
The Bugs Framework (BF) – Your Best Friend?

Irena Bojanova
National Institute of Standards and Technology (NIST)

NIST SATE VI, September 19, 2019

https://samate.nist.gov/BF/

2

Know Your Weaknesses

l They Know Your Weaknesses – Do You?

l Knowing what makes your software systems vulnerable to attacks is critical,
à as software vulnerabilities hurt:

security

reliability, and

availability of the system as a whole

l Software – should be free of known weaknesses (bugs)

3

Objective and Need

l Objective: Develop a complete, orthogonal, attributes based classification
of software bugs that would improve dramatically on:

– the current CWE definitions (vocabulary) used for defining software weaknesses, and

– how vulnerability classes are described for modern software development.

l Need:

ü CWE is a repository of known (reported) weaknesses in the form of
a nomenclature (numbered items) that has overlaps and gaps in coverage.

ü Current CWEs definitions are often inaccurate, imprecise or ambiguous,
which makes it difficult to measure, express, and explain
applicability of different software quality assurance techniques or approaches for software security.

ü Other existing classifications and guides also have
their own problems related to coverage, accuracy and precision.

l Gap: Software security issues are often described incorrectly, and defined inaccurately,

à which tremendously impacts on how threats, attacks, patches, and exposures are communicated.

4

BF Team and External Experts

RD:

l Irena Bojanova, NIST (Project Lead)

l Paul E. Black, NIST

l Yaacov Yesha, UMBC, NIST

l Carlos Galhardo, NIST

l Yan Wu, BGST

Website (https://samate.nist.gov/BF/):

l Farhan Nadeem

l Kyle Sung

l Zack Evans

External Collaborators:

l John Kelsy, CSD, NIST

l Rene Peralta, CSD, NIST

l Andrew Regeinscheid, CSD, NIST

l Nelson Hastings, CSD, NIST

l Kevin Greene, MITRE

à Feel free to join us!

5

Resent External Presentations

l Visibility + Seeking Collaboration à Presentations To:

NITRD SPSQ IWG – July 11, 2019:

à NSF, NASA, BLS, NIST, NOAA, NRL

NITRD CSIA IWG – August 22, 2019:
à DISA, DHS, NSF, NRC, DARPA, NRL,
ONR, OSD, DOE, DOD HPCMP, AFRL, NCO

6

Outline

1. The Bugs Framework (BF)

2. Existing Repositories of Bugs, Vulnerabilities, and Attacks

3. Problems with Current Bug Descriptions

4. Need for Structured, Precise, Orthogonal Approach

5. Developed BF Classes

7

The Bugs Framework (BF)

8

The Bugs Framework (BF)

The Bugs Framework (BF) is
a precise descriptive language for software bugs

à allows to more accurately and precisely define
software bugs and/or vulnerabilities.

ß Factoring and restructuring of information in CWEs, SFPs, and STs,
and classifications from NSA CAS, IDA SOAR, SEI-CERT, and more.

9

BF Taxonomy

BF is a set of bug classes. Each BF class:

l Has an accurate and precise definition and

l Comprises:

ü Level (high or low) – identifies the fault as language-related or semantic.

ü Attributes – identify the software fault.

ü Causes – bring about the fault.

ü Consequences – to which the fault could lead.

ü Sites – locations in code where the fault might occur.

o Sites are identifiable mainly for low level classes

à BF uses precise definitions and terminology.

l BF is descriptive, not prescriptive.

ü It explains what happens.

ü There’s not enough detail to
usefully predict the result.

l BF is language independent.

10

BF Class Graph

<<attribute>>:
ü <<value>>
ü <<value>>
ü …

<<attribute>>:
ü <<value>>
ü <<value>>
ü …

<<attribute>>:
ü <<value>>
ü <<value>>
ü …

<<attribute>>:
ü <<value>>
ü <<value>>
ü …

…

Causes ConsequencesAttributes

<<cause>>
<<consequence>>

…

<<consequence>>

ClassName (ABR): <<concise definition>>.

<<cause>>
<<sub-cause>>

<<sub-cause>> …

<<class>> <<class>>

<<cause>>

<<class>>

oAt least one attribute (underlined) identifies the software fault.

oCauses and consequences are directed graphs.

11

Quick Examples of BF Classes:
lBuffer Overflow (BOF)
l Information Exposure (IEX)

12

lBuffer Overflow (BOF)

13

BF: Buffer Overflow (BOF)

l Our Definition:

The software accesses through an array a memory location
that is outside the boundaries of that array.

à Clearer than CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer: “The
software performs operations on a memory buffer, but it can read from or write to a memory location that is
outside of the intended boundary of the buffer.”

ü clarifies that access is through the same buffer to which the intended boundary pertains.

ü accurately, precisely, and concisely describes violation of memory safety.

