OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

STONESOUP

Securely Taking On Software of Uncertain Provenance

Intelligence Advanced Research Projects Activity

L EADING I NTELLIGENTCE I NTEGRATION

STONESOUP Phase 3
Test and Evaluation Execution and
Analysis System (TEXAS)

Communications APl User Guide

12 December 2014

This report was prepared by TASC, Inc., Ponte Technologies LLC, and i SW LLC.
Supported by the Intelligence Advanced Research Projects Activity (IARPA), Research
Operational Support Environment (ROSE) contract number 2011-110902-00005-002.
The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation hereon.
Disclaimer: The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of IARPA or the U.S. Government.

Approved for public release; distribution unlimited.

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

Table of Contents

1

11
1.2

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

3.1
3.2

OVERVIEW......oo oottt ettt ettt e e e bt e s e et e e eb e e et e e e s abe e eateeeebee e sbeeeeneeeanes 1
RSl o0] =] =SOSR 1
TEST CASE FLOW .ottt ittt sttt ettt st e e st s e e st e e st e e e sbe e e sabe e s bee e snbeeebeeesabeesnteeesabeeereeans 1
COMMUNICATION SERVER ...ttt ettt 3
PROTOCOL ...ttt itte ettt ettt ettt e e ettt e st e e s bt e e st e e st e e e sabeeebee e bbeesabeeesabeesateesbeeesabeeebeeebeeesnbaeesnreesnteas 3
HTTP HEADER INFORMATIONeiiiititiitieeiteesiteeesbeeesteeestaeesbeeesteessssessnteeesnbessssseesseesssesesssessnses 3
2.2.1 “CONTENT-TYPE” HEADER.......cttitttieiitie ittt e ette ettt esetee e stte e et e e etae e sbaeesateesnbaeestaeesbeseaneeeanns 3
2.2.2 “ACCEPT” HEADER.......ciittiiitieeitieeetee e ettt e ste e e stee e s tb e e s ibe e e sabe e s beeesbaeesabeeesabeesnbeesbeeesbeeeaseeennes 4
2.2.3 “FROM” HEADERvttiititeitee e ittt eeteesetee e st e e eteeeett e e s besesabesenbeeesbaeesnbesesabeesateesbaeesbeseaseeeanns 4
ACTIONMESSAGETYPE.....ciiiitiitte ittt ste e sttt e stte e st e e stbeestteesebeeesabeeesbeeestaeesbeeesabeessbeesbeeesnbeeenseeens 4
2.3.1 XML SCHEMAoii ittt ettt ettt e et e e et e e s eb e e s ab e e e be e e sbbe e sabe e e sbbeesabeeesbbeesbeeeaneeenans 5
2.3.2 JSON SCHEMAoiiitie ettt ettt e et e bt st e e st e e et e e e st e e e st e e e sbbeesateesebbeesbeseareeesans 5
2.3.3 URL ettt ettt b e b e e b e st e e e ehb e e abe e e bre e nbeeeabeeenaes 6
R T O T | =1 SR 6
TECHNICALIMPACTMESSAGETYPE ...ccuviiictiie ittt stte e ettt e setee st e stteesttessbae e sabeessaaeesabesssbaessabesareeans 7
2.4.1 XML SCHEMAL......ooiiitii et ctee ettt e e e b e e et e e st e e sabe e s beeeebeeesabeeesbbeesabeeesbbeesbeeeaaeeennns 7
2.4.2 JSON SCHEMAooiictie et ctee ettt s et e e st e e sab e e et e e e st e e e st e e e sbbeesabeesebaeesbeseereeesans 7
2.4.3 URL ettt ettt b e b e e e b e et e e e hbe e abe e e bae e nbeeearreenaes 8
N O T =1 N SR 8
L OGMESSAGETYPE.....uiiiitiieitteeiitee ettt este s e steeeett e e sbe e e sab e e sateesbaeesabesaebeeesbeeesabesesabeesabesssbbeesabesarenans 9
2.5.1 XIML SCHEMAoii ittt ettt ettt e et e et e e s eb e e sab e e et e e e ebbe e sabeeesbbeesabeeesbbeesabeeeaaeeesnns 9
2.5.2 JSON SCHEMAooiitie ettt ettt e et e e et e e st e et e e e et it e e st e e e s bt e e sateesebbeesbeeesreeennes 9
2.5.3 URL ettt ettt b et e e be e abe e e bae e abeeeaaeeeaans 9
2.5, CLIENT 1eieitit e ittt ettt ettt e et e e et e e et e e e b e e e sabe e et beeeebbeeabeeesabeeeabeeabaeesabeeeabeeeanbesabeeesnbaeareeens 10
RESULTIMESSAGETYPEutiiitieictieeetee e ettt e ettt e st e e sttt e s te s e ebes e sabe s e sbteesabeesbeeesabesanbesenbaeesabesesaeeesans 10
2.6.1 XIML SCHEMAL......ooiiitii ittt ettt e s et e et e e st e e s tbe e s be e e ebeeesabeeeebeeeeateesebaeesnbeeaseeens 11
2.6.2 JSON SCHEMAooiitii it ctee ettt e sttt e ettt e s e e st e e s be e s ebee e sabesesbeeesatessataeesabeeanteeans 11
2.6.3 URL ..ottt ettt et be e et e e e e be e e abre e eare e e baeesabeearaeaas 11
2.6.4 CLIENT 1oieitiie it ittt et e ettt e bt e e et e e et e e e be e e sabe e e ebeeeesbeesbeeesabeeaabeeabaeesabeeeabeeeaatesateeesnbeeaseeans 12
WEAKNESSIMESSAGETYPEviiiiivieitieectie e stee e sttt e ete e s etee e sabe e s sateesate s s ebaeesabesesbaeesateesbeeesabesenseeesans 13
2.7.1 XML SCHEMAooiiitii ettt ettt e e e ettt ete e e st e e s tbe e s be e e ebeeesabeeeebeeesateesabaeesnbeeaseeens 13
2.7.2 JSON SCHEMAooiitie ettt ettt s bttt e et e st e e st e e s be e s et ae e sabe e e sbeeesateesateeesabeeetaeens 13
0 A T U | = SRR 14
N O T | =1 OO RRURRRRT 14
RESPONSEMESSAGETYPE ... itiiititeietes e ettt e ettt e setee e stbe s s te s s ebeeesabe s e sbeessabessbeeesabesaabassabeeesabesesaeeesans 14
2.8.1 XML SCHEMAL......ooiitiiicte ettt ettt e ettt e b e e s tte e e be e e etae e sabeeesbeeeeateeeateeesnbeeanseeens 14
2.8.2 JSON SCHEMA ... cttii ittt ettt ettt e e e e e e et e e e e ettt e e s st e e e s eab e e e e e sbbeeeeeaabeeeeesabaeeennres 15
2.8.3 HTTP STATUS CODES ... tiiiiiitiiee ittt e e ettt e ettt e e stee e e s st e e e s st e e e s eabae e e s sabae e e s aabeseessabaeeennres 16
AN ALY SIS et et e e et et e et e e a e e e e ete e et be e abeeeaareeaans 17
ENVIRONMENT VARIABLESoiiitiiiitieiitte e ettt e stee e stte s stessetasssbesesbtessatessbesssabessnbassstesesabesesseeesnns 17
Y N 74 =] = TSRO 20
3.2.1 PARAMETERS ...ttttiiittieeeitite e e ibtee e e sbaee e s sabaee e s st aeeessabaeeeesabaeeessabbaeessabaeeessbaeeessbbeeessabbaeenins 20

Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

3.3 PERFORMER_ANALYZE.SH ...ttt itiiitieiiie it aieesteesteesteessaeasaeesteesteesseesssessseanseessesssesssesssssassnensesssessns 20
3.3.1 GENERAL GUIDANCEccutiiiititeitee sttt e steeesteeesnteesteeesnteeassesesseeesntaeesseeesnteessseeesnsaeesnnessnnes 20

3.3.2 FUNCTIONSciiiiiiie bbb 21

33.21 performer_set_flags 21
3.3.2.2 performer_build 21
3.3.23 performer_report 22
4 EXECUTION ...t et re e n e en e nr e enreenes 23
4.1 ENVIRONMENT VARIABLESuviiititeitittsitteesittesteessibessstessstsssssbesssssessssessnsssssssessnsessnssnssnsesssssesssns 24
4.2 EXECUTE.SH ottt e e e 25
Nt R N Y N = SRS 25

4.3 PERFORMER_EXECUTE.SH..iiitiiitieitieitie it sieesteesteestsessaessteesteesteesseesnsesnseanteanteesbeesteestneasanansessseses 26
4.3.1 GENERAL GUIDANCE ...uetiiitieitie ettt e steeestteesteeasteeesntesessaeesstesssaeesnteeessseesssesssesesnsessnseeesnes 27

4.3.2 FUNCTIONS . ..ottt st r e r e e b b sb e e e r e e r e sr e n e nr e nn e 27

43.2.1 performer_execute 27
4.3.2.2 Signature 27
4.3.3 TIMEOUT REQUIREMENTS .uttiutttituteietitestteessteeasteeesstesesssessssesssssssssesssssessssesssssesssessnseessnns 27

4.3.4 REQUIRED IMESSAGEScciuttiiteeeitieeiteeestteesiteeasteeessteeessaeessteeateeesnteeessseesssessseeesnsessnseeennes 28

4.3.5 OPTIONAL MESSAGESeciutiiitieiiteteiietestteesteeastaeessteeessaeesstessntaeesnteesssseesssessteeessseesnseessnns 28

4.4 PERFORMER _SETUPR.SH....cuiiiiiiiiiiiiiii e e e s ees 28
4.4.2 OPTIONAL MESSAGEScccutiiiiee et e itee e sttt e siteeasteeesnteeessaeessteeastaeesntaeessseesstessteeesnteeanseeennns 29

4.5 PERFORMER_TEARDOWN.SH . .uuuiiiiiiiiiiii i s s s s naaa s 29
4.5.1 OPTIONAL MESSAGESccutiiitie et e iteeestieeeiteeasteeesnteeesaaeessteeastaeessteeessseesneeesteeesnteeenseeesnes 29

5 INSTALLATION OF INTEGRATIONooiiiiiiiii e 31
APPENDIX A: XML SCHEMA ..o nre e 1
APPENDIX B: JSON SCHEMAS ...t b e e nne s 1
O I 1 001] 1
LAY O 0 1
LOGLISON L.ttt e e e ra e 2
a1 | I 1 S 2
WEAKNESS.ISON L.ttt ittt s e e s e e r e e s s et e e e e e et e e s s e s et e e s e e r e e s e aaes 3
APPENDIX C: ANALYZE.SH ...t 1
APPENDIX D: EXECUTE.SH ...t 1
APPENDIX E: UTILS.SH....oo ettt sttt bbbttt e 1
APPENDIX F: SAMPLE PERFORMER_ANALYZE.SHcocoiiiiieiee e 1
APPENDIX G: SAMPLE PERFORMER_EXECUTE.SH.......cccooiiiiiii e 1
APPENDIX H: ACRONYMS ...t nne e nne e 1

iv Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

List of Figures

Figure 1: TEXAS Analysis WOIrKFIOW..........cccooiiiiiiiciicc e 17
Figure 2: TEXAS EXecution WOTrKFIOWccoiiiiiiieee e 23

v Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

List of Tables
Table 1: Allowable Content-Type Header Values and Corresponding Message

1o oo [T SRS 3
Table 2: Allowable Accept Header Values and Corresponding Return Encodingcccceevenenee. 4
Table 3: Performer Controlled Environment Variables for Analysisc.ccccovevievivive e veenene, 17
Table 4: Analysis Location Environment Variables............ccooooiiiiiic e 18
Table 5: Environment Variables Modified During AnalysiS..........ccccoveveiiievieiesieese e 19
Table 6: performer_Duild PArameterscocvoiiiiiiee e e 21
Table 7: Performer Controlled Environment Variables For EXeCutioncccocoovvviiinninienen, 24
Table 8: Execution Location Environment Variables..........ccoocvoviiiiinin e 24
Table 9: Environment Variables Modified During EXECULION..........cccoccevieiievieiieie e 25
Table 10: performer_eXeCute ParametersSccooueieerieiieeiierieeiesiee e ee e et sreeeeenes 27
vii Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

1 Overview

The Test & Evaluation eXecution and Analysis System (TEXAS) was designed to test a
Performer technology’s ability to detect and mitigate software vulnerabilities and exploit through
static analysis and run time countermeasures. To accomplish this, the TEXAS software must
interact with the Performer technology such that it can communicate required information to the
Performer technology for analysis and execution, as well as tell it when it should be invoked on
that information and be able to inform TEXAS of any findings. These interaction points between
the Performer technology and the TEXAS system are collectively known as the Communications
API. Implementation of the Communications APl by a Performer technology allows it to be
effectively managed by the TEXAS system during the execution of a test case.

1.1 Scope

This scope of this document includes the integration points between Performer technology and
the Test & Evaluation eXecution and Analysis System (TEXAS).

1.2 Test Case Flow

Execution of test cases occurs in three main steps: Analysis, Execution, and Scoring. Performer
technology must integrate with TEXAS software so that it can be invoked during the Analysis
and Execution steps to process and protect the test program and the host environment.

In the Analysis step, the source code or binary of a program is analyzed looking for
vulnerabilities and applying any mitigation necessary to harden the binary against those
vulnerabilities. The output of the Analysis phase is a binary executable with hardening or
identified vulnerabilities. After the Analysis step has been successfully run, the Execution and
Scoring steps are run for each I/O pair defined in the test case’s metadata. Execution involves
invoking the binary created in Analysis with known inputs (both benign and exploiting).
Performer technology may also monitor execution of the binary to apply diversification
techniques or look for execution patterns indicative of an attack in progress or software
vulnerability. The Scoring check is executed immediately following Execution and looks at the
environment for known outputs, as defined in the metadata, of the 1/O pair that was executed.

The Analysis, Execution, and Scoring steps of a test case are collectively known as a stage. Test
cases are run through two stages. Stage 1 occurs without performer technology (only compiling
the code) and confirms/documents program execution with benign and exploiting inputs and
effectiveness of the fault injection on the base program. If Stage 1 is scored as completely valid,
Stage 2 occurs with Performer Technology. Stage 2 tests the efficacy of the Performer
Technology in mitigating the injected fault without altering the behavior of the program. Scoring
of successful mitigation is an essential part of this operation and will be built in during design
and development. The exact requirements for integrating with the TEXAS system as a Performer
Technology during each step are described below.

1 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

2 Communication Server

The Communication Server is the component of the Communications API responsible for
capturing messages sent by the Performer to the TEXAS system and logging them for evaluation
in scoring or debugging. The Communications Server is capable of accepting and responding to
a number of messaging formats including eXtensible Markup Language (XML) and JavaScript
Object Notation (JSON). The exact methods of communication and messages are described
below.

2.1 Protocol

The Communication Server is actually an embedded web server that accepts HTTP requests in a
RESTful manner. For the purposes of the Communication Server the applicable HTTP VERBS
perform the following actions:

e GET — Not Applicable, returns an error message

e POST — Validates the message is syntactically valid and adds it to the logging queue
before returning a ResponseMessageType response to the client

e PUT —See POST

e OPTIONS - Returns the allowed HTTP VERBS for the given URL (OPTIONS, POST,
and PUT in all cases)

2.2 HTTP Header Information

The Communication Server extracts important data from the HTTP Headers included on an
HTTP Request to process the message and determine the best response to send. These HTTP
Headers include: content-type, accept, and from. The purpose and use of each of these headers is
described below.

