a 2MB L2 cache, a 6MB L3 cache, and 4GB of main memory. Performance
numbers were generated by running the benchmark 3 times. For these measurements, the test

192
Approved for public release: distribution unlimited.

programs were compiled using gcc version 4.4.3 with O2 optimizations and dynamic linking on
Linux kernel 2.6.32-34-generic as part of Ubuntu 10.04.03 LTS. The regression tests used for
each benchmark consisted of a subset of the SPEC train and test input suites for each program.

Figure 49. Statistics of the SPEC2006 Benchmarks Used for Timing Assessment

Figure 50. Timing Assessment of SLR on the SPEC 2006 Benchmarks

193
Approved for public release: distribution unlimited.

Figure 49 shows the statistics for each program and how functions were transformed. This data is
consistent with the results from the coreutils programs (see Figure 45). However, the regression
tests used for SLR were not extensive as the goal of this experiment was to provide execution-
time performance results. We provide these statistics to show that actual transformations were
made to these benchmarks, and most transformations used our most aggressive layout heuristics.
However, without extensive regression testing many of these transformations might actually be
based on incorrect layout assumptions. The only functionality of any consequence for these
benchmarks is that which is executed for performance testing, so as long as this expected output
did not break and SPEC did not report any errors or output discrepancies, as compared with the
baseline data, we considered the transformation successful.

Figure 50 and Figure 52 show the runtimes and run-time overheads of seven programs with and
without SLR applied. The execution-time overhead of the PVM, the software dynamic translator,
averaged 3.4% over the execution times of the compiler-produced binary (native) code. The
average execution-time overhead of the PVM running the SLR binary rewriting rules over the
native run was 15.6% and ranged between 2.4% and 59.5%. SLR, then, only incurs a 9%
overhead over the PVM alone, i.e., dynamic binary translation but with no transformations being
applied.

The current implementation of SLR makes no effort to keep stack variable alignment, and this
can cause cache performance losses that can greatly increase the overhead in certain programs.
The worst overhead we found was 59.5% for sjeng. Retransforming this program with stack
alignment, we were able to improve the overhead to 36.8%. The results of security analysis (see
section C) suggest misalignment of the stack may have security benefits; we therefore leave it to
the user to decide if the performance penalty of misalignment is worth the security benefits. The
remaining programs had an overhead of less than 16%, with many falling under 10%. If we
consider the overhead for unaligned sjeng as intolerable and accept the overhead for all other
programs, then replacing the overhead results for sjeng unaligned with the alignment enforced
randomization, the average overhead from SLR is 12.4%.

The more functions that are transformed by SLR, the more instruction rewriting rules must be
generated. Reading and processing this file is part of the transformation's overhead. For the
SPEC benchmarks we analyzed, less than 2 MB of rewriting rules were generated. However, for

Legend: “f” – segfault; “p” – exploit prevented; “s” exploit succeeded

Figure 51. Results of Running the Wilander Buffer-Overflow Exploit Tests

194
Approved for public release: distribution unlimited.

very large programs, it is conceivable that SLR could require large instruction-rewriting rule
files. The rewriting rules are currently stored in ASCII plaintext, and we believe that a binary
encoding of the rewrite rules and an efficient storage technique, such as gzip, could easily reduce
the processing time and reduce the memory footprint.

Figure 52. SPEC CPU2006 Run-Time Overhead

4.9.3 Security Discussion
We applied SLR to the Wilander buffer overflow test suite [217], specifically to the stack-based
buffer overflow subset consisting of twelve exploits. The Wilander suite provides buffer
overflows that are able to determine the appropriate amount by which to overflow the vulnerable
buffer at run-time. This functionality makes these overflows some of the most difficult cases to
thwart.

For SLR, the Wilander suite is problematic because all valid inputs, except for no input, trigger a
buffer overflow that results in execution of arbitrary code. Developing a set of regression tests
for this suite is problematic, because the expected behavior (in some sense the “correct”
behavior) is a buffer overflow that opens a shell. But this is precisely what SLR intends to defeat.

In order to apply SLR, we compared the binary with the original source code manually to
determine which of the four layout heuristics could be used for each function.

The stack-based subset of the Wilander suite contains six functions each containing two exploits
for a total of twelve stack-based exploits. From the manual analysis of the binary, we determined
that five functions could be transformed with AOI, which correctly identified all variable
boundaries.

195
Approved for public release: distribution unlimited.

For the sixth function, a buffer is randomly accessed using constant indices in the source code.
As a result, the binary contains constant offsets that refer to part of the buffer, which AOI
incorrectly identifies as variable boundaries. The most aggressive layout inference we were able
to use that was not affected by the random access of array elements was SOI. The inference
produced by SOI was very course grained, only identifying a boundary between the out-
arguments region and the local-variables region.

The Wilander test suite was randomized three times using SLR, and all stack-based exploits were
attempted for all three randomized versions. Any exploit which failed to achieve the goal of
opening a shell was considered thwarted. In all three randomizations, SLR thwarted all but one
of the twelve exploits; see the left side of Figure 51. The only exploit that managed to succeed
was implemented in the function which was transformed using SOI. Analysis of the exploit
indicated that the exploit could be thwarted by layout randomization alone, because the overflow
targets another variable on the stack. However, SOI was not sufficiently fine-grained to find the
boundaries necessary for successful randomization.

For the other eleven exploits, the run-time behavior was either a segmentation fault or a test suite
exploit failure report. Since the layout inferences for each function were validated manually to
identify variables correctly, a segmentation fault was considered evidence that SLR thwarted the
attack.

The exploits that produced segmentation faults and those that produced exploit failure reports
from the test suite were not consistent across the three randomizations. Some exploits require a
certain layout of variables to succeed. If this layout is not found, such as if the target data is
below the buffer, the attack is considered not possible and the exploit is aborted after printing a
message indicating the attack was not possible. Since the layout of variables is random, in some
variations the layout was susceptible to an attack while in others the attack was thwarted.

The cause of the segmentation fault for exploits not resulting in an exploit failure report was the
random padding added by SLR. The padding caused the exploit to overflow a buffer not intended
to be overflowed. The Wilander overflow exploits are very robust. At run-time, they calculate
the distance from the buffer being overflowed to the target data. After calculating this distance, a
block of characters equal in length to the distance are placed in a temporary buffer of static size.
However, SLR adds a random amount of padding between variables, thus increasing the
distance. The minimum padding amount between any two variables exceeds the statically
allocated space for the temporary buffer, and, as a result, an overflow occurs triggering a
segmentation fault. In most situations this overflow occurs in the glibc function memset.

While these results show both padding and randomization were effective in thwarting all but one
exploit, had SLR been applied to memset, the added padding might have obfuscated the overflow
that generated the segmentation fault, thus allowing the exploit to continue and possibly succeed.
We altered the Wilander test suite so that the temporary buffer had as much space as necessary to
prevent the segmentation fault overflow, and reran the experiment. The results are shown on the
right side of Figure 51.

Because the test suite calculates distances necessary for overflow at runtime, and the previous
cause of exploitation failure had been removed, the expected result was attack success for
randomizations where the target data had not been moved so as to prevent the attack. Instead,
SLR was successful in thwarting most attacks. All exploits rely on the assumption that local
variables are placed on boundaries with addresses that are divisible by four. Stack-layout

196
Approved for public release: distribution unlimited.

randomization adds a random padding between variables, and therefore four-byte alignment is
not guaranteed. The buffer is still overflowed, but target data was not corrupted in the necessary
way to execute the payload.

The Wilander suite was engineered to provide sophisticated exploits that are highly likely to
succeed in overflowing a buffer. Nevertheless, SLR was able to thwart attacks, even when the
code was altered to improve the probability of attack. Unexpectedly, the fact that the padding
added between variables left boundaries on addresses that were not divisible by four defeated
some attacks. For more common and likely less well engineered attacks, we would expect SLR
to be equally successful.

 C7: Twitcher Evaluation 4.10
Unfortunately, we did not have enough funds for a comprehensive review of Twitcher’s security.
We did demonstrate Twitcher’s ability to prevent the Heartbleed attack against many clients of
OpenSSL, including the popular web server NGINX [13]. We also were able to gather some
performance numbers based on inserting and checking guards by hooking libc functions.
Twitcher’s raw performance are given in the following table:

Benchmarks Base (s) + Twim (s) + RdWr Guards (s) +Read Guards (s) +Free Guards (s)
400.perlbench 523 580 612 632 696
401.bzip2 733 695 709 703 720
403.gcc 464 478 477 482 564
429.mcf 832 871 814 817 836
445.gobmk 649 640 635 648 643
456.hmmer 605 594 601 615 615
458.sjeng 747 743 759 744 747
462.libquantum 613 632 613 629 628
464.h264ref 880 912 1109 1111 1100
471.omnetpp 524 617 659 662 709
473.astar 697 645 660 668 675
483.xalancbmk 390 462 478 497 530
Average 638 656 677 684 705

The first column shows the name of the benchmark and the second shows the time to run the
benchmark natively on a 64-bit, 2-core VM running on an Intel Core i7-4510U CPU at 2.6 GHz
host. Columns 3–7 show the performance as additional features are cumulatively enabled,
including the Twim memory manager, read/write guards, read guards, and free guards and a free
quarantine. The following table summarizes the performance for each additional feature
(cumulatively) as a percentage of the base performance:

197
Approved for public release: distribution unlimited.

Benchmark +Twim +RdWr +Read +Free
400.perlbench 111% 117% 121% 133%
401.bzip2 95% 97% 96% 98%
403.gcc 103% 103% 104% 121%
429.mcf 105% 98% 98% 100%
445.gobmk 99% 98% 100% 99%
456.hmmer 98% 99% 102% 102%
458.sjeng 100% 102% 100% 100%
462.libquantum 103% 100% 103% 102%
464.h264ref 104% 126% 126% 125%
471.omnetpp 118% 126% 126% 135%
473.astar 93% 95% 96% 97%
483.xalancbmk 119% 123% 128% 136%
Geometric Mean 103% 106% 108% 111%

The overall impact on performance is very low.

 Instruction-Location Randomization 4.11
We implemented ILR as one of the defenses provided by PEASOUP. We demonstrated the
effectiveness of ILR using a set of vulnerable programs (including a binary distributed by Adobe
to read PDF files) and ASLR- and 𝑊𝑊⨁𝑋𝑋-defeating exploits. An important consideration of any
mitigation technique is the run-time overhead. Many proposed mitigation techniques incur high
overheads — as much as 90% to 2000% [134, 163]. Using a large industry standard CPU
performance benchmark suite [199], we compared the run time of ILR-protected executables to
that of native executables. The average run-time overhead of ILR was 13% with over half of all
programs having effectively no overhead (less than 3%) indicating that ILR is a realistic and
cost-effective mitigation technique.

4.11.1 Experimental Setup
We evaluated the effectiveness and performance of the ILR prototype using the SPEC CPU2006
benchmark suite [199]. These benchmarks are state-of-the-art, industry-standardized benchmarks
designed to stress a system. The benchmarks are processor, memory and compiler stressing. The
benchmarks are provided as source, and we compiled them with gcc, g++, or gfortran (as
dictated by the program’s source code) version 4.4.3 before applying our ILR technique. The
benchmarks are compiled at optimization level -O2, and use static linking. We used static linking
to thoroughly demonstrate the effectiveness of our system at randomizing large bodies of code,
and to fully stress the system using all the odd, compiler-specific, language-specific, hand-coded,
or otherwise abnormal code that is often found in libraries. Furthermore, having all the code
packaged into one executable increases the attack surface making it easier to locate an ROP
gadget. Thus, we believe our evaluation is a worst-case analysis for these benchmarks.

We run our experiments on a system with a 4-core, AMD Phenom II B55 processor, running at
3.2 GHz. The machine has 512KB of L1 cache, 2MB of L2 cache, 6MB of L3 cache, and 4GB of
main memory.

198
Approved for public release: distribution unlimited.

Performance numbers are generated by running the benchmark 3 times. Unless otherwise noted,
the performance of a protected binary is reported by normalizing its run time to the run time of
the corresponding original binary produced by the compiler.

4.11.2 Security-Related Experiments
To verify that our technique stops attacks that are successful against ASLR and W\xorX
protected systems, we performed a number of tests on vulnerable programs. For each test, ASLR
and 𝑊𝑊⨁𝑋𝑋 were enabled.
In the first test, we used a small program (44 lines of code) that had a simple stack-based buffer
overflow. The program assigns grades to students based on the program's input, the student's
name. A malicious input can cause a buffer overflow enabling an attack.

We created a simple arc-injection attack which causes the program to print out a grade of B
when the student should receive a D. It was trivial to perform the arc-injection. ASLR was
ineffective because no randomized addresses were used—only the unrandomized addresses in
the main program. Similarly, 𝑊𝑊⨁𝑋𝑋 was ineffective because the attack only relied on instructions
that were already part of the program. We also used a tool called ROPgadget [10] to craft an
ROP attack that causes the program to start a shell program which prints that the student's grade
is an A.

Again, ASLR and 𝑊𝑊⨁𝑋𝑋 were ineffective. ILR, however, thwarted the attack.

We next verified our technique against a vulnerability in a realistic, dynamically linked program:
Ubuntu's PDF viewer, xpdf. We seeded a vulnerability in the input processing routines. An
appropriately long input can trigger a stack overflow. In this case, we were able to use
ROPgadget to craft an attack to create a shell. ILR was again able to prevent the attack.

Lastly, we used a version (9.3.0) of Adobe's PDF viewer, acroread, that we downloaded from
Adobe's website in binary form. The program has a well-documented vulnerability when parsing
image files (see CVE-2006-3459) that allows arc-injection and ROP attacks [6]. Again, we used
ROPgadget to craft an ROP attack payload for this vulnerability to start a shell program.

Because exploiting the vulnerability is more complicated, it took some additional effort to adapt
the attack. Using information from Security Focus’s website, we were able to create a malicious
PDF file that effected the ROP attack [6]. ILR successfully processes and randomizes the 24MB
executable, and thwarts the attack.

Section 4.11.4 discusses ILR’s effect on the use of such tools as ROPgadget, and Section 4.11.6
describes how randomized addresses needed for the attack are protected from exfiltration by the
ILR VM. Consequently, we believe attacks using programs such as ROPgadet are not possible
when ILR is employed.

4.11.3 Effectiveness of ILR Components
We continue our evaluation of ILR by examining the effectiveness of the individual components
that make up the offline ILR transformation.

4.11.3.1 Disassembly Engine
The goal of the Disassembly Engine is to locate any instruction which might be executed, so that
the instruction can be relocated later. For our benchmarks, we found that the disassembly engine
successfully located 100% of the executed instructions for all benchmarks. The Disassembly

199
Approved for public release: distribution unlimited.

Engine has met its first goal. We omit further discussion on disassembly as such techniques are
well studied [25, 123, 180].

A secondary goal of the Disassembly Engine is to introduce few conflicting facts about
instruction locations into the instruction database. We measured the fraction of bytes in the
executable segments that belonged to more than one instruction. On average, only 0.005% of
bytes were represented as part of more than one instruction with the worst-case having only
0.012% of bytes in conflict. Thus, we believe that the ILR disassembly engine has met its second
goal.

4.11.3.2 Call Site Analysis
Figure 53 shows the percentage of call sites that were marked as safe to randomize their return
addresses. The first bar shows that our technique works well for some benchmarks. 403.gcc for
example, has 91% of the return addresses randomized while 416.gamess reaches 97%. Other
benchmarks do not perform as well; 447.dealII and 483.xalancbmk only manage to identify
5% and 3% of return addresses as randomizable. The C++ benchmarks (447.dealII,
450.soplex, 453.povray, 470.lbm, and 471.omnetpp) do especially poorly. Only 10% of
calls can use a randomized return address.

Figure 53. Percent of Call Instructions Given Randomized Return Address

To understand why the call site analysis phase was less effective on some benchmarks, we
examined the reasons that the call site analysis indicated that a randomized return address could
not be used.

Figure 54 shows the results as a fraction of all call instructions. We find that indirect calls (which
cannot use a randomized return address because our analysis does not attempt to determine
possible targets) result in a small fraction of unrandomized return addresses, resulting in 5% of
calls on average. Possible non-standard uses of the return address, such as thunks, result in only
7.6% of return addresses. Interestingly, we find that direct call instructions to targets that we
were not able to include in our disassembly result in 1.2% of the total call instructions. Closer
inspection indicates that the compiler is actually emitting a call 0x0 instruction in many library
functions. If this type of call instruction were to ever execute, it would cause a fault in the

200
Approved for public release: distribution unlimited.

program, but the call is (dynamically) unreachable code. The compiler cannot detect this fact,
and so cannot eliminate the call. A minor improvement would randomize the return address for
this type of call, knowing that the return address cannot be used if the call instruction causes a
fault. Together, these causes represent only 21% of all unrandomized call instructions.

The top bar in the figure shows the real cause of the poor performance, especially in C++
programs. More than 32% of call instructions are marked as not being able to randomize the
return address because of the exception handling tables used in the ELF file. In the C++
programs, this number jumps up to an average of 79%! In C++ programs, the compiler typically
cannot calculate when a function, f, makes a call, whether the called function will throw an
exception and need to clean up f’s stack. Consequently, the C++ compiler emits cleanup code
into f, and adds to the .eh_frame and .gcc_except_table ELF sections to drive the
exception handling routines. Since most functions with a call site fit this form, most call
instructions cannot have a randomized return instruction.

It is interesting that even the C and Fortran benchmarks use the exception handling table. The
C/Fortran benchmarks’ application code does not seem to directly add to these tables. Instead,
the table entries come from library routines that are compiled to work with C++ source.

Figure 54. Breakdown of Call Instructions with Original Return Address

We believe that modifying the PEASOUP toolchain to edit the exception handling tables to
reflect the randomization would be feasible. The tables are in a fixed, known format and can
easily be rewritten with randomized addresses. Other solutions are possible as well. For example,
detecting if C++ exception handling is actually used in the program or a portion of the program
would allow return address randomization to be selectively applied. While fully exploring this
idea is beyond the scope of this paper, we were able to modify our ILR toolchain to ignore the
exception handling tables when calculating safe calls. We term the ILR toolchain with this
modifications ILR+. ILR+ represents a very close approximation to a system that could easily be
achieved by rewriting the exception handling tables in a binary.

201
Approved for public release: distribution unlimited.

With ILR+, the call site analysis performs well across all benchmarks. As Figure 53 shows, 93%
of all calls are marked as using a randomized return address.

4.11.3.3 Indirect Branch Target Analysis
We continue our evaluation of ILR by measuring the effectiveness of the analysis of indirect
branch targets (including return addresses). Figure 55 shows the fraction of instructions that were
detected as possible indirect branch targets. On average, only 2.2% and 0.60% of the instructions
are marked as indirect branch targets for ILR and ILR+, respectively. Consequently, we believe
our simple scheme for detecting possible IBTs is not too aggressively marking instructions as
possible indirect branch targets.