Related CWEs, SFP and ST:

l CWEs are 119, 120, 121, 122, 123, 124, 125, 126, 127, 786, 787, 788, 805, 806, 823.

l SFP cluster is SFP8 Faulty Buffer Access under Primary Cluster: Memory Access.

l ST is the Buffer Overflow Semantic Template.

https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/123.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/127.html
https://cwe.mitre.org/data/definitions/786.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/788.html
https://cwe.mitre.org/data/definitions/805.html
https://cwe.mitre.org/data/definitions/806.html
https://cwe.mitre.org/data/definitions/823.html
http://faculty.ist.unomaha.edu/rgandhi/st/bufferoverflowtemplate.pdf

14

BOF: Causes, Attributes, and Consequences

15

CVE-2014-0160 (Heartbleed) description using BOF taxonomy:

BOF: Example – CVE-2014-0160 (Heartbleed)

Cause: Input Not Checked Properly leads to Data Exceeds Array (specifically, Too Much Data)
Attributes:

Access: Read
Boundary: Above
Location: Heap
Data Size: Huge
Excursion: Continuous

Consequence: IEX (if not had been cleared)

See: https://samate.nist.gov/BF/Examples/BOF.html

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://samate.nist.gov/BF/Examples/BOF.html

16

BF Descriptions of BOF Related CWEs
CWE BF Class

ID Name BOF
Cause(s)

BOF Attributes BOF
Consequences

Access Boundary Location Magnitude Data Size Excursion

119 Improper Restriction of Operations within the

Bounds of a Memory Buffer

Wrong Index/ Pointer Out of Range any any any any any any any

120 Buffer Copy without Checking Size of Input

('Classic Buffer Overflow')

Array Too Small Write Above any any any Continuous any

121 Stack-based Buffer Overflow any BOF cause Write any Stack any any any any

122 Heap-based Buffer Overflow any BOF cause Write any Heap any any any any

123 Write-what-where Condition any BOF cause Write any any any any Discrete any

124 Buffer Underwrite ('Buffer Underflow') Wrong Index/ Pointer Out of Range Write Below any any any any any

125 Out-of-bounds Read PAR leads to Pointer Out of Range Read any any any any any IEX

126 Buffer Over-read any BOF cause Read Above any any any any IEX

127 Buffer Under-read Wrong Index/ Pointer Out of Range Read Below any any any any IEX

786 Access of Memory Location Before

Start of Buffer

Wrong Index/ Pointer Out of Range any Below any any any any any

787 Out-of-bounds Write any BOF cause Write any any any any any any

788 Access of Memory Location After

End of Buffer

Wrong Index/ Pointer Out of Range any Above any any any any any

805 Buffer Access with Incorrect Length Value Data Exceeds Array any Above any any any Continuous any

806 Buffer Access Using Size of Source Buffer Too Much Data (source size used) any any any any any Continuous any

823 Use of Out-of-range Pointer Offset Incorrect Calculation leads to PAR

leads to Pointer Out of Range

any any any any any Discrete any

https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/121.html
https://samate.nist.gov/BF/Classes/BOF.html
https://cwe.mitre.org/data/definitions/122.html
https://samate.nist.gov/BF/Classes/BOF.html
https://cwe.mitre.org/data/definitions/123.html
https://samate.nist.gov/BF/Classes/BOF.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://samate.nist.gov/BF/Classes/PAR.html
https://samate.nist.gov/BF/Classes/IEX.html
https://cwe.mitre.org/data/definitions/126.html
https://samate.nist.gov/BF/Classes/BOF.html
https://samate.nist.gov/BF/Classes/IEX.html
https://cwe.mitre.org/data/definitions/127.html
https://samate.nist.gov/BF/Classes/IEX.html
https://cwe.mitre.org/data/definitions/786.html
https://cwe.mitre.org/data/definitions/787.html
https://samate.nist.gov/BF/Classes/BOF.html
https://cwe.mitre.org/data/definitions/788.html
https://cwe.mitre.org/data/definitions/805.html
https://cwe.mitre.org/data/definitions/806.html
https://cwe.mitre.org/data/definitions/823.html
https://samate.nist.gov/BF/Classes/PAR.html

17

BOF – # of Possible Weaknesses

l Direct Causes: (2)
l Attributes: (2,2,2,3,3,2)
l Direct Consequences: (6)

l Using only the attributes Access, Boundary, Location: 8 (=2x2x2)

l Using all the attributes: 144 (=2x2x2x3x3x2)
Using all the attributes, the 3 direct causes, and 6 consequences, without constraints:
Total 2592 (= 3x(2x2x2x3x3x2)x6)

l Using all the attributes, the 3 direct causes (Array Too Small, Too Much Data, and Wrong
Index / Pointer Out of Range), and the 6 direct consequences, with constraints: assuming that if the Cause is Array
Too Small or Too Much Data then Boundary=Above and Excursion=Continuous.
Total 1296 (=864+432)

Details:

l 864 (=6x144) (the cases in which cause = Wrong Index / Pointer Out of Range)

l 432 (=2x(2x1x2x3x3x1)x6) (the cases in which cause = Array Too Small or Too Much Data)

18

l Information Exposure (IEX)

19

BF: Information Exposure Model

20

BF: Information Exposure (IEX)

l Our Definition:
Information is leaked through legitimate or side channels.

Note that leakage to an entity that should not have information is included,
not just leakage that is a security concern.

IEX is related to: BOF, INJ, CIF, ENC, VRF, KMN, TRN, PRN.