2.2.1 “content-type” Header

The “content-type” HTTP header is required. The server uses it to determine the encoding of the
message received. The specific allowable values are listed in Table 1.

Table 1: Allowable Content-Type Header Values and Corresponding Message Encoding

Content Type ‘ Format of Message
application/json JSON
text/javascript JSON
text/xml XML

Additionally the content-type HTTP header can contain information about the character set used
in the encoding; accomplished by appending a ;> and then the charset information to the content
type string. For example, "application/json;charset=utf-8' tells the server the message is JSON
and 1s encoded using a character set of ‘utf-8’. The default charset assumed by the server is ‘ISO-
8859-1°, the default for HTTP.

3 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

2.2.2 “accept” Header

The “accept” HTTP header is optional. If set, the server uses it to determine the encoding to use
for responses. This header can be constructed similarly to the content-type header. Allowable
values and the return format are listed in Table 2.

Table 2: Allowable Accept Header Values and Corresponding Return Encoding

Content Type ‘ Format of Response Message
application/json JSON
text/javascript JSON
text/xml XML
text/html HTML

2.2.3 “from” Header

The “from” HTTP header is required and provides the server with information about who sent
the request. This information is logged with the message to help in later analysis or debugging of
the run. This header should be in the format of an email address that is further constrained for the
purposes of this API to being:

| <user>@<hostname>.local

2.3 ActionMessageType

The action message reports an action taken by the performer technology to mitigate or stop a
perceived weakness from being exploited by malicious input. Currently, the actions are
"Controlled Exit" and "Continued Execution”. With an action, the negative technical impact and
perceived target weakness may optionally be reported.

It is not required to report an action in this manner. An action may also be reported as part of the

result message. This message is useful if multiple actions are taken by the performer technology,
as only one result message may be reported.

4 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

2.3.1 XML Schema

<xs:complexType name="ActionMessageType">
<xs:sequence>
<xs:element maxOccurs="1" minOccurs="0" name="weakness"
type="WeaknessMessageType" />
<xs:element maxOccurs="1" minOccurs="0" name="impact"
type="Technical ImpactMessageType" />
<xs:element maxOccurs="unbounded" minOccurs="0"
name="additional information" type="xs:string"/>
</xs:sequence>
<xs:attribute name="behavior" type="ActionEnumType" use="required"/>
</xs:complexType>
<xs:simpleType name="ActionEnumType">
<xs:restriction base="xs:string">
<xs:enumeration value="NONE"/>
<xs:enumeration value="CONTROLLED EXIT"/>
<xs:enumeration value="CONTINUED EXECUTION"/>
<xs:enumeration value="OTHER"/>
</xs:restriction>
</xs:simpleType>

2.3.2 JSON Schema

{

"id": "urn:stonesoup:api:communications:action",

"$Sschema": "http://json-schema.org/draft-04/schema#",

"title": "STONESOUP Communications API - Action Message",

"description": "An action taken by the proposed technology.",

"properties": {

"behavior": {

"description": "The behavior of the proposed technology for this action.",
"type": "string",
"enum" : ["NONE",

"CONTROLLED EXIT",
"CONTINUED EXECUTION",
"OTHER"

by
"weakness": {

"Sref": "urn:stonesoup:api:communications:weakness"
by
"impact": {

"Sref": "urn:stonesoup:api:communications:impact"
b
"additional information": {

"description": "A list additional statements to log with the weakness.",

"type": "array",

"minTtems": 1,

"items": {

"type": "string"

}o
"required": ["behavior"],
"additionalProperties": false

5 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

2.3.3 URL
HTTP PUT or POST Requests with messages of this type can be sent to:

| http://$SS_COMM_ADDR:$SS_COMM_PORT/action

2.34 Client

A helper script is provided that allows easy communication with the server through a command
line script. The return code of the command will determine the success or failure of
communication with the server. This script can be invoked using the following command.

usage: commapi cli action [-h] -u URL [-1 LOG DIR] [-d] [-z] [-st] -b
BEHAVIOR [-w--weakness WEAKNESS] [-1i IMPACT]
[-ai ADDITIONAL [ADDITIONAL ...]]

sends an action json command

optional arguments:

-h, --help show this help message and exit
-u URL, --url URL URL of the comms api server
-1 LOG DIR, --logdir LOG DIR
directory for log files
-d, --debug run in debug mode with more verbose logs
-z, —--nothing generate json command but print them them to stdout

with out sending them to server

=8, ——9TtoP Stop on any error

-b BEHAVIOR, --behavior BEHAVIOR
The behavior of the proposed technology for this
action

-w —--weakness WEAKNESS

An identified weakness in valid json format

-i IMPACT, --impact IMPACT
An identified weakness in valid json format
-ai ADDITIONAL [ADDITIONAL ...], --additional ADDITIONAL [ADDITIONAL ...]

A list additional statements to log with the action.

6 Approved for public release; distribution unlimited.

12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

2.4 TechnicallmpactMessageType

The impact message is used to report a negative technical impact identified by the proposed
technology. Reporting a negative technical impact is optional, but aids in evaluating the
performer technology. A negative technical impact may also be reported as part of the action
message, rather than as a separate message.

24.1 XML Schema

<xs:complexType

<xs:sequence>

<xs:

element

"additional information"

</xs:sequence>
<xs:attribute

</xs:complexType>

<xs:simpleType

<xs:restriction

"TechnicalImpactMessageType">

"unbounded" "o"
"xs:string"/>

"effect" "TechnicalImpactEnumType"
"required" />

"TechnicalImpactEnumType">
"xs:string">

<xs:enumeration "NONE" />

<xs:enumeration "UNSPECIFIED" />
<xs:enumeration "READ FILE"/>

<xs:enumeration "READ APPLICATION DATA"/>
<xs:enumeration "GAIN_PRIVILEGES"/>
<xs:enumeration "HIDE_ACTIVITIES"/>
<xs:enumeration "EXECUTE UNAUTHORIZED CODE"/>
<xs:enumeration "MODIFY FILES"/>
<xs:enumeration "MODIFY APPLICATION DATA"/>
<xs:enumeration "BYPASS_PROTECTION_MECHANISM"/>
<xs:enumeration "ALTER_EXECUTION_LOGIC"/>
<xs:enumeration "UNEXPECTED_STATE"/>
<xs:enumeration "DOS_UNCONTROLLED_EXIT"/>
<xs:enumeration "DOS_AMPLIFICATION"/>
<xs:enumeration "DOS_INSTABILITY"/>
<xs:enumeration "DOS_ BLOCKING"/>
<xs:enumeration "DOS_RESOURCE_CONSUMPTION"/>

</xs:restriction>
</xs:simpleType>

2.4.2 JSON Schema

{

"id": "urn:stonesoup:api:communications:impact",
"Sschema": "http://json-schema.org/draft-04/schema#",
"title": "STONESOUP Communications API - Impact Message",
"description": "An identified negative technical impact.",
"properties": {
"effect": {
"description": "The negative technical impact.",
"type": "string",
"enum" : ["NONE",

"UNSPECIFIED",

"READ FILE",

"READ APPLICATION DATA",
"GAIN PRIVILEGES",

"HIDE ACTIVITIES",

"EXECUTE UNAUTHORIZED CODE",
"MODIFY FILES",

"MODIFY APPLICATION DATA",
"BYPASS PROTECTION MECHANISM",
"ALTER EXECUTION LOGIC",
"UNEXPECTED STATE",

7 Approved for public release; distribution unlimited.

12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

"DOS_UNCONTROLLED EXIT",
"DOS AMPLIFICATION",
"DOS_ INSTABILITY",
"DOS BLOCKING",
"DOS_ RESOURCE_CONSUMPTION"
]
br

"additional information": {

"description": "A list additional statements to log with the weakness.",
"type": "array",
"minItems": 1,
"items": {
"type": "string"
}
}
br
"required": ["effect"],
"additionalProperties": false
}
2.4.3 URL

HTTP PUT or POST Requests with messages of this type can be sent to:

Ihttp://$SS_COMM_ADDR:$SS_COMM_PORT/impact

2.4.4 Client

A helper script is provided that allows easy communication with the server through a command
line script. The return code of the command also represents the success or failure of the
communication with the server. This script can be invoked using the following command.

usage: commapi cli impact [-h] -u URL [-1 LOG DIR] [-d] [-z] [-st] -e
EFFECT [-ai ADDITIONAL [ADDITIONAL ...]]

The negative technical impact.

optional arguments:

-h, --help show this help message and exit

-u URL, --url URL URL of the comms api server

-1 LOG DIR, --logdir LOG DIR
directory for log files

-d, --debug run in debug mode with more verbose logs

-z, —--nothing generate json command but print them them to stdout
with out sending them to server

-st, --stop Stop on any error

-e EFFECT, --effect EFFECT
The behavior of the proposed technology for this
action

-ai ADDITIONAL [ADDITIONAL ...], --additional ADDITIONAL [ADDITIONAL ...]
A list additional statements to log with the impact.

8 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

2.5 LogMessageType

The log message is used to log arbitrary messages from the performer technology during analyze
and execute invocations. It is optional to use and results will not be directly used during scoring
unless a specific issue arises.

251 XML Schema

<xs:complexType "LogMessageType">
<xs:sequence>
<xs:element "unbounded" i "statement"

"xs:string"/>
</xs:sequence>
</xs:complexType>

25.2 JSON Schema

{

"id": "urn:stonesoup:api:communications:log",
"$Sschema": "http://json-schema.org/draft-04/schema#",
"title": "STONESOUP Communications API",
"description": "Information to log.",
"properties": {
"statements": {
"description": "A list statements to log.",
"type": "array",
"minItems": 1,
"items": {
"type": "string"
}
}
b
"required": ["statements"],
"additionalProperties": false
}
2.5.3 URL

HTTP PUT or POST Requests with messages of this type can be sent to:

| http://$SS COMM ADDR:$SS COMM PORT/log

9 Approved for public release; distribution unlimited. 12 December 2014

http://$SS_COMM_ADDR:$SS_COMM_PORT/log

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

254 Client

A helper script is provided that allows easy communication with the server through a command
line script. The return code of the command also represents the success or failure of the
communication with the server. This script can be invoked using the following command.

usage: commapi cli log [-h] -u URL [-1 LOG DIR] [-d] [-z] [-st] -s
STATEMENTS

sends an log json command

optional arguments:

-h, --help show this help message and exit
-u URL, --url URL URL of the comms api server
-1 LOG DIR, --logdir LOG DIR
directory for log files
-d, --debug run in debug mode with more verbose logs
-z, —-nothing generate json command but print them them to stdout

with out sending them to server
=8, =—SCtoP Stop on any error
-s STATEMENTS, --statements STATEMENTS

A list statements to log

2.6 ResultMessageType

The result message is used to report the final result of an analyze or execute invocation and is a
required message. Only one result message should ever be sent during a single workflow. This
message indicates the end of reporting for the performer technology, and triggers the message
server to shut down. Any following messages are not guaranteed to be successfully processed.
The result message includes only a status enumeration an the raw process return code (i.e. O-
255). An execute result may also include the action taken by proposed technology, rather than
reporting it as a separate message. An analyze result should not populate that element.

10 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

2.6.1 XML Schema

<xs:complexType "ResultMessageType">
<xs:sequence>
<xs:element " "o" "action"

"ActionMessageType"/>
</xs:sequence>

<xs:attribute "status" "ResultEnumType"
"required"/>
<xs:attribute "return code" "xs:integer"

"required"/>
</xs:complexType>

<xs:simpleType "ResultEnumType">
<xs:restriction "xs:string">
<xs:enumeration "SUCCESS" />
<xs:enumeration "SKIP"/>
<xs:enumeration "TIMEOUT" />
<xs:enumeration "OTHER" />

</xs:restriction>
</xs:simpleType>

2.6.2 JSON Schema

{
"id": "urn:stonesoup:api:communications:result",
"Sschema": "http://json-schema.org/draft-04/schema#",
"title": "STONESOUP Communications API",

communications API",
"properties": {
"status": {

"type": "string",
"enum" : ["SUCCESS",
"SKIP",
"TIMEOUT",
"OTHER"
1
br

"return code": {

or the execute of the test case application.",
"type": "integer",
"minimum": O,
"maximum": 255
}y
"action": {
"Sref": "urn:stonesoup:api:communications:action"
}
by
"required": ["status", "return code"],
"additionalProperties": false

}

"description": "The exit code for the analyze operation

"description": "Defines the JSON encoding for the messages supported by the

"description": "The proposed technology status for completion.",

(i.e. make/build)

2.6.3 URL

HTTP PUT or POST Requests with messages of this type can be sent to:

| http://$SS_COMM_ADDR:$SS_COMM_PORT/result

11 Approved for public release; distribution unlimited.

12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

2.6.4 Client

A helper script is provided that allows easy communication with the server through a command
line script. The return code of command will also represent the success or failure of the
communication with the server. This script can be invoked using the following command.

usage: commapi cli result [-h] -u URL [-1 LOG DIR] [-d] [-z] [-st] -s
STATUS -r RETURN7CODE [-a ACTION]

sends an result json command

optional arguments:

-h, --help show this help message and exit
-u URL, --url URL URL of the comms api server
-1 LOG DIR, --logdir LOG DIR
directory for log files
-d, --debug run in debug mode with more verbose logs
-z, —--nothing generate json command but print them them to stdout

with out sending them to server
=8, ——9TtoP Stop on any error
-s STATUS, --status STATUS
The proposed technology status for completion.
-r RETURN CODE, --rcode RETURN CODE
The exit code for the analyze operation (i.e.
make/build) or the execute of the test case
application.
-a ACTION, --action ACTION
An action taken by the proposed technology."

12 Approved for public release; distribution unlimited.

12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

2.7 WeaknessMessageType

The weakness message is used to report an identified or perceived software vulnerability.
Reporting a weakness is optional, but aids in evaluating the proposed technology. A weakness
may also be reported as part of the action message, rather than as a separate message.