Figure 55. Percent of Instructions Marked as Possible Indirect Branch Targets

4.11.3.4 Moved Instructions
Since we emit rewrite rules for every byte of the executable segment, technically all instructions
are moved. However, IBTs get a rule that maps the unrandomized address to the relocated
instruction. Despite technically being moved, we consider this an unmoved (or pinned)
instruction because if an attacker were to inject an arc or locate an ROP gadget at the
unrandomized address, they could still exploit that information in the randomized program.

Figure 56 shows the percentage of instructions we can move for our benchmarks. The first bar in
the figure shows effectiveness of ILR without the call site analysis; approximately

95.0% of instructions were successfully and safely located at a randomized address. The second
bar shows call site analysis for standard ILR; 97.4% of instructions are moved. The last bar
shows the results for ILR+, almost all instructions (99.1%) are assigned to a randomized location
in memory. This randomization represents a two order of magnitude reduction in the attack
surface for arc-injection and ROP attacks.

202
Approved for public release: distribution unlimited.

Figure 56. Percent of Instructions that were Moved Using ILR

4.11.4 ILR Security
To assess the security of ILR, we first note that up to 99.7% of the instructions can be
randomized. Furthermore, all of the executable bytes of a program that do not make up a
compiler-intended instruction sequence are marked as invalid for execution. These features of
ILR reduce the attack surface for arc-injection by over two orders of magnitude. We believe it
would be very difficult for an attacker to inject even one control-flow arc that achieves a
meaningful result.

However, it has recently been shown that even small programs (with at least 20KB of program
text) contain enough executable bytes to successfully produce an ROP attack [83]. The basic ILR
algorithm reduces the unrandomized program text to less than 20KB for 26 of the 29 SPEC2006
benchmarks, while ILR+ reduces the attack surface to below 20KB for 28 of 29 benchmarks. On
average, ILR+ reduces the attack surface to just 3KB! Thus, even state-of-the-art gadget
compilers likely cannot detect enough gadgets to mount an ROP attack in a ILR+-protected
program.

To more directly validate that ILR successfully randomizes enough gadget locations to make
ROP attacks infeasible, we further examine the SPEC benchmarks. While we know of no
vulnerabilities in these benchmarks, they, like all large pieces of software, may in fact have an
error that might allow an ROP attack. We study the feasibility of such an attack on these large
applications if an appropriate vulnerability were to be found or seeded.

To search for gadgets in these benchmarks, we use a tool available online, ROPgadget [10]. The
tool contains a database of gadget patterns and can scan binary programs to identify specific
gadgets within an executable. For example, one of the gadget patterns is mov e?x, e?x;ret,
which identifies gadgets that move one register to another. We experiment with two versions of
the tool, version 2.3 and 3.1. Version 2.3’s database contains 60 gadget patterns, while version
3.1 has significantly more: 185 gadget patterns. Version 3.1 also contains a simple gadget
compiler that matches gadgets with an attack template to form a complete attack payload. While
these payloads do not automatically exploit a vulnerability in a program, they represent a

203
Approved for public release: distribution unlimited.

significant portion of the attack. Converting this attack payload into an actual attack is dependent
on the exact vulnerability, and is not automated. However, if ROPgadget cannot assemble the
attack payload from the attack template, this failure indicates that the templated ROP attack
could not proceed, even with a suitable vulnerability. ROPgadget 3.1 comes with two, simple
attack templates.

For the experiment, we modified both versions of ROPgadget to ignore randomized addresses, so
that the tool can only locate gadgets at the unrandomized code addresses. This modification
mimics an attacker's abilities via a remote attack. Figure 57 shows how ILR affects an attacker's
ability to mount an ROP attack. The first bar shows the percentage of unique gadgets that have
been moved by ILR. We count unique gadgets because typically an attacker could re-use a
gadget if needed, and any particular instance of a gadget is likely enough to mount an attack
which used that gadget. Over 94% are moved on average, with 483.xalancbmk being the worst
performing at only 87%. The second bar shows the results for ROPgadget version 3.1. Even
more of the gadgets appear to be hidden; over 90% in all cases, and 96% on average. What the
figure does not show, however, is that version 3.1 located slightly more gadgets in the ILR-
protected version, but found many more gadgets in the unprotected version, thus the overall ratio
has improved, indicating that ILR is effective at hiding most gadgets in a program, even in the
face of a better gadget identification framework. This result is quantified in the last bar of the
figure where we count not unique gadgets, but all gadgets (including duplicates). On average,
99.96% of the total gadgets have had their location randomized.

Figure 57. Reduction of Number of Gadgets Found After ILR

On average, only 2.48 gadgets remain in the protected program. The worst performing
benchmark (483.xalancbmk) has 6 unique gadgets, versus 67 for the unprotected program. Six
gadgets is not enough to mount an attack in most cases. Even the two very simple attack
templates included with ROPgadget version 3.1 require 8 and 9 gadgets. We note that on an
unprotected application, the gadget compiler can successfully generate an attack payload for
every program. In fact, both attacks are automatically detected as possible on 9 of the
benchmarks. On the protected program, no attack payloads are ever successfully generated.

204
Approved for public release: distribution unlimited.

With ILR+ (full results not shown) the probability of mounting an attack is further reduced. Most
ILR+ protected applications have only one gadget (21 of 29 benchmarks). In every case, this
lone gadget is an int 0x80 sequence. Used alone, this gadget cannot successfully mount an
attack. On average, only 1.5 gadgets remain available to mount an attack with ILR+.

4.11.5 Performance Metrics
4.11.5.1 Run-time Overhead
Figure 58 shows the performance overhead of the base VM (Strata), as well as the overhead of
ILR and ILR+. We see that Strata adds much of the overhead for the applications, and applying
the randomization costs little additional overhead. On average, Strata adds only 8% overhead,
with an additional 8% used for ILR. This extra overhead occurs in the short-running, but large
code size benchmarks, for example, 400.perlbench, 403.gcc, and 416.gamess). The
overhead added is mostly due to the startup overhead of reading the rewrite rules. In 481.wrf
benchmark, for example, we note that reading the rewrite rules takes about 45 seconds, and that
the 7% overhead difference between basic virtualization and ILR also corresponds to about 46
seconds. We believe that this startup overhead could be greatly reduced by a better rewrite rule
format than ASCII.

ILR+ actually reduces the overhead (by 3% to only 13%) compared to ILR. This reduction is due
to more call sites being randomized. As described above, storing an unrandomized return address
takes one extra instruction. With more return addresses randomized, the instruction count is
reduced. Since ILR+ has the largest effects on the C++ benchmarks, we see this difference most
in the C++ that are ILR+ compatible (447.dealII, 450.soplex, and 483.xalancbmk).

Figure 58. Performance Overhead of ILR and ILR+

Taken together, we believe there is strong evidence that ILR can be implemented efficiently,
perhaps as low as the basic virtualization overhead of only 8%. Even our prototype
implementation, which has overheads of 13%-16% overhead on average could be used to protect
many applications.

4.11.5.2 Space Overhead
Our prototype implementation has memory overhead from two sources. The first is from the
PVM we used to implement the ILR VM. Such overheads are well studied, and not particularly
significant for modern systems [30, 108].

205
Approved for public release: distribution unlimited.

The second source of overhead is the handling of the ILR rewrite rules. In our prototype
implementation, we made the design choice to use ASCII for the ILR rewrite rules. Our choice
makes sense for an evaluation prototype: we favored human readability and ease of debugging
over raw performance or storage efficiency. Consequently, we note that the on-disk size of the
rewrite rules can be quite large. For example, the largest benchmark, 481.wrf, has 264MB of
rewrite rules. The in-memory size is even worse, 345MB. This overhead is largely due to our
hashtable implementation that stores each byte of an instruction in a separate hash bucket, which
allocates many words of data for each byte stored in an ILR rewrite rule. However, 481.wrf is
clearly a worst-case for our benchmarks. The average size of the rewrite rules (104MB) is less
than half that for 481.wrf.

While our prototype implementation is currently inefficient, we do not believe the size of the
rewrite rules is an inherent limitation of ILR. Many techniques exist for minimizing this
overhead. For example, we used the gzip compression utility to compress the rewrite rules, and
obtained an average size of 14MB. We believe that a binary encoding of the rewrite rules and an
efficient memory storage technique could easily reduce the memory used well smaller than
14MB. On today's systems with multiple gigabytes of main memory, such space overhead should
be easily tolerated.

4.11.5.3 Analysis Time
We measured the analysis time of the ILR technique. We were able to process the SPEC
benchmarks in an average of 23 minutes each. Only the last step of the process creates any
randomization, so most of that processing time can be re-used if one wanted to re-randomize.
The randomization step itself took only 36 seconds, indicating that re-randomization once
analysis is complete could proceed very quickly.

4.11.6 Security Discussion
We expect the other protection mechanisms in PEASOUP, such as SIM, to protect the ILR
runtime implementation. This section discusses other issues related to the security of ILR.

4.11.6.1 Entropy Exhausting Attacks
The entropy of the ILR technique can be quite high. Since the ILR technique separates data and
instruction memory, randomized instructions can be located anywhere in memory, even at the
same addresses as program data, VM code or data. Many operating systems reserve some pages
of memory specifically for code to interface with the operating system, so those pages could not
be used for randomized addresses. Further, any unrandomized instructions restrict the entropy of
the remaining instructions. Since there are very few unmoved instructions, and almost all other
addresses are available for randomization, we believe it would be easy to produce a system that
has at least 31-bits of entropy on a 32-bit address system and at least 63-bits of entropy on a 64-
bit system. Thus, randomly attempting to guess gadget addresses is completely infeasible and
ILR can evade attacks which attempt to reduce the entropy of a system.

4.11.6.2 Information Leakage Attacks
A more likely attack scenario is that an attacker is able to leak information about randomized
addresses. Fortunately, the memory-page protection techniques described previously prevent
leaking of information about most randomized addresses. The only randomized addresses that
might be leaked are those that potentially end up in the application’s visible data. For ILR, that is

206
Approved for public release: distribution unlimited.

the randomized return addresses that might be stored in the application's stack. For a complete
ILR+ implementation, it also includes any randomized addresses that are written into the
application's exception handling tables.

In theory, all of these addresses might be leaked to an attacker. However, revisiting Figure 56,
we see that on average only 5% of addresses in the total program could be known by the user. In
practice, only a few randomized return addresses are available in the application at any instance,
and most return addresses could not actually be leaked. If it were possible for the entire
exception handling table to be leaked, the number of available addresses would likely be very
close to the ILR results, and no ROP attacks are available against ILR in our benchmarks.

Furthermore, since our ILR technique is designed to be applied to arbitrary executables, re-
randomization could occur regularly with little overhead. Regular re-randomization of high-
entropy systems has been shown to be effective in the context of information leakage [28].

Thus, information leakage is not a problem for ILR.

4.11.6.3 False Detections
A false detection occurs when the program performs an operation that is detected as illegal, when
there is no attack underway. On our benchmark suite, we found that there were no false
detections with ILR. Since our implementation of ILR+ is incomplete, we did observe two false
detections. Both 453.povray and 471.omnetpp resulted in incorrect output (from faulting the
program) when attempting to throw an exception. A complete implementation of ILR+ would
not demonstrate this problem. We believe this indicates that false detections would be rare in real
programs.

Nonetheless, we discuss some possible mechanisms by which false detections might occur.

False detections might occur if a program were to calculate an indirect branch target, instead of
simply storing the target in data memory as is most common. We found one example of this type
of code in gcc’s library for doing arbitrary precision arithmetic. The example, shown in Figure
59 and originally written in assembly, is used to dispatch into a switch-style table of code blocks.
Each block in the table is 9 bytes long. The assembly multiplies register eax by 9 (eax+eax*8),
then adds the the base of the first code block before finally jumping to that address. A similar
construct might be generated by a compiler, but we know of no compilers which generate this
type of code for a switch statement.

Other constructs exist that might hide code addresses. For example, a function pointer might be
calculated for some reason, such as for program obfuscation techniques.

Figure 59. Example of a Calculated Branch Target

A more common compiler construct that might calculate an indirect branch target is position
independent code (PIC). In PIC mode, the compiler will often generate a code address by
emitting a sequence of instructions that adds the current PC and a constant offset, knowing that
the desired code address is a fixed distance from the current PC. PIC code is not standard due its
performance overhead.

lea eax, [eax+eax*8+0x80b4545]
jmp eax

207
Approved for public release: distribution unlimited.

We believe that in most of these cases that a more advanced indirect branch analysis would solve
the problem. For example, the code in Figure 59 is prefixed by code to verify that register eax is
in proper bounds. A simple range analysis on the values that can reach the jmp instruction would
reveal the possible indirect branch targets.

Furthermore, our experience indicates that the ILR technique can easily print the address of an
indirect branch target if a false detection is encountered. A profile-based or feedback-based
mechanism that incorporates newly discovered IBTs would be easy to implement to reduce false
detections over time if the IBT can be detected as derived only from safe sources.

4.11.6.4 Shared Libraries
Modern computer systems are built using libraries that are loaded on demand, and possibly
shared among many processes. Linux uses the .so (Shared Object) format, while Windows uses
the .dll (Dynamically Linked Library) model. Our system is capable of processing and
randomizing a program that uses dynamic linking. Generally, analysis of these types of programs
is easier for our system. Since the code is divided into libraries, we know that if a library
contains a constant, that the constant can only be an IBT in the library being considered, not to
other libraries.

Thus, this separation dramatically reduces the number of potential IBTs for a library.
Furthermore, externally visible functions and symbols need to be referenced by a handle that is
given in the library's headers. Extracting these types of indirect branch targets is trivial.

While our prototype can process and effectively randomize programs that require shared
libraries, it does not actually randomize the libraries. Both Linux and Windows support some
form of ASLR which provides coarse-granularity randomization of shared libraries. We believe
our technique could easily be extended to include full randomization of shared libraries, but it is
not clear that doing so would always be the best solution. When feasible, it seems better to
provide randomization within the library itself. On Linux, this randomization could be
accomplished by using a randomizing compiler to generate a per-system version of the libraries.
When library source code is not available, such as on Windows-based systems, ILR-based
randomization would be important. To achieve this, ILR-rewrite rules for a library would have to
be loaded and symbolic addresses resolved whenever a new library entered the system. Such a
mechanism could be easily included in a dynamic loader, or by having the ILR VM watch for
library loading events.

4.11.6.5 Self-modifying Code
Our ILR implementation does not currently support self-modifying, dynamically generated, or
just-in-time compiled (JITted) code because our underlying VM does not support such
constructs. However, the ILR mechanism itself should operate properly with dynamically
generated and JITted code, which is significantly more common than self-modifying code. ILR
would not randomize the generated code, but we believe that to be an easy task for the JITter. A
security-minded JITter would perform this simple operation.

4.11.7 Conclusions
This summarizes the evaluation of instruction location randomization (ILR), a high-entropy
technique for relocating instructions within an arbitrary binary. ILR is shown to effectively hide
99.96% of ROP gadgets from an attacker, a 3.5 order of magnitude reduction in attack surface.

208
Approved for public release: distribution unlimited.

We have described the general technique, as well as evaluates two versions of an ILR prototype.
It further discusses the security implications of ILR. We find that ILR can be applied to a wide
range of binary programs compiled from C, Fortran, and C++. Performance overhead is shown to
be as low as 13% across the 29 SPEC CPU2006 industry-standard benchmarks [199].

ILR surpasses state-of-the-art techniques for defeating attacks in a variety of ways. In particular,
the technique:

• can be easily and efficiently applied to binary programs,
• provides up to 31 bits of entropy for instruction locations on 32-bit systems,
• can regularly re-randomize a program to thwart entropy-exhausting or information-

leakage attacks,
• provides low execution overhead,
• randomizes statically and dynamically linked programs, and
• demonstrated that it defeats attacks against large, real-world programs including the

Linux PDF viewer, xpdf, and Adobe's closed-source PDF viewer, acroread.

Taken together, these results demonstrate that ILR can be used in a wide variety of real-world
situations to provide strong protection against attacks and demonstrate the flexibility and power
of the PEASOUP infrastructure.

 SIM 4.12
This section describes the results of evaluation of early prototypes of SIM, which has been
superseded by SDCG (Section 3.10.3).

4.12.1 Performance Test
To test the performance overhead imposed by SIM’s protection, we conducted following
performance evaluations. All evaluations are done using kernel-mode implementation and the
test suite is SPEC CPU INT 2006.

Test Machine Configuration

• Host CPU: Intel Core i7 930
• Host memory: 6GB
• Host OS: Ubuntu 11.10 32bit
• Guest VM: KVM, 1 VCPU, 1.8G memory
• Guest OS: Ubuntu LTS 10.04 32bit

Test Setup

• Baseline: this test set the baseline for the rest test. It is done using a vanilla Ubuntu
kernel, and without stratafying the test programs.

• SIM kernel built without Stratafy: this test demonstrates how much overhead is
introduced by SIM’s kernel modification

• SIM kernel built with SIM turned off: This test uses stratafied test programs but sets
environment variable SIM_PROTECTION=0 to turn off SIM’s protection. It sets another
baseline for the next test. For optimization, we used STRATA_SIEVE=1

209
Approved for public release: distribution unlimited.

STRATA_RC=1 STRATA_PARTIAL_INLINING=0 and none optional protection
mechanisms.

• SIM kernel built with SIM turned on: This test shows the performance penalty
introduced by SIM’s protection. For optimization, we used the same optimization option
(STRATA_SIEVE=1 STRATA_RC=1 STRATA_PARTIAL_INLINING=0) and used no
other protection mechanisms.

Test Result
Every test is done after a reboot and the iteration is set to 5. The result is shown in Table 7, the
corresponding result is shown in Table 8.