Related CWEs and SFPs:

l CWEs related to IEX are: 8, 11, 13, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215,
226, 244, 260, 359, 377, 385, 402, 403, 433, 488, 492, 495, 497, 498, 499, 524, 514, 515, 525, 527, 528, 529, 530,
532, 535, 536, 537, 538, 539, 540, 541,546, 548, 550, 552, 555, 598, 612, 615, 642, 651, 668.

There are many related CWEs, because information exposure can be the consequence of many weaknesses.

l The only related SFP cluster is SFP Primary Cluster: Information Leak.

https://cwe.mitre.org/data/definitions/8.html
https://cwe.mitre.org/data/definitions/11.html
https://cwe.mitre.org/data/definitions/13.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/201.html
https://cwe.mitre.org/data/definitions/202.html
https://cwe.mitre.org/data/definitions/203.html
https://cwe.mitre.org/data/definitions/204.html
https://cwe.mitre.org/data/definitions/205.html
https://cwe.mitre.org/data/definitions/206.html
https://cwe.mitre.org/data/definitions/207.html
https://cwe.mitre.org/data/definitions/208.html
https://cwe.mitre.org/data/definitions/209.html
https://cwe.mitre.org/data/definitions/210.html
https://cwe.mitre.org/data/definitions/211.html
https://cwe.mitre.org/data/definitions/212.html
https://cwe.mitre.org/data/definitions/213.html
https://cwe.mitre.org/data/definitions/214.html
https://cwe.mitre.org/data/definitions/215.html
https://cwe.mitre.org/data/definitions/226.html
https://cwe.mitre.org/data/definitions/244.html
https://cwe.mitre.org/data/definitions/260.html
https://cwe.mitre.org/data/definitions/359.html
https://cwe.mitre.org/data/definitions/377.html
https://cwe.mitre.org/data/definitions/385.html
https://cwe.mitre.org/data/definitions/402.html
https://cwe.mitre.org/data/definitions/403.html
https://cwe.mitre.org/data/definitions/433.html
https://cwe.mitre.org/data/definitions/488.html
https://cwe.mitre.org/data/definitions/492.html
https://cwe.mitre.org/data/definitions/495.html
https://cwe.mitre.org/data/definitions/497.html
https://cwe.mitre.org/data/definitions/498.html
https://cwe.mitre.org/data/definitions/499.html
https://cwe.mitre.org/data/definitions/524.html
https://cwe.mitre.org/data/definitions/514.html
https://cwe.mitre.org/data/definitions/515.html
https://cwe.mitre.org/data/definitions/525.html
https://cwe.mitre.org/data/definitions/527.html
https://cwe.mitre.org/data/definitions/528.html
https://cwe.mitre.org/data/definitions/529.html
https://cwe.mitre.org/data/definitions/530.html
https://cwe.mitre.org/data/definitions/532.html
https://cwe.mitre.org/data/definitions/535.html
https://cwe.mitre.org/data/definitions/536.html
https://cwe.mitre.org/data/definitions/537.html
https://cwe.mitre.org/data/definitions/538.html
https://cwe.mitre.org/data/definitions/539.html
https://cwe.mitre.org/data/definitions/540.html
https://cwe.mitre.org/data/definitions/541.html
https://cwe.mitre.org/data/definitions/546.html
https://cwe.mitre.org/data/definitions/548.html
https://cwe.mitre.org/data/definitions/550.html
https://cwe.mitre.org/data/definitions/552.html
https://cwe.mitre.org/data/definitions/555.html
https://cwe.mitre.org/data/definitions/598.html
https://cwe.mitre.org/data/definitions/612.html
https://cwe.mitre.org/data/definitions/615.html
https://cwe.mitre.org/data/definitions/642.html
https://cwe.mitre.org/data/definitions/651.html
https://cwe.mitre.org/data/definitions/668.html

21

IEX: Causes, Attributes, and Consequences

22

CVE-2017-5754 description using IEX taxonomy:

IEX: Example – CVE-2017-5754 (Meltdown)

Cause: Hardware Behavior (CPU out-of-order execution)
Attributes:

Data Type: Any (passwords in password manager or browser, photos, emails, even business-critical documents)
Data Sensitivity: High
Data State: Stored (in kernel-memory registries of other processes or virtual machines in the cloud)
Data Size: Huge
Exposure: Selective
Frequency: On-Demand
Channel: Covert (cache-based timing)
Use: Any

Consequences: Any IEX consequence.

See: https://samate.nist.gov/BF/Examples/IEX.html

https://samate.nist.gov/BF/Examples/IEX.html

23

BF Methodology 1. Identify BF Clusters and Relationships

1.1. Identifying a BF class and its place in BF
• Research bugs found in source code (examine CWE, SFPs, STs, etc.) and:

à Identify a new BF class.
• Research relationships with other BF classes and:

à Add the class to a BF cluster

1.2. Evaluating BF
• Classify via BF at least three (eventually cover all) reported vulnerabilities (CVE and CAPEC).

Does defined BF structure allow
orthogonal representation of bugs
that lead to these vulnerabilities?