2.7.1 XML Schema

<xs:complexType "WeaknessMessageType">
<xXs:sequence "o">
<xs:element "unbounded" "o"
"additional information" "xs:string"/>
</xs:sequence>
<xs:attribute "cwe" "CWEType" "optional"/>
<xs:attribute "file name" "xs:string" "optional"/>
<xs:attribute "function name" "xs:string" "optional"/>
<xs:attribute "line number" "xs:integer" "optional"/>
</xs:complexType>
<xs:simpleType "CWEType">
<xs:restriction "xs:string">
<xs:pattern "[A-Z]{3}-[0-9]1{(1,3}1"/>

</xs:restriction>
</xs:simpleType>

2.7.2 JSON Schema

{

"id": "urn:stonesoup:api:communications:weakness",
"$schema": "http://json-schema.org/draft-04/schema#",
"title": "STONESOUP Communications API - Weakness Message",
"description": "An identified weakness.",
"properties": {
"cwe": |
"description": "The CWE or other weakness id.",
"type": "string",
"pattern": "[A-Z]{3}-[0-9]{1,3}"
}y
"file name": {
"description": "The file name the weakness was found within.",
"type": "string"
}y
"function name": {
"description": "The function name the weakness was found within.",
"type": "string"
}y
"line number": {
"description": "The function name the weakness was found within.",
"type": "integer",
"minimum": 1
b
"additional information": ({
"description": "A list additional statements to log with the weakness.",
"type": "array",
"minItems": 1,
"items": {
"type": "string"

}
}
by

"additionalProperties": false

13 Approved for public release; distribution unlimited.

12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

2.7.3 URL
HTTP PUT or POST Requests with messages of this type can be sent to:

| http://$SS_COMM_ADDR:$SS_COMM_PORT/weakness

2.7.4 Client

A helper script is provided that allows easy communication with the server through a command
line script. The return code of the command also represents the success or failure of the
communication with the server. This script can be invoked using the following command.

usage: commapi cli weakness [-h] -u URL [-1 LOG DIR] [-d] [-z] [-st]
[-c CWE] [-f FILEiNAME] [-fu FUNCTIONiNAME}
[-1i LINE NUMBER]
[-ai ADDITIONAL [ADDITIONAL ...]]

sends an weakness json command

optional arguments:

-h, --help show this help message and exit
-u URL, --url URL URL of the comms api server
-1 LOG DIR, --logdir LOG DIR
directory for log files
-d, --debug run in debug mode with more verbose logs
-z, —-nothing generate json command but print them them to stdout

with out sending them to server

=8, =—8TtoP Stop on any error
-c CWE, --cwe CWE The CWE or other weakness id.
-f FILE NAME, --file FILE NAME
The file name the weakness was found within.
—-fu FUNCTION NAME, --function FUNCTION NAME
The function name the weakness was found within.
-1i LINE NUMBER, --line LINE NUMBER

The line the weakness was found within
-ai ADDITIONAL [ADDITIONAL ...], --additional ADDITIONAL [ADDITIONAL ...]

A list additional statements to log with the weakness.

2.8 ResponseMessageType

The response message is used to report the success or failure in processing the received message
(i.e. log, result, finish, etc.). This message provides an overall result, the HTTP status code, and
an optional message providing any other useful information.

This message exists to support debugging integration with performer technologies. The HTTP
status code encapsulated in the headers should be sufficient during runtime.

2.8.1 XML Schema

<xs:complexType "ResponseMessageType">
<xs:sequence>
<xs:element " "o" "message"

"xs:string"/>

14 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

</xs:sequence>

<xs:attribute "result" "ResponseResultEnumType"
"required"/>
<xs:attribute "code" "xs:integer" "required"/>

</xs:complexType>

2.8.2 JSON Schema

{

"id" : "urn:stonesoup:api:communications:response",
"Sschema" : "http://json-schema.org/draft-04/schema#",
"title" : "STONESOUP Communications API",
"description" : "Report success or failure from received message",
"properties" : {
"message" : {
"description" : "The message to send as a response",
"type" : "string"
I
"result" : {
"description" : "The result of the response",
"type" : "string",
"enum" : ["SUCCESS",
"FAILURE"
]
I
"code" : {
"description" : "HTTP response code",
"type" : "integer"
}
by
"required" : ["result", "code"],
"additionalProperties" : "false"

15 Approved for public release; distribution unlimited. 12 December 2014

2.8.3

16

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

HTTP Status Codes

201 Created - Message processed and recorded.

400 — Bad Message

404 — Resource Not Found

405 — HTTP Verb is not supported via this API.

415 — Content type or Character encoding is not supported.

Approved for public release; distribution unlimited.

12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

3 Analysis

The Analysis step of a test case run is where the binary is actually produced and analyzed by
performer technology. Figure 1: TEXAS Analysis Workflow describes the overall workflow of
the TEXAS system during Analysis. Of interest for this document are the actions and decision
points that occur during the “Execute Analyze Script” action as these describe the actions and
decisions made in the analyze.sh script.

V0.1 3/21/2014

Unpack Te.St Wr\’_te B”i!d Start Comms Execute Shutdown Archive Destroy
Case Archive Configuration Server Analyze Script Comms Workspace Workspace
into Workspace File Server

Does
Performer
cript Exist2

Validate Source In Call Performer
Arguments Seript Set Flags

Command
Successful?,

Additional
Build
ommands

Execute Build
Command

Determine
Success or
Failure of
Analysis

Call Performer
Analyze
Function

Load Build Set Build Log
Configuration Environment Environment e
File Variables Variables

Figure 1: TEXAS Analysis Workflow

3.1 Environment Variables

To run some of the commands needed to compile and run the test cases several environment
variables need to be set during the testing process so these programs can be compiled and run
from semi dynamic locations. Because Performers may need to modify some of the same
environment variables for their technology, alternative performer controlled environment
variables have been designated to allow modification in a controlled manner. These alternative
environment variables are listed in Table 3: Performer Controlled Environment Variables
for Analysis.

Table 3: Performer Controlled Environment Variables for Analysis
Variable ‘ Description

SS_CC This variable allows the performer to override what compiler the build process for the test case is
using. The default compiler value is ‘gec’.

SS_LNK This variable allows the performer to override what compiler the build process for the test case is
using. The default value is ‘${SS_CC}".

SS_LDFLAG |This variable allows the performer to modify the global LDFLAGS environment variable in a way
S that will not affect the TEXAS system. The exact structure of the final LDFLAGS variable is
described in Table 5: Environment Variables Modified During Analysis.

SS_CFLAGS [This variable allows the performer to modify the global CFLAGS environment variable in a way that

17 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

Variable ‘ Description
will not adversely affect the TEXAS system. The exact structure of the final CFLAGS variable is
described in Table 5: Environment Variables Modified During Analysis.

SS_ANT_OP |This variable allows the performer to override the compiler or other ANT build options used to build

TS Java test cases much like the SS_CC variable. Build commands are usually structured ‘ant
SS _ANT _OPTS ...

SS LIBS This variable allows the performer to modify the global LIBS environment variable in a way that
will not adversely affect the TEXAS system. The exact structure of the final LIBS variable is
described in Table 5: Environment Variables Modified During Analysis.

SS_LDFLAG |This variable allows the performer to modify the global LDFLAGS environment variable in a way

S that will not adversely affect the TEXAS system. The exact structure of the final LDFLAGS variable
is described in Table 5: Environment Variables Modified During Analysis.

Environment variables that provide information about locations on the system used specifically

in the test ¢

ase metadata are also available. These variables are listed in Table 4: Analysis

Location Environment Variables.

SS_TC_DEPS

Table 4: Analysis Location Environment Variables
Name ‘ Description
This environment variable holds the absolute directory path where

dependencies have been preinstalled. The test user must have read/execute
access to the directory.

SS_TC_ROOT

This is the absolute path to the root of the unzipped test case directory on
the Test Host. This is required for other environment variables below.

SS TC_INSTALL This is the relative path where the program is installed inside of the

SS_TC_ROOT directory (i.e. the destination for make install). The
absolute path of this directory is $SS_TC_ROOT/$SS_TC_INSTALL. All
executable and library objects under this directory are considered valid
locations for the weakness to be injected.

SS_TC_DATA

This is the relative path of the current working copy of the iodata
directory. The absolute path of this directory is then be created by
$SS_TC_ROOT/$SS_TC_DATA

SS_JAVA MAIN This environment variable contains a colon-delimited list of main classes

used in the input/output pairs of a test case.

SS_JAVA CLASSPATH This environment variable contains the runtime class path used in

input/output pairs of a test case.

SS JAVA EXTRA _CLASSPATH This environment variable contains any extra classpath information that is

not included on the runtime classpath by default.

SS COMM_ADDR This environment variable contains the hostname or ip address of the
machine running the Communication Server. The default value is
‘localhost’

SS COMM_PORT This environment variable contains the port on which the Communication

Server is listening. The default value is ‘8886’

SS_LEARNING_ROOT This environment variable contains an absolute path to the root directory

that contains any learning information available for the test case. This
directory is writeable and my be persisted depending on the mode of
operation the test case is being run in.

Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

Description

STONESOUP_DISABLE_WEAKNESS |This environment variable is included to turn off injected weaknesses
during analysis so that programs that call themselves during compilation
do not block waiting for input from external sources like sockets or shared
memory.

The environment variables listed in Table 5: Environment Variables Modified During
Analysis are environment variables commonly utilized in the compilation of programs. These
environment variables must be modified from their system defaults to support building with
dependencies that are installed in non-default folders on the system. These variables should not
be directly modified by the Performer but should instead be modified by setting the values of the
environment variables listed in Table 5: Environment Variables Modified During Analysis. If
the performer technology requires changes to any other system wide environment variable please
contact the TEXAS development team immediately.

Table 5: Environment Variables Modified During Analysis

Variable Value

PATH ${SS_BASE_PATH}:${PATH}

CFLAGS ${SS_BASE_CFLAGS} ${SS_CFLAGS}
CPPFLAGS ${SS_BASE_CPPFLAGS}

LIBS ${SS_BASE_LIBS} ${SS_LIBS}
LDFLAGS ${SS_BASE_LDFLAGS} ${SS_LDFLAGS}

PKG_CONFIG_PATH |${SS_BASE_PKGCONFIG}:${PKG_CONFIG_PATH}
SS_BASE_CFLAGS ${SS_BUILD_COMMAND_CFLAGS} -fno-stack-protector
SS_BASE_CPPFLAGS |${SS_BUILD_COMMAND_CPPFLAGS} -I${SS_TC_DEPS}/include
SS_BASE_LIBS DIR |-L${SS_TC_DEPS}/Iib -L${SS_TC_DEPS}/lib64

SS_BASE_LIBS ${SS_BUILD_COMMAND_LIBS}
SS_BASE_LIBS_RPAT |-WI,-R${SS_TC_DEPS}/lib -WI,-R${SS_TC_DEPS}/lib64
H

SS_BASE_PKGCONFI [${SS_TC_DEPS}Iib:${SS_TC_DEPS}/lib/pkgconfig:${SS_TC_DEPS}/1ib64:${SS_TC
G _DEPS}/Iib64/pkgconfig

SS_BASE_PATH ${SS_TC_DEPS}/bin:${SS_TC_DEPS}/shin

SS_BASE_LDFLAGS |${SS_BUILD_COMMAND_LDFLAGS} ${SS_BASE_LIBS DIR}
${SS_BASE_LIBS_RPATH} -WI,-z,execstack

SS BUILD_COMMAN |LDFLAGS from the testcase metadata, otherwise blank
D_LDFLAGS

SS BUILD_COMMAN |CPPFLAGS from the testcase metadata, otherwise blank
D_CPPFLAGS

SS BUILD_COMMAN |CFLAGS from the testcase metadata, otherwise blank
D_CFLAGS

SS BUILD_COMMAN |[LIBS from the testcase metadata, otherwise blank
D_LIBS

19 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

3.2 analyze.sh

The analyze.sh script is the portion of TEXAS software responsible for managing the
compilation/analysis portion of a test case. This script actually executes the build commands for
the test program to compile it into a binary, either with or without Performer Technology.
Performers integrate into this script by writing their own performer_analyze.sh script, detailed in
section performer_analyze.sh. The full analyze.sh script is available in Appendix C: analyze.sh.

3.2.1 Parameters

usage: analyze.sh [OPTIONS] -d COMMAND CWD [-f COMMAND FILE]

This script provides an interface through which a target application source or binary
can be analyzed (and created if building the source).

OPTIONS:
-d Working directory from which COMMAND FILE will execute.
=1t Configuration file containing build commands. If this is not
provided, the data is expected to be provided via stdin.
The configuration format closely follows that of INI, with the
exception that comments are denoted with '#'. Below is an
example:
This is a config for build commands
[buildcommands]
Configure the build
command=./configure --prefix="$SS TC ROOT/$SS TC INSTALL"
Build and then install
command=make all
command=make install
=@ Debug flag. RESERVED FOR PERFORMER USE.
-h Show this message.
-n Do nothing. Parse and print commands.
-p Run with performer technology.
=1F Run in release mode. This mode should represent the most production-
like version of the performer technology. RESERVED FOR PERFORMER USE.
-t Test case name.
-v Run in verbose mode.

3.3 performer_analyze.sh

The performer_execute.sh script is the main integration point for Performers during the Analysis
step in running a test case. Implementing this script in concert with implementation of
appropriate messaging to the Communications Server constitutes integration into the Analysis
step of a test case in TEXAS.

3.3.1 General Guidance

In order to support correct scoring via standard out and standard error of the run command,
performer scripts should not print to standard out or standard error unless the debug flag is
enabled. Furthermore, in release mode the performer should operate in as close to the same
manner they would expect to deploy into an operational production environment.

20 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

3.3.2 Functions

Implementation of this script requires implementation of any required functions called from the
analyze.sh script. These functions are all denoted by the prefix ‘performer ’ in the name of the
function. These functions are not called when the analyze.sh script is executed with the —p flag to
enable Stage 2.

3.3.2.1 performer_set_flags

The performer_set flags function is intended to allow the Performer to set any of the
environment variables listed in Table 3: Performer Controlled Environment Variables for
Analysis before they are used in their global counterparts listed in Table 5: Environment
Variables Modified During Analysis. This function must be implemented, with an empty
function representing a valid instance.

3.3.2.1.1 Signature

performer set flags

3.3.2.1.2 Optional Messages
The following messages may be sent to the Communications Server during execution of the
performer_set_flags function.
e LogMessageType — This message may be sent any time the performer wishes to log
something for later debugging or analysis purposes.
3.3.2.2 performer_build
This function is called for every specified build command for the test program.

3.3.2.2.1 Signature

performer build "${COMMAND EXEC CWD}" "${BUILD COMMAND}"

Table 6: performer_build Parameters

Parameter Description

COMMAND_EXEC_CWD The path the BUILD_COMMAND should be executed in. It is expected that
the “any” implementation of this method will change directory to this
directory before executing the BUILD_COMMAND

BUILD_COMMAND This is the actual command to be executed to build the test program (i.e. make
install). Implementations may find it useful to execute the change to the
COMMAND_EXEC_CWD and the BUILD_COMMAND a sub-process.

3.3.2.2.2 Optional Messages
The following messages may be sent to the Communications Server during execution of the
performer_build function.

e ActionMessageType — This message should be sent any time the performer takes an
action such as mitigating a vulnerability or initiating a controlled exit of the program.
Information about the suspected weakness can also be included in this message.

21 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

e LogMessageType — This message may be sent any time the performer wishes to log
something for later debugging or analysis purposes.

e TechnicallmpactMessageType - This message may be sent any time a suspected
technical impact is detected.

e WeaknessMessageType — This message may be sent any time a suspected weakness is
discovered. The same information can be conveyed using an ActionMessageType.

3.3.2.3 performer_report
This function is called once after all build commands have been executed.

3.3.2.3.1 Signature

| performer report

3.3.2.3.2 Required Messages

The following messages must be sent to the Communication Server during execution of the
performer_report function.

e ResultMessageType — This should be sent as a final method in the performer_report
function.