Table 7 SIM Performance Test Results

 Baseline w/o SIM SIM w/o RC SIM w/ RC
BENCH BASE REF TIME RATIO TIME RATIO TIME RATIO TIME RATIO
perlbench 9770 424 23.0 646 15.1 728 13.5 670 14.6
bzip2 9650 716 13.5 753 12.8 741 12.8 756 12.8
gcc 8050 392 20.6 501 16.1 622 12.7 570 14.1
mcf 9120 504 18.1 510 17.9 480 17.8 504 18.1
gobmk 10490 533 19.7 676 15.5 817 12.9 680 15.4
hmmer 9330 993 9.4 994 9.4 1030 9.3 991 9.4
sjeng 12100 638 19.0 850 14.2 969 12.3 860 14.1
libquantum 20720 672 30.8 674 30.8 647 31.2 670 30.9
h264ref 22130 878 25.2 1061 20.9 1157 19.2 1097 20.2
omnetpp 6250 404 15.5 494 12.7 520 11.7 506 12.4
astar 7020 619 11.3 665 10.6 643 10.5 668 10.5
xalancbmk 6900 313 22.0 564 12.2 655 10.3 555 12.4

210
Approved for public release: distribution unlimited.

Table 8 SIM Performance Overhead

 Baseline w/o SIM w/o RC w/ RC to w/o SIM to w/o RC
perlbench 0.00% 52.36% 71.70% 58.02% 5.66% -13.68%
bzip2 0.00% 5.17% 3.49% 5.59% 0.42% 2.09%
gcc 0.00% 27.81% 58.67% 45.41% 17.60% -13.27%
mcf 0.00% 1.19% -4.76% 0.00% -1.19% 4.76%
gobmk 0.00% 26.83% 53.28% 27.58% 0.75% -25.70%
hmmer 0.00% 0.10% 3.73% -0.20% -0.30% -3.93%
sjeng 0.00% 33.23% 51.88% 34.80% 1.57% -17.08%
libquantum 0.00% 0.30% -3.72% -0.30% -0.60% 3.42%
h264ref 0.00% 20.84% 31.78% 24.94% 4.10% -6.83%
omnetpp 0.00% 22.28% 28.71% 25.25% 2.97% -3.47%
astar 0.00% 7.43% 3.88% 7.92% 0.48% 4.04%
xalancbmk 0.00% 80.19% 109.27% 77.32% -2.88% -31.95%
AVG 0.00% 23.14% 33.99% 25.53% 2.38% -8.47%

As show in Table 8, the SIM kernel introduces an average overhead of 1.36%, which is a
tolerable runtime deviation. For Stratafied binaries, with SIM off and many optimization options
on, the average overhead is 23.14%. Note, this is considerably higher than the overhead we have
observed for Strata in other situations, raising some questions about an error in this experimental
setup. With SIM on, the average overhead is 25.53%. This means, the average overhead of
imposed by SIM’s protection is only 2.38%.

4.12.2 Compatibility with other Protection and Optimization Techniques
We have also tested the compatibility of SIM and other PEASOUP protection and optimization
techniques. More specifically, we tested its compatibility with following protection techniques:

• Heap Randomization;
• Stack Randomization;
• PC confinement;
• Instruction Set Randomization

SIM works harmoniously with these mechanisms. We also tested SIM’s compatibility with
Strata’s performance optimization techniques:

• Sieve optimization (STRATA_SIEVE)
• Return cache optimization (STRATA_RC)

SIM works fine with sieve optimization. But the original protection scheme breaks return cache
optimization. Because return cache need to be writable under SOUP view but as it is part of
Strata data, it will be mapped as inaccessible. To solve this incompatibility, we created a special
memory region for return cache that will be kept writable under SOUP view.

211
Approved for public release: distribution unlimited.

4.12.3 Conclusion
In Phase 1, as part of our defense-in-depth strategy, we design and implemented a new technique
called Secure In-process Monitoring, which protects the in-process monitor, Strata software
dynamic translator. Our evaluation results showed, this protection is effective and efficient.
Together with Strata’s fine-grained confinement, they build up a robust sandbox environment for
SOUP that can resist most kind of exploits.

 Secure Dynamic Code Generation 4.13
In this section, we describe the evaluation of the effectiveness and performance overhead of our
two prototype implementations of SDCG.

4.13.1 Security Analysis

In this section, we analyze the security of SDCG under our threat model. First, we show that our
design can enforce permanent W⊕X policy. The first system call filtering policy ensures that
attackers cannot map memory that is both writable and executable. The second policy ensures
that attackers cannot switch memory from non-executable to executable. The combination of
these two policies guarantees that no memory content can be mapped as both writable and
executable, neither at the same time nor alternately. Next, the last policy ensures that if there is
critical data that the SDT depends on, it cannot be modified by attackers. Finally, since the SDT
is trusted and its data is protected, the second policy can further ensure that only SDT-verified
content (e.g., code generated by the SDT) can be executable. As a result, SDCG can prevent any
code injection attack.

4.13.2 Performance
4.13.2.1 Experimental Setup
For our port of the Strata DBT, we measured the performance overhead using SPEC CINT 2006
[199]. Our port of the V8 JS engine was based on revision 16619. And the benchmark we used to
measure the performance overhead is the V8 Benchmark distributed with the source code
(version 7) [22]. All experiments were run on a workstation with one Intel Core i7-3930K CPU
(6-core, 12-thread) and 32GB memory. The operating system is the 64-bit Ubuntu 13.04 with
kernel 3.8.035-generic.

212
Approved for public release: distribution unlimited.

4.13.2.2 Effectiveness
In Section 4.13.1, we provided a security analysis of our system design, which shows that if
implemented correctly, SDCG can prevent all code cache injection attacks. In this section, we
evaluated our SDCG-ported V8 prototype to see if it can truly prevent the attack we demonstrated
in Section 3.10.3.2.

The experiment was done using the same proof-of-concept code as described in Section 3.10.3.2.
As the attack relies on race condition, we executed it for 100 times. For the version that is
protected by naive W⊕X enforcement, the attack was able to inject shellcode into the code
cache for 91 times. But for SDCG-ported version, all 100 tries failed.

4.13.2.3 Micro Benchmark

The overhead introduced by SDCG comes from two major sources: RPC invocation and cache
coherency.

1) RPC Overhead: To measure the overhead for each RPC invocation, we inserted a new
field in the request header to indicate when this request is sent. Upon receiving the request, the
handler then calculates the time elapsed between this and the current time. Similarly, we also
calculated the time elapsed between the sent and the receiving of return values. To eliminate the
impact from cache synchronization, we pinned all threads (in both the untrusted process and the
SDT process) to one single core.

 Avg Call
Latency

Avg Return
Latency

of
Invocations

Stack Copy (%) No Stack Copy (%)

Richards 4.70 µs 4.54 µs 1525 362 (23.74%) 1163 (76.26%)
DeltaBlue 4.28 µs 4.46 µs 2812 496 (17.64%) 2316 (82.36%)
Crypto 3.99 µs 4.28 µs 4596 609 (13.25%) 3987 (86.75%)
RayTrace 3.98 µs 4.00 µs 3534 715 (20.23%) 2819 (79.77%)
EarlyBoyer 3.87 µs 4.28 µs 5268 489 (9.28%) 4779 (90.72%)
RegExp 3.82 µs 5.06 µs 6000 193 (3.22%) 5807 (96.78%)
Splay 4.63 µs 5.04 µs 5337 1187 (22.24%) 5150 (77.76%)
NavierStokes 4.67 µs 4.82 µs 1635 251 (15.35%) 1384 (84.65%)

Table 9. RPC Overhead During the Execution of the V8 Benchmark.

 Schedule 1 Schedule 2 Schedule 3 Schedule 4 Schedule 5 Schedule 6
Richards 4.70 µs 13.76 µs 4.47 µs 14.25 µs 12.85 µs 13.37 µs
DeltaBlue 4.28 µs 13.29 µs 4.31 µs 13.85 µs 14.09 µs 15.84 µs
Crypto 3.99 µs 10.91 µs 3.98 µs 14.07 µs 12.47 µs 13.48 µs
RayTrace 3.98 µs 14.99 µs 4.05 µs 14.76 µs 13.15 µs 12.35 µs
EarlyBoyer 3.87 µs 13.70 µs 3.87 µs 14.27 µs 13.42 µs 13.47 µs
RegExp 3.82 µs 14.64 µs 3.85 µs 14.48 µs 13.55 µs 12.32 µs
Splay 4.63 µs 12.92 µs 4.49 µs 13.22 µs 13.36 µs 15.11 µs
NavierStokes 4.67 µs 12.06 µs 4.47 µs 13.02 µs 14.80 µs 12.65 µs

Table 10. Cache Coherency Overhead Under Different Scheduling Strategies.

213
Approved for public release: distribution unlimited.

Besides the overhead for each RPC invocation, another important fact that affects the overall
overhead is the frequency of RPC invocation, i.e., the more frequent an RPC is invoked, the
worse the performance is. So we also collected this number during the evaluation.

Table 9 shows the result from the V8 benchmark, using the 64bit release build. The average
latency for call request is around 3-4 µs and the average latency for RPC return is around 4-5 µs.
So the average latency for an RPC invocation through SDCG’s communication channel is around
8-9 µs. The number of RPC invocations is between 1,525 and 6,000. Since the input is fixed, this
number is stable, with a small fluctuation caused by garbage collection. Comparing with the
overall overhead presented in the next section, it meets the expectation that the larger the number
of invocations is, the higher the overhead is. Among all RPC invocations, less than 24% require
stack copy.

2) Cache Coherency Overhead: SDCG involves at least three concurrently running threads:
the main thread in the untrusted process, the trusted thread in the untrusted process, and the main

Figure 60. SPEC CINT 2006 Slowdown. The baseline
is the vanilla Strata.

 NATIVE STRATA SDCG (PINNED) SDCG (FREE)
PERLBENCH 364 559 574 558
BZIP2 580 600 613 602
GCC 310 403 420 410
MCF 438 450 479 471
GOBMK 483 610 623 611
HMMER 797 777 790 777
SJENG 576 768 784 767
LIBQUANTUM 460 463 511 474
H264REF 691 945 980 971
OMNETPP 343 410 450 428
ASTAR 514 546 587 563
XALANCBMK 262 499 515 504
GEOMEAN 461 566 592 576

Table 11. SPEC CINT 2006 Results. Since the
standard deviation is quite small (less than 1%), we
omitted this information.

214
Approved for public release: distribution unlimited.

thread in the SDT process. This number can be more if the SDT to be protected already uses
multiple threads. On a platform with multiple cores, all these threads can be scheduled to
different cores. Since SDCG heavily depends on shared memory, the OS scheduling for these
threads can also affect the performance, i.e., cache synchronization between threads executing on
different cores introduces additional overhead.
In this section, we report this overhead at the RPC invocation level. In next section, we will
present its impact on the overall performance. The evaluation also used V8 benchmark. To
reduce the possible combination of scheduling, we disabled all other threads in V8, leaving only
the aforementioned three threads. The Intel Core i7-3930K CPU on our test bed has 6 cores.
Each core has a dedicated 32KB L1 data cache and 256KB integrated L2 cache. A 12MB L3
cache is shared among all cores. When Hyperthreading is enabled, each core can execute two
concurrent threads.

Given the above configuration, we have tested the following scheduling:

1) All threads on single CPU thread (affinity mask = {0});
2) All threads on single core (affinity mask = {0,1});
3) Two main threads that frequently access shared memory on single CPU thread, trusted thread

freely scheduled (affinity mask = {0},{*});
4) Two main threads on single core, trusted thread freely scheduled (affinity mask = {0,1},{*});
5) All three threads on different core (affinity mask = {0},{2},{4}); and
6) All three threads freely scheduled (affinity mask =

{*},{*},{*}).

Figure 61. V8 Benchmark Slowdown (IA32)

Figure 62. V8 Benchmark Slowndown (x64).

215
Approved for public release: distribution unlimited.

Table 10 shows the result, using 64bit release build. All the numbers are for RPC invocation, the
return latency is omitted. Based on the result, it is clear that the scheduling has a great impact on
the RPC latency. If the two main threads are not scheduled on the same CPU thread, the average
latency can exacerbate to 3x-4x slower. On the other hand, the scheduling for trusted thread has
little impact on the RPC latency. This is expected, because the trusted thread is only waken up
for memory synchronization.

4.13.2.4 Macro Benchmark

In this section, we report the overall overhead SDCG introduces. Since OS scheduling can have a
large impact on performance, for each benchmark suite, we evaluated two CPU schedules. The
first one (Pinned) pins both main threads from the untrusted process and the SDT process to one
single core; and the second one (Free) allows the OS to freely schedule all threads.

1) SPEC CINT 2006: Both the vanilla Strata and the SDCG-ported Strata are built as 32-bit.
The SPEC CINT 2006 benchmark suite is also compiled as 32-bit. Since all benchmarks from
the suite are single-threaded, the results of different scheduling strategies only reflect the
overhead caused by SDCG.

 BASELINE SDCG (PINNED) SDCG (FREE)
RICHARDS 24913 (2.76%) 23990 (0.28%) 24803 (1.72%)
DELTABLUE 25657 (3.31%) 24373 (0.43%) 25543 (3.86%)
CRYPTO 20546 (1.61%) 19509 (1.27%) 19021 (1.95%)
RAYTRACE 45399 (0.38%) 42162 (0.75%) 43995 (6.46%)
EARLYBOYER 37711 (0.61%) 34805 (0.27%) 34284 (0.82%)
REGEXP 4802 (0.34%) 4251 (1.04%) 2451 (3.82%)
SPLAY 15391 (4.47%) 13643 (0.71%) 9259 (8.18%)
NAVIERSTOKES 23377 (4.15%) 22586 (0.42%) 23518 (1.26%)
SCORE 21071 (0.72%) 19616 (0.35%) 17715 (1.86%)

Table 12. V8 Benchmark Results (IA32). The score is the
geometric mean over 10 executions of the benchmark suite.
Number in the parentheses is the standard deviation.

 BASELINE SDCG (PINNED) SDCG (FREE)
RICHARDS 25178 (3.39%) 24587 (2.31%) 25500 (3.24%)
DELTABLUE 24324 (3.65%) 23542 (0.38%) 24385 (2.54%)
CRYPTO 21313 (3.16%) 20551 (0.26%) 20483 (2.57%)
RAYTRACE 35298 (5.97%) 32972 (1.03%) 35878 (1.66%)
EARLYBOYER 32264 (4.42%) 30382 (0.61%) 30135 (1.04%)
REGEXP 4853 (3.59%) 4366 (0.82%) 2456 (7.72%)
SPLAY 13957 (6.02%) 12601 (2.92%) 7332 (9.85%)
NAVIERSTOKES 22646 (2.48%) 21844 (0.30%) 21468 (3.45%)
SCORE 19712 (3.57%) 18599 (0.62%) 16435 (1.03%)

Table 13. V8 Benchmark Slowdown (x64). The score is the
geometric mean over 10 executions of the benchmark suite.
Number in the parentheses is the standard deviation..

216
Approved for public release: distribution unlimited.

Table 11 shows the evaluation result. The first column is the result of running natively. The
second column is the result for Strata, but without SDCG. We use this as the baseline for
calculating the slowdown introduced by SDCG. The third column is the result for SDCG with
pinned schedule, and the last column is the result for SDCG with free schedule. Since the
standard deviation is quite low (less than 1%), we omitted this information.

The corresponding slowdown is shown in Figure 60. For all benchmarks, the slowdown
introduced by SDCG is less than 6%. And the overall (geometric mean) slowdown is 1.46%
forpinned schedule, and 2.05% for free schedule.

Since SPEC CINT is a computation-oriented benchmark suite and Strata does a good job
reducing the number of translator invocations, we did not observe a big difference

between pinned schedule and free schedule.

2) JavaScript Benchmarks: Our port of V8 JS engine was based on revision 16619. For better
comparison with SFI-based solution [29], we performed the evaluation on both IA32 and x64
release builds. The arena-based heap we implemented was only enabled for SDCG-ported V8.
And to reduce the possible combination of scheduling, we also disabled all other threads in V8.

Table 12 shows the results for IA32 build, and Table 13 shows the results for x64 build. The first
column is the baseline result; the second column is the result of SDCG-ported V8 with

pinned schedule; and the last column is the result of SDCG-ported V8 with free schedule. All
results are the geometric mean over 10 executions of the benchmark. The number in the
parentheses is the standard deviation in percentage. As we can see, the fluctuation is small; with
the baseline and free schedule slightly higher than pinned schedule.

The corresponding slowdown is shown in Figure 61 (for IA32 build) and Figure 62 (for x64
build). Overall, we did not observe a big different between IA32 build and x64 build. For four
benchmarks (Richards, DeltaBlue Crypto, NavierStokes), the slowdown introduced by SDCG is
less than 5%, which is negligible because they are similar to the standard deviation.

The rest of our benchmarks (RayTrace, EarlyBoyer, RegExp, Splay) have higher overhead, but
with pinned schedule, the slowdown is within 11%, which is much smaller than previous SFI-
based solution [29] (79% on IA32).

There are the two major overhead sources. For RPC overhead, we can see a clear trend that the
more RPC invocation is (Table 9), the larger the slowdown is. However, the impact of cache
coherency overhead caused by different scheduling strategies is not that consistent. For some
benchmarks (Richards, DeltaBlu, RayTrace), the free scheduling is faster than the pinned
scheduling. For some benchmarks (Crypto, EarlyBoyer), the overhead is almost the same. But
for two benchmarks (RegExp and Splay), the overhead under free scheduling is much higher
than the pinned scheduling. We believe this is because these two benchmarks depend more
heavily on data (memory) access. Note that, unlike Strata, for SDCG-ported V8, we not only
shared the code cache, but also shared the heaps used to store JS objects, for the ease of RPC
implementation. Besides RPC frequency, this is another reason why we observed a higher
overhead compared with SDCGported Strata.

4.13.3 Discussion
In this section, we discuss the limitations of our work on SDCG and potential future work.

217
Approved for public release: distribution unlimited.

4.13.3.1 Reliability of Race Conditions
Although we only showed the feasibility of the attack in one scenario, in practice, the dynamic
translator can be invoked under different situations, each of which has its own race condition
window. Some operations can be very quick (e.g., patching), others may take a longer time to
finish. By carefully controlling how the translator is invoked, we can enlarge the race condition
window and make such attack more reliable.

In addition, OS scheduling can also affect the size of the attack window. For example, as we
have discussed in Section 3.10.3.2, the invocation of mprotect is very likely to cause the thread
to be swapped out of the CPU, which will enlarge the attack window.

4.13.3.2 RPC Stub Generation

To port a dynamic translator to SDCG, our current solution is to manually rewrite the source
code. Even though the modification is relatively small compared to the translator’s code size, the
process still requires the developer to have a good understanding of the internals of the translator.
This process can be improved or even automated through program analysis. Firstly, our current
RPC stub creation process is not sound. That is, we relied on the test input. Thus, if a function is
not invoked during testing, or the given parameter does not trigger the function to modify the
code cache, then we miss this function. Second, to reduce performance overhead and the attack
surface, we want to create stubs only for functions that 1) are post-dominated by operations that
modifies the code cache; and 2) dominate as many modification operations as possible.
Currently, this is done empirically. Though program analysis, we could systematically and more
precisely identify these “key” functions. Finally, for the ease of development, our prototype
implementation uses shared memory to avoid deep copy of objects when performing RPC. While
this strategy is convenient, it may introduce additional cache coherency overhead. With the help
of program analysis, we could replace this strategy with object serialization, but only for data
that is accessed during RPC.