Yes

No

2. Develop BF Classes

2.1. Developing a BF class
• Research related weaknesses (CWEs, SFPs, etc.) and models (or create models):

à Create an accurate and precise class definition.
à Create taxonomy: chains of causes and consequences, attributes with values.

2.2. Evaluating a BF class
• Research reported vulnerabilities (CVEs) related to this class and describe at least three

(eventually cover all) using defined taxonomy for this BF class.

Does defined taxonomy allow
clear, unambiguous description of

these vulnerabilities?

Yes

No

Is BF completed?
No

Yes

(Guidelines for developing and evaluation of BF classes)

BF – complete orthogonal, attributes based classification of software bugs.

BF Class Definition:
• Concise, unambiguous description of the fault(s).

• Format: “the software does <<this and that wrong>>”.

BF Class Taxonomy:
• Causes

ü What leads to the fault?
• Consequences (descriptive, not prescriptive)

ü What the fault leads to?

• Attributes
ü Focus on the failure attributes of this class.
ü What parts of the system are involved in the fault?
ü What are the details of the fault?
o What assumptions are violated? What parts of the definition are affected?

o What doesn’t happen that is supposed to? What happens that is not supposed
to? What exactly goes faulty (what data or resource)? How does it happen?

BF Description of a Vulnerability:
• Format: <<cause>> [(specifically <<sub-cause>>)] {leads to <<cause>> [(specifically

<<sub-cause>>)]} [that] allows <<bug-description-via-attributes>>, which may be
exploited for <<consequence>>{, leading to <<consequence>>}

[] - "zero or one"; {} - "zero or more"

START

END

24

Let’s Step Back for a Moment

à Existing Repositories of Bugs,
Vulnerabilities, and Attacks

à Problems?

25

Repositories of Bugs, Vulnerabilities, and Attacks

• Common Weakness Enumeration (CWE)

• Software Fault Patterns (SFP)

• Semantic Templates (ST)

• NSA Center for Assured Software (CAS) Weakness Classes

• Software State-of-the-Art Resources (SOAR) Matrix

• Software Engineering Institute (SEI), Carnegie Mellon University, CERT C Coding Standard

• Common Vulnerabilities and Exposures (CVE)

• Open Web Application Security Project (OWASP): Vulnerability

• Common Attack Pattern Enumeration and Classification (CAPEC)

à Let’s take a look at them…

26

Common Weakness Enumeration (CWE)

CWE is a “dictionary” of
observed bugs or flaws in software.

More than 600 distinct classes, e.g.,
ü Buffer overflow
ü Directory traversal
ü OS injection
ü Race condition
ü Cross-site scripting
ü Hard-coded password
ü Insecure random numbers.

CWE is a community effort.

Fig. CWE Efforts Context and Community
[http://cwe.mitre.org/about/images/lg_consensus.jpg]

27

Use of CWE

CWE – for use by those who:

• Create software

• Analyze software for security flaws

• Provide tools & services for finding & defending against security flaws in software.

CWE Compatibility and Effectiveness Program:

1. CWE Searchable

2. CWE Output

3. Mapping Accuracy

Designations for products or services:

ü CWE Compatible – meet 1) to 4)

ü CWE Effective – meet all 1) to 6)

4. CWE Documentation

5. CWE Coverage

6. CWE Test Results

Static analysis tools:
• encouraged to map their reports to corresponding CWEs,
• so that the results from different tools could have

a standard baseline to be matched and compared.

28

Software Fault Patterns (SFP)

l Software Fault Patterns (SFP) is a generalized description of
an identifiable family of computations that are:

ü Described as patterns with an invariant core and variant parts

ü Aligned with injury

ü Aligned with operational views and risk through events

ü Fully identifiable in code (discernable)

ü Aligned with CWE

ü With formally defined characteristics.

à See the clusters in Table 2 here: DoD Software Fault Patterns (go to p.26)

http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADB381215

29

Software Fault Patterns (SFP)

l Software Fault Patterns (SFP): Classify, Identify patterns, Test cases generator.

l SFP are a clustering of CWEs into related weakness categories.

l Each cluster is factored into formally defined attributes, with:

ü Sites (“footholds”)

ü Conditions

ü Properties

ü Sources

ü Sinks, etc.

l SFP categories cover 632 CWEs,

l plus there are 8 deprecated CWEs.

In addition, there are:

l 21 primary clusters

l 62 secondary clusters

l 310 discernible CWEs

l 36 unique SFPs.

30

Semantic Templates (ST)

Semantic templates (ST) build mental models,
which help us understand software
weaknesses.

ST factor out chains of causes, resources and
consequences that are present in CWEs.

Each ST is a human and machine
understandable representation of the following
phases:

1.Software faults that lead to a weakness
2.Resources that a weakness affects
3.Weakness attributes
4.Consequences/failures resulting from the

weakness.

Fig. Phrases in descriptions and common
consequences of CWE-120, colored according to ST:

Fault, Resource/Location, Weakness, Consequence

https://cwe.mitre.org/data/definitions/120.html

31

ST

STs build mental
models, which help us
understand software
weaknesses.