3.3.2.3.3 Optional Messages

The following messages may be sent to the Communications Server during execution of the
performer_analyze function.

e ActionMessageType — This message should be sent any time the performer takes an
action such as mitigating a vulnerability or initiating a controlled exit of the program.
Information about the suspected weakness can also be included in this message.

e LogMessageType — This message may be sent any time the performer wishes to log
something for later debugging or analysis purposes.

e TechnicallmpactMessageType - This message may be sent any time a suspected
technical impact is detected.

e WeaknessMessageType — This message may be sent any time a suspected weakness is
discovered. The same information can be conveyed using an ActionMessageType.

22 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

4 Execution

The Execution step of a test case run is where the binary created during the Analysis step is
actually invoked with benign and exploiting inputs. Figure 2: TEXAS Execution describes the
overall workflow of the TEXAS system during an Execution step. Of particular interest for this
document are the actions and decision points that occur during the Execute Script action as these
describe the actions and decisions made in the execute.sh script.

V0.1 3/21/2014

Unpack Test Are the
@ | cCase archive PreProcesses oreun Aaditonal froq>| Jrite Run start Comms
into Workspace to Run? \Q'/ ;J
frest
Execute
Execute Script

L Validate Cache
Arguments ULIMITS

Does
Performer
cript Exist2

Source Call Performer
o Set Flags

Set Run Log

Enforce ¢ Execute Run Restore
Environment Environment

ULIMIT [Variables [Variables { Command { ULIMITS

Determine

Success or
Load Run Failure of
Command File Execution

Call Performer
Execute
Function

HT
an Shutdown

| | Watching Run Is Execute n Has Timeout Exarute Suipt
Command Script Running?2 Been Reached? — LYe>1 & Con
Processes

Additional
CoProcesses?.

|

Post Run Post Additional Posi [Sggfxm") [Archive Destroy
Processes? Process Processes? T L Server J LWDrkspacE Workspace

frest

Figure 2: TEXAS Execution Workflow

23 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

4.1 Environment Variables

To invoke the test program correctly from within the environment, several environment variables
need to be set during the testing process. Because Performers may need to modify some of the
same environment variables for their technology, alternative performer controlled environment
variables have been designated to allow modification in a controlled manner. These alternative
environment variables are listed in Table 7: Performer Controlled Environment Variables For
Execution.

Table 7: Performer Controlled Environment Variables For Execution

Variable Description

SS LD_PRELOAD This variable allows the performer to add information to the global LD_PRELOAD
environment variable without impacting changes made by the TEXAS system.

Like the Analysis step, environment variables that provide information about locations on the
system used specifically in the test case metadata are also available. These variables are listed in
Table 8: Execution Location Environment Variables.

Table 8: Execution Location Environment Variables
Name Description
SS_TC_DEPS This environment variable holds the absolute path of the directory where the

dependencies have been preinstalled. The test user must have read/execute access
to the directory.

SS_TC_ROOT This is the absolute path to the root of the unzipped test case directory on the Test
Host. This is required for other environment variables below.
SS_TC_INSTALL This is the relative path where the program is installed to in the SS_ TC_ROOT

directory (i.e. the destination for make install). The absolute path of this directory
is $SS_TC_ROOT/$SS_TC_INSTALL. All executable and library objects under
this directory are considered valid locations for the weakness to be injected.

SS_TC_DATA This is the relative path of the current working copy of the iodata directory. The
absolute path of this directory would then be created by
$SS_TC_ROOT/$SS_TC_DATA

SS_JAVA_MAIN This environment variable contains a colon-delimited list of main classes used in
the input/output pairs of a test case.

SS _JAVA CLASSPATH This environment variable contains the runtime class path used in the input/output
pairs of a test case.

SS COMM_ADDR This environment variable contains the hostname or ip address of the machine
running the Communication Server. The default value is ‘localhost’

SS COMM_PORT This environment variable contains the port on which the Communication Server
is listening. The default value is ‘8886’

SS_LEARNING_ROOT This environment variable contains an absolute path to the root directory that
contains any learning information available for the test case. This directory is
writeable and my be persisted depending on the mode of operation the test case is
being run in.

The environment variables listed in the Table 9: Environment Variables Modified During
Execution are environment variables commonly utilized in the compilation of programs. These

24 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

environment variables must be modified from their system defaults to support building with
dependencies installed in non-default folders on the system. These variables should not be
directly modified by the Performer but instead modified by setting the values of the environment
variables listed in Table 7: Performer Controlled Environment Variables For Execution. If
the performer technology requires changes to any other system wide environment variable please
contact the TEXAS development team.

Table 9: Environment Variables Modified During Execution

Variable ‘ Value
PATH ${SS_TC PATH}
LD_PRELOAD ${SS BASE_LD PRELOAD} ${SS_LD_PRELOAD}
SS_BASE_LD_PRELOAD [${SS_RUN_COMMAND_LD_PRELOAD}
SS_TC_DEPS_PATH ${SS_TC_DEPS}/bin:${SS_TC_DEPS}/shin
SS_ TC_PATH ${SS_TC_ROOT}H${SS_TC_INSTALL}/bin:${SS_TC_ROOT}H${SS_TC_INSTAL
L}/sbin: ${SS_TC_DEPS_PATH}:${PATH}
SS_TC_LIBDIR_NAME lib$([[$(uname -m) == x86_64]] && echo 64)

4.2 execute.sh

The execute.sh script is the portion of TEXAS software responsible for actually executing the
vulnerable program, with or without the Performer Technology protecting it. Performers actually
integrate into this script by writing their own performer_execute.sh script, detailed in
performer_execute.sh. The full execute.sh script is available in Appendix D: execute.sh.

421 Parameters

usage: execute.sh [OPTIONS] -d COMMAND CWD [-f COMMAND FILE]

This script provides an interface through which a target application can be executed.
Commands will be evaluated by the SHELL to simulate executing what would otherwise be
provided by a user on the command line.

OPTIONS:
-d Working directory from which COMMAND FILE will execute.
=it Configuration file containing run commands. If this is not
provided, the data is expected to be provided via stdin.
The configuration format closely follows that of INI, with the
exception that comments are denoted with '#'. Below is an
example:
This is a config for run commands
[runcommands]
Run the target application
command=$SS TC ROOT/$SS_TC INSTALL/bin/example -h
-g Debug flag. RESERVED FOR PERFORMER USE.
-h Show this message.
=1 Set ULIMITs for the target executable. This flag may be

provided multiple times. In most cases, a number is

expected, but the special string "ulimited" is also supported.

25 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

The settings take the format:

KEY=VALUE

The following ULIMITs are supported:

RLIMIT AS - Maximum
RLIMIT NOFILE - Maximum
RLIMIT NPROC - Maximum

created.
RLIMIT CPU - Maximum

size of virtual memory.

number of open file descriptors.

number of processes that may be

CPU time (in seconds).

Refer to http://linux.die.net/man/2/getrlimit for more
information of the flags and their effect on the process.

Do nothing. Parse and print commands.

Run with performer technology.

Run in release mode. This mode should represent the most production-
like version of the performer technology. RESERVED FOR PERFORMER USE.

Test case name.
Run as different user.

Run in verbose mode.

4.3

performer_execute.sh

The performer_execute.sh script is the main integration point for Performers during the
Execution step in running a test case. Implementation of this script in concert with
implementation of appropriate messaging to the Communications Server constitutes integration
into the Execution step of a test case in TEXAS.

26

Approved for public release; distribution unlimited.

12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

4.3.1 General Guidance

In order to support correct scoring via standard out and standard error of the run command,
performer scripts should not print to standard out or standard error unless the debug flag is
enabled. Furthermore, in release mode the performer should operate in as close to the same
manner they would expect to deploy into an operational production environment.

4.3.2 Functions

Implementation of this script requires the implementation of any required functions called from
the execute.sh script. These functions are all denoted by the prefix ‘performer ’ in the name of
the function. These functions are not called when the execute.sh script is executed with the —p
flag to enable Stage 2.

4.3.2.1 performer_execute

This function provides necessary information to the Performer to actually invoke the test
program from the correct folder with the correct command line inputs. The execute.sh script calls
this method during Stage 2 when the command would expect to be invoked. Calling out to this
function provides the Performer the ability to modify the command to actually invoke their
technology before or during the command execution.

4.3.2.2 Signature

performer execute "${COMMAND EXEC CWD}" "${BASE RUN COMMAND}"
"${RUN_COMMAND} "

Table 10: performer_execute Parameters

Parameter Description

COMMAND_EXEC_CWD The path the RUN_COMMAND should be executed in. It is expected that
implementation of this method will change directory to this directory before
executing the RUN_COMMAND

BASE_RUN_COMMAND In the event the —u flag is set on invocation of the execute script, this
parameter contains the commands necessary to switch execution of the actual
RUN_COMMAND to execute as a different user. For example,

“-u tm” will result in this parameter being set to “sudo -n -E -u tm -s --"

RUN_COMMAND This is the actual command that invokes the vulnerable test program as well
as any required arguments. Implementations are expected to execute the
RUN_COMMAND in conjunction with the BASE_RUN_COMMAND (i.e.
eval "${BASE_RUN_COMMAND}" "${RUN_COMMAND}").
Implementations may find it useful to run this command in a sub shell so they
can execute other commands after evaluating the RUN_COMMAND and
then bubble the return code back up to the calling function.

4.3.3 Timeout Requirements

Execution of a test case is subject to a timeout if the program runs too long. This
functionality is supported by use of writing a PID file for the shell executing the run
command to a file. This is accomplished through two method calls in the performer_execute
method before execution of the run command.

27 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

Capture the subshell pid, so we can kill the children later.
By default, the children of the shell will be killed, but

the actual shell pid will not receive a kill signal

ensure shell pid

printf "%$s" "${BASHPID}" > "S${KILLTREE PID FILE}"

This method of timing out the process allows TEXAS to recursively kill the children of the
captured PID while not killing the actual shell PID, thus returning control back to the shell
where any cleanup or analysis can be completed before the script exits cleanly. If
multiprocessing is utilized, the PID captured can be a dummy PID that the script blocks on
before cleanup. Writing out the PID and responding to timeouts cleanly is required for
integration.

4.3.4 Required Messages

The following messages must be sent to the Communication Server during the execution of the
performer_execute function.

e ResultMessageType — This should be sent as the final action of the performer_execute
function.

4.3.5 Optional Messages

The following messages may be sent to the Communications Server during execution of the
performer_execute function.

e ActionMessageType — This message should be sent any time the performer takes an
action such as mitigating a vulnerability or initiating a controlled exit of the program.
Information about the suspected weakness can be included in this message.

e LogMessageType — This message may be sent any time the performer wishes to log
something for later debugging or analysis purposes.

e TechnicallmpactMessageType - This may be sent any time a suspected technical
impact is detected.

e WeaknessMessageType — This may be sent any time a suspected weakness is
discovered. The same information can be conveyed using an ActionMessageType.

4.4 performer_setup.sh

The performer_setup.sh script is a script called directly before any pre-processes are executed.
This script is only executed when TEXAS is running with Performer Technology. This script is
intended to allow any necessary setup to be completed before the actual execution of the test
case. Environment variables listed in Table 8: Execution Location Environment Variables are
available. The default script is not included in the Appendix section because they are blank.

28 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

4.4.2 Optional Messages

The following messages may be sent to the Communications Server during execution of the
performer_setup function.

e LogMessageType — This message may be sent any time the performer wishes to log
something for later debugging or analysis purposes.

4.5 performer_teardown.sh

The performer_setup.sh script is a script called directly after any post-processes are executed.
This script is only executed when TEXAS is running with Performer Technology. This script is
intended to allow any necessary teardown of the environment to be completed before the scoring
and archival of the test case. Environment variables listed in Table 8: Execution Location
Environment Variables are available. The default script is not included in the Appendix section
because they are blank.

45.1 Optional Messages

The following messages may be sent to the Communications Server during execution of the
performer_teardown function.

e LogMessageType — This message may be sent any time the performer wishes to log
something for later debugging or analysis purposes.

29 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

5 Installation of Integration

Integrating a new Performer Technology with TEXAS is straightforward. The Performer must
implement the performer_analyze.sh and performer_execute.sh scripts. Installation is then
achieved by placing those scripts into the same directory the analyze.sh and execute.sh scripts
are installed on a Test Host, normally /opt/stonesoup/texas_scripts. The scripts can also be
symlinked into the directory as well, if that is more convenient. These scripts will not be
overwritten by subsequent installations.

31 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

Appendix A: XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" "qualified"
"urn:stonesoup:api:communications"
"urn:stonesoup:api:communications">
<xs:element "log" "LogMessageType">
<xs:annotation>
<xs:documentation>
The log message is used to log arbitrary messages from the
proposed technology during analyze and execute invocations.
It is optional to use and the results will not be directly
used during scoring unless a specific issue arises.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element "result" "ResultMessageType">
<xs:annotation>
<xs:documentation>
The result message is used to report the final result of an
analyze or execute invocation. It is a required message.
Only one result message should ever be sent during a single
workflow. This message will indicate the end of reporting
for the proposed technology, and will trigger the message
server to shutdown. Any following messages are not
guaranteed to be successfully processed.

The result message includes only a status enumeration an
the raw process return code (i.e. 0-255). An execute result
may also include the action taken by proposed technology,
rather than reporting it as a separate message. An analyze
result should not populate that element.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element "weakness" "WeaknessMessageType">
<xs:annotation>
<xs:documentation>
The weakness message is used to report an identified or
perceived software vulnerability. Reporting a weakness is
optional, but will aid in evaluating the proposed technology.

A weakness may also be reported as part of the action message,
rather than as a separate message.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element "impact" "TechnicalImpactMessageType">
<xs:annotation>
<xs:documentation>
The impact message is used to report a negative technical
impact identified by the proposed technology. Reporting
negative technical impacts is optional, but will aid in
evaluating the proposed technology.

A negative technical impact may also be reported as part of
the action message, rather than as a separate message.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element "action" "ActionMessageType">
<xs:annotation>

A-1 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

<xs:documentation>
The action message is used to report an action taken by the
proposed technology to mitigate or stop a preceived weakness
from being exploited by a malicious input. Currently, the
actions are "Controlled Exit" and "Continued Execution".
With an action, the negative technical impact and perceived
target weakness may optionally be reported.

It is not required that you report an action in this manner.
An action may also be reported as part of the result message.
However, this message may be useful if multiple actions are
taken by the proposed technology, as only one result may be
reported.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element "response" "ResponseMessageType">
<xs:annotation>
<xs:documentation>
The response message is used to report the success or failure
in processing the received message (i.e. log, result, finish,
etc.). This message will provide av overall result, the HTTP
status code, and an optional message providing any other
useful information.

This message exists to support debugging integration with
performer technologies. The HTTP status code encapsulated in
the headers should be sufficient during runtime.