4.13.3.3 Performance Tuning
In our current prototype implementations, the SDTs were not aware of our modification to their
architectures. Since their optimization strategy may not be ideal for SDCG, it is possible to further
reduce the overhead by making the SDT be aware of our modification. For example, one major
source of SDCG’s runtime overhead is RPC invocation, and the overhead can be reduced if we
reduce the frequency of code cache modification. This can be accomplished in several ways. For
instance, we can increase the threshold to trigger code optimization, use more aggressive
speculative translation, and separate the garbage collection, etc.

Second, in our implementations, we used the domain socked-based IPC channel from seccomp-
sandbox. This means, for each RPC invocation, we need to enter the kernel twice; and both the
request/return data need to be copied to/from the kernel. While this approach is more secure (in
the sense that a sent request cannot be maliciously modified), if the request is always untrusted,
then using a faster communication channel (e.g., ring buffer) could further reduce the overhead.

Third, we also used the same service model as seccompsandbox in our prototypes. That is, RPC
requests are served by a single thread in the SDT process. This strategy is sufficient for SDTs
where different threads share the same code cache (e.g., Strata), because modifications need to
be serialized anyway to prevent data race. However, this service model can become a bottleneck
when the SDT uses different code cache for different thread (e.g., JS engines). For such SDTs,

218
Approved for public release: distribution unlimited.

we need to create dedicated service threads in the SDT process to serve different threads in the
untrusted process.

In addition, our current prototype implementations of SDCG are also not hardware-aware.
Different processor can have different shared cache architecture and cache management
capability, which in turn affects cache synchronization between different threads. Specifically,
on a multi-processor system, two cores may or may not share the same cache. As we have
demonstrated, if the translator thread and the execution thread are scheduled to two cores with
different cache, then the performance is much worse than when they are scheduled to cores with
the same cache. To further reduce the overhead, we can assign the processor affinity according to
the hardware features.

 Publications 4.14
The STONESOUP program focused on advancing fundamental research in software security. As
such, one of the metrics of success is the rate of publication of results in peer-reviewed journals
and conferences. The PEASOUP project has resulted in multiple publications in respected
venues. The following publications can be fully or partially attributed to PEASOUP:

• Gopan, D., Melski, D., Nguyen, D., Naydich, D., and Driscoll, E., Data-Delineation in
Software Binaries and its Application to Buffer-Overrun Discovery. In ICSE 2015. 2015.
Firenze, Italy.

• Song, C., Zhang, C., Wang, T., Lee, W., and Melski, D., Exploiting and protecting
dynamic code generation. In Proceedings of the 2015 Network and Distributed System
Security (NDSS) Symposium. 2015.

• Ghosh, S., Hiser, J. D., and Davidson, J. W., What’s the PointiSA? In 2Nd ACM
Workshop on Information Hiding and Multimedia Security. 2014. Salzburg, Austria:
ACM. pp. 23-34.

• Hiser, J. D., Nguyen-Tuong, A., Co, M., Rodes, B., Hall, M., Coleman, C., Knight, J. C.,
and Davidson, J. W., A Framework for Creating Binary Rewriting Tools. In Proceedings
of the 2014 Tenth European Dependable Computing Conference. 2014. Washington, DC.
pp. 142-145.

• Ghosh, S., Hiser, J., and Davidson, J. W., Software Protection for Dynamically-generated
Code. In Proceedings of the 2Nd ACM SIGPLAN Program Protection and Reverse
Engineering Workshop. 2013. Rome, Italy: ACM. p. 1:1-1:12.

• Ghosh, S., Hiser, J., and Davidson, J. W., Replacement Attacks Against VM-protected
Applications. In Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual
Execution Environments. 2012. London, England, UK: ACM. pp. 203-214.

• Hiser, J., Nguyen-Tuong, A., Co, M., Hall, M., and Davidson, J., ILR: Where'd My
Gadgets Go? In Proceedings of the 2012 IEEE Symposium on Security and Privacy.
2012. Washington, DC: IEEE Computer Society. pp. 571-585.

• Jang, Y., Chung, S., Payne, B. D., and Lee, W., Gyrus: A Framework for User-Intent
Monitoring of Text-Based Networked Applications. In 21st Annual Network and
Distributed System Security Symposium (NDSS). 2014. San Diego, CA.

• Lee, B., Lu, L., Wang, T., Kim, T., and Lee, W., From Zygote to Morula: Fortifying
Weakened ASLR on Android. In Proceedings of the 2014 IEEE Symposium on Security
and Privacy. 2014. Washington, DC: IEEE Computer Society. pp. 424-439.

219
Approved for public release: distribution unlimited.

• Nguyen-Tuong, A., Hiser, J. D., Co, M., Davidson, J. W., Knight, J. C., Kennedy, N.,
Melski, D., Ella, W., and Hyde, D., To B or not to B: Blessing OS Commands with
Software DNA Shotgun Sequencing. In Proceedings of the 2014 European Dependable
Computing Conference (EDCC '14). 2014. Washington, DC: IEEE Computer Society.
pp. 238-249.

• Rodes, B. and Knight, J., Speculative Software Modification and its Use in Securing
SOUP. In To Appear in Proceedings of the 2014 European Dependable Computing
Conference (EDCC '14). 2014.

• Rodes, B. and Knight, J. C. Reasoning about software security enhancements using
security cases. In 1st International Workshop on Argument for Agreement and
Assurance. 2013. Kanagawa, Japan.

• Rodes, B., Knight, J. C., and Wasson, K. S., A Security Metric Based on Security
Arguments. In Proceedings of the 5th International Workshop on Emerging Trends in
Software Metrics. 2014. Hyderabad, India: ACM. pp. 66-72.

• Rodes, B., Nguyen-Tuong, A., Hiser, J., Knight, J., Co, M., and Davidson, J., Defense
against Stack-Based Attacks Using Speculative Stack Layout Transformation. In Runtime
Verification 2013. Springer Berlin Heidelberg. pp. 308-313.

• Wang, T., Jang, Y., Chen, Y., Chung, S., Lau, B., and Lee, W., On the Feasibility of
Large-scale Infections of iOS Devices. In Proceedings of the 23rd USENIX conference on
Security Symposium. Berkeley, CA, USA: USENIX Association. pp. 79-93.

• Wang, T., Lu, K., Lu, L., Chung, S., and Lee, W., Jekyll on iOS: When Benign Apps
Become Evil. In Proceedings of the 22Nd USENIX Conference on Security. 2013.
Berkeley, CA: USENIX Association. pp. 559-572.

• Wang, T., Song, C., and Lee, W., Diagnosis and Emergency Patch Generation for
Integer Overflow Exploits. In 11th Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA 2014). 2014. Egham, UK: Springer. pp. 255-275.

• Co, M., Davidson, J. W., Hiser, J. D., Knight, J. C., Nguyen-Tuong, A., Cok, D., Gopan,
D., Melski, D., Lee, W., Song, C., Bracewell, T., Hyde, D., Mastropietro, B., PEASOUP:
Preventing Exploits Against Software Of Uncertain Provenance (Position Paper), 7th
International Workshop on Software Engineering for Secure Systems, Waikiki, Hawaii,
May, 2011.

• Jose A. Baiocchi, Bruce R. Childers, Jack W. Davidson, and Jason D. Hiser. Enabling
Dynamic Binary Translation in Embedded Systems with Scratchpad Memory. ACM
Transactions on Embedded Computing Systems (TECS), 11(4), 89.

• Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon Giffin, and Wenke Lee.
Virtuoso: Narrowing the Semantic Gap in Virtual Machine Introspection. In Proceedings
of The 2011 IEEE Symposium on Security and Privacy. Oakland, CA, May 2011.

• Shuaifu Dai, Tao Wei, Chao Zhang, Tielei Wang, Yu Ding, Zhenkai Liang, and Wei Zou.
2012. A Framework to Eliminate Backdoors from Response Computable Authentication.
In Proceedings of The 2012 IEEE Symposium on Security and Privacy. San Francisco,
CA, May 2012. (to appear)

• J. D. Hiser, D. W. Williams, W. Hu, J. W. Davidson, J. Mars and B. R. Childers.
Evaluating Indirect Branch Handling Mechanisms in Software Dynamic Translation
Systems. ACM Transactions on Architecture and Code Optimization, 8(2), July 2011,
Article No. 9.

220
Approved for public release: distribution unlimited.

• T. Dey, W. Wang, J. W. Davidson, M. Soffa. Characterizing Multi-threaded Applications
based on Shared- Resource Contention. Proceedings of the 2011 IEEE International
Symposium on Performance Analysis of Systems and Software, Austin, TX, April 2011,
pp. 76–86.

• R. Rajkumar, A. Wang, J. D. Hiser, A. Nguyen-Tuong, J. W. Davidson, and J. C. Knight.
Component-Oriented Monitoring of Binaries. Proceedings of the 44th Hawaii
International Conference on System Sciences, Kauai, HI, January 2011, pp. 1–10.

• David Evans, Anh Nguyen-Tuong, and John Knight. Chapter in Moving Target Defense:
An Asymmetric Approach to Cyber Security, edited by Sushil Jajodia. Springer. 2011.

• John Knight. Diversity. Festschrift in Honor of Brian Randell. Lecture Notes in
Computer Science 6875. Springer. 2011.

221
Approved for public release: distribution unlimited.

5.0 CONCLUSIONS
We consider the PEASOUP project to have been a great success, with many important results.
The STONESOUP program set very high goals, both in performing fundamental research to
advance the state of knowledge and in engineering a robust prototype for strenuous testing of
hypothesis. On the latter objective, PEASOUP was not a complete success. In the final phase of
the project, we were called upon to upgrade PEASOUP from a 32-bit to a 64-bit technology,
process large binaries (4 times the size originally targeted in the solicitation), add defenses for
two very subtle, difficult warning classes, and increase the level of defense provided by the four
warning classes we handled in the previous phases. Trying to meet all of these goals proved to be
too much, and PEASOUP’s results on the Phase 3 T&E were apparently poor. However, we
believe that the Phase 3 T&E performance was due to an engineering failure, which does not
undermine the numerous scientific results that we obtained during the course of the project.

The PEASOUP effort resulted in advances in:

• Automated binary analysis.
• Techniques for building binary-hardening tools.
• Techniques for automatically protecting software binaries without the benefit of a

specification.

In the remainder of this section, we discuss each of these points in greater detail. We close with
some notes on the current status of the prototype and potential future research.

 Advances in Automated Binary Analysis 5.1
5.1.1 Data Delineation Analysis
We developed a novel heuristic analysis that addresses the following question:

Given an arbitrary stripped executable, infer locations and sizes of objects suitable for
buffer-overrun detection and protection.

We call our approach Data-Delineation Analysise (DDA) (See Section 3.3.5). Accurate data
delineation is critical for many analyses, not just buffer-overrun detection and protection,
although that was a primary motivation for developing DDA in PEASOUP.

Our approach avoids the trap of choosing a “sound” technique that will infer objects that make
buggy programs look correct. The inferred data layout information allows a number of existing
techniques for ensuring memory safety to be applied effectively in the absence of source code.

Our evaluation of the analysis showed that it achieves good precision at low cost. Under separate
funding, we integrated DDA in our commercial defect-detection tool, CodeSonar/x86. We have
demonstrated that DDA significantly improves CodeSonar’s buffer overrun detection.

In the future, we plan to further enhance DDA. The current approach focuses primarily on
detecting the layout of top-level objects and ignores their internal structure. We believe that our
approach can be extended in a straightforward fashion to infer information about the internal
structure of program data, for example structure fields that are themselves structures. Once we
have information about the internal structure, there is the potential for finding overruns of the
subobjects itself. The CodeSonar back end has support for finding warnings of this type in source
code, though doing the same thing for binaries would require non-trivial extensions even once
the internal structure is known.

222
Approved for public release: distribution unlimited.

Another improvement to the analysis that we are considering is a more sophisticated tracking of
offsets from base pointers. Currently, the analysis collects sets of constant offsets. Extending the
tracking to support symbolic offsets will improve the precision of the analysis by allowing it to
model naturally functions that are similar to memset and memcpy (e.g., program-specific
wrappers of those functions).

Finally, most of our effort during the integration of DDA into CodeSonar/x86 (again, under
separate fundiong) was focused on reducing the number of binary-only warnings (FP proxy) with
little attention paid to the matched warnings (TP proxy) that we were dropping at the same time.
We would like to return to the lost matched warnings and either make sure that they are being
dropped for a good reason or determine what we can do to retain them without undermining the
reduction in FPs.

5.1.2 Speculative Transformation
Another approach we developed for analysizing and protecting software binaries is called
speculative transformation. This technique requires a robust test suite. The technique uses the
following steps:

1. An initial, possibly incorrect IR is recovered from the binary (e.g., using DDA).
2. Multiple versions of the program are created, using different subsets of the IR.
3. Each version of the IR is run against the test suite.
4. Based on which versions pass and which fail, the IR is refined so that only facts used in

passing versions are trusted.

As an example, one focus of PEASOUP was in identifying IR for use in Stack-Layout
Transformation (SLX). The IR needed for SLX includes (a) identifying the boundaries of stack-
allocated data objects and (b) identifying the instructions that reference each stack-allocated data
object that is relocated or padded. This serves as a good challenge problem in IR recovery, even
if the ultimate goal is a confinement-based defense, instead of a diversification-based defense
(like SLX). Existing approaches (that we are aware of) to this IR recovery challenge are either
unsound, imprecise, or suffer from poor scalability. In this case an unsound IR identifies object
boundaries where there are none or misidentifies the instructions that access stack-allocated
objects. In either case, a naïve application of a transformation based on an IR with these errors is
likely to break the program. On the other hand, if the IR is overly coarse, than many functions
may not be transformed at all and will remain unprotected.

We demonstrated the utility of BED and TSET in the context of SLX and its associated IR
recovery challenges. PEASOUP implements SLX as follows:

• It uses an unsound analysis, such as DDA, to identify candidate IR facts, including
possible boundaries between stack-allocated objects and associations between
instructions and the stack objects they access.

• It uses automatic test-case generation to generate a high-coverage test suite; alternatively,
a user may supply a high-coverage test suite.

• It uses run-time error detectors to classify each generated input as ‘good’ or ‘bad’
depending on whether or not the input triggers a detectable run-time error.

• TSET, the Test-Set Evaluation Technology, evaluates the quality of the set of tests that
have been labeled ‘good’ for every function in the subject program. Currently, TSET uses
simple coverage metrics for evaluation: if the ‘good’ tests achieve poor coverage for a

223
Approved for public release: distribution unlimited.

function, then PEASOUP will only apply conservative transformations to that function.
On the other hand, if TSET determines that there is good coverage for a function, then
PEASOUP will apply aggressive SLX to generate many variants of the function with
significant differences in the relative locations and sizes of the stack objects.

• BED, the Behavioral Equivalence Detector, evaluates each variant function to determine
whether or not it exhibits equivalent behavior to the original program. Variants that were
based on faulty IR are likely to cause changes in behavior, and are therefore discarded.
On the other hand, variants based on correct IR are likely to have equivalent behavior to
the original.

Our experimental evaluation of SLX demonstrated the utility of this: PEASOUP succeeded in
applying SLX to many functions that could not have been transformed if a more conservative IR
had been used. The testing done by BED and TSET allows PEASOUP to use an aggressive,
unsound analysis for IR recovery by compensating for any errors that result from the faulty IR
prior to deployment of program variants. Furthermore, behavioral differences detected by BED
can be used to provide feedback about IR facts that are unlikely to be true, leading to an
improved IR.

While we demonstrated the utility of BED and TSET in the context of SLX (and, to a lesser
extent with other transformations), we believe that the approach has some weaknesses. In
particular, we require a high-quality test suite of known benign inputs. Our original idea was to
automatically generate a high-quality test suite. However, the challenge is that when BED
reports a difference in behavior, it is difficult to know whether the difference is due to (a) use of
bad IR or (b) an error in the program that becomes apparent due to the transformation.

5.1.3 Limitations of Automated Test-Case Generation
One of the hypotheses of PEASOUP was that we could achieve precise IR recovery by using
automatically generated tests to drive dynamic analyses. We have concluded that this approach
has limited applicability. There are two challenges: the first is that it is difficult to automatically
classify generated test inputs as begnign or harmful, that is, whether or not an input exercises a
vulnerability. Without this knowledge, it is often difficult to derive precise information from the
dynamic analyses, although even imprecise information learned this way can be useful [160].

The second limitation appears to be scalability. While we do not have precise numbers, we
believe that high-coverage test suites for moderate sized programs are likely to be very large,
with tens of thousands of inputs, at least. This makes it expensive to run all of the inputs while
using a dynamic monitoring tool. One possible alternative is to use

 Advances in Techniques for Building Binary-Hardening Tools 5.2
5.2.1 Secure Dynamic Code Generation (SDCG)
PEASOUP demonstrates that software dynamic translation is a useful technology for
implementation software defenses. However, we also demonstrated that a code-cache injection
attack is a viable exploit technique that can bypass many of the state-of-art defense mechanisms.
To defeat this threat, we proposed SDCG, a new architecture that enforces mandatory W⊕X
policy. To demonstrate the feasibility and benefit of SDCG, we ported two software dynamic
translators, Google V8 and Strata, to this new architecture. Our development experience showed
that SDCG is easy to adopt and our performance evaluation showed the performance overhead is

224
Approved for public release: distribution unlimited.

small. We believe that SDCG is of foundational importance in building software protection
technology.

5.2.2 Robust, Extensible Architecture
It is arguable that the most important results of PEASOUP are not the individual defensive
innovations, but rather the development of infrastructure that will enable future research and
development. PEASOUP was deliberately designed to support extensibility, including many
innovative techniques that simplify extensibility:

• Well-defined, relational schema for the IRDB. The importance of picking the correct
format for an IR cannot be overstated. The design of the IR affects performance and
extensibility. In our experience developing our own IRs on previous projects and using
the IRs of other tools, we have encountered many design decisions that frustrate tool
development. Our choice of relational tables has two significant advantages: first, most of
the data that we need to store in the IR is naturally expressed as a table. In contrast, other
formats, such as XML, are best suited for ASTs, a small portion of the IR that can
typically be generated on demand, rather than stored. Second, the relational tables can be
documented using a standard relational schema. This allows any component writer to
easily understand the interface to the IR.

• Scalable, robust technology for storing the IRDB. PEASOUP uses Postgres to store the
IRDB. This allows PEASOUP to leverage the concurrency, scalability, and robustness of
a mature database technology. In particular, PEASOUP can use the concurrency of the
IRDB to run multiple analyses in parallel. We believe this will be important in achieving
scalability in later phases of PEASOUP. Furthermore, the use of an industrial database
for storing the IRDB enables a mode where analysis of a subject program could be run on
a central, dedicated machine, with the results of the analysis available to any machine on
the network.