32

Other Repositories/Classifications

• The National Security Agency (NSA) Center for Assured Software (CAS) defines
Weakness Classes in its "Static Analysis Tool Study - Methodology“

• The Software State-of-the-Art Resources (SOAR) Matrix:

– Defines and describes a process for selecting and using appropriate analysis tools and
techniques for evaluating software for software (security) assurance.

– In particular, it identifies types of tools and techniques available for evaluating software,
as well as technical objectives those tools and techniques can meet.

• Software Engineering Institute (SEI), Carnegie Mellon University, CERT C Coding Standard

• Open Web Application Security Project (OWASP): Vulnerability

à See BF website.

https://samate.nist.gov/BF/

33

Common Vulnerabilities and Exposures (CVE)
Common Attack Pattern Enumeration and Classification (CAPEC)

• CVE is a list of instances of security vulnerabilities in software.

– More than 9000 CVEs assigned in 2014 – Heartbleed is CVE-2014-0160.

– NIST National Vulnerability Database (NVD) – adds fixes, severity ratings, etc. for CVEs.

• CAPEC is a dictionary and classification taxonomy of known attacks

à See: https://cve.mitre.org/

https://cve.mitre.org/

34

Problems with
Current Bug Descriptions

35

Problems With Current Bug Descriptions

The rise in cyberattacks lead to considerable community and government efforts
to record software weaknesses, faults, failures, vulnerabilities and attacks.

à However, none of the resulting
repositories/enumerations are
complete nor close to formal.

36

CWE – the Best, but also …

l CWE is widely used:

ü By far the best dictionary of software weaknesses.

ü Many tools, projects, etc. are based on CWE.

l However, in CWE:

ü For very formal, exacting work, the Definitions are often inaccurate, imprecise or ambiguous.

ü Entrees are “coarse grained” –
each CWE bundles many stages, such as likely attacks, resources affected and consequences.

ü The coverage is uneven –
some combinations of attributes well represented and others not appearing at all.

37

CWE – Imprecise Definitions

l CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS
Command Injection'):

“The software constructs all or part of an OS command using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that could
modify the intended OS command when it is sent to a downstream component. “

à Note that “using input”, “intended command”, and “incorrectly neutralizes” are imprecise!

38

CWEs – Overlaps or Gaps in Coverage

e.g. Buffer Overflow

l Writes before start and after end:
CWE-124: Buffer Underwrite (’Buffer Underflow')
CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

versus
l Writes (not expressed in title) in stack and heap:

CWE-121: Stack-based Buffer Overflow
CWE-122: Heap-based Buffer Overflow.

l Reads before start and after end:
CWE-127: Buffer Under-read
CWE-126: Buffer Over-read

but
l No reads from stack and heap.

… while slight variants go on and on:

l CWE-123: Write-what-where Condition

l CWE-125: Out-of-bounds Read

l CWE-787: Out-of-bounds Write

l CWE-786: Access of Memory Location Before Start of Buffer

l CWE-788: Access of Memory Location After End of Buffer

l CWE-805: Buffer Access with Incorrect Length Value

l CWE-823: Use of Out-of-range Pointer Offset

39

CWE – Imprecise Definitions

l Looking just at the cluster of buffer overflows, we see many problems.

l Here is CWE-119, the “root” of buffer overflows.

CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer:

“The software performs operations on a memory buffer, but it can read from or write to a memory location that is
outside of the intended boundary of the buffer.”

à Note that “read from or write to a memory location” is not tied to the buffer!
à Strictly speaking, this definition is not correct, as any variable is

“a memory location that is outside of the intended boundary of the buffer.”
à Our definition says that the software can read or write through the buffer

a memory location that is outside that buffer.

And, this is just one example.

40

Before After Either End Stack Heap

Read CWE-127 CWE-126 CWE-125

Write CWE-124 CWE-120 CWE-123
CWE-787

CWE-121 CWE-122

Either R/W CWE-786 CWE-788

The empty cells in the table show the overlaps and gaps in the CWEs coverage of buffer overflow options
with the following attributes considered:

ü read/write

ü before/after

ü stack/heap

CWEs – Overlaps or Gaps in Coverage

41

CWE – Gaps à Use of Approximate CWE

CVE-2018-19842 described with BF BOF

https://docs.google.com/document/d/11mbdNYAu8EH-lPsacmSYhZhOYkkiSCEDUULbYFAGkM4/edit

Note: This CVE was identified by Kevin Greene (MITRE) as an illustration of assigning an
approximate CWE (specifically, the generic CWE-125 Out-of-bounds Read), because there is no exact
CWE about Read from Above the boundary of a buffer on the Stack.

https://nvd.nist.gov/nvd.cfm?cvename=CVE-2018-19842
https://docs.google.com/document/d/11mbdNYAu8EH-lPsacmSYhZhOYkkiSCEDUULbYFAGkM4/edit
https://cwe.mitre.org/data/definitions/125.html

42

CWEs – Some are Too Generic

l E.g., CWE-118 and CWE-119 are too generic.

l They do not specifically talk about read or write, before or after, and stack or heap.

l It's like to say "Oh, this is buffer overflow. Period." and give no specifics about the particular
bug you are describing.

l While it is important to be able to give the specifics about the attributes we have identified
for BF BOF.

