
Error and Warning reported by Infer 1.5

INFER 1.5 outputs various types of messages as part of the analysis process. Each message is assigned to
one of three categories. The two categories: (1) ERROR, and (2) WARNING. Furthermore, each error is
assigned to one of the two categories PROVER or CHECKER. The category of PROVER errors is covered
by INFER specifications. When INFER 1.5 produces a set of specifications, it effectively shows the absence
of run-time memory errors when the procedure is executed in a way that meets the pre-condition.
CHECKER represents a weaker type of error not covered by specifications.	

6.1 ERROR

INFER 1.5 reports on the following basic types of errors:

1. ARRAY_OUT_OF_BOUNDS_L1 (CHECKER)
2. DANGLING_POINTER_DEREFERENCE (PROVER)
3. DEALLOCATE_STACK_VARIABLE (PROVER)
4. DEALLOCATE_STATIC_MEMORY (PROVER)
5. DIVIDE_BY_ZERO (CHECKER)
6. MEMORY_LEAK (PROVER)
7. NULL_DEREFERENCE (PROVER)
8. RESOURCE_LEAK (PROVER)
9. USE_AFTER_FREE (PROVER)

6.1.1 ARRAY_OUT_OF_BOUNDS_L1

An ARRAY_OUT_OF_BOUNDS_L1 (Level-1) error occurs when it is determined an array access is
found to be outside the array's defined range or bounds.

ARRAY_OUT_OF_BOUNDS_L1 represents one of two complex checkers for array bounds errors. The
other is ARRAY_OUT_OF_BOUNDS_L2 (Level-2). L1 is a stronger form of error than L2. It occurs
when there is direct evidence an array access is out of bounds. L2 is classified as a warning, and occurs
when evidence in only indirect, for example, based on possible outcomes involving index operations and
loop constructs.

6.1.2 DANGLING_POINTER_DEREFERENCE
	

A DANGLING_POINTER_DEREFERENCE error occurs when a pointer is de-referenced which does not
point to valid memory, such as a pointer de-referenced before initialization or an invalid pointer.

6.1.3 DEALLOCATE_STACK_VARIABLE
	

A DEALLOCATE_STACK_VARIABLE error is generated when a program attempts to free memory from
the stack (e.g. a local variable) rather than the heap; for example, the function

void f() { int x; free(&x); }

6.1.4 DEALLOCATE_STATIC_MEMORY
	

A DEALLOCATE_STATIC_MEMORY error is generated when a program attempts to free memory
allocated statically (e.g. a constant string) rather than dynamically on the heap; for example, the function

void f() { char *s = “string”; free(s); }

6.1.5 DIVIDE_BY_ZERO
	

A DIVIDE_BY_ZERO error occurs when a value is divided by 0, as in x/y or x%y when the value of y is
zero.

6.1.6 MEMORY_LEAK
	

A MEMORY_LEAK error occurs when memory allocated with a program or procedure goes out of scope
so that it cannot be returned to heap. An example is

void f() { int *x = malloc (sizeof (int)); }

where memory is allocated to x but not freed before x goes out of scope.

6.1.7 NULL_DEREFERENCE
	

A NULL_DEREFERENCE error occurs when a pointer, which might be null, is de-referenced. An
example is

void f() { int *x = NULL; int *y = x; *y = 1; }

where y is assigned to the location given by x, which is NULL. The assignment *y = 1 de-references
NULL generating the error.

6.1.8 RESOURCE_LEAK
	

A RESOURCE_LEAK error occurs when a resource, such as file handle, is allocated by a program or
procedure but never released back to operating system. An example is

void f() { FILE* fp = fopen ("/etc/printcap", "r"); }

where file handle fp is allocated (opened) but not released (closed) before fp goes out of scope.

6.1.9 USE_AFTER_FREE
	

A USE_AFTER_FREE error occurs when an attempt is made to access memory which has been previously
freed; for example,

void f(int *i) { free (i); *i = 1; }

6.2 WARNING

INFER 1.5 reports on the following basic types of warning:

1. ARRAY_OUT_OF_BOUNDS_L2
2. COMPARING_FLOAT_FOR_EQUALITY
3. CONDITION_IS_ASSIGNMENT
4. NULL_TEST_AFTER_DEREFERENCE
5. PRECONDITION_NOT_MET
6. RETURN_VALUE_IGNORED
7. RETURN_EXPRESSION_REQUIRED
8. RETURN_OF_STACK_VARIABLE_ADDRESS
9. RETURN_STATEMENT_MISSING
10. UNARY_MINUS_APPLIED_TO_UNSIGNED_EXPRESSION
11. UNINITIALIZED_VALUE

6.2.1 ARRAY_OUT_OF_BOUNDS_L2
	

An ARRAY_OUT_OF_BOUNDS_L2 (Level-2) error occurs when it is determined an array access is
found to be outside the array's defined range or bounds.