• Well-defined interfaces between components. Each component of PEASOUP is designed
so that it can be augmented or replaced by other technology as it becomes available. For
example, Grace represents generated inputs using JSON and stores the generated inputs
in the IRDB. Any other test-case generation technology could use the same format and
provide additional inputs for use in Grace. As a second example, PEASOUP is prepared
to make use of any run-time error detection tool that can be used with the replayer.

• Flexible, automatable rewriting techniques. One of the innovations in Phase 1 was the
development of sprockets for representing the rewrites necessary to transform a program
into a variant. There are many different approaches to executable rewriting, including
other techniques that leverage software dynamic translation. However, we many of these
frameworks are targeted at supporting manual generation of rewriting tools and are
agnostic about the IR that is used to drive the rewriting. In contrast, sprockets are very
convenient for representing rewriting algorithms that are based on the PEASOUP IRDB.
One indication of the utility of sprockets is that they were useful for inventing ILR.

Together, we believe these design decisions will enable additional breakthroughs in software
security in future work.

225
Approved for public release: distribution unlimited.

 Advances in Automatic Exploit Prevention and Software Repair 5.3
We believe that PEASOUP’s most lasting impact will come from its innovations in program
analysis and transformation, as outlined in the previous sections. Unfortunately, it is difficult to
provide a quantitative assessment of the importance of an IR recovery technique or the flexibility
and robustness of a machine-code rewriting technique. In the case of PEASOUP, our results also
advanced the state-of-the-art in automated prevention of software exploits, sometimes in ways
that are quantifiable. These advances are important in their own right, but also in that they
provide indirect evidence of the effectiveness, flexibility, and robustness of the architecture and
the techniques used in PEASOUP.

PEASOUP advanced the state-of-the-art in automatic exploit prevention and program repair in
the following ways:

• Dramatically increases the entropy of software diversification. As a defensive technique,
diversification has significant drawbacks: it cannot guarantee exploit prevention, specific
diversification techniques can often be sidestepped by cleverly crafted attacks, and its
response to exploits is failure oblivious. However, diversification is extremely successful
because it is easy to deploy and has very low overhead20. Using the ILR technique,
PEASOUP demonstrated the ability to increase the entropy of code-layout diversification
by 3.5 orders of magnitude beyond what is provided by systems today. On a 32-bit
machine, ILR can relocate 99.7% of instructions to any on 231 addresses, leaving very
little room for improvement. ILR does this while maintaining similar efficiency and
usability to diversification techniques that are widely employed.

• Frustrates exploits based on arc-injection. There are existing techniques that are
theoretically effective against arc-injection attacks, including ASLR. Unfortunately,
practical limitations (e.g., the need for backwards compatibility) mean that existing
implementations of these defenses can usually be circumvented. Advanced attack
techniques based on Return-Oriented Programming (ROP) allow attackers to perform
arbitrary actions. PEASOUP solves these issues with ILR. Our evaluation demonstrates
that ILR is as effective at preventing arc-injection as 𝑊𝑊⨁𝑋𝑋 is at preventing code
injection. Furthermore, ILR does not suffer the same practical limitations that mar
implementations of ASLR.

• Enables many source-level defenses to be applied to directly to software binaries. Source
code provides a wealth of information—types, function entry points, code versus data,
layout of data objects—that is not readily available in a software binary. For this reason,
many techniques that are easy to implement in a compiler have been impractical to
implement on machine code. This includes many techniques that modify the construction
of a functions activation records, including: inserting stack canaries, laying out input
buffers so they are isolated from other data, or randomizing the layouts of data objects.
PEASOUP advanced the state-of-the-art in IR recovery sufficiently that transformations
such as these can be applied effectively to binaries (that do not already have these
protections).

20 It is arguable that software diversification has stopped more attacks than otherwise superior techniques, such as
control-flow integrity [24] or SELinux [130].

226
Approved for public release: distribution unlimited.

• Provides a composable, layered defense. No single defensive technique is suitable for
preventing all types of exploits against all types of vulnerabilities. PEASOUP enables
multi-faceted defenses from within a single framework. Furthermore, BED and TSET
provide additional confidence that independent defenses do not interfere with one
another, nor interact in a way that breaks program semantics. The list of defenses
provided by PEASOUP includes: Secure In-VM Monitoring, program-counter
confinement, incorrect heap-usage confinement (e.g., double frees), instruction layout
randomization, stack-layout randomization, heap randomization, and instruction set
randomization.

• Automatic repair of vulnerabilities. PEASOUP is also capable of repairing faulty
programs. Most often, this happens when PEASOUP adds padding to the size of data
object, effectively removing a buffer-overrun vulnerability. This was demonstrated
during the independent test and evaluation when PEASOUP was able to correct the
behavior of bzip2 and ngircd (2 of the 3 real-world test cases). Malicious inputs that
previously crashed these programs no longer had any negative effect, and the programs
appeared to behave as they should for a malformed input. In addition to increasing buffer
sizes, PEASOUP is capable of implementing many other repair policies, including
saturating arithmetic and terminating infinite loops.

• Software DNA Shotgun Sequencing (S3). We developed S3 a new, efficient, approach for
detecting taint markings based on positive taint inference. Our findings indicate that S3

can be effectively used to detect OS command injection attacks on binary programs.
Furthermore, S3 has demonstrated that it can be used in many real-world situations
because it has negligible performance overhead and can be applied directly to binary
programs without need for source code or compiler support. Under separate funding
UVA expanded S3 to cover SQL injections and demonstrated its utility in protecting web
applications.

• Twitcher memory protections. We developed a novel memory protection system called
Twitcher. Twitcher is based on defining different classes of guard regions, each with
different memory access permissions. Using these extended definitions of guard regions,
Twitcher is able to defend against the infamous Heartbleed exploit, in many
situations [13]. To our knowledge, Twitcher is the only tool capable of automatically
defending against Heartbleed in a generic fashion, under any circumstances.

• Number-handling defesnes. We developed a novel technique for detecting number-
handling errors based on recognizing benign number-handling weaknesses. The
technique is effective for medium sized binaries, such as those used in Phase 2 T&E. The
overhead of this technique is high, so it is most effective for error amplification.

• Other defenses. Finally, we developed a host of other promising defenses against exploits
null-pointer dereferences, concurrency errors, and resource drains.

We believe that each of these advances is significant individually, but are particularly important
when taken as a whole.

 Transition and Future Work 5.4
The STONESOUP program required a high degree of technical readiness in order to pass the
independent test and evaluation. Consequently, many components of PEASOUP are ready for
immediate transition. Unfortunately, there is no single Transition Readiness Level (TRL) for

227
Approved for public release: distribution unlimited.

PEASOUP as a whole. The TRL varies depending on which features are needed, and the
application. Some components and defenses are more mature than others, and some applications
have more stringent requirements than others.

S3 and Twitcher are among PEASOUP’s most mature features. They can both be used for
automatic hardening of binaries with very little fear of altered functionality and very low
overhead. The number handling defenses still impose some risk of altered functionality on large
binaries and they incur a heavy runtime overhead. Consequently, it is more appropriate for error
amplification (see Section 2.2). The null-pointer defenses may be effective for some server
applications. The defenses against concurrency errors and resource drains are the least mature.
They also could be used for error amplification and input classification, but further development
is likely necessary to make them more robust.

We intend to continue research and development of PEASOUP. Our near-term focus will be on
applying some of PEASOUP’s defenses using static binary rewriting, in order to eliminate the
overhead of software dynamic translation. We are also interested in seeking transition
opportunities based on automatic hardening, error amplification, or automatic input
classification.

228
Approved for public release: distribution unlimited.

6.0 References
 1. CVE-2003-0041: MIT kerberos FTP client remote shell commands execution,

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0041.
 2. PaX Team. PaX address space layout randomization (ASLR), http://pax.grsecurity.net/

docs/aslr.txt.
 3. MISRA-C 2004 Guidelines for the Use of the C Language in Critical Systems, 2004, The

Motor Industry Software Reliability Association.
 4. CVE 2008-2575: crbPager: Arbitrary command execution via shell metacharacters,

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2575.
 5. Design of Chrome v8, https://developers.google.com/v8/design.
 6. LibTIFF TiffFetchShortPair Remote Buffer Overflow Vulnerability,

http://www.securityfocus.com/bid/19283.
 7. CVE-2010-1132: SpamAssasin mail filter:Arbitrary shell command injection,

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1132.
 8. Inside Adobe Reader Protected Mode -Part 3- Broker Process, Policies, and INter-

Process Communication, http://blogs.adobe.com/security/2010/11/inside-adobe-reader-
protected-mode-part-3-broker-process-policies-and-inter-process-communication.html.

 9. IDA Pro, http://www.hex-rays.com/products/ida/index.shtml.
 10. ROPgadget, http://shell-storm.org/project/ROPgadget/.
 11. Web Workers: W3C Candidate Recommendation 01 May 2012,

http://www.w3.org/TR/workers/.
 12. CVE-2013-3568: Linksys CSRF + root command injection, http://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2013-3568.
 13. The Heartbleed Bug, http://heartbleed.com/.
 14. App capability declarations (Windows Runtime apps), https://msdn.microsoft.com/en-

us/library/windows/apps/hh464936.aspx.
 15. CVE vulnerabilities found in browsers, http://web.nvd.nist.gov/view/vuln/search-

results?query=browser&search_type=all&cves=on.
 16. CWE-416: Use After Free, http://cwe.mitre.org/data/definitions/416.html.
 17. CWE-680: Integer Overflow to Buffer Overflow,

http://cwe.mitre.org/data/definitions/680.html.
 18. Ruby, www.ruby-lang.org.
 19. seccompsanbox, https://code.google.com/p/seccompsandbox/wiki/overview.
 20. The Chromium Projects: Sandbox Design Principles,

http://dev.chromium.org/developers/design-documents/sandbox.
 21. The perl programming language, www.perl.org.
 22. V8 Benchmark Suite - Version 7, https://www.rstforums.com/forum/80945-mobile-

pwn2own-autumn-2013-chrome-android-exploit-writeup.rst.
 23. Wordpress, www.wordpress.org.
 24. Abadi, M., Budiu, M., Erlingsson, U., and Ligatti, J., Control-flow Integrity: Principles,

implementations, and applications. In ACM Conference on Computer and
Communications Security (CCS). 2005.

 25. Aditya Kapoor, An approach towards disassembly of malicious binary executables.
University of Louisiana. 2004.

 26. Ammann, P. E. and Knight, J. C., Data Diversity: An Approach to Software Fault
Tolerance. IEEE Transactions on Computers, 1988. 37(4): pp. 418-425.

229
Approved for public release: distribution unlimited.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0041
http://pax.grsecurity.net/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2575
https://developers.google.com/v8/design
http://www.securityfocus.com/bid/19283
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1132
http://blogs.adobe.com/security/2010/11/inside-adobe-reader-protected-mode-part-3-broker-process-policies-and-inter-process-communication.html
http://blogs.adobe.com/security/2010/11/inside-adobe-reader-protected-mode-part-3-broker-process-policies-and-inter-process-communication.html
http://www.hex-rays.com/products/ida/index.shtml
http://shell-storm.org/project/ROPgadget/
http://www.w3.org/TR/workers/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3568
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3568
http://heartbleed.com/
https://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx
http://web.nvd.nist.gov/view/vuln/search-results?query=browser&search_type=all&cves=on
http://web.nvd.nist.gov/view/vuln/search-results?query=browser&search_type=all&cves=on
http://cwe.mitre.org/data/definitions/416.html
http://cwe.mitre.org/data/definitions/680.html
http://www.ruby-lang.org/
https://code.google.com/p/seccompsandbox/wiki/overview
http://dev.chromium.org/developers/design-documents/sandbox
http://www.perl.org/
https://www.rstforums.com/forum/80945-mobile-pwn2own-autumn-2013-chrome-android-exploit-writeup.rst
https://www.rstforums.com/forum/80945-mobile-pwn2own-autumn-2013-chrome-android-exploit-writeup.rst
http://www.wordpress.org/

 27. Andersen, S. and Abella, V., Part 3: Memory Protection Technologies, Data Execution
Prevention, https://technet.microsoft.com/en-us/library/bb457155.aspx.

 28. Anh Nguyen-Tuong, Andrew Wang, Jason D.Hiser, John C.Knight, and Jack
W.Davidson, On the effectiveness of the metamorphic shield. In Proceedings of the
Fourth European Conference on Software Architecture: Companion Volume. 2010. pp.
170-174.

 29. Ansel, J., Marchenko, P., Erlingsson, U., Taylor, E., Chen, B., Schuff, D. L., Sehr, D.,
Biffle, C. L., and Yee, B., Language-independent Sandboxing of Just-in-time
Compilation and Self-modifying Code. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation. 2011. San Jose, CA:
ACM. pp. 355-366.

 30. Apala Guha, Kim Hazelwood, and Mary Lou Soffa, Reducing exit stub memory
consumption in code caches. In Proceedings of the 2nd international conference on High
performance embedded architectures and compilers. 2007. pp. 87-101.

 31. Arjan van de Ven, New Security Enhancements in Red Hat Enterprise Linux v.3, update
3. In . 2004.

 32. Armour-Brown, C., Fitzhardinge, J., Hughes, T., Nethercote, N., Mackerras, P., Mueller,
D., Seward, J., Van Assche, B., Walsh, R., and Weidendorfer, J., Valgrind Home,
http://valgrind.org/.

 33. Austin, T. M., Breach, S. E., and Sohi, G. S., Efficient Detection of All Pointer and Array
Access Errors (extended version). In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). 1994. Orlando, FL: University of
Wisconsin. pp. 290-301.

 34. Aycock, J., A Brief History of Just-in-time. ACM Computing Surveys (CSUR), 2003.
35(2): pp. 97-113.

 35. Babic, D., Martignoni, L., McCamant, S., and Song, D. X., Statically-Directed Dynamic
Automated Test Generation. In ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA). 2011.

 36. Balakrishnan, G. and Reps, T., DIVINE: DIscovering Variables IN Executables. In
International Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI). 2007. pp. 1-28.

 37. Balakrishnan, G., Reps, T., Kidd, N., Lal, A., Lim, J., Melski, D., Gruian, R., Yong, S.
H., Chen, C.-H., and Teitelbaum, T., Model Checking x86 Executables with
CodeSurfer/x86 and WPDS++, (tool-demonstration paper). In International Conference
on Computer Aided Verification (CAV). 2005. Edinburgh, Scotland: Springer. pp. 158-
163.

 38. Balakrishnan, G., Reps, T., Melski, D., and Teitelbaum, T., WYSINWYX: What You See Is
Not What You eXecute. In IFIP Working Conference on Verified Software: Theories,
Tools, Experiments (VSTTE). 2005. Zurich, Switzerland: Springer.

 39. Barrantes, G., Ackley, D. H., Palmer, T. S., Zovi, D. D., Forrest, S., and Stefanovic, D.,
Randomized Instruction Set Emulation to Disrupt Binary Code Injection Attacks. In ACM
Conference on Computer and Communications Security (CCS). 2003. Washington, DC:
ACM. pp. 281-289.

 40. Beckman, N. E., Nori, A. V., Rajamani, S. K., and Simmons, R. J., Proofs from Tests. In
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA).
2008. Seattle, WA: ACM. pp. 3-14.

230
Approved for public release: distribution unlimited.

https://technet.microsoft.com/en-us/library/bb457155.aspx
http://valgrind.org/

 41. Bellard, F., Qemu, a fast and portable dynamic translat. In Proceedings of the Annual
Conference on USENIX Annual Techincal Conference. 2005.

 42. Bhatkar, S., DuVarney, D. C., and Sekar, R. C., Address Obfuscation: An Efficient
Approach to Combat a Broad Range of Memory Error Exploits. In USENIX Security
Symposium. 2003. Washington, DC: USENIX Association. pp. 105-120.

 43. Bittau, A., Belay, A., Mashtizadeh, A., Mazieres, D., and Boneh, D., Hacking blind. In
Security and Privacy (SP), 2014 IEEE Symposium on: IEEE. pp. 227-242.

 44. Bond, M. D. and McKinley, K.S., Probabilistic Calling Context. 2007, ACM.
 45. Borisov, N., Johnson, R., Sastry, N., and Wagner, D., Fixing Races for Fun and Profit:

How to abuse atime. 2005.
 46. Bosman, E., Slowinska, A., and Bos, H., Minemu: The World's Fastest Taint Tracker. In

Proceedings of the 14th International Conference on Recent Advances in Intrusion
Detection. Berlin, Heidelberg. pp. 1-20.

 47. Brumley, D., Wang, H., Jha, S., and Song, D., Creating Vulnerability Signatures Using
Weakest Preconditions. In IEEE Computer Security Foundations Symposium (CSF).
2007. Venice, Italy: IEEE Computer Society. pp. 311-325.

 48. Cadar, C., Dunbar, D., and Engler, D. R., KLEE: Unassisted and Automatic Generation
of High-Coverage Tests for Complex Systems Programs. In Symposium on Operating
System Design and Implementation (OSDI). 2008. San Diego, CA: USENIX Association.
pp. 209-224.

 49. Cadar, C. and Engler, D. R., Execution Generated Test Cases: How to Make Systems
Code Crash Itself. In International SPIN Workshop on Model Checking of Software.
2005. San Francisco, CA: Springer. pp. 2-23.

 50. Cai, X., Gui, Y., and Johnson, R., Exploiting Unix File-system Races via Algorithmic
Complexity Attacks. 2009, IEEE. pp. 27-41.

 51. Castro, M., Costa, M., Martin, J.-P., Peinado, M., Akritidis, P., Donnelly, A., Barham, P.,
and Black, R., Fast byte-granularity software fault isolation. In ACM Symposium on
Operating Systems Principles (SOSP). 2009. Big Sky, Montana, USA: ACM. pp. 45-48.

 52. Chen, X., ASLR Bypass Apocalypse in Recent Zero-Day Exploits,
https://www.fireeye.com/blog/threat-research/2013/10/aslr-bypass-apocalypse-in-lately-
zero-day-exploits.html.

 53. Cheng, W., Zhao, Q., Yu, B., and Hiroshige, S., TaintTrace: Efficient Flow Tracing with
Dynamic Binary Rewriting. In Proceedings of the 11th IEEE Symposium on Computers
and Communications. 2006. Washington, DC. pp. 749-754.

 54. Cheng, Y., Zhou, Z., Yu, M., Ding, X., and Deng, R. H., ROPecker: A generic and
practical approach for defending against ROP attacks. In Symposium on Network and
Distributed System Security (NDSS). 2014.