43

CWEs – Some are Only Causes

l E.g., CWE-680 and CWE-823 describe causes for BOF.

l While they may lead to buffer overflow bugs, these are not buffer overflow bugs themselves.

à This is one more problem with CWE
ü some CWEs are classified not by the bug, but by a potential consequence (in this case

buffer overflow) from that bug.

44

CWEs – Some are Too Detailed

e.g. Path Traversal – CWE for every tiny variant:

l CWE-23: Relative Path Traversal

l CWE-24: Path Traversal: '../filedir’

l CWE-25: Path Traversal: '/../filedir’

l CWE-26: Path Traversal: '/dir/../filename’

l CWE-27: Path Traversal: 'dir/../../filename’

l CWE-28: Path Traversal: '..\filedir’

l CWE-29: Path Traversal: '\..\filename’

l CWE-30: Path Traversal: '\dir\..\filename’

l CWE-31: Path Traversal: 'dir\..\..\filename’

l CWE-32: Path Traversal: '...' (Triple Dot)

l CWE-33: Path Traversal: '....' (Multiple Dot)

l CWE-34: Path Traversal: '....//’

l CWE-35: Path Traversal: '.../...//'

Buffer overflow isn’t the only cluster with problems.

Looks like, it is a waste to have CWEs
for every tiny variant of path traversal.

And if some other variant were identified,
a new CWE would have to be created.

45

CWEs – Not Always Easy to Find

l Example: How to figure out this CWE is related to Information Exposure

CWE-433: Unparsed Raw Web Content Delivery

l SFP researchers found it by an automated process and put it in
SFP Secondary Cluster: Exposed Data.

l But if person had to do this, search in CWE does not help much.

https://cwe.mitre.org/data/definitions/433.html

46

Software Fault Patterns (SFP) – Improve on CWEs
Parameters

Buffer
location

Access kind Access position
Boundary
exceeded

heap stack write read inside outside lower upper

119 - Improper
Restriction of
Operations within
Bounds of Buffer √ √ √ √ √ √ √

120 - Buffer
Copy without
Checking Size of
Input

√ √ √ √ √ √

121 - Stack
Overflow

√ √ √ √ √

122 - Heap
Overflow

√ √ √ √ √

123 - Write-what-
where Condition

√ √ √ √ √

124 - Buffer
Underwrite

√ √ √ √ √

125 - Out-of-
bounds read

√ √ √ √ √

126 - Buffer
Overread

√ √ √ √ √

127 - Buffer
Underread

√ √ √ √ √

CWE-119: Improper Restriction of Operations within the
Bounds of a Memory Buffer

Summary: The software performs operations on a memory
buffer, but it can read from or write to a memory location that
is outside of the intended boundary of the buffer.
Extended description: Certain languages allow direct
addressing of memory locations and do not automatically
ensure that these locations are valid for the memory buffer
that is being referenced. This can cause read or write
operations to be performed on memory locations that may be
associated with other variables, data structures, or internal
program data. As a result, an attacker may be able to execute
arbitrary code, alter the intended control flow, read sensitive
information, or cause the system to crash. CWE-120: Buffer Copy without Checking Size of Input ('Classic

Buffer Overflow')

Summary: The program copies an input buffer to an output

buffer without verifying that the size of the input buffer is less

than the size of the output buffer, leading to a buffer

overflow.

Extended Description: A buffer overflow condition exists

when a program attempts to put more data in a buffer than it

can hold, or when a program attempts to put data in a

memory area outside of the boundaries of a buffer.
Common Consequences: Buffer overflows often can be used
to execute arbitrary code. Buffer overflows generally lead to
crashes.

l SFP overcomes the problem of
combinations of attributes in CWE.

à For example, the SFP factored
attributes are more clear than the
irregular coverage of CWEs.

47

Semantic Templates (ST) – Improve on CWEs, too

Parameters
Buffer

location
Access kind Access position

Boundary
exceeded

heap stack write read inside outside lower upper

119 - Improper
Restriction of
Operations
within Bounds of
Buffer

√ √ √ √ √ √ √

120 - Buffer
Copy without
Checking Size
of Input

√ √ √ √ √ √

121 - Stack
Overflow

√ √ √ √ √

122 - Heap
Overflow

√ √ √ √ √

123 - Write-
what-where
Condition

√ √ √ √ √

124 - Buffer
Underwrite

√ √ √ √ √

125 - Out-of-
bounds read

√ √ √ √ √

126 - Buffer
Overread

√ √ √ √ √

127 - Buffer
Underread

√ √ √ √ √

CWE-119: Improper Restriction of Operations within the Bounds of a
Memory Buffer
Summary: The software performs operations on a memory buffer, but
it can read from or write to a memory location that is outside of the
intended boundary of the buffer.
Extended description: Certain languages allow direct addressing of
memory locations and do not automatically ensure that these locations
are valid for the memory buffer that is being referenced. This can cause
read or write operations to be performed on memory locations that
may be associated with other variables, data structures, or internal
program data. As a result, an attacker may be able to execute arbitrary
code, alter the intended control flow, read sensitive information, or
cause the system to crash.

CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow')
Summary: The program copies an input buffer to an output buffer
without verifying that the size of the input buffer is less than the size
of the output buffer, leading to a buffer overflow.
Extended Description: A buffer overflow condition exists when a

program attempts to put more data in a buffer than it can hold, or
when a program attempts to put data in a memory area outside of
the boundaries of a buffer.
Common Consequences: Buffer overflows often can be used to
execute arbitrary code. Buffer overflows generally lead to crashes.

l STs build mental models, which help
us understand software weaknesses.

l Each ST is a human and machine
understandable representation of:

1. Software faults that lead to a weakness

2. Resources that a weakness affects

3. Weakness attributes

4. Consequences/failures resulting from
the weakness.

48

Semantic Templates (STs) – Improve on CWEs, too

Parameters
Buffer

location
Access kind Access position

Boundary
exceeded

heap stack write read inside outside lower upper

119 - Improper
Restriction of
Operations
within Bounds of
Buffer

√ √ √ √ √ √ √

120 - Buffer
Copy without
Checking Size
of Input

√ √ √ √ √ √

121 - Stack
Overflow

√ √ √ √ √

122 - Heap
Overflow

√ √ √ √ √

123 - Write-
what-where
Condition

√ √ √ √ √

124 - Buffer
Underwrite

√ √ √ √ √

125 - Out-of-
bounds read

√ √ √ √ √

126 - Buffer
Overread

√ √ √ √ √

127 - Buffer
Underread

√ √ √ √ √

WEAKNESS

ACCESS AND
OUT-OF-BOUNDS
READ #125, #126,

#127, #786

ACCESS AND OUT-
OF-BOUNDS WRITE

#787, #788, #124

FAILURE TO CONSTRAIN
OPERATIONS WITHIN THE
BOUNDS OF A MEMORY

BUFFER
#119

IMPROPER-ACCESS-OF-
INDEXABLE-RESOURCE #118

CAN-PRECEDE

OCCURS-IN

WRAP-
AROUND

ERROR #128

CAN-PRECEDE

SOFTWARE-FAULT

INCORRECT-
BUFFER-SIZE-
CALCULATION

#131

INTEGER
OVERFLOW

#190 #680
OFF-BY-

ONE
#193

INCORRECT-
CALCULATION

#682

IMPROPER-
INPUT-

VALIDATION
#20

INTEGER
UNDERFLOW

#191 RETURN OF POINTER
VALUE OUTSIDE OF
EXPECTED RANGE

#466

IMPROPER
VALIDATION OF
ARRAY INDEX

#129 #789

BUFFER COPY WITHOUT
CHECKING SIZE OF INPUT

('CLASSIC BUFFER OVERFLOW')
#120

WRITE-WHAT-WHERE
CONDITION

#123

CONSEQUENCES

CAN-PRECEDE

RESOURCE/LOCATION

STACK-BASED
#121

ARRAY
#129

HEAP-BASED
#122

MEMORY-
BUFFER

#119

BUFFER
#119

INDEXABLE-
RESOURCE

#118PART-OF

INDEX
(POINTER #466
INTEGER #129)

PART-OF

IMPROPER
HANDELING OF
EXTRA VALUES

#231
USE OF DANDEROUS

FUNCTIONS
#242

API ABUSE
#227

IMPROPER NULL
TERMINATION

#170

IMPROPER USE OF
FREED MEMORY

#415 #416

MISSING
INITIALIZATION

#456SIGN
ERRORS
#194 #195

#196

STRING
MANAGEMENT

API ABUSE
785 #134 #251

UNCONTROLLED
MEMORY

ALLOCATION
#789

INFORMATION
LOSS OR

OMMISSION
#199 #221

POINTER
ERRORS
#467 #468

INTEGER
COERCION

ERROR
#192

IMPROPER HANDLING OF
LENGTH PARAMETER

INCONSISTENCY
130

IS-A

WEAKNESS

ACCESS AND
OUT-OF-BOUNDS
READ #125, #126,

#127, #786

ACCESS AND OUT-
OF-BOUNDS WRITE

#787, #788, #124

FAILURE TO CONSTRAIN
OPERATIONS WITHIN THE
BOUNDS OF A MEMORY

BUFFER
#119

IMPROPER-ACCESS-OF-
INDEXABLE-RESOURCE #118

CAN-PRECEDE

OCCURS-IN

WRAP-
AROUND

ERROR #128

CAN-PRECEDE

SOFTWARE-FAULT

INCORRECT-
BUFFER-SIZE-
CALCULATION

#131

INTEGER
OVERFLOW

#190 #680
OFF-BY-

ONE
#193

INCORRECT-
CALCULATION

#682

IMPROPER-
INPUT-

VALIDATION
#20

INTEGER
UNDERFLOW

#191 RETURN OF POINTER
VALUE OUTSIDE OF
EXPECTED RANGE

#466

IMPROPER
VALIDATION OF
ARRAY INDEX

#129 #789

BUFFER COPY WITHOUT
CHECKING SIZE OF INPUT

('CLASSIC BUFFER OVERFLOW')
#120

WRITE-WHAT-WHERE
CONDITION

#123

CONSEQUENCES

CAN-PRECEDE

RESOURCE/LOCATION

STACK-BASED
#121

ARRAY
#129

HEAP-BASED
#122

MEMORY-
BUFFER

#119

BUFFER
#119

INDEXABLE-
RESOURCE

#118PART-OF

INDEX
(POINTER #466
INTEGER #129)