HTTP Status Codes:
201 Created - Message processed and recorded.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element "messages" "ReceivedMessagesType">
<xs:annotation>
<xs:documentation>
Provides a root element to log all received messages.
This element should not be used or implemented by
performers directly. This is reserved for the T&E
team use only.
</xs:documentation>
</xs:annotation>
</xs:element>

<xs:complexType "ReceivedMessageType">
<xs:choice>
<xs:element "log" "LogMessageType" />
<xs:element "result" "ResultMessageType" />
<xs:element "action" "ActionMessageType"/>
<xs:element "weakness" "WeaknessMessageType" />
<xs:element "impact" "TechnicalImpactMessageType" />
</xs:choice>
<xs:attribute "received" "xs:dateTime" "required"/>
<xs:attribute "hostname" "xs:string"/>
</xs:complexType>
<xs:complexType "ReceivedMessagesType">
<xs:sequence>
<xs:element "o" "unbounded" "message"

"ReceivedMessageType" />
</xs:sequence>
<xs:attribute "hostname" "xs:string" "required"/>
<xs:attribute "created" "xs:dateTime" "required"/>
</xs:complexType>

Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

<xs:complexType "ResultMessageType">
<xs:sequence>
<xs:element " "o" "action"

"ActionMessageType"/>
</xs:sequence>

<xs:attribute "status" "ResultEnumType" "required"/>
<xs:attribute "return code" "xs:integer" "required"/>
</xs:complexType>
<xs:complexType "WeaknessMessageType">
<xs:sequence "o">
<xs:element "unbounded" "o"

"additional information"
"xs:string"/>
</xs:sequence>

<xs:attribute "cwe" "CWEType" "optional"/>
<xs:attribute "file name" "xs:string" "optional"/>
<xs:attribute "function name" "xs:string" "optional"/>
<xs:attribute "line number" "xs:integer" "optional"/>
</xs:complexType>
<xs:complexType "TechnicalImpactMessageType">
<xs:sequence>
<xs:element "unbounded" "o"

"additional information"
"xs:string"/>
</xs:sequence>

<xs:attribute "effect" "TechnicalImpactEnumType" "required"/>
</xs:complexType>
<xs:complexType "LogMessageType">
<xs:sequence>
<xs:element "unbounded" "n "statement"

"xs:string"/>
</xs:sequence>
</xs:complexType>

<xs:complexType "ActionMessageType">
<xs:sequence>
<xs:element " "o" "weakness"
"WeaknessMessageType" />
<xs:element "n "o" "impact"
"TechnicalImpactMessageType"/>
<xs:element "unbounded" "o"

"additional information"
"xs:string"/>
</xs:sequence>

<xs:attribute "behavior" "ActionEnumType" "required"/>
</xs:complexType>
<xs:complexType "ResponseMessageType">
<xs:sequence>
<xs:element " "o" "message" "xs:string"/>
</xXs:sequence>
<xs:attribute "result" "ResponseResultEnumType" "required"/>
<xs:attribute "code" "xs:integer" "required"/>
</xs:complexType>
<xs:simpleType "ResultEnumType">
<xs:restriction "xs:string">
<xs:enumeration "SUCCESS" />
<xs:enumeration "SKIP"/>
<xs:enumeration "TIMEOUT" />
<xs:enumeration "OTHER" />

</xs:restriction>
</xs:simpleType>

<xs:simpleType "ActionEnumType">
<xs:restriction "xs:string">
<xs:enumeration "NONE" />

A-3 Approved for public release; distribution unlimited. 12 December 2014

<xs:
<xs:
<xs:

IARPA STONESOUP PHASE 3

TEXAS CoMmMuUNICATIONS APl USER GUIDE

enumeration
enumeration
enumeration

</xs:restriction>
</xs:simpleType>

<xs:simpleType

<xs:restriction

<xXS:
<xXS:
:enumeration
<xXS:
<xXS:
<xXS:
<xXS:
<xXS:

<xSs

<Xs
<xs
<xs

<xs

<xs

enumeration
enumeration

enumeration
enumeration
enumeration
enumeration
enumeration

:enumeration
:enumeration
:enumeration
<xXS:

enumeration

:enumeration
<xXS:

enumeration

:enumeration
<xXS:
<xs:

enumeration
enumeration

</xs:restriction>
</xs:simpleType>

<xs:simpleType

<xs:restriction

<xSs:

pattern

</xs:restriction>
</xs:simpleType>

<xs:simpleType

<xs:restriction

<xSs:
<xSs:

enumeration
enumeration

</xs:restriction>
</xs:simpleType>

</xs:schema>

"CONTROLLED EXIT"/>
"CONTINUED EXECUTION"/>
"OTHER" />

"TechnicalImpactEnumType">

"xs:string">
"NONE" />
"UNSPECIFIED"/>
"READ FILE"/>
"READ APPLICATION DATA"/>
"GAIN PRIVILEGES"/>
"HIDE ACTIVITIES"/>
"EXECUTE UNAUTHORIZED CODE"/>
"MODIFY FILES"/>
"MODIFY APPLICATION DATA"/>
"BYPASS PROTECTION MECHANISM"/>
"ALTER EXECUTION LOGIC"/>
"UNEXPECTED STATE"/>
"DOS UNCONTROLLED EXIT"/>
"DOS_AMPLIFICATION"/>
"DOS INSTABILITY"/>
"DOS_BLOCKING"/>
"DOS RESOURCE CONSUMPTION"/>

"CWEType">

"xs:string">
"[A-Z]{3}-[0-9]1{1,3}"/>

"ResponseResultEnumType">

"xs:string">
"SUCCESS" />
"ERROR" />

Approved for public release; distribution unlimited.

12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

Appendix B: JSON Schemas

action.json
{
"id": "urn:stonesoup:api:communications:action",
"Sschema": "http://json-schema.org/draft-04/schema#",
"title": "STONESOUP Communications API - Action Message",
"description": "An action taken by the proposed technology.",
"properties": {
"behavior": {
"description": "The behavior of the proposed technology for this action.",
"type": "string",
"enum" : ["NONE",
"CONTROLLEDiEXIT",
"CONTINUED EXECUTION",
"OTHER"
]
b
"weakness": {
"Sref": "urn:stonesoup:api:communications:weakness"
b
"impact": {
"Sref": "urn:stonesoup:api:communications:impact"
b
"additional information": {
"description": "A list additional statements to log with the weakness.",
"type": "array",
"minITtems": 1,
"items": {
"type": "string"
}
}
b
"required": ["behavior"],
"additionalProperties": false
}
impact.json
{
"id": "urn:stonesoup:api:communications:impact",
"Sschema": "http://json-schema.org/draft-04/schema#",
"title": "STONESOUP Communications API - Impact Message",
"description": "An identified negative technical impact.",
"properties": {
"effect": {
"description": "The negative technical impact.",
"type": "string",
"enum" : ["NONE",

"UNSPECIFIED",

"READ FILE",

"READ APPLICATION DATA",
"GAIN PRIVILEGES",

"HIDE ACTIVITIES",

"EXECUTE UNAUTHORIZED CODE",
"MODIFY FILES",

"MODIFY APPLICATION DATA",
"BYPASS PROTECTION MECHANISM",
"ALTER EXECUTION LOGIC",
"UNEXPECTED STATE",

B-1 Approved for public release; distribution unlimited.

12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

"DOS UNCONTROLLED EXIT",
"DOS AMPLIFICATION",
"DOS INSTABILITY",
"DOS_BLOCKING",
"DOS RESOURCE CONSUMPTION"
]
br
"additional information": {
"description": "A list additional statements to log with the weakness.",
"type": "array",
"minItems": 1,
"items": {
"type": "string"

}
br
"required": ["effect"],
"additionalProperties": false

log.json

{
"id": "urn:stonesoup:api:communications:log",
"$schema": "http://json-schema.org/draft-04/schema#",
"title": "STONESOUP Communications API",
"description": "Information to log.",
"properties": {
"statements": {

"description": "A list statements to log.",

"type": "array",

"minItems": 1,

"items": {

"type": "string"

}
b
"required": ["statements"],
"additionalProperties": false

result.json

{
"id": "urn:stonesoup:api:communications:result",
"Sschema": "http://json-schema.org/draft-04/schema#",
"title": "STONESOUP Communications API",
"description": "Defines the JSON encoding for the messages supported by the
communications API",
"properties": {
"status": {
"description": "The proposed technology status for completion.",
"type": "string",
"enum" : ["SUCCESS",
"SKIP",
"TIMEOUT",
"OTHER"

by
"return code": {
"description": "The exit code for the analyze operation (i.e. make/build)
or the execute of the test case application.",

B-2 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

"type": "integer",
"minimum": O,
"maximum": 255

by

"action": {
"Sref": "urn:stonesoup:api:communications:action"
}
b
"required": ["status", "return code"],
"additionalProperties": false
}
weakness.json
{
"id": "urn:stonesoup:api:communications:weakness",
"$schema": "http://json-schema.org/draft-04/schema#",
"title": "STONESOUP Communications API - Weakness Message",
"description": "An identified weakness.",
"properties": {
"cwe": {
"description": "The CWE or other weakness id.",
"type": "string",
"pattern": "[A-Z]{3}-[0-9]1{(1,3}"
I
"file name": {
"description": "The file name the weakness was found within.",
"type": "string"
I
"function name": {
"description": "The function name the weakness was found within.",
"type": "string"
I
"line number": {
"description": "The function name the weakness was found within.",
"type": "integer",
"minimum": 1
}y
"additional information": ({
"description": "A list additional statements to log with the weakness.",
"type":"array",
"minItems":1, "items": {
"type": "string"
}
}
by
"additionalProperties": false

B-3 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

Appendix C: analyze.sh

This is a draft script. Not all functionality is necessarily present. The most up-to-date versions of
this script can be obtained by contacting the TEXAS Development Team.

#!/bin/bash

i emmssmrrrressss e Copyrightommmrerrrrermerssssssmmeeoso s s o= o mm=
NOTICE

#

This software (or technical data) was produced for the U. S.

Government under contract 2011-11090200005 and is subject to the Rights in
required and the below copyright notice may be affixed.

#

Copyright (c) 2014. All Rights Reserved.

I e e e Copyrighitmrmrrrerreerreerreemresmeemee=mmm=om
#=== Section

#

Globals

#

#

SCRIPT DIR=$(cd "$(dirname "S${BASH SOURCE([O0]}")" && pwd)

CONFIG SECTION NAME="buildcommands"
PERFORMER SCRIPT FILE="${SCRIPT DIR}/performer analyze.sh"

Default Environment Variables (Test Case Required)
SS_BASE_CFLAGS="${SS_BUILD_COMMAND_CFLAGS} —-fno-stack-protector"
SS_BASE_CPPFLAGS="${SS_BUILD_COMMAND_CPPFLAGS} —I${SS_TC_DEPS}/include"
SS_BASE_LIBS="${SS_BUILD COMMAND LIBS}"

SS_BASE_LIBS DIR="-L${SS_TC DEPS}/lib -L${SS_TC DEPS}/1ib64"

SS_BASE_LIBS_RPATH="-Wl,-R${SS_TC ROOT}/${SS_TC INSTALL}/lib -Wl,-
R${SS_TC_ROOT}/${SS_TC INSTALL}/lib64 -Wl,-R${SS_TC DEPS}/lib -Wl,-
R${SS_TC DEPS}/1ib64"

SS_BASE PKGCONFIG="${SS TC DEPS}/lib:${SS TC DEPS}/lib/pkgconfig:${SS TC DEPS}/1lib64:$
{SS_TC DEPS}/1ib64/pkgconfig"

SS_BASE_PATH="${SS_TC DEPS}/bin:${SS_TC DEPS}/sbin"

SS_BASE_LDFLAGS="${SS_BUILD COMMAND LDFLAGS} ${SS BASE LIBS DIR} ${SS BASE LIBS RPATH}
-Wl,-z,execstack"

PATH="${SS_BASE_ PATH}:${PATH}"

Preserve existing PKG CONFIG PATH, if set

if [[-z "${PKG_CONFIG PATH}"]]
then

PKG_CONFIG PATH="${SS_BASE PKGCONFIG}"
else

PKG_CONFIG_ PATH="${SS BASE PKGCONFIG}:${PKG CONFIG PATH}"
fi

Export the Environment Variables not set by performers

C-1 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

export PKGfCONFIGiPATH="${PKG7CONFIG7PATH}"
export PATH="${PATH}"

Default Environment Variables (Provided by performers)
SS_CC="gcc"

SS_LNK="${SS_CC}"

SS LDFLAGS=""

SSELTBS=2k

SS CFLAGS=""

SS_ANT OPTS=""

#=== Section
#

Functions
#

#

Function ##########4#4FHH#HHHFHHHHEREHEHHFHAHEHFHHHHERAHSRAFHSHEHSHSHHERSS
Print script usage.
Globals:
S0 - Script name

#
#
Arguments:
#
#

None
Returns:
None
S i
function print usage() {

cat << EOF
usage: $0 [OPTIONS] -d COMMAND CWD [-f COMMAND FILE]

This script provides an interface through which a target application source

or binary can be analyzed (and created if building the source). This
OPTIONS:

-d Working directory from which COMMAND FILE will execute.

=it Configuration file containing build commands. If this is not

provided, the data is expected to be provided via stdin.

The configuration format closely follows that of INI, with the
exception that comments are denoted with '#'. Below is an

example:

This is a config for build commands

[buildcommands]

Configure the build

command=./configure --prefix="$SS TC ROOT/$SS TC INSTALL"
Build and then install

command=make all

C-2 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

command=make install

-g Debug flag. RESERVED FOR PERFORMER USE.

-h Show this message.

-n Do nothing. Parse and print commands.

=@ Run with performer technology.

=1F Run in release mode. This mode should represent the most production-

like version of the performer technology. RESERVED FOR PERFORMER USE.

-t Test case name.
-V Run in verbose mode.
EOF
}
#=== Section
#
Main Script
#
#

Load the utilities, mostly functions
source "${SCRIPT DIR}/utils.sh"

Ensure this is run as root. We will drop privileges when the commands
are execute, if required.
if [["SEUID" != "0O" 1]
then
print error "This must be run as root."
exit 1
fi

Ensure this is a linux based platform, or exit
if [["SOSTYPE" != linux*]]
then
print error "S$OSTYPE" "is not a supported platform." \
"Only specific Linux distributions are supported."
exit 1
fi

Parse the arguments
while getopts “d:f:ghnprvt:” OPTION
do
case SOPTION in
h)

print usage

C-3 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3

TEXAS CoMmMuUNICATIONS APl USER GUIDE

exit 0

g)
MODE DEBUG="yes"
r)
MODE RELEASE="yes"
n)
MODE DRY RUN="yes"
p)
MODE PERFORMER="yes"
V)
MODE VERBOSE="yes"
t)
TESTCASE_NAME="${OPTARG}"
f)
COMMAND_FILE="${OPTARG}"
COMMAND FILE STDIN="no"
d)
COMMAND_EXEC_CWD="${OPTARG}"
?)
print usage
exit 1
esac

done

Apply defaults to all arguments not specified
MODE_DEBUG="${MODE_DEBUG:—HO}"
MODE_RELEASE="${MODE_RELEASE:—HO}"
MODE DRY RUN="${MODE DRY RUN:-no}"
MODE_PERFORMER:"${MODE_PERFORMER:—HO}"
MODE_VERBOSE:"${MODE_VERBOSE:—HO}"
TESTCASE_NAME:"${TESTCASE_NAME:—UNKNOWN}"
COMMAND_FILE_STDIN:"${COMMAND_FILE_STDIN:—yes}"
COMMAND_FILE:"${COMMAND_FILE:—/dev/stdin}"
COMMAND_EXEC_CWD:"${COMMAND_EXEC_CWD:—}"
ANALYZE SUCCESS="yes"

Validate arguments
if [[-z "${COMMAND EXEC CWD}"]]
then

C-4 Approved for public release; distribution unlimited.