 55. Chew, L. and Lie, D., Kivati: Fast Detection and Prevention of Atomicity Violations.
2010. pp. 307-319.

 56. Chin, E. and Wagner, D., Efficient Character-level Taint Tracking for Java. In
Proceedings of the 2009 ACM Workshop on Secure Web Services. 2009. Chicago, IL:
ACM. pp. 3-12.

 57. Chipounov, V., Kuznetsov, V., and Candea, G., S2E: A Platform for In-Vivo Multi-Path
Analysis of Software Systems. In International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). 2011. Newport Beach, CA,
USA: ACM. pp. 265-278.

231
Approved for public release: distribution unlimited.

https://www.fireeye.com/blog/threat-research/2013/10/aslr-bypass-apocalypse-in-lately-zero-day-exploits.html
https://www.fireeye.com/blog/threat-research/2013/10/aslr-bypass-apocalypse-in-lately-zero-day-exploits.html

 58. Cho, C. Y., Babic, D., Poosankam, P., Chen, K. Z., Wu, E. X., and Song, D., MACE:
Model-inference-Assisted Concolic Explration for Protocol and Vulnerability Discovery.
In USENIX Security Symposium. 2011. San Francisco, CA, USA: USENIX Association.

 59. Chris Eagle, The IDA Pro Book: The Unofficial Guide to the World's Most Popular
Disassembler. 2008: No Starch Press.

 60. Christey, S., 2011 CWE/SANS top 25 most dangerous software errors,
http://cwe.mitre.org/top25/.

 61. Christiansen, A. S., Moller, A., and Scwartzbach, M. I., Precise Analysis of String
Expressions. In Proceedings of the 10th International Conference on Static Analysis.
2003. San Diego, CA: Springer-Verlag. pp. 1-18.

 62. Christodorescu, M., Kidd, N., and Goh, W.-H., String Analysis for x86 Binaries. In 6th
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering: ACM Press.

 63. Clause, J., Li, W., and Orso, A., Dytan: a generic dynamic taint analysis framework. In
Proceedings of the 2007 International Symposium on Software Testing and Analysis.
2007. London, UK: ACM. pp. 196-206.

 64. Coffman, E., Elphick, M., and Shoshani, A., System deadlocks. 1971. pp. 67-78.
 65. Connover, M., w00w00 on heap overflows, http://www.w00w00.org/.
 66. Coppens, J., cbrPager: a simple comic book pager for Linux,

http://jcoppens.com/soft/cbrpager/index.en.php.
 67. Corbet, J., Seccomp and sandboxing, http://lwn.net/Articles/332974/.
 68. Corbet, J., Yet another new approach to seccomp, http://lwn.net/Articles/475043/.
 69. Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., and Barham, P.,

Vigilante: End-to-End Containment of Internet Worms. In ACM Symposium on Operating
Systems Principles (SOSP). 2005. Brighton, UK: ACM Press. pp. 133-147.

 70. Cowan, C., Beattie, S., Johansen, J., and Wagle, P., PointGuard: Protecting pointers
from buffer overflow vulnerabilities. In 12th USENIX Security Symposium. 2004:
USENIX. pp. 91-104.

 71. Cui, H., Simsa, J., Lin, Y.-H., Li, H., Blum, B., Xu, X., Yang, J., Gibson, G., and Bryant,
R., PARROT: A Practical Runtime for Deterministic, Stable, and Reliable Threads. 2013,
ACM.

 72. Cui, H., Wu, J., Gallagher, J., Guo, H., and Yang, J., Efficient Deterministic
Multithreading through Schedule Relaxation. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles (SOSP '11). 2011. pp. 337-351.

 73. Daniel, M., Honoroff, J., and Miller, C., Engineering Heap Overflow Exploits with
JavaScript. In Proceedings of the 2Nd Conference on USENIX Workshop on Offensive
Technologies. 2008. San Jose, CA: USENIX Association.

 74. DataRescue, The IDA Pro Disassembler, http://www.hex-rays.com/idapro/.
 75. Davi, L., Sadeghi, A.-R., and Winandy, M., ROPdefender: a detection tool to defend

against return-oriented programming attacks. In Proceedings of the 6th ACM Symposium
on Information, Computer and Communications Security. 2011. pp. 40-51.

 76. Dean, D. and Hu, A.J., Fixing Races for Fun and Profit: How to use access(2). 2004. pp.
195-206.

 77. Demsky, B., Ernst, M. D., Guo, P. J., McCamant, S., Perkins, J. H., and Rinard, M. C.,
Inference and enforcement of data structure consistency specifications. In ACM

232
Approved for public release: distribution unlimited.

http://cwe.mitre.org/top25/
http://www.w00w00.org/
http://jcoppens.com/soft/cbrpager/index.en.php
http://lwn.net/Articles/332974/
http://lwn.net/Articles/475043/
http://www.hex-rays.com/idapro/

SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). 2006.
Portland, Maine: ACM. pp. 233-244.

 78. Demsky, B. and Rinard, M. C., Automatic detection and repair of errors in data
structures. In ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). 2003. Anaheim, CA: ACM. pp. 78-95.

 79. Demsky, B. and Rinard, M. C., Data structure repair using goal-directed reasoning. In
International Conference on Software Engineering (ICSE). 2005. St. Louis, MO: ACM.
pp. 176-185.

 80. Dhurjati, D. and Adve, V., Backwards-compatible Array Bounds Checking for C with
Very Low Overhead. In Proceedings of the 28th international conference on Software
engineering. 2006. Shanghai, China: ACM.

 81. Dickens, C., A Tale of Two Cities, www.gutenberg.org/files/98/98.txt.
 82. Durden, T., Bypassing PaX ASLR Protection,

http://phrack.org/issues.html?issue=59&id=9#article.
 83. Edward J.Schwartz, Thanassis Avgerinos, and David Brumley, Q: exploit hardening

made easy. In Proceedings of the 20th USENIX conference on Security. 2011.
 84. Elena Gabriela Barrantes, David H.Ackley, Stephanie Forrest, and Darko Stefanovic',

Randomized instruction set emulation. ACM Transaction Information System Security,
2005. 8(1): pp. 3-40.

 85. Emery D Berger and Benjamin G.Zorn, DieHard: probabilistic memory safety for unsafe
languages. In Proceedings of the 2006 ACM SIGPLAN Conference on Programming
Language Design and Implementation. 2006. pp. 158-168.

 86. Flanagan, C. and Freund, S.N., FastTrack: Efficient and Precise Dynamic Race
Detection. 2009. pp. 121-133.

 87. Ford, B. and Cox, R., Vx32: Lightweight User-level Sandboxing on the x86. In USENIX
Anual Technical Conference. 2008. Boston, MA, USA: USENIX Association. pp. 293-
306.

 88. Forrest, S., Somayaji, A., and Ackley, D. H., Building Diverse Computer Systems. In
Workshop on Hot Topics in Operating Systems (HotOS). 1997. Cape Cod, MA: IEEE
Computer Society Press. pp. 67-72.

 89. FSE, Failures-Divergence Refinement: FDR2 Manual. 1997, Formal Systems (Europe)
Ltd. (FSEL).

 90. Futoransky, A., Gutesman, E., and Wassbein, A., A dynamic technique for enhancing the
security and privacy of web applications. In Black Hat USA.

 91. Garfinkel, T., Pfaff, B., Rosenblum, M., and et.al., Ostia: A Delegating Architecture for
Secure System Call Interposition. In Proceedings of the Symposium on Network and
Distributed System Security. 2004.

 92. Gene Novark and Emery D Berger, DieHarder: securing the heap. In Proceedings of the
17th ACM conference on Computer and communications security. 2010. pp. 573-584.

 93. Gene Novark, Emery D Berger, and Benjamin G Zorn, Exterminator: automatically
correcting memory errors with high probability. In Proceedings of the 2007 ACM
SIGPLAN conference on Programming language design and implementation. 2007. pp.
1-11.

 94. Giampaolo Fresi Roglia, Lorenzo Martignoni, Roberto Paleari, and Danilo Bruschi,
Surgically Returning to Randomized lib(c). In Proceedings of the 2009 Annual Computer
Security Applications Conference. 2009. pp. 60-69.

233
Approved for public release: distribution unlimited.

http://www.gutenberg.org/files/98/98.txt
http://phrack.org/issues.html?issue=59&id=9%23article

 95. Godefroid, P., Compositional Dynamic Test Generation. In ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL). 2007. Nice, France:
ACM. pp. 47-54.

 96. Godefroid, P., Klarlund, N., and Sen, K., DART: Directed Automated Random Testing. In
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI). 2005. Chicago, IL: ACM. pp. 213-223.

 97. Godefroid, P., Levin, M. Y., and Molnar, D., Automated Whitebox Fuzz Testing. 2007,
Microsoft MSR-TR-2007-58.

 98. Gopan, D., Melski, D., nguyen, d., naydich, d., and Driscoll, E., Data-Delineation in
Software Binaries and its Application to Buffer-Overrun Discovery. In ICSE 2015. 2015.
Firenze, Italy.

 99. Greve, G. C. F., Brown, M., and Nelson, D., SpamAssasin Milter Plugin,
http://savannah.nongnu.org/projects/spamass-milt/.

 100. Haldar, V., Chandra, D., and Franz, M., Dynamic Taint Propagation for Java. In
Proceedings of the 21st Annual Computer Security Applications Conference. 2005.
Washington, DC: IEEE Computer Society. pp. 303-311.

 101. Halfond, W., Orso, A., and Manolios, P., WASP: Protecting Web Applications Using
Positive Tainting and Syntax-Aware Evaluation. IEEE Transacations on Software
Engineering, 2008. 34: pp. 65-81.

 102. Halfond, W. G. J. and Orso, A., AMNESIA: Analysis and Monitoring for NEutralizing
SQL-injection Attacks. In Proceedings of the 20th IEEE/ACM International Conference
on Automated Software Engineering. 2005. Long Beach, CA: ACM. pp. 174-183.

 103. Halfond, W. G. J., Orso, A., and Manolis, P., Using Positive Tainting and Syntax-aware
Evaluation to Counter SQL Injection Attacks. In Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. 2006. Portland, OR:
ACM. pp. 175-185.

 104. Hammer, C., Dolby, J., Vaziri, M., and Tip, F., Dynamic Detection of Atomic-Set
Serializability Violations. 2008, ACM. pp. 231-240.

 105. Hiser, J. W., Coleman, C., and Davidson, J. W., MEDS: The Memory Error Detection
System. In International Symposium on Engineering Secure Software and Systems. 2009.
pp. 164-179.

 106. Hiser, J., Coleman, C., Co, M., and Davidson, J., MEDS: The Memory Error Detection
System. 2008, University of Virginia.

 107. Hiser, J., Nguyen-Toung, A., Co, M., Hall, M., and Davidson, J., ILR: Where'd My
Gadgets Go? In Proceedings of the 2012 IEEE Symposium on Security and Privacy.
2012. Washington, DC: IEEE Computer Society. pp. 571-585.

 108. Hiser, J., Williams, D., Hu, W., Davidson, J. W., Mars, J., and Childers, B., Evaluating
Indirect Branch Handling Mechanisms in Software Dynamic Translation Systems. In
IEEE International Symposium on Network Computing and Applications.

 109. Hiser, J. D., Williams, D., Filipi, A., Davidson, J. W., and Childers, B. R., Evaluating
Fragment Construction Policies for SDT Systems. In 2nd International Conference on
Virtual Execution Environments. 2006. pp. 122-132.

 110. Hovav Shacham, The geometry of innocent flesh on the bone: return-into-libc without
function calls (on the x86). In Proceedings of the 14th ACM conference on Computer and
communications security. 2007. pp. 552-561.

234
Approved for public release: distribution unlimited.

http://savannah.nongnu.org/projects/spamass-milt/

 111. Hu, W., Hiser, J., Williams, D., Filipi, A., Davidson, J. W., Evans, D., Knight, J. C.,
Nguyen-Tuong, A., and Rowanhill, J., Secure and Practical Defense Against Code-
injection Attacks Using Software Dynamic Translation. In Proceedings of the 2Nd
International Conference on Virtual Execution Environments. 2006. Ottawa, Ontario,
Canada: ACM. pp. 2-12.

 112. Hu, W., Hiser, J., Williams, D., Filipi, A., Davidson, J. W., Evans, D., Knight, J.,
Nguyen-Tuong, A., and Rowanhille, J., Secure and Practical Defense Against Code-
Injection Attacks. In International Conference on Virtual Execution Environments (VEE).
2006. pp. 2-12.

 113. J.Hiser, A.Nguyen-Toung, M.Co, M.Hall, and J.Davidson, IRL: Where'd my gadgets go?
In In submission. 2011.

 114. Jackson, T., Salamat, B., Homescu, A., Manivannan, K., Wagner, G., Gal, A., Brunthaler,
S., Wimmer, C., and Franz, M., Compiler-Generated Software Diversity Moving Target
Defense. in . 2011, Springer New York. pp. 77-98.

 115. James Newsome and Dawn Song, Dynamic Taint Analysis for Automatic Detection,
Analysis, and Signature Generation of Exploits on Commodity Software. 2005, CMU
Department of Electrical and Computer Engineering Paper 3.

 116. Jinku Li, Zhi Wang, Xuxian Jiang, Michael Grace, and Sina Bahram, Defeating return-
oriented rootkits with "Return-Less" kernels. In Proceedings of the 5th European
conference on Computer systems. 2010. pp. 195-208.

 117. Jula, H., Tralamazza, D., Zamfir, C., and Candea, G., Deadlock Immunity: Enabling
Systems To Defend Against Deadlocks. 2008.

 118. Karthik Sundaramoorthy, Zach Purser, and Eric Rotenberg, Slipstream Processors:
Improving Both Performance and Fault Tolerance. In ASPLOS. 2000.

 119. Kc, G. S., Keromytis, A. D., and Prevelakis, V., Countering Code-Injection Attacks With
Instruction-Set Randomization. In ACM Conference on Computer and Communications
Security (CCS). 2003. Washington, D.C.: ACM. pp. 272-280.

 120. Kemerlis, V. P., Portokalidis, G., Jee, K., and Keromytis, A. D., Libdft: Practical
Dynamic Data Flow Tracking for Commodity Systems. In Proceedings of the 8th ACM
SIGPLAN/SIGOPS Conference on Virtual Execution Environments. 2012. London,
England: ACM. pp. 121-132.

 121. Kil, C., Jim, J., Bookholt, C., Xu, J., and Ning, P., Address space layout permutation
(ASLP): Towards fine-grained randomization of commodity software. In Computer
Security Applications Conference, 2006.ACSAC'06.22nd Annual. 2006. pp. 339-348.

 122. Kiriansky, V., Bruening, D., and Amarasinghe, S., Secure Execution Via Program
Shepherding. In USENIX Security Symposium. 2002. San Francisco, CA: USENIX. pp.
191-206.

 123. Kruegel, C., Robertson, W., Valeur, F., and Vigna, G., Static Disassembly of Obfuscated
Binaries. In USENIX Security Symposium. 2004. San Diego, CA: USENIX. pp. 255-270.

 124. Kupsch, J. and Miller, B., How to Open a File and Not Get Hacked. 2008. pp. 1196-
1203.

 125. Lal, A., Lim, J., and Reps, T., McDash: Refinement-based property verification for
machine code. 2009, Computer Sciences Department, University of Wisconsin.

 126. Lim, J., Lal, A., and Reps, T., Symbolic Analysis via Semantic Reinterpretation. 2009,
University of Wisconsin.

235
Approved for public release: distribution unlimited.

 127. Linda Torczon and Keith Cooper, Engineering A Compiler. 2nd ed. 2011: Morgan
Kaufmann Publishers Inc.

 128. Liviu Ciortea, Cristian Zamfir, Stefan Bucur, Vitaly Chipounov, and George Candea,
Cloud9: A Software Testing Service. In 3rd SOSP Workshop on Large Scale Distributed
Systems and Middleware (LADIS). 2009. Big Sky, MT. pp. 5-10.

 129. Livshits, B., Dynamic Taint Tracking in Managed Runtime. 2012 MSR-TR-2012-114.
 130. Loscocco, P. and Smalley, S., Integrating Flexible Support for Security Policies into the

Linux Operating System. In Proceedings of the FREENIX Track: 2001 USENIX Annual
Technical Conference. 2001. pp. 29-42.

 131. Lu, S., Park, S., Hu, C., Ma, X., Jiang, W., Li, Z., Popa, R. A., and Zhou, Y., MUVI:
automatically inferring multi-variable access correlations and detecting related semantic
and concurrency bugs. In ACM Symposium on Operating Systems Principles (SOSP).
2007. Stevenson, WA: ACM. pp. 103-116.

 132. Lu, S., Park, S., Seo, E., and Zhou, Y., Learning from Mistakes - A Comprehensive Study
on Real World Concurrency Bug Characteristics. ACM SIGARCH Computer
Architecture News, 2008. 36(1): pp. 329-339.

 133. Lu, S., Tucek, J., Qin, F., and Zhou, Y., AVIO: Detecting Atomicity Violations via
Access-Interleaving Invariants. IEEE Micro, 2007. 27(1): pp. 26-35.

 134. Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy, ROPdefender: a detection tool
to defend against return-oriented programming attacks. In Proceedings of the 6th ACM
Symposium on Information, Computer and Communications Security. 2011. pp. 40-51.

 135. Luk, C.-K., Cohn, R. S., Muth, R., Patil, H., Klauser, A., Lowney, P. G., Wallace, S.,
Reddi, V. J., and Hazelwood, K. M., Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). 2005. Chicago, IL: ACM. pp. 190-200.

 136. Majumdar, R. and Sen, K., Hybrid Concolic Testing. In International Conference on
Software Engineering (ICSE). 2007. Minneapolis, Minnesota: IEEE Computer Society.
pp. 416-426.

 137. Majumdar, R. and Sen, K., LATEST: Lazy Dynamic Test Input Generation. 2007,
University of California at Berkeley, Berkeley, CA UCB/EECS-2007-36.

 138. Mathias Payer and Thomas R.Gross, Fine-grained user-space security through
virtualization. In Proceedings of the 7th ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments. 2011: ACM. pp. 157-168.

 139. Michael J.Voss and Rudolf Eigenmann, A framework for remote dynamic program
optimization. In Proceedings of the ACM SIGPLAN workshop on Dynamic and adaptive
compilation and optimization. 2000. pp. 32-40.

 140. Michele, C., Jack, W. D., Jason, D. H., John, C. K., Anh, N., David, C., Denis, G., David,
M., Wenke, L., Chengyu, S., Thomas, B., David, H., and Brian, M., PEASOUP:
preventing exploits against software of uncertain provenance (position paper). In : ACM.
pp. 43-49.