ARRAY_OUT_OF_BOUNDS_L2 represents one of two complex checkers for array bounds errors. The
other is ARRAY_OUT_OF_BOUNDS_L1 (Level-1). L1 is a stronger form of error than L2. It occurs
when there is direct evidence an array access is out of bounds. L2 is classified as a warning, and occurs
when evidence in only indirect, for example, based on possible outcomes involving index operations and
loop constructs.

6.2.2 COMPARING_FLOAT_FOR_EQUALITY

A COMPARING_FLOAT_FOR_EQUALITY warning occurs when two floating types are compared for
equality (==) or inequality (!=). An example is

int f(float x, float y) { if (x==y){ do_something(); } return 0; }

The problem is that different compilers and CPU architectures can store floating point results at different
precisions, so floating point comparisons may differ depending on the environment in which they are
executed. Instead, floating point values should be compared for equality within tolerances based on the
machine precision.

6.2.3 CONDITION_IS_ASSIGNMENT

A CONDITION_IS_ASSIGNMENT warning occurs when a Boolean condition is represented by an
assignment . An example is

int f() { int x,y; … if (x=y){ do_something(); } return 0; }

Serious problems can arise if the assignment was intended to be only a comparison. If it was meant to be an
assignment it is safer to make explicitly outside the if condition.

6.2.4 NULL_TEST_AFTER_DEREFERENCE

A NULL_TEST_AFTER_DEREFERENCE warning occurs when a pointer is first dereferenced and later
tested for NULL. An example is

int f(int *x) { *x = 3; if(x) return *x; }

where pointer x is tested by if(x) after it has been dereferenced by *x = 3.

6.2.5 PRECONDITION_NOT_MET
	

A PRECONDITION_NOT_MET warning occurs when a function is called but it is not possible to
establish a valid pre-condition for the function. For example, suppose a function f has been defined as

void f (int b) { int *x = malloc(sizeof(int)); if(b==2) free(x); }

Infer computes one precondition for this function: calling f is 'safe' only when parameter b has value 2,
otherwise the memory allocated to x could be leaked. If the function is called with a value other than 2, for
example calling f(1), a PRECONDITION_NOT_MET warning is flagged.

6.2.6 RETURN_VALUE_IGNORED
	

A RETURN_VALUE_IGNORED warning occurs when a function returning a non-void result is called but
the result of the function is ignored by the caller.

6.2.7 RETURN_EXPRESSION_REQUIRED
	

A RETURN_EXPRESSION_REQUIRED warning occurs when a function has non-void return type but
does not contain an expression in the return statement.

6.2.8 RETURN_OF_STACK_VARIABLE_ADDRESS
	

A RETURN_OF_STACK_VARIABLE_ADDRESS warning occurs when a function returns the address of
a local variable.

6.2.9 RETURN_STATEMENT_MISSING
	

A RETURN_STATEMENT_MISSING warning occurs when a function has non-void return type but
contains an exit point without a return statement. For example,

int f(int b) { if (b == 2) return b; }

6.2.10 UNARY_MINUS_APPLIED_TO_UNSIGNED_EXPRESSION
	

An UNARY_MINUS_APPLIED_TO_UNSIGNED_EXPRESSION warning occurs when a unary minus is
applied to an unsigned type, and the result is then used to initialise an object of type long. For example:

void f() { unsigned int x=1; long l=-j;}

Depending on the specific platform, if sizeof (long) > sizeof (int) then the value of l equates to
(UINT_MAX -1). However, if sizeof(long) ≥ sizeof(int) then the value of l is -1. This subtle property can
lead to array out of bounds errors as well as infinite loops.

6.2.11 UNINITIALIZED_VALUE
	

An UNINITIALIZED_VALUE warning occurs when an entity such as a variable, struct field, or other
addressable memory object is read or accessed before it is assigned a value. An example is

int f() { int *x = malloc(sizeof(int)); if(x) return *x; }

where pointer x is allocated and then its content returned before it has been given a value.

	