12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

print error "Build directory not specified."

exit 1

elif [[! -d "S{COMMAND EXEC CWD}"]]

then
print error "Build directory does not exist:" \

"S {COMMAND EXEC CWD}"

exit 1

fi

if [["S${MODE VERBOSE}" == "yes"]]

then
echo "Beginning analysis of Test Case." "ID:" "S${TESTCASE NAME}"
echo "Analysis settings:"
printf " $s: $s\n" "Run Directory" "${COMMAND EXEC CWD}"
printf " $s: $s\n" "Stage" "$(if [["S${MODE_PERFORMER}" == "no" 1];

then echo "STAGE 1"; else echo "STAGE 2"; fi)"
printf " $s: $s\n" "Debug" "${MODE DEBUG}"
printf " $s: $s\n" "Release" "${MODE RELEASE}"
printf " $s: $s\n" "Dry Run" "${MODE DRY RUN}"
printf " %S $s\n" "Command File" "${COMMAND FILE}"
printf " $s: %$s\n" "Path" "S$S{PATH}"
printf " $s: $s\n" "Package Path" "${PKG CONFIG PATH}"
printf "\n"

fi

if [["${MODE VERBOSE}" == "yes"]]

then
echo "Analysis Base Flag Settings:"
printf " %s $s\n" "Base CFlags" "${SS BASE CFLAGS}"
printf " $s %$s\n" "Base CPPFlags" "${SS_BASE_CPPFLAGS}"
printf " %s $s\n" "Library Dirs" "S${SS BASE LIBS DIR}"
printf " %s $s\n" "Base Libraries" "${SS BASE LIBS}"
printf " %s $s\n" "Libraries Path" "${SS BASE LIBS RPATH}"
printf " %s $s\n" "Package Config" "${SS BASE PKGCONFIG}"
printf " %s $s\n" "Base Path" "S${SS_BASE PATH}"
printf " %s $s\n" "Base LDFlags" "S${SS BASE LDFLAGS}"
printf "\n"

fi

Check if we are running with performer technology (STAGE 2) .
If so, then source in the performer functions.

if [["${MODE7PERFORMER}" == "yes"]]

then
Ensure the file exists
if [[! -f "${PERFORMERfSCRIPTiFILE}" |l ! -r "${PERFORMERﬁSCRIPTﬁFILE}" 11
then

C-5 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3

TEXAS CoMmMuUNICATIONS APl USER GUIDE

fi

print error "ERROR: Performer source file not found or accessible."

exit 1

source "S${PERFORMER SCRIPT FILE}"

Load the performer build flags

performer set flags

fi

Parse and load the build commands from the config file.
declare -a BUILD COMMANDS=()

BUILD COMMAND=""
while read BUILD COMMAND | |

do

BUILD COMMANDS+=("${BUILD COMMAND}")
done < <(parse_config_commands "S{CONFIG_SECTION_NAME}" "${COMMAND_FILE}")

Ensure build commands were parsed
if [["${#BUILD COMMANDS[@]}" -eq 0 1]

then

[[-n "SBUILD COMMAND"]]

print error "ERROR: No build commands provided."

exit 1

fi
#
#
#
#

export
export
export
export
export

export

SS_LNK,

Set all of the build Environment Variables.
set the SS CC,

Performers are able to

SS CFLAGS, and SS LDFLAGS variables. Those values

build of the application.
SS_CC="${ss_cC}"

SS_LNK="${SS_LNK}"

CFLAGS="${SS_BASE_CFLAGS} ${SS_CFLAGS}"

CPPFLAGS="${SS_BASE CPPFLAGS}"
LDFLAGS="${SS_BASE LDFLAGS} ${SS_LDFLAGS}"
LIBS="${SS BASE LIBS} ${SS LIBS}"

if [["S{MODE VERBOSE}" == "yes"]]

then

echo "Environment Variables:"

printf
printf
printf
printf
printf
printf

%s:
%s:
%s:

%s:

[

st

58S

$s\n" "SS_CC"

%s\n" "SS_LNK"
%s\n" "SS_LDFLAGS"
$s\n" "SS_CFLAGS"
$s\n" "SS_ANT OPTS"
%s\n" "SS_TC DEPS"

are then appended to the base variables required to perform a normal

"${Ss_cc}"
"${SS_LNK}"
"${LDFLAGS}"
"S$S{CFLAGS}"
"${SS_ANT OPTS}"
"${SS_TC DEPS}"

C-6

Approved for public release; distribution unlimited.

12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

o\

printf " %s\n" "SS_TC_ROOT" "${SS_TC ROOT}"

$s\n" "SS_TC INSTALL" "${SS_TC INSTALL}"

oo

printf "

fi

Execute the build commands
BUILD_COMMAND_RETURN_CODE:"O"
for BUILD COMMAND in "${BUILD_COMMANDS[@}}"
do
if [["${MODE_VERBOSE}" == "yes"]]
then

printf "Running command:
eval echo $(string escape "${BUILD COMMAND}")

printf "\n"
fi
CD to the target build directory and execute the command. The command
is evaluated to expand variables and process quotes as though the user
had typed it at an interactive shell prompt.
#
NOTE: We do this all in a sub-shell, so we do not have to deal with
tracking and restoring the original working directory.
if [["${MODE DRY RUN}" == "no"]]
then
if [["${MODE PERFORMER}" == "no"]]
then
R R R R b b b b b I b b b b b 2
STAGE 1
R R R b b b R b b b b b b b 2
We are not running with performer technology. We will simply
execute the command as defined.
(

cd "${COMMAND EXEC CWD}" && eval "${BUILD COMMAND}")

else

R R R R b b b b b b I b b b b b 2

STAGE 2

R R R R R b b I b b b I b b b b b 2

We are running with performer technology.

(performer build "S${COMMAND EXEC CWD}" "${BUILD COMMAND}")
fi

BUILD COMMAND RETURN CODE="$?"

Stop if the command failed, no need to execute the remaining
if [["${BUILD COMMAND RETURN CODE}" -ne 0]]

then

ANALYZE SUCCESS="no"
print error "ERROR: Previous command failed. Return code:"\

C-7 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3

TEXAS CoMmMuUNICATIONS APl USER GUIDE

break

fi

else

"${BUILD COMMAND RETURN CODE}"

printf "%$s\n" "$(eval echo "${BUILD COMMAND}")"

fi
done
if [["S${MODE PERFORMER}" == "yes"]]
then
performer report
fi
if [["${MODE VERBOSE}" == "yes"]]
then
printf "Completed analysis of Test Case. Result: "
if [["${ANALYZE SUCCESS}" == "yes" 1]
then
printf "SUCCESS\n"
else
printf "FAILED\n"
fi
fi

Bubble up the run command return code
exit "S${BUILD COMMAND RETURN CODE}"

C-8

Approved for public release; distribution unlimited.

12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

Appendix D: execute.sh

This is a draft script. Not all functionality is necessarily present. The most up-to-date versions of
this script can be obtained by contacting the TEXAS Development Team.

#!/bin/bash

i emmssmrrrressss e Copyrightommmrerrrrermerssssssmmeeoso s s o= o mm=
NOTICE

#

This software (or technical data) was produced for the U. S.

Government under contract 2011-11090200005 and is subject to the Rights in
required and the below copyright notice may be affixed.

#

Copyright (c) 2014. All Rights Reserved.

I e e e Copyrighitmrmrrrerreerreesresmeesmeesmee=mmm=oom
#=== Section

#

Globals

#

#

SCRIPT DIR=$(cd "$(dirname "S${BASH SOURCE([O0]}")" && pwd)

CONFIG SECTION NAME="runcommands"
PERFORMER SCRIPT FILE="${SCRIPT DIR}/performer execute.sh"
DEFAULT SHELL="/bin/bash"

These are the list of ULIMITs that will be supported. We'll use the Linux
API defs as keys, since they provide a much better set of documentation
regarding what each does.
declare -r ULIMITS SUPPORTED= ("RLIMIT AS" \

"RLIMIT NOFILE" \

"RLIMIT NPROC" \

"RLIMIT CPU")
Stores the original ULIMITs, these will be reapplied after execution
declare -a ULIMITS ORIGINAL
Stores the user specified ULIMITs to enforce during execution
declare -a ULIMITS ENFORCE

NOTE: this will only work for detecting 64-bit on an AMD/Intel arch.
SS_TC LIBDIR NAME="1ib$([[$(uname -m) == x86 64]] && echo 64)"

Build the PATH to use for this test case execution

Set the PATH for the dependencies

SS_TC DEPS PATH="${SS_TC DEPS}/bin:${SS_TC DEPS}/sbin"

Set the PATH for the test case installation

SS_TC_PATH="${SS TC ROOT}/${SS_TC INSTALL}/bin:${SS _TC ROOT}/${SS_TC INSTALL}/sbin"
Bring all PATHs together

SS_TC PATH+=":${SS TC DEPS PATH}:${PATH}"

D-1 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

Build the LD PRELOAD library path. This is required

for base programs that fork in order to ensure libraries are loaded
correctly.

NOTE: This should be addressed with performers to ensure that

their proposed technology does not require LD PRELOAD

in order to override libc implementations, such as malloc.
SS_BASE LD PRELOAD="${SS_RUN COMMAND LD PRELOAD}"

#=== Section

#

Functions

#

#

Function ##########4#4FHHHHHFHHHHEREHEHHFHAHEHFHHHHHRAHSHAFHSHSHSHSHHERSS
Print script usage.
Globals:
S0 - Script name

#
#
Arguments:
#
#

None
Returns:
None
S i
function print usage() {

cat << EOF
usage: $0 [OPTIONS] -d COMMAND CWD [-f COMMAND FILE]

This script provides an interface through which a target application can be
executed. Commands will be evaluated by the SHELL to simulate executing

what would otherwise be provided by a user on the command line.

OPTIONS:
-d Working directory from which COMMAND FILE will execute.
=it Configuration file containing run commands. If this is not
provided, the data is expected to be provided via stdin.
The configuration format closely follows that of INI, with the
exception that comments are denoted with '#'. Below is an
example:
This is a config for run commands
[runcommands]
Run the target application
command=$SS TC_ROOT/$SS_TC INSTALL/bin/example -h
-g Debug flag. RESERVED FOR PERFORMER USE.
-h Show this message.

D-2 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

=1 Set ULIMITs for the target executable. This flag may be
provided multiple times. In most cases, a number is
expected, but the special string "ulimited" is also supported.
The settings take the format:
KEY=VALUE

The following ULIMITs are supported:

RLIMIT AS - Maximum size of virtual memory.

RLIMIT NOFILE - Maximum number of open file descriptors.

RLIMIT NPROC - Maximum number of processes that may be created.
RLIMIT CPU - Maximum CPU time (in seconds).

Refer to http://linux.die.net/man/2/getrlimit for more information

of the flags and their effect on the process.

-n Do nothing. Parse and print commands.
= Run with performer technology.
=1F Run in release mode. This mode should represent the most production-

like version of the performer technology. RESERVED FOR PERFORMER USE.

-t Test case name.
-u Run as different user.
-v Run in verbose mode.

Function ##########H4##HH##H#HFHHEHHHAHHHHHHAEHERAHAHHAHFHAHHERASAEHEHHFSHES
Parse RLIMIT AS ulimit

Globals:

None

Arguments:

ulimit value to set for RLIMIT AS takes the form "[0-9]+ (KB)"

- If KB is found at the end of the string, it is stripped and

considered to be in kilobytes.

- Otherwise it should be in bytes.

Returns:

A number (in kilobytes) to be set as the ulimit value for RLIMIT AS (-Sv)
FHEHEF A AR AR A A A AR AR R
function parse rlimit as () {

local ulimit value="S${1}"

local ulimit type=${ulimit value: (-2)}
kb val=1024
case $ulimit type in

D-3 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

}

[Ee] [Dd])
echo "S${ulimit value}"

return 0

rr

[Kk] [Bb])
echo ‘expr match "$ulimit value" '\ (~[0-9]*\)'"
return 0
[0-9] [Bb])
echo $(expr “expr match "$ulimit value” '\ ("[0-9]1*\)"'"
return 0

rr

echo ‘expr Sulimit value / $kb val®
return 0
esac

return 1

/ $kb_val)

Function ##############SHEHEHSRSRERSHSSERSRSRSRSSRSASSSRSSSSSSSSSSSSSSSSS

Parse ulimit key value pair.
Globals:

ULIMITS ENFORCE

ulimit setting string. takes the form ULIMIT KEY=VALUE

Returns:

#
#
#
Arguments:
#
#
#

None

FHEH A
function parse ulimit arg() {

local ulimit setting="${1}"

Get everything before the "=" separator.

local ulimit setting key=$ (parse ulimit key "${ulimit setting}")

Ensure the key is all caps

The pipe is very inefficient, but we want to support older versions of Bash

ulimit setting key=$ (echo "${ulimit setting key}" | tr '[:lower:]'
if [[$(is_ulimit supported "${ulimit setting key}") == "yes"]]
then

Store the ULIMIT to enforce.
ULIMITS ENFORCE+=("${ulimit setting}")

return 0

else

'[:upper:1")

print error "The ULIMIT \"${ulimit setting key}\" is not supported."

Approved for public release; distribution unlimited.

12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

return 1

###4# Function #########44#4FHHHHHFHHHHERAHEHHFHAHEHFHHHHERAHEHAFHSHSHSESHHERES
Parse ulimit key from the ulimit key-value pair string
Globals:

None

#

#

#

Arguments:
ulimit setting string. takes the form ULIMIT KEY=VALUE

Returns:

ulimit setting key
S

function parse ulimit key() {

local ulimit setting="${1}"

Get everything before the "=" separator.

local ulimit setting key=${ulimit setting%%=*}

Ensure the key is all caps

The pipe is very inefficient, but we want to support older versions of Bash
ulimit setting key=$ (echo "${ulimit setting key}" | tr '[:lower:]' '[:upper:]")
echo "S${ulimit setting key}"

Function ##########4#4FHHHHHFHHIHEREHERAFHAHEHFHHHHHRAHERAFHSHEHSHSSHERSS
Parse ulimit key from the ulimit key-value pair string
Globals:

None

#

#

#

Arguments:

ulimit setting string. takes the form ULIMIT KEY=VALUE
Returns:

ulimit setting value
S i
function parse ulimit value() {

local ulimit setting="${1}"

Get everything after the "=" separator.

local ulimit setting value=${ulimit setting#*=}

ulimit value=("$ (string trim ${ulimit setting value})")
if [[-z "${ulimit value}"]]
then

print error "No value provided for ULIMIT" \
"\"S{ulimit key}\"."

return 1

D-5 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

echo "${ulimit value}"

Function ##########4#H#HHFHFHFHHHHFHAHHFHFHFHHERFHAHHFHFHFHHERARASHFHHSSES
Check if ULIMIT is supported.
Globals:
ULIMITS SUPPORTED
Arguments:
ulimit setting key (name).
Returns:
yes/no if supported
S i
function is ulimit supported() {
local ulimit setting key="S${1}"
local ulimit supported=""

local is_ supported result="no"

for ulimit supported in "${ULIMITS SUPPORTED[Q]}"

do
if [["S${ulimit supported}" == "${ulimit setting key}" 1]
then
is supported result="yes"
break
fi
done

echo "${is_supported_result}"

Function ##########H4##HH#HHHHEHERHHAHHHHFHFHHERHHAFHAHFHAEHERASAEHEHHSHES
Enforce the specified ULIMIT
Globals:
MODE ENFORCE ULIMIT
Arguments:
ulimit key
ulimit value

Returns:

.