 141. Mitre, CWE - Common Weakness Enumeration, http://cwe.mitre.org/.
 142. Nagarakatte, S., Zhao, J., Matin, M., and Zdancewic, S., CETS: Compiler Enforced

Temporal Safety for C. In Proceedings of the 2010 International Symposium on Memory
Management. 2010. Toronto, Ontario, Canada: ACM. pp. 31-40.

236
Approved for public release: distribution unlimited.

http://cwe.mitre.org/

 143. Nagarakatte, S., Zhao, J., Martin, M. M. K., and Zdancewic, S., SoftBound: highly
compatible and complete spatial memory safety for C. In Programming Language Design
and Implementation: ACM. pp. 245-258.

 144. Nergal, The Advanced Return-Into-Lib(C) Exploits,
http://phrack.org/show.php?p=58&a=4.

 145. Nethercote, N. and Seward, J., Valgrind: A Program Supervision Framework. Electronic
Notes in Theoretical Computer Science (ENTCS), 2003. 89(2): pp. 1-23.

 146. Netzer, R. H. B. and Miller, B. P., What Are Race Conditions?: Some Issues and
Formalizations. ACM Letters on Programming Languages and Systems (LOPLAS),
1992. 1(1): pp. 74-88.

 147. Newsham, T., Format string attacks.
 148. Newsome, J. and Song, D., Dynamic Taint Analysis for Automatic Detection, Analysis,

and Signature Generation of Exploits on Commodity Software. 2005, CMU Department
of Electrical and Computer Engineering Paper 3.

 149. Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., and Evans, D., Automatically
hardening web applications using precise tainting. In 20th IFIP International
Information Security Conference. 2005: Springer. pp. 372-382.

 150. Nguyen-Tuong, A., Hiser, J. D., Co, M., Davidson, J. W., Knight, J. C., Kennedy, N.,
Melski, D., Ella, W., and Hyde, D., To B or not to B: Blessing OS Commands with
Software DNA Shotgun Sequencing. In Proceedings of the 2014 European Dependable
Computing Conference (EDCC '14). 2014. Washington, DC: IEEE Computer Society.
pp. 238-249.

 151. Nick Kolettis and N.Dudley Fulton, Software Rejuvination: Analysis, Module and
Applications. In Int.Symposium on Fault Tolerant Computing. 1995.

 152. Niranjan, H., Ashish, M., and R.Sekar, Light-weight bounds checking. In Proceedings of
the Tenth International Symposium on Code Generation and Optimization (CGO): ACM.
pp. 135-144.

 153. Niu, B. and Tan, G., RockJIT: Securing Just-In-Time Compilation Using Modular
Control-Flow Integrity. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. 2014. Scottsdale, AZ: ACM. pp. 1317-1328.

 154. Niu, B. and Tan, G., Modular Control-flow Integrity. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI).
2014. pp. 577-587.

 155. Papgiannis, I., Migliavacca, M., and Pietzuch, P., PHP Aspis: Using Partial Taint
Tracking to Protect Against Injection Attacks. In Proceedings of the 2Nd USENIX
Conference on Web Application Development. 2011. Portland, Oregon: USENIX
Association. p. 2.

 156. Pappas, V., Polychronakis, M., and Keromytis, A. D., Smashing the gadgets: Hindering
return-oriented programming using in-place code randomization. In Security and
Privacy (SP), 2012 IEEE Symposium on: IEEE. pp. 601-615.

 157. Park, S., Lu, S., and Zhou, Y., CTrigger: Exposing Atomicity Violation Bugs from Their
Hiding Places. In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). Washington, DC, USA.

 158. Patil, H. and Fischer, C., Low-cost, concurrent checking of pointer and array accesses in
c programs. Software-Practice & Experience, 1997. 27(1): pp. 87-110.

 159. PaX, PaX project, http://pax.grsecurity.net/.

237
Approved for public release: distribution unlimited.

http://phrack.org/show.php?p=58&a=4
http://pax.grsecurity.net/

 160. Perkins, J. H., Kim, S., Larsen, S., Amarasinghe, S., Bachrach, J., Carbin, M., Pacheco,
C., Sherwood, F., Sidiroglou, S., Sullivan, G. W. W.-F., Zibin, Y., Ernst, M. D., and
Rinard, M., Automatically Patching Errors in Deployed Software. In SOSP '09. 2009. Big
Sky, Montana, USA: ACM. pp. 87-102.

 161. Pie, P., Mobile Pwn2Own Autumn 2013 - Chrome on Android - Expolit Writeup,
https://www.rstforums.com/forum/80945-mobile-pwn2own-autumn-2013-chrome-
android-exploit-writeup.rst.

 162. Pietraszek, T. and Berghe, C. V., Defending Against Injection Attacks Through Context-
sensitive String Evaluation. In Proceedings of the 8th International Conference on Recent
Advances in Intrusion Detection. 2006. Seattle, WA: Springer-Verlag. pp. 124-145.

 163. Ping Chen, Hai Xiao, Xiaobin Shen, Xinchun Yin, Bing Mao, and Li Xie, DROP:
Detecting Return-Oriented Programming Malicious Code. In Proceedings of the 5th
International Conference on Information Systems Security. 2009. pp. 163-177.

 164. Probst, M., Dynamic binary translation. In UKUUG Linux Developer¡¯s Conference: sn.
 165. Qin, F., Wang, C., Li, Z., Kim, H., Zhou, Y., and Wu, Y., LIFT: A Low-Overhead

Practical Information Flow Tracking System for Detecting Security Attacks. 2006. pp.
135-148.

 166. Ramalingam, G., Field, J., and Tip, F., Aggregate Structure Identification and Its
Application to Program Analysis. In ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL). 1999. San Antonio, TX: ACM Press. pp. 119-132.

 167. Ramos, D. A. and Engler, D. R., Practical, low-effort equivalenc verification of real
code. In International Conference on Computer Aided Verification (CAV). 2011.
Snowbird, UT, USA: ACM. pp. 669-685.

 168. Renieris, M., Chan-Tin, S., and Reiss, S. P., Elided Conditionals. In ACM SIGPLAN-
SIGSSOFT Workshop on Program Analysis for Software Tools and Engineering
(PASTE). 2004. Washington, DC: ACM. pp. 52-57.

 169. Reps, T. and Balakrishnan, G., Improved Memory-Access Analysis for x86 Executables.
In International Conference on Compiler Construction (CC). 2008. Budapest, Hungary.
pp. 16-35.

 170. Reps, T., Balakrishnan, G., Teitelbaum, T., and Lim, J., A next-generation platform for
analyzing executables. In Proc.3rd Asian Symposium on Programming Languages and
Systems. 2009. Tsukuba, Japan.

 171. Rinard, M., Cadar, C., Dumitran, D., Roy, D. M., Leu, T., and Beebe, W. S. Jr.,
Enhancing server availability and security through failure-oblivious computing. In 6th
conference on Symposium on Operating Systems Design & Implementation. 2004. San
Francisco, CA. p. 21.

 172. Roglia, G. F., Martignoni, L., Paleari, R., and Bruschi, D., Surgically Returning to
Randomized lib(c). In Proceedings of the 2009 Annual Computer Security Applications
Conference. 2009. pp. 60-69.

 173. Ryan Glenn Roemer, Finding the Bad in Good Code: Automated Return-Oriented
Programming Exploit Discovery. University of California. 2009.

 174. S.Designer, ""return-to-libc" attack. In Bugtraq, Aug. 1997.
 175. Sandeep Bhatkar and R.Sekar, Efficient techniques for comprehensive protection from

memory error exploits. In Proceedings of the 14th conference on USENIX Security
Symposium. 2005. Baltimore, MD: USENIX Association. p. 17.

238
Approved for public release: distribution unlimited.

https://www.rstforums.com/forum/80945-mobile-pwn2own-autumn-2013-chrome-android-exploit-writeup.rst
https://www.rstforums.com/forum/80945-mobile-pwn2own-autumn-2013-chrome-android-exploit-writeup.rst

 176. Sandeep Bhatkar and R.Sekar, Data Space Randomization. In Proceedings of the 5th
international conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Paris, France: Springer-Verlag, 2008. pp. 1-22.

 177. Saravanan Sinnadurai, Qin Zhao, and Weng-fai Wong, Transparent Runtime Shadow
Stack: Protection against malicious return address modifications. In . 2008.

 178. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., and Anderson, T. E., Eraser: A
Dynamic Data Race Detector for Multithreaded Programs. ACM Transactions on
Computer Systems (TOCS), 1997. 15(4): pp. 391-411.

 179. Saxena, P., Sekar, R., and Puranik, V., Efficient Fine-Grained Binary Instrumentation
with Applications to Taint-Tracking. In IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). 2008.

 180. Schwarz, B., Debray, S. K., and Andrews, G. R., Disassembly of Executable Code
Revisited. In Working Conference on Reverse Engineering (WCRE). 2002. Richmond,
VA: IEEE Computer Society. pp. 45-54.

 181. Scott, K. and Davidson, J., Strata: A software dynamic translation infrastructure. In
IEEE Workshop on Binary Translation: IEEE.

 182. Scott, K., Kumar, N., Velusamy, S., Childers, B., Davidson, J. W., and Soffa, M. L.,
Retargetable and reconfigurable software dynamic translation. In International
Symposium on Code Generation and Optimization: IEEE Computer Society. pp. 36-47.

 183. Sehr, D., Muth, R., Biffle, C., Khimenko, V., Pasko, E., Schimpf, K., Yee, B., and Chen,
B., Adapting Software Fault Isolation to Contemporary CPU Architectures. In
Proceedings of the 19th USENIX Conference on Security. 2014. Washington, DC. p. 1.

 184. Sekar, R., An Efficient Black-box Technique for Defeating Web Application Attacks. In
Network and Distributed Systems Security Symposium. 2009.

 185. Sen, K., Marinov, D., and Agha, G., CUTE: A Concolic Unit Testing Engine for C. In
European Software Engineering Conference/ACM SIGSOFT International Symposium on
Foundations of Software Engineering (ESEC/FSE). 2005. Lisbon, Portugal: ACM. pp.
263-272.

 186. Serebryany, K., Bruening, D., Potapenko, A., and Vyukov, D., AddressSanitizer: A Fast
Address Sanity Checker. In USENIX Annual Technical Conference. pp. 309-318.

 187. Serna, F., The info leak era on software exploitation. Black Hat USA, 2012.
 188. Seward, J., bzip2, http://www.bzip.org/.
 189. Seward, J. and Nethercote, N., Using Valgrind to Detect Undefined Value Errors With

Bit-Precision. In USENIX Technical Conference. 2005. Anaheim, CA: USENIX. pp. 17-
30.

 190. Shacham, H., Page, M., Pfaff, B., Goh, E., Modadugu, N., and Boneh, D., On the
Effectiveness of Address Space Randomization. In ACM Conference on Computer and
Communications Security (CCS). 2004.

 191. Sharif, M., Lee, W., Cui, W., and Lanzi, A., Secure In-VM Monitoring Using Hardware
Virtualization. In ACM Conference on Computer and Communications Security (CCS).
2009.

 192. Sidiroglou, S., Giovanidis, G., and Keromytis, A. D., A Dynamic Mechanism for
Recovering from Buffer Overflow Attacks. In Proceedings of the 8th International
Conference on Information Security. 2005. Singapore: Springer-Verlag. pp. 1-15.

239
Approved for public release: distribution unlimited.

http://www.bzip.org/

 193. Sidiroglou, S., Laadan, O., Perez, C. R., Viennot, N., Nieh, J., and Keromytis, A. D.,
ASSURE: Automatic Software Self-healing Using REscue points. In ASPLOS'09.
Washington, D.C.

 194. Sidiroglou, S., Locasto, M., Boyd, S., and Keromytis, A., Building a Reactive Immune
System for Software Services. In Proceedings of the annual conference on USENIX
Annual Technical Conference. 2005.

 195. Silberschatz, A., Galvin, P., and Gagne, G., Operating System Concepts. 1998, Addison-
Wesley.

 196. Sintsov, A., Writing jit-spray shellcode for fun and profit. Writing, 2010.
 197. Snow, K., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., and Sadeghi, A., Just-in-

time code reuse: On the effectiveness of fine-grained address space layout
randomization. In Proceedings of the 2013 IEEE Symposium on Security and Privacy.
2013. Washington, DC. pp. 574-588.

 198. Song, C., Zhang, C., Wang, T., Lee, W., and Melski, D., Exploiting and protecting
dynamic code generation. In Proceedings of the 2015 Network and Distributed System
Security (NDSS) Symposium.

 199. Standard Performance Evaluation Corporation, SPEC CPU 2006,
http://www.spec.org/cpu2006/.

 200. Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, Hovav
Shacham, and Marcel Winandy, Return-oriented programming without returns. In
Proceedings of the 17th ACM conference on Computer and communications security.
2010. pp. 559-572.

 201. Steven Van Acker, Nick Nikiforakis, Pieter Philippaerts, Yves Younan, and Frank
Piessens, ValueGuard: protection of native applications against data-only buffer
overflows. In Proceedings of the 6th international conference on Information systems
security. 2010: Springer-Verlag. pp. 156-170.

 202. Su, Z. and Wassermann, G., The Essence of Command Injection Attacks in Web
Applications. In Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. 2006. Chrleston, SC: ACM. pp. 372-382.

 203. Thakur, A., Lim, J., Lal, A., Burton, A., Driscoll, E., Elder, M., Andersen, T., and Reps,
T., Directed proof generation for machine code. In Proceedings of International
Conference on Computer Aided Verification (CAV '10). 2010. Edinburgh, UK. pp. 288-
305.

 204. Thomas Dullien, Tim Kornau, and Ralf-Philipp Weinmann, A framework for automated
architecture-independent gadget search. In Proceedings of the 4th USENIX conference
on Offensive technologies. 2010.

 205. Tsafrir, D., Hertz, T., Wagner, D., and Da Silva, D., Portably Solving File Races with
Hardness Amplification. 2008.

 206. Vaziri, M., Tip, F., and Dolby, J., Associating synchronization constraints with data in an
object-oriented language. In ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL). 2006. Charleston, South Carolina: ACM. pp. 334-345.

 207. Viega, J., Bloch, J. T., Kohno, T., and McGraw, G., ITS4: A Static Vulnerability Scanner
for C and C++ Code. In Annual Computer Security Applications Conference (ACSAC).
2000. New Orleans, LA: IEEE Computer Society. p. 257.

 208. Vijayakumar, H., Schiffman, J., and Jaeger, T., STING: Finding Name Resolution
Vulnerabilities in Programs. 2012. pp. 585-599.

240
Approved for public release: distribution unlimited.

http://www.spec.org/cpu2006/

 209. Vitaliy B.Lvin and Gene Novark, E. D. B. a. B. G. Z., Archipelago: trading address
space for reliability and security. SIGOPS Operating Systems Review, 2008. 42(2): pp.
115-124.

 210. Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea, S2E: a platform for in-
vivo multi-path analysis of software systems. In ASPLOS '11. 2011. Newport Beach,
California: ACM. pp. 265-278.

 211. Wahbe, R., Lucco, S., Anderson, T. E., and Graham, S. L., Efficient Software-Based
Fault Isolation. In ACM Symposium on Operating Systems Principles (SOSP). 1993.
Asheville, NC: ACM Press. pp. 203-216.

 212. Wang, Y., Kelly, T., Kudlur, M., Lafortune, S., and Mahlke, S., Gadara: Dynamic
Deadlock Avoidance for Multithreaded Programs. 2008. pp. 281-294.

 213. Wartell, R., Mohan, V., Hamlen, K. W., and Lin, Z., Binary stirring: Self-randomizing
instruction addresses of legacy x86 binary code. In Proceedings of the 2012 ACM
conference on Computer and communications security: ACM. pp. 157-168.

 214. Wei, J. and Pu, C., TOCTTOU Vulnerabilities in UNIX-Style File Systems: An
Anatomical Study. 2005.

 215. Wei, T., Wang, T., Duan, L., and Luo, J., Secure Dynamic Code Generation Against
Spraying. In Proceedings of the 17th ACM conference on Computer and communications
security. 2010. Chicago, IL. pp. 738-740.

 216. Wikipedia, Shotgun Sequencing, http://en.wikipedia.org/wiki/Shotgun_sequencing.
 217. Wilander, J. and Kamkar, M., A Comparison of Publicly Available Tools for Dynamic

Buffer Overflow Prevention. In Symposium on Network and Distributed System Security
(NDSS). 2003. San Diego, CA: The Internet Society. pp. 149-162.

 218. Will Dietz, Peng Li, John Regehr, and Vikram Adve, Understanding Integer Overflow in
C/C++. In Proceedings of the 34th International Conference on Software Engineering
(ICSE 2012). 2012. Zurich, Switzerland.

 219. Xu, M., Bodík, R., and Hill, M. D., A serializability violation detector for shared-memory
server programs. In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). 2005. Chicago, IL, USA: ACM. pp. 1-14.

 220. Xu, W., DuVarney, D., and Sekar, R., An Efficient and Backwards-compatible
Transformation to Ensure Memory Safety of C Programs. In Proceedings of the 12th
ACM SIGSOFT Twelfth International Symposium on Foundations of Software
Engineering. 2004. Newport Beach, CA: ACM. pp. 117-126.

 221. Xu, W., Bhatkar, S., and Sekar, R., Taint-Enhanced Policy Enforcement: A Practical
Approach to Defeat a Wide Range of Attacks. In USENIX Security Symposium.

 222. Yee, B., Sehr, D., Dardyk, G., Chen, J. B., Muth, R., Ormandy, T., Okasaka, S., Narula,
N., and Fullagar, N., Native Client: A Sandbox for Portable, Untrusted x86 Native Code.
In IEEE Symposium on Security and Privacy. 2009. Oakland, CA, USA: IEEE Computer
Society. pp. 79-93.

 223. Yih Huang and Anup Ghosh, Automating Intrusion Response via Virtualization for
Realizing Uninterruptible Web Services. In IEEE International Symposium on Network
Computing and Applications. 2009.

 224. Zeller, A., Yesterday, my program worked. Today, it does not. Why? In European
Software Engineering Conference/ACM SIGSOFT International Symposium on
Foundations of Software Engineering (ESEC/FSE). 1999. Toulouse, France.

241
Approved for public release: distribution unlimited.

http://en.wikipedia.org/wiki/Shotgun_sequencing

 225. Zhang, C., Wei, T., Chen, Z., Duan, L., Szekeres, L., McCamant, S., Song, D., and Zou,
W., Practical control flow integrity & randomization for binary executables. In IEEE
Symposium on Security and Privacy. 2013. San Francisco, CA.