None

G
function set ulimit () {

local ulimit key="${1}"

local ulimit value="${2}"

if [["${MODE ENFORCE ULIMIT}" == "yes"]]
then
case "S{ulimit key}" in
"RLIMIT_AS")

D-6 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

parsed value=$ (parse rlimit as "${ulimit value}")

if [["$?" -ne 0 1]
then
return 1
fi
ulimit -Sv "${parsed value}"
if [["${MODE_VERBOSE}" == "yes"]]
then

echo "Setting RLIMIT AS to" "${ulimit value}"

ulimit -Sv

"RLIMIT NOFILE")
ulimit -Sn "${ulimit value}"
if [["${MODE VERBOSE}" == "yes"]]
then
echo "Setting RLIMIT NOFILE to" "# S{ulimit value}"

ulimit -Sn

"RLIMIT NPROC")
ulimit -Su "${ulimit value}"
if [["${MODE VERBOSE}" == "yes"]]
then
echo "Setting RLIMIT NPROC to" "${ulimit value}"

ulimit -Su

"RLIMIT CPU")
ulimit -St "${ulimit value}"
if [["${MODE VERBOSE}" == "yes" 1]
then
echo "Setting RLIMIT CPU to" "${ulimit value}"
ulimit -St

print error "Error: Unimplemented ULIMIT" \
"option \"${ulimit key}\"."

echo "Setting failed"

return 1

esac

D-7 Approved for public release; distribution unlimited.

12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

Function ##########H4HH#HHFHHHFHHHRFHAFHFHFHFHHERFHHFHFHFHFHHERARASHFHHSSES
Report the specified ULIMIT
Globals:
MODE ENFORCE ULIMIT
Arguments:
ulimit key
ulimit value
Returns:
None
FHEHEF A AR AR AR E AR R R
function get ulimit () {
local ulimit key="S${1}"

case "S${ulimit key}" in
"RLIMIT AS")
ulimit -Sd
"RLIMIT NOFILE")
ulimit -Sn
"RLIMIT NPROC")
ulimit -Su
"RLIMIT CPU")
ulimit -St

r

print error "Error: Unimplemented ULIMIT" \
"option \"${ulimit key}\"."
return 1

esac

Function ##########H4##HH##H#HFHHEHHHAHHHHHHAEHERAHAHHAHFHAHHERASAEHEHHSHES
Enforce the specified ULIMITS
Globals:
ULIMITS ENFORCE
MODE ENFORCE ULIMIT
Arguments:
None

Returns:

H o H 4 W =

None
FHAFH A A A S
function enforce ulimits () {

local ulimit key=""

if [["${MODE ENFORCE ULIMIT}" == "yes"]]

D-8 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

then
for ulimit setting in "S{ULIMITS ENFORCE[@]}"
do

set ulimit "S$ (parse ulimit key "S${ulimit setting}")" "S$(parse ulimit value
"S${ulimit setting}")"

check result

if [["$?" -ne 0 1]
then
return 1
fi
done

fi

return 0

Function ##########H4#H#HH##H#HFHHAHHHAHHAHHHFEHARHHFHHAHFHAHHAHASHEHESHEAES
Restores the ULIMITs to the original runtime values.

Globals:

ULIMITS ORIGINAL

ULIMITS ENFORCE

MODE_ENFORCE_UL IMIT

Arguments:

None

Returns:

None
S i i
function restore ulimits() {

local ulimit key=""

if [["${MODE_ENFORCE ULIMIT}" == "yes"]]
then
for ulimit setting in "S${ULIMITS ORIGINAL[@]}"
do
set ulimit "S$ (parse ulimit key "${ulimit setting}")" "$ (parse ulimit value

"${ulimit setting}")"

check result

if [["$?" -ne 0 1]
then
return 1
fi
done

return 0

D-9 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

Function ##########4#H#HHFHFHFHHHHFHAHHFHFHFHHERFHAHHFHFHFHHERARASHFHHSSES
Cache the original ULIMITs for this process
Globals:

ULIMITS ORIGINAL

Arguments:

None

Returns:

None
S i ki
function cache ulimits() {

local ulimit key=""

for ulimit key in "S{ULIMITS SUPPORTED[@]}"
do
ulimit value=$ (get ulimit "${ulimit key}")
Report the current ULIMIT so that we can restore it later
ULIMITS ORIGINAL+=("${ulimit key}=${ulimit value}")

check result

if [["$?" -ne 0 1]
then
return 1
fi
done

return 0

Function ##########H4##HH##HHHFHHERHHAHHHHHHAEHERAHAHHAHFHAHHERASHSHEHHFSHES
Sets additional environment variables to use for the execution of the
RUN COMMAND in the subshell. Typically this is just PATH and LD PRELOAD.
Globals:
SS_TC PATH
SS_LD PRELOAD
Arguments:
None
Returns:
None
FHEHEFH AR AR AR AR R R R
function set run environment () {

PATH="${SS_TC_ PATH}"

LD PRELOAD="${SS_BASE LD PRELOAD} ${SS_LD PRELOAD}"

export PATH
export LD PRELOAD

#=== Section

D-10 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

#
Main Script
#
#

Load the utilities, mostly functions
source "${SCRIPT DIR}/utils.sh"

Ensure this is run as root. We will drop privileges when the commands
are execute, 1f required.
if [["SEUID" != "O" 1]
then
print error "ERROR: This must be run as root."
exit 1
fi

Ensure this is a linux based platform, or exit
if [["SOSTYPE" != linux*]]
then
print error "ERROR:" "SOSTYPE" "is not a supported platform.™ \
"Only specific Linux distributions are supported."
exit 1
fi

Parse the arguments
while getopts “hd:f:gl:npt:u:vr” OPTION

do
case SOPTION in

h)

print usage

exit O
g)

MODE DEBUG="yes"
)

MODE_RELEASE=" yes"
n)

MODE DRY RUN="yes"
p)

MODE_PERFORMER: "yes"
V)

MODE VERBOSE="yes"
u)

MODE RUN AS USER="yes"
RUN_AS USERNAME="S{OPTARG}"

D-11 Approved for public release; distribution unlimited.

12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

1)
MODE ENFORCE ULIMIT="yes"
parse ulimit arg "${OPTARG}"
t)
TESTCASE_NAME:"${OPTARG}"
f)
COMMAND_FILE:"${OPTARG}"
COMMAND FILE STDIN="no"
d)
COMMAND_EXEC_CWD="${OPTARG}"
?)
print usage
exit 1
esac

done

Apply defaults to all arguments not specified
MODE DEBUG="S${MODE DEBUG:-no}"

MODE RELEASE="${MODE RELEASE:-no}"

MODE_DRY RUN="${MODE DRY RUN:-no}"
MODE_PERFORMER="${MODE_PERFORMER:—HO}"
MODE_RUN_AS_USER="${MODE_RUN_AS_USER:—HO}"
MODE_ENFORCE_ULIMIT="${MODE_ENFORCE_ULIMIT:—no}"
MODE_VERBOSE="${MODE_VERBOSE:—HO}"

RUN AS USERNAME="${RUN AS USERNAME:-}"
TESTCASE_NAME="${TESTCASE_NAME:—UNKNOWN}"
COMMAND_FILE_STDIN="${COMMAND_FILE_STDIN:—yes}"
COMMAND_FILE="${COMMAND_FILE:—/dev/stdin}"
COMMAND_EXEC_CWD="${COMMAND_EXEC_CWD:—}"

KILLTREE_PID_FILE="${KILLTREE_PID_FILE:—$SS_TC_ROOT/rC_parent.pid}"

if [["${MODE_VERBOSE}" == "yes" 1]

then
echo "Environment Variables:"
printf " %s: %s\n" "SS TC DEPS PATH" "${SS TC DEPS PATH}"
printf " %s: %s\n" "SS TC PATH" "${SS TC PATH}"
printf " %s: $s\n" "SS LD PRELOAD" "${SS LD PRELOAD}"
printf " $s:%s\n" "SS BASE LD PRELOAD" "${SS BASE LD PRELOAD}"
printf " $s: $s\n" "PATH" "${PATH}"
printf "\n"

D-12 Approved for public release; distribution unlimited.

12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

#explain options to user
if [["${MODE_VERBOSE}" == "yes"]]
then

echo "Commands to Execute:"

printf " %s: %$s\n" "Debug" "$ {MODE_DEBUG}"

printf " %$s: %$s\n" "Release" "${MODE_RELEASE}"

printf " %s: %$s\n" "Dry Run" "S{MODE_DRY RUN}"

printf " %s: %$s\n" "Performer Run" "$ {MODE_PERFORMER}"

printf " %$s: %s\n" "Run as User" "${MODE RUN AS USER}"

printf " %$s: %$s\n" "Enforce Ulimits" "$ {MODE_ENFORCE ULIMIT}"
printf " %$s: %$s\n" "Verbose" "$ {MODE_VERBOSE}"

printf " %s: %$s\n" "Username" "S{RUN_AS USERNAME:-root}"
printf " %s: %$s\n" "Testcase name" "S{TESTCASE NAME}"

printf " %s: %s\n" "Using STDIN" "${COMMAND_FILE_STDIN}"
printf " %$s: %$s\n" "Filename" "S${COMMAND FILE}"

printf " $s: %$s\n" "Killtree pid file" "${KILLTREE PID FILE}"
printf "\n"

fi

Validate arguments
if [[-z "${COMMAND EXEC CWD}"]]
then
print error "Run directory not specified.”
exit 1
elif [[! -d "S{COMMAND EXEC CWD}"]]
then
print error "Run directory does not exist:" \
"${COMMAND EXEC CWD}"
exit 1
fi

Setup base command if we are running as a different user. The default
is to just run the command as the current user.
BASE RUN_COMMAND=""
if [["${MODE RUN AS USER}" == "yes" 1]
then
To run as a different user, the script will sudo the command. The

following options are used:

-n run non-interactive

-E preserve the environment

-u target username

-s run in shell (uses SHELL env or /etc/passwd shell)
- stop processing arguments, pass them to command

BASE RUN COMMAND+=" sudo -n -E -u ${RUN_AS_USERNAME} =g ==W
fi

Setup the ulimit defaults by grabbing the current settings

cache ulimits

D-13 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

if [["$?" -ne 0 1]
then
print error "ERROR: Failed to cache current process ULIMITs."
exit 1
fi
if [["${MODE_VERBOSE}" == "yes"]]
then
echo "Beginning execute of Test Case." "ID:" "S{TESTCASE NAME}"
echo "Execution settings:"
printf " $s: %s\n" "Run Directory" "$ {COMMAND EXEC CWD}"
printf " %S $s\n" "Stage"™ "$(if [["S${MODE_PERFORMER}" == "no"
then echo "STAGE 1"; else echo "STAGE 2"; fi)"
printf " $s: $s\n" "Run As" "S${RUN_AS USERNAME:-root}"
printf " %$s: $s\n" "Debug" "${MODE DEBUG}"
printf " $s: $s\n" "Release" "${MODE RELEASE}"
printf " $s: $s\n" "Dry Run" "${MODE DRY RUN}"
printf " $s: %s\n" "Limits" "${MODE ENFORCE ULIMIT}"
if [["${MODE_ENFORCE ULIMIT}" == "yes"]]
then
for ulimit setting in "${ULIMITS ENFORCEI[Q]}"
do
printf " $s: %$s\n" "$ (parse ulimit key ${ulimit setting})"

"S(parse ulimit value ${ulimit setting})"
done
fi
fi

Check if we are running with performer technology (STAGE 2).

If so, then source in the performer functions.

if [["${MODE_PERFORMER}" == "yes"]]

then
Ensure the file exists
if [[! -f "${PERFORMER_SCRIPT_FILE}" [! -r "${PERFORMER_SCRIPT_FILE}" 11
then

print error "ERROR: Performer source file not found or not accessible."
exit 1
fi

source "S${PERFORMER SCRIPT FILE}"
fi

Ensure the specified command file exists

if [["${COMMAND FILE STDIN}" == "no"]]

then
if [[! -f "S{COMMAND FILE}" || ! -r "S${COMMAND FILE}"]]
then

D-14 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

print error "ERROR: Specified command file not found or not accessible."
exit 1
fi
fi

Parse and load the build commands from the config file.
declare -a RUN_COMMANDS=()
RUN COMMAND=""
while read RUN_COMMAND || [[-n "SRUN_COMMAND" 1]]
do
RUN_COMMANDS+= ("$ {RUN_COMMAND}")
done < <(parse_config_commands "${CONFIG_SECTION_NAME}" "${COMMAND_FILE}")

Ensure run commands were parsed
if [["S${#RUN_COMMANDS[Q]}" -eq O]]
then
print error "ERROR: No run commands provided."
exit 1
elif [["${#RUN_COMMANDS([@]}" -ne 1]]
then
print error "ERROR: Only one run command is supported."
exit 1
fi

Execute the build commands
RUN_COMMAND RETURN CODE="0"
for RUN COMMAND in "${RUN COMMANDS[@]}"
do
if [["${MODE VERBOSE}" == "yes" 1]
then
printf "Running command: "
eval echo $(string escape "${RUN_COMMAND}")
printf "\n"
fi

CD to the target run directory and execute the command. The command
is evaluated to expand variables and process quotes as though the user

#
#
had typed it at an interactive shell prompt.
#
#

NOTE: We do this all in a sub-shell, so we do not have to deal with
tracking and restoring the original working directory.
if [["${MODE DRY RUN}" == "no"]]
then
if [["${MODE PERFORMER}" == "no"]]
then

KAk Ak hkk kA kA kAkhkhk K hkkx*k

STAGE 1

KAk Ak hkk kA kA Ak hk K hkkx*k

H H

We are not running with performer technology. We will simply

D-15 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

execute the command as defined.
enforce ulimits

Stop if ULIMITs were not set

if [["$?" -ne 0]]

then
RUN_COMMAND RETURN CODE="S$?"
print error "ERROR: Failed to enforce ULIMITs for execution."
break

fi

Execute the actual command in the target CWD. This is all done in a
subshell to avoid dealing with restoring the PWD, affect environment
variables, etc. The command return code will be passed up.
(
Capture the subshell pid, so we can kill the children later.
By default, the children of the shell will be killed, but
the actual shell pid will not receive a kill signal
ensure_shell pid
printf "%s" "S${BASHPID}" > "S${KILLTREE PID FILE}"

cd "S${COMMAND EXEC CWD}"

Ensure cd executed
if [["$?" -ne 0]]
then
print error "ERROR: Failed to set the working directory" \
"prior to command execution"
exit 1
fi

Sets any runtime environment flags

set run environment

When executing, we use eval because the RUN COMMAND is

provided as a string that a user would enter on the

command line. Thus, we need quotes and environment variables
processed correctly.

eval "${BASE_RUN_COMMAND}" "${RUN_COMMAND}"

exit "s$2"

RUN_COMMAND RETURN_ CODE="$2"

We do not log an error message here because the output error
should simply be that of the RUN COMMAND RETURN CODE

D-16 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

restore ulimits

Stop if ULIMITs were not restored

if [["$?" -ne 0]]

then
RUN_COMMAND RETURN CODE="S$?"
print error "ERROR: Failed to restore ULIMITs post execution."
break

fi

else

KAk AkAkhkkhk Ak Ak Ak hk kA hkkh*k

STAGE 2

khkkkhkkhkhkhkhkkhkkhkhkhrhkhkkhkhkkkk*k

We are running with performer technology.