 226. Zhang, M. and Sekar, R., Control Flow Integrity for COTS Binaries. In Proceedings of
the 22Nd USENIX Conference on Security. 2013. Washington, DC: USENIX
Association. pp. 337-352.

 227. Zhang, T., Zhuang, X., Pande, S., and Lee, W., Anomalous path detection with hardware
support. In 2005 International Conference on Compilers, Architectures and Synthesis for
Embedded Systems. New York, NY: ACM. pp. 43-54.

 228. Zhang, W., de Kruijf, M., Li, A., Lu, S., and Sankaralignam, K., ConAir: Featherweight
Concurrency Bug Recovery Via Single-Threaded Idempotent Execution. 2013, ACM.

242
Approved for public release: distribution unlimited.

List of Acronyms, Abbreviations, and Symbols
ACRONYM DESCRIPTION
!RUE Not Rendered UnExploitable
ACSAC Annual Computer Security Applications Conference
ADM Advanced Micro Devises
AF Altered Functionality
AOI All Offset Inference
ASLR Address Space Layout Randomization
ASSURE Automatic Software Self-healing Using REscue points
BAA Broad Agency Announcements
BED Behavior Equivalence Detector
CAV Computer Aided Verification
CSS Computer and Communications Security
CFI Control flow integrity
CGO Symposium on Code Generation and Optimization
CM Configuration Management
COTS Commercial Off-The-Shelf
COW copy-on-write
CPU Central Processing Unit
CWE Common Weakness Enumeration
DARPA Defense Advanced Research Projects Agency
DHCP Dynamic Host Configuration Protocol
DLL Dynamically Linked Library
DOI Direct Offset Inference
DOS Denial-of-Service
DNS Domain Name System
DROP Detecting Return-Oriented Programming
DVT Disassembler Validation Tool
EMP/NPT Extended/Nested Page Tables
ELF Executable and Linkable Format
ESI Extended Stack Index register
GB Gigabyte
GHz Gigahertz
gtSDT GrammaTech’s framework for software dynamic translation
HTML Hypertext Markup Language
IRAPA Intelligence Advanced Research Projects Activity
IB Indirect Branch
IBT Indirect Branch Targets
ICSE International Conference on Software Engineering
ILR Instruction-Layout Randomization
I/O Input/Output
IP Instruction Pointer register
IR Intermediate Representation
IRC Internet Relay Chat
IRDB Intermediate Representation Database
JITted just-in-time compiled

243
Approved for public release: distribution unlimited.

ACRONYM DESCRIPTION
JSON JavaScript Object Notation
KB Kilobyte
KVM A type 1 hypervisor
LTS Long Term Support
LVA Live Variable Analysis
MACE Model-inference Assisted Concolic Execution
MEDS Memory Error Detection System
MB Megabyte
NDSS Network and Distributed System Security Symposium
ngIRCd Next Generation Internet Relay Chat Daemon
OS Operating System
PC Program Counter
PDF Portable Document Format
PEASOUP Preventing Exploits Against Software of Uncertain Provenance
PEPM Partial Evaluation and Semantic-Based Program Manipulation
PIC Position Independent Code
PIE Position Independent Executable
PLDI Programming Language Design and Implementation
PVM Parallel Virtual Machine
QEMU Quick EMUlator
QCOW2 QEMU Copy on Write 2
ROP Return-Oriented Programming
RTL Register Transfer List
RUE Rendered UnExploitable
S2E Selective Symbolic Execution
SAGE Scalable Automated Guided Execution
SBIR Small Business Innovation Research
SDT Software Dynamic Translation
SDK Software Developer’s Kit
SIM Secure In-VM Monitoring
SLR Stack-Layout Randomization
SMT Satisfiability Modulo Theories
SO Shared Object
SOI Scaled Offset Inference
SOUP Software of Uncertain Provenance
SPEC Standard Performance Evaluation Corporation
SPRI Sprocket Program Rewriting Interface
SQL Structured Query Language
SRP self-randomizing programs
SSA Static Single Assignment
SSD Solid State Drive
STARS STatic Analyzer for Reliability and Security
STONESOUP Securely Taking On New Executable Software of Uncertain Provenance
SWYX See What You eXecute
T&E Test and Evaluation

244
Approved for public release: distribution unlimited.

ACRONYM DESCRIPTION
TRUSS Transparent RUntime Shadow Stack
TSET Test-Suite Evaluation Technology
USENIX USENIX: The Advanced Computing Systems Association
UVA University of Virginia
VCPU Virtual Central Processing Unit
VEE Virtual Execution Environments
VM Virtual Machine
VMM Virtual Machine Monitoring

245
Approved for public release: distribution unlimited.

	Abstract
	TABLE OF CONTENTS
	List of Figures
	List of Tables
	1.0 Summary
	2.0 Introduction
	2.1 Innovation Goals for the Proposed Research
	2.2 Summary of the Products and Transferable Technology
	2.3 Use of Third-Party COTS Products
	2.4 Overview of the Technical Approach and Plan
	2.4.1 The (Offline) Analyzer
	2.4.2 The Execution Manager
	2.4.3 The Intermediate Representation Database

	2.5 Objectives, Scientific Relevance, Technical Approach and Expected Significance
	2.5.1 Technology Leveraged in PEASOUP
	2.5.1.1 Automatic Generation of High-Coverage Test Suites
	2.5.1.2 Strata: a Retargetable Software Dynamic Translator
	2.5.1.3 Secure In-VM Monitoring

	2.5.2 Components of PEASOUP
	2.5.2.1 Offline Analyzer
	2.5.2.2 Execution Manager

	2.6 Related Research
	2.7 Project Contributors
	2.8 Summary of Statement of Work Tasks
	2.8.1 Phase 1 Tasks
	2.8.2 Phase 2 Tasks
	2.8.3 Phase 3 Tasks
	2.8.4 Management Tasks

	2.9 Outline of Remainder of Report

	3.0 Methods, Assumptions, and Procedures
	3.1 Evaluation Metrics and Methodology
	3.1.1 Preliminary Phase 1 Test and Evaluation (December 2011)
	3.1.1.1 Attendees
	3.1.1.2 Setup
	3.1.1.3 Testing Parameters
	3.1.1.4 Test and Test Input Descriptions
	3.1.1.5 Process Notes
	3.1.1.5.1 What Worked Well
	3.1.1.5.2 Hiccups

	3.1.2 Final Phase 1 Test and Evaluation (April, 2012)
	3.1.2.1 Attendees
	3.1.2.2 Setup
	3.1.2.3 Testing Parameters
	3.1.2.4 Tests and Test Inputs

	3.1.3 Phase 2 Test and Evaluation
	3.1.4 Phase 3 Test and Evaluation
	3.1.5 Component Test and Evaluation
	3.1.5.1 Test Case Generation Metrics
	3.1.5.2 Ground-Truth IR Measurement Tools
	3.1.5.2.1 Comparing Procedure Boundaries
	3.1.5.2.2 Comparing Symbolic References to Statics
	3.1.5.2.3 DWARF Static Variable Sizes
	3.1.5.2.4 DVT String Literals

	3.1.5.3 Diversification Components

	3.2 Platform and Environment Assumptions
	3.3 Core Technologies
	3.3.1 Intermediate Representation Database (IRDB)
	3.3.2 Input Generation: The Grace Concolic Execution Engine
	3.3.2.1 Vulnerability Coverage
	3.3.2.2 Library Modeling
	3.3.2.3 Input Sorting and Seeding

	3.3.3 Input Replayer
	3.3.4 STARS Static Analyzer
	3.3.4.1 IDA Pro Disassembler
	3.3.4.2 STARS Plug-in Architecture
	3.3.4.3 Code discovery.
	3.3.4.3.1 Auditing IDA Pro information.
	3.3.4.3.2 Building a class hierarchy for the program.
	3.3.4.3.3 Data flow analyses
	3.3.4.3.4 Type inferences and annotations

	3.3.4.4 PEASOUP extensions to STARS

	3.3.5 Data Delineation Analysis (DDA)
	3.3.5.1 Initial Boundary Identification
	3.3.5.2 Parameter Offset Analysis
	3.3.5.3 DDA Implementation and Integration with SLX

	3.3.6 Dynamic Rewriting.
	3.3.6.1 Sprockets and SPRI

	3.3.7 Efficient Checkpointing for Remediation
	3.3.7.1 Related Work
	3.3.7.2 Design
	3.3.7.3 Implementation
	3.3.7.4 Future Improvement
	3.3.7.4.1 Recent advances in checkpointing techniques
	3.3.7.4.2 Page cache combining
	3.3.7.4.3 Updated Design

	3.4 C1: Number-Handling Errors
	3.4.1 Confinement of Incorrect Number-Handling Weaknesses
	3.4.1.1 Integer Offline Analysis
	3.4.1.2 Integer Instrumentation
	3.4.1.3 Benign Weakness Detection
	3.4.1.4 Saturating Arithmetic Policy
	3.4.1.5 Final Integer Transformation
	3.4.1.6
	3.4.1.7 Evaluation

	3.5 C4: Resource Drains
	3.6 C5: Command Injection
	3.6.1 Threat Model
	3.6.2 Software DNA Shotgun Sequencing: High-Level Overview
	3.6.2.1 S3 Architecture
	3.6.2.2 Example with Benign Input
	3.6.2.3 Example with Attack Input

	3.6.3 Software DNA Shotgun Sequencing: Detailed Overview
	3.6.3.1 DNA Fragment Extraction
	3.6.3.2 Command Interception
	3.6.3.3 Command Parsing
	3.6.3.4 Positive Taint Inference
	3.6.3.5 Attack Detection

	3.6.4 Related Work
	3.6.4.1 Taint tracking
	3.6.4.2 Taint Inference
	3.6.4.3 Model-based Approaches

	3.7 C6: Concurrency Errors
	3.7.1 Unhandled CWEs
	3.7.1.1 CWE-765: Multiple Unlocks of a Critical resource
	3.7.1.2 CWE-412: Unrestricted Externally Accessible Lock

	3.7.2 File System TOCTOU
	3.7.2.1 Background
	3.7.2.2 Our Approach

	3.7.3 Deadlocks
	3.7.3.1 Background
	3.7.3.2 Our Approach

	3.7.4 Signal Handler Errors
	3.7.4.1 Background
	3.7.4.2 Our Approach

	3.7.5 Atomicity Violations
	3.7.5.1 Background
	3.7.5.2 Our Approach
	3.7.5.2.1 Avert
	3.7.5.2.2 Perturbing Thread Schedules

	3.8 C7: Memory-Safety Errors
	3.8.1 Twitcher: Efficient Memory-Safety Enforcement
	3.8.1.1 Idealized Platform (System Architecture)
	3.8.1.2 Twitcher Architecture
	3.8.1.2.1 Checking Potential Dangerous Memory Accesses
	Guard Values
	Checking Guard Values with Hardware Exceptions
	Mixing Guard-Value Checks
	Bipartite Guard Values
	Guard Maps
	Protecting Guard Maps

	Hybrid Guard implementations
	Guard Semantics

	3.8.1.2.2 Maintaining Guards
	Maintaining Guards in Stack Memory
	Maintaining Guards in Heap Memory
	Guarding Deallocated Blocks

	Maintaining Guards in Static Memory
	3.8.1.2.3 Detecting Memory Reuse and Use of Uninitialized Memory
	3.8.1.2.4 Repair Strategies
	Reallocation on Use-After-Free
	Automatically Growing Buffers
	Replacing Over-Reads with Manufactured Data
	Early Loop Termination for Over-Writes

	3.8.2 Stack-Layout Randomization Transformation (SLX)
	3.8.2.1 Evaluating Stack Layout Hypotheses
	3.8.2.2 Stack-Layout Randomization Algorithm
	3.8.2.3 Randomization by Dynamic Binary Translation
	3.8.2.4 Experimental Evaluation

	3.8.3 Phase 2 Heap Randomization
	3.8.3.1 Randomizing Heap Object Sizes
	3.8.3.2 Randomizing Heap Memory De-allocation

	3.8.4 Phase 1–2 Heap-Usage Confinement
	3.8.4.1 Delayed Frees
	3.8.4.2 Excessive Allocation Sizes
	3.8.4.3 Frees of Non-Heap Memory
	3.8.4.4 Double Frees

	3.8.5 The Twim Allocator: Phase 3 Heap Protection

	3.9 C8: Null-Pointer Errors
	3.10 General Defenses
	3.10.1 Instruction-Layout Location Randomization (ILR)
	3.10.1.1 Threat Model
	3.10.1.2 ILR Implementation
	3.10.1.2.1 ILR Architecture
	3.10.1.2.2 Offline Analysis
	3.10.1.2.2.1 Disassembly Engine
	3.10.1.2.2.2 Indirect Branch Target Analysis
	3.10.1.2.2.3 Call Site Analysis
	3.10.1.2.2.4 Reassembly Engine

	3.10.1.2.3 Running an ILR Program

	3.10.1.3 Related Work
	3.10.1.3.1 ROP Defenses
	3.10.1.3.2 Defenses based on randomization
	3.10.1.3.3 Control Flow Integrity

	3.10.2 Secure In-process Monitoring (SIM): Phase 2 Protection of PEASOUP
	3.10.2.1 Desgin
	3.10.2.1.1 Threat Model
	3.10.2.1.2 Security Requirement
	3.10.2.1.3 Bi-view based Confinement
	3.10.2.1.4 Security Analysis
	3.10.2.1.5 System Components
	3.10.2.1.6 Integration with Strata

	3.10.2.2 Implementations
	3.10.2.2.1 User-Mode Implementation
	3.10.2.2.2 Kernel-Mode Implementation
	3.10.2.2.3 Protection Switch

	3.10.2.3 Correctness Validation
	3.10.2.3.1 Regression Test Buildup

	3.10.3 Secure Dynamic Code Generation (SDCG): Phase 3 Protection of PEASOUP
	3.10.3.1 Related Work
	Software-based Fault Isolation
	Memory Safety
	Control Flow Integrity
	Process Sandbox
	Attacks on JIT engines

	3.10.3.2 Attacking the Code Cache
	Assumptions and Threat Model
	Overwriting the Code Cache
	Exploiting A Race Condition

	3.10.3.3 System Design
	Overview and Challenges
	Memory Map Synchronization
	Remote Procedure Call
	Permission Enforcement

	3.10.3.4 Implementation
	Shared Infrastructure
	SDT Specific Handling

	3.10.4 Program-Counter Confinement
	3.10.5 Instruction Set Randomization (ISR)

	4.0 Results and Discussion
	4.1 Phase 1 Independent Test and Evaluation Results
	4.1.1 Preliminary Test and Evaluation Results (December 2011)
	4.1.1.1 Real-world Test Cases
	4.1.1.2 Engineered Test Cases

	4.1.2 Final Test and Evaluation Results (April, 2012)
	4.1.2.1 Real-World Test Cases
	4.1.2.2 Engineered Test Cases

	4.1.3 Post T&E Work

	4.2 Phase 2 Independent Test and Evaluation
	4.2.1 Preserved Functionality
	4.2.2 C1: x86 Binary Number Handling
	4.2.3 C7: x86 Binary Memory Corruption
	4.2.4 x86 Binary Injection
	4.2.5 x86 Binary Null Pointer Errors

	4.3 Phase 3 Independent Test and Evaluation
	4.4 Data Delineation Analysis
	4.4.1 DDA Evaluation: 32-bit
	4.4.2 DDA Evaluation: 64-bit
	4.4.3 Investigation of False Positives
	4.4.4 Investigation of False Negatives
	4.4.5 Evaluation DDA/SLX Integration

	4.5 Checkpointing Test and Evaluation
	4.5.1 Width-first Forking
	4.5.2 Depth-first Forking

	4.6 Ground-Truth IR Evaluation
	4.6.1 Improved Object-Boundary Recovery

	4.7 C5: Command Injection
	4.7.1 Experimental Setup
	4.7.2 Benchmarks
	4.7.3 Security Evaluation
	4.7.4 Performance Evaluation
	4.7.5 Analysis Time
	4.7.6 Security Discussion
	4.7.6.1 Spurious Attack Detection (False Positives)
	4.7.6.2 Missed Attack Detection (False Negatives)
	4.7.6.3 Subtle Injections

	4.8 C6: Concurrency-Error Defenses
	4.8.1 TOCTOU Defenses
	4.8.2 Deadlock Defenses
	4.8.3 Signal-Handler Defenses
	4.8.4 Atomicity-Violation Defenses

	4.9 C7: Stack-Layout Randomization Evaluation
	4.9.1 Transformation Metrics
	4.9.2 Performance Metrics
	4.9.3 Security Discussion

	4.10 C7: Twitcher Evaluation
	4.11 Instruction-Location Randomization
	4.11.1 Experimental Setup
	4.11.2 Security-Related Experiments
	4.11.3 Effectiveness of ILR Components
	4.11.3.1 Disassembly Engine
	4.11.3.2 Call Site Analysis
	4.11.3.3 Indirect Branch Target Analysis
	4.11.3.4 Moved Instructions

	4.11.4 ILR Security
	4.11.5 Performance Metrics
	4.11.5.1 Run-time Overhead
	4.11.5.2 Space Overhead
	4.11.5.3 Analysis Time

	4.11.6 Security Discussion
	4.11.6.1 Entropy Exhausting Attacks
	4.11.6.2 Information Leakage Attacks
	4.11.6.3 False Detections
	4.11.6.4 Shared Libraries
	4.11.6.5 Self-modifying Code

	4.11.7 Conclusions

	4.12 SIM
	4.12.1 Performance Test
	4.12.2 Compatibility with other Protection and Optimization Techniques
	4.12.3 Conclusion

	4.13 Secure Dynamic Code Generation
	4.13.1 Security Analysis
	4.13.2 Performance
	4.13.2.1 Experimental Setup
	4.13.2.2 Effectiveness
	4.13.2.3 Micro Benchmark
	4.13.2.4 Macro Benchmark

	4.13.3 Discussion
	4.13.3.1 Reliability of Race Conditions
	4.13.3.2 RPC Stub Generation
	4.13.3.3 Performance Tuning

	4.14 Publications

	5.0 CONCLUSIONS
	5.1 Advances in Automated Binary Analysis
	5.1.1 Data Delineation Analysis
	5.1.2 Speculative Transformation
	5.1.3 Limitations of Automated Test-Case Generation

	5.2 Advances in Techniques for Building Binary-Hardening Tools
	5.2.1 Secure Dynamic Code Generation (SDCG)
	5.2.2 Robust, Extensible Architecture

	5.3 Advances in Automatic Exploit Prevention and Software Repair
	5.4 Transition and Future Work

	6.0 References
	List of Acronyms, Abbreviations, and Symbols
	IARPADISTACoverPage.pdf
	afrl-rY-wp-tR-2015-0017

	SF298.pdf
	REPORT DOCUMENTATION PAGE