NOTE: ULIMITs should be set by the performers after

(

Capture the subshell pid, so we can kill the children later.

By default, the children of the shell will be killed, but
the actual shell pid will not receive a kill signal
ensure_shell pid
printf "%s" "S${BASHPID}" > "S${KILLTREE PID FILE}"

performer execute "${COMMAND EXEC CWD}" "S${BASE RUN COMMAND}"
"${RUN_COMMAND}"

)

RUN_COMMAND RETURN CODE="S$?"

Stop if the command failed, no need to execute the remaining

if [["${RUN_COMMAND RETURN CODE}" -ne 0]]

then
We do not log an error message here because the output error
should simply be that of the RUN_COMMAND RETURN CODE

break
fi
fi
else
printf "$s\n" "$(eval echo "${RUN_ COMMAND}")"
fi
done
if [["${MODE VERBOSE}" == "yes"]]
then
printf "Completed execute of Test Case. Result: "
if [["S${RUN_COMMAND RETURN CODE}" -eq 0]]
then
printf "SUCCESS\n"
else

D-17 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

printf "FAILED\n"

fi

Bubble up the run command return code
exit "${RUN_ COMMAND RETURN CODE}"

D-18 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

Appendix E: utils.sh

#!/bin/bash

=+

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|
Q

O

o)

<

[}
-

(o]
=
ct

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

NOTICE

#

This software (or technical data) was produced for the U. S.

Government under contract 2011-11090200005 and is subject to the Rights in
#

#

#

required and the below copyright notice may be affixed.

Copyright (c) 2014. All Rights Reserved.

ittt i (€@ e et
The following is required to get consistent behavior for conditionals

involving regular expressions. Newer versions of Bash do not like quotes

around the regular expression, whereas older versions require it. Output

is redirected to hide error messages for older version of bash.

#

NOTE: This may not be required for these interfaces

shopt -s compat31l 1>/dev/null 2>&l

#=== Section
#

Globals

#
#
NONE

#=== Section
#

Functions
#
#
Function ###########4# 4444444 4HHHH4HFHHHHARAHHARAHFHHAHARAHHHRASHSHEHARHHES

Get user confirmation.
Globals:
None

Arguments:

#
#
#
#
Confirmation question or message
Returns:
"yes" = yes
"no" = no
HHEH AR A AR A R R R
function confirm() {
while true; do
read -p "$1 [y/n] " yn < /dev/tty
case S$yn in
(Yy] | [Yy][Ee][Ss])
echo "yes"

E-1 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

break
[Nn] | [Nn][Oo])
echo "no"
break
esac

done

Function #####44H##H##HHHH#FHAHAHHHHAHERHHHHHEAHHHHFHASHHHHHESHIHAHESSSHHSE
Print an error message to stderr.
Globals:

None

#

#

#

Arguments:
Strings to print

Returns:

None

FHEFFH AR A R R R R

function print error() {
echo "$@" >&2

Function ##########4#4FHH#HHHFHHIHERSHEHHFHAHEHFHHHHERAHERAFHSHEHSHSSHERES
Trim leading and trailing whitespace from a string.
Globals:

None

#
#
#
Arguments:
String to trim
Returns:
None
S
function string trim() {

local input string="${1}"

shopt -s extglob

input string="${input string##* ([[:space:]])}"

input string="${input string$%* ([[:space:]])}"

shopt -u extglob

echo "S${input string}"

###4 Function ##########4##FHH#HFHFHEHHHRFHEHHFHHHHHFHEHHHRAHEHAFEHHSHIHERHERSS
Escape select bash characters
Globals:

None

Original string

#

#

#

Arguments:
#

Returns:

#

Escaped string

E-2 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

FHESHH A A AR A R R R R R R R R R

function string escape () {
local input string="${1}"
input string="${input string//&/\&}"
input string="${input string//|/\|}"
input string="${input string//;/\;}"
input string="${input string//\ /\\\ }"
input string="${input_string// (/\ (}"
input string="${input string//)/\)}"
input string="${input string//\"/\\\"}"
input string="${input string//!/\!}"
input string="${input string//[/\[}"
input string="${input string//]1/\1}"
input string="${input string//>/\>}"
input string="${input string//</\<}"

echo "${input string}"

Function ##########4#4HHH#HHHFHHHHHREHEHHFHAHEHFHHHHERAHSHAFHSHEHSHSSHERSS
Parse the section name from the config.
Globals:

None

#
#
#
Arguments:
String to parse
Returns:
None
S i
function parse config section header () {

local input string="${1}"

shopt -s extglob

input string="${input string##* (\[)}"

input string="${input string%%* (\])}"

shopt -u extglob

echo "S${input string}"

Function ##########H4##HH#H#HFHHEHAHAHHHHHHAEHERAHASHAHFHAEHERASHEHEHHFEHES
Parse a target section and return all values for the entries with key
"command".
Globals:

NONE

Arguments:

config section name to parse

config file to parse

Returns:

All values for command entries. The values are separated by newlines.
S
function parse config commands () {

Store the parameters

E-3 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

local config section target="${1}"
local config file="S{2}"

Other variables used during execution
local config section current=""

local config entry key=""

local config entry value=""

local config line=""

The bash read command will return immediately when EOF is found.
Thus, we need to check if the last line contained any data. If
it did, then we process it as normal.
while read config line || [[-n "$config line" 1]
do

Trim whitespace

config line=$(string trim "${config line}")

Skip all comment lines

if [["${config line}" =~ "~[#]" 1]

then
Don't update state or counts, just skip
continue

fi

Look for the start of a new section
if [["${config line}" =~ ""\[[-[:alnum:]]+\]$" 1]
then

Found a new section.

Next reset the variables
config entry key=""

config entry value=""

Get the section name and update the parser state
config section current=$ (parse config section header \

"${config line}")
skip to next line
continue

fi

Check if we are actively parsing the target section

if [["S{config section current}" == "${config section target}" 1]
then
Looking for config entries
if [["${config line}" =~ "~[[:alnum:]]*="]1]; then
Get everything before the "=" separator.

config entry key=${config line%%=*}

E-4

Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

Get everything after the "=" separator.

config entry value=${config line#*=}

Currently only load and return entries with the
"command" key. The key is found via a case
insensitive comparison.
case "${config entry key}" in
[Cc] [Oo] [Mm] [Mm] [Aa] [Nn] [Dd])
echo "${config entry value}"

rr

Catch unsupported keys and print the error
print error "Unrecognized configuration setting:" \

"S{config entry key}"

esac
fi
fi
done < "${config file}"

Function ##########H4HH#HHFHFHFAHFHFHAHHFHFHFHHERFHAHHFHFHFARERARSASHFHHSSES
Ensure BASHPID variable exists.
Globals:
BASH VERSINFO - Check major version
BASHPID - set if < bash 4
Arguments:
NONE
Returns:
NONE
S
function ensure shell pid() {

if [["${BASH VERSINFO[O]}" -1t 4 1]

then

BASHPID="S$ (bash -c 'printf $PPID')"
fi

E-5 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

Appendix F: Sample performer_analyze.sh

#!/bin/bash

i emmssmrrrressss e Copyrightommmrerrrrermerssssssmmeeoso s s o= o mm=
NOTICE

#

This software (or technical data) was produced for the U. S.

Government under contract 2011-11090200005 and is subject to the Rights in

required and the below copyright notice may be affixed.

#

Copyright (c) 2014. All Rights Reserved.

I Copyrightrrmrrrerreemreesressmossmosmmo o oo =mm

#Globals like SS CC can also be set globally outside of the function
SS_ANT OPTS=""

Function #####44HH#H##HHHHH#FHAHAHHHHAFERHHHAHHAHHHHFHHHHHHHHESHHHAHESSSHHS
Sets any flags relevant to the performer.
Globals:
SS_CC
SS_LNK
SS_CFLAGS
SS_LDFLAGS
SS_ANT OPTS
Arguments:
None

Returns:

H o 4 o = HE

None
S i

function performer set flags() {

if [["${SS_TEST}" == "yes"]]; then
SS_CC="${SS_TEST CC}"
SS_LNK="${SS_TEST LNK}"
SS_LDFLAGS="${SS_TEST LDFLAGS}"
SS_CFLAGS="${SS_TEST CFLAGS}"
SS_ANT OPTS="${SS_TEST ANT OPTS}"

#4444 Function #########4#H4HHHHHHHHHHHHHHHEHHHHAFHHHHEHHHHHAFHHSHSHH SIS HHES
Execute the BUILD COMMAND
Globals:

None

Build command to execute and the directory to execute it in.

#

#

#

Arguments:
#

Returns:

#

Return code of the execution of the build command.

F-1 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

FhAH A A A A A A A A A A A A A o o
function performer build() {

(cd "S${1}" && eval "S{2}")

function performer report () {
echo "SUCCESS"

F-2 Approved for public release; distribution unlimited. 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

Appendix G: Sample performer_execute.sh

#!/bin/bash

=+

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|
Q

O

o)

<

[}
-

(o]
=
ct

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

|

I

NOTICE

#
#
This software (or technical data) was produced for the U. S.

Government under contract 2011-11090200005 and is subject to the Rights in
#

#

#

required and the below copyright notice may be affixed.

Copyright (c) 2014. All Rights Reserved.

#Globals like SS CC can also be set globally outside of the function
SS_ANT OPTS=""

Function ##########4H#HHFHFHFAHHHFHAHHFHFHFHHERFHAHHFHFHFAHEHFRSASHFHHSSES
Execute the RUN_COMMAND
Globals:

None

#

#

#

Arguments:
Base run command to change user if necessary, the run command to execute and
the directory to execute it in.

Returns:

Return code of the execution of the build command.
S i

function performer execute() {
enforce ulimits

Stop if ULIMITs were not set

if [["$?" -ne 0 1]

then
RUN_COMMAND RETURN CODE="$?2"
print error "ERROR: Failed to enforce ULIMITs for execution."
break

fi

Execute the actual command in the target CWD. This is all done in a
subshell to avoid dealing with restoring the PWD, affect environment
variables, etc. The command return code will be passed up.

(

Capture the subshell pid, so we can kill the children later.
By default, the children of the shell will be killed, but
the actual shell pid will not receive a kill signal

ensure_ shell pid

G-1 TASC, Inc. 4801 Stonecroft Boulevard = Chantilly, VA 20151 = 703 633 8300 12 December 2014

IARPA STONESOUP PHASE 3
TEXAS CoMmMuUNICATIONS APl USER GUIDE

printf "$s" "${BASHPID}" > "${KILLTREE PID FILE}"
cd "${COMMAND EXEC CWD}"

Ensure cd executed
if [["$?" -ne 0]]
then
print error "ERROR: Failed to set the working directory" \
"prior to command execution"
exit 1
fi

Sets any runtime environment flags

set run environment

When executing, we use eval because the RUN COMMAND is

provided as a string that a user would enter on the

command line. Thus, we need quotes and environment variables
processed correctly.

eval "S${BASE RUN COMMAND}" "S{RUN_COMMAND}"

exit "$?"

RUN_COMMAND RETURN CODE="S$?"

We do not log an error message here because the output error
should simply be that of the RUN COMMAND RETURN CODE

restore ulimits

Stop if ULIMITs were not restored

if [["$?" -ne 0 1]

then
RUN_COMMAND RETURN CODE="$?2"
print error "ERROR: Failed to restore ULIMITs post execution."
break

fi

return "${RUN_COMMAND RETURN CODE}"

G-2

TASC, Inc. 4801 Stonecroft Boulevard = Chantilly, VA 20151 = 703 633 8300 12 December 2014

TASC TEXAS CoMMUNICATIONS APl USERS GUIDE

Appendix H: Acronyms

Acronym Acronym Definition

JSON JavaScript Object Notation

HTTP HyperText Transfer Protocol

TEXAS Test & Evaluation eXecution and Analysis System
XML eXtensible Markup Language

H-1 Approved for public release; distribution unlimited. 12 December 2014

	1 Overview
	1.1 Scope
	1.2 Test Case Flow

	2 Communication Server
	2.1 Protocol
	2.2 HTTP Header Information
	2.2.1 “content-type” Header
	2.2.2 “accept” Header
	2.2.3 “from” Header

	2.3 ActionMessageType
	2.3.1 XML Schema
	2.3.2 JSON Schema
	2.3.3 URL
	2.3.4 Client

	2.4 TechnicalImpactMessageType
	2.4.1 XML Schema
	2.4.2 JSON Schema
	2.4.3 URL
	2.4.4 Client

	2.5 LogMessageType
	2.5.1 XML Schema
	2.5.2 JSON Schema
	2.5.3 URL
	2.5.4 Client

	2.6 ResultMessageType
	2.6.1 XML Schema
	2.6.2 JSON Schema
	2.6.3 URL
	2.6.4 Client

	2.7 WeaknessMessageType
	2.7.1 XML Schema
	2.7.2 JSON Schema
	2.7.3 URL
	2.7.4 Client

	2.8 ResponseMessageType
	2.8.1 XML Schema
	2.8.2 JSON Schema
	2.8.3 HTTP Status Codes

	3 Analysis
	3.1 Environment Variables
	3.2 analyze.sh
	3.2.1 Parameters

	3.3 performer_analyze.sh
	3.3.1 General Guidance
	3.3.2 Functions
	3.3.2.1 performer_set_flags
	3.3.2.1.1 Signature
	3.3.2.1.2 Optional Messages

	3.3.2.2 performer_build
	3.3.2.2.1 Signature
	3.3.2.2.2 Optional Messages

	3.3.2.3 performer_report
	3.3.2.3.1 Signature
	3.3.2.3.2 Required Messages
	3.3.2.3.3 Optional Messages

	4 Execution
	4.1
	4.1 Environment Variables
	4.2 execute.sh
	4.2.1 Parameters

	4.3 performer_execute.sh
	4.3.1
	4.3.1 General Guidance
	4.3.2 Functions
	4.3.2.1 performer_execute
	4.3.2.2 Signature

	4.3.3 Timeout Requirements
	4.3.4 Required Messages
	4.3.5 Optional Messages

	4.4 performer_setup.sh
	4.4.1
	4.4.2 Optional Messages

	4.5 performer_teardown.sh
	4.5.1 Optional Messages

	5 Installation of Integration
	Appendix A: XML Schema
	Appendix B: JSON Schemas
	action.json
	impact.json
	log.json
	result.json
	weakness.json

	Appendix C: analyze.sh
	Appendix D: execute.sh
	Appendix E: utils.sh
	Appendix F: Sample performer_analyze.sh
	Appendix G: Sample performer_execute.sh
	Appendix H: Acronyms