PART-OF

IMPROPER
HANDELING OF
EXTRA VALUES

#231
USE OF DANDEROUS

FUNCTIONS
#242

API ABUSE
#227

IMPROPER NULL
TERMINATION

#170

IMPROPER USE OF
FREED MEMORY

#415 #416

MISSING
INITIALIZATION

#456SIGN
ERRORS
#194 #195

#196

STRING
MANAGEMENT

API ABUSE
785 #134 #251

UNCONTROLLED
MEMORY

ALLOCATION
#789

INFORMATION
LOSS OR

OMMISSION
#199 #221

POINTER
ERRORS
#467 #468

INTEGER
COERCION

ERROR
#192

IMPROPER HANDLING OF
LENGTH PARAMETER

INCONSISTENCY
130

IS-A

WEAKNESS

ACCESS AND
OUT-OF-BOUNDS
READ #125, #126,

#127, #786

ACCESS AND OUT-
OF-BOUNDS WRITE

#787, #788, #124

FAILURE TO CONSTRAIN
OPERATIONS WITHIN THE
BOUNDS OF A MEMORY

BUFFER
#119

IMPROPER-ACCESS-OF-
INDEXABLE-RESOURCE #118

CAN-PRECEDE

OCCURS-IN

WRAP-
AROUND

ERROR #128

CAN-PRECEDE

SOFTWARE-FAULT

INCORRECT-
BUFFER-SIZE-
CALCULATION

#131

INTEGER
OVERFLOW

#190 #680
OFF-BY-

ONE
#193

INCORRECT-
CALCULATION

#682

IMPROPER-
INPUT-

VALIDATION
#20

INTEGER
UNDERFLOW

#191 RETURN OF POINTER
VALUE OUTSIDE OF
EXPECTED RANGE

#466

IMPROPER
VALIDATION OF
ARRAY INDEX

#129 #789

BUFFER COPY WITHOUT
CHECKING SIZE OF INPUT

('CLASSIC BUFFER OVERFLOW')
#120

WRITE-WHAT-WHERE
CONDITION

#123

CONSEQUENCES

CAN-PRECEDE

RESOURCE/LOCATION

STACK-BASED
#121

ARRAY
#129

HEAP-BASED
#122

MEMORY-
BUFFER

#119

BUFFER
#119

INDEXABLE-
RESOURCE

#118PART-OF

INDEX
(POINTER #466
INTEGER #129)

PART-OF

IMPROPER
HANDELING OF
EXTRA VALUES

#231
USE OF DANDEROUS

FUNCTIONS
#242

API ABUSE
#227

IMPROPER NULL
TERMINATION

#170

IMPROPER USE OF
FREED MEMORY

#415 #416

MISSING
INITIALIZATION

#456SIGN
ERRORS
#194 #195

#196

STRING
MANAGEMENT

API ABUSE
785 #134 #251

UNCONTROLLED
MEMORY

ALLOCATION
#789

INFORMATION
LOSS OR

OMMISSION
#199 #221

POINTER
ERRORS
#467 #468

INTEGER
COERCION

ERROR
#192

IMPROPER HANDLING OF
LENGTH PARAMETER

INCONSISTENCY
130

IS-A

WEAKNESS

ACCESS AND
OUT-OF-BOUNDS
READ #125, #126,

#127, #786

ACCESS AND OUT-
OF-BOUNDS WRITE

#787, #788, #124

FAILURE TO CONSTRAIN
OPERATIONS WITHIN THE
BOUNDS OF A MEMORY

BUFFER
#119

IMPROPER-ACCESS-OF-
INDEXABLE-RESOURCE #118

CAN-PRECEDE

OCCURS-IN

WRAP-
AROUND

ERROR #128

CAN-PRECEDE

SOFTWARE-FAULT

INCORRECT-
BUFFER-SIZE-
CALCULATION

#131

INTEGER
OVERFLOW

#190 #680
OFF-BY-

ONE
#193

INCORRECT-
CALCULATION

#682

IMPROPER-
INPUT-

VALIDATION
#20

INTEGER
UNDERFLOW

#191 RETURN OF POINTER
VALUE OUTSIDE OF
EXPECTED RANGE

#466

IMPROPER
VALIDATION OF
ARRAY INDEX

#129 #789

BUFFER COPY WITHOUT
CHECKING SIZE OF INPUT

('CLASSIC BUFFER OVERFLOW')
#120

WRITE-WHAT-WHERE
CONDITION

#123

CONSEQUENCES

CAN-PRECEDE

RESOURCE/LOCATION

STACK-BASED
#121

ARRAY
#129

HEAP-BASED
#122

MEMORY-
BUFFER

#119

BUFFER
#119

INDEXABLE-
RESOURCE

#118PART-OF

INDEX
(POINTER #466
INTEGER #129)

PART-OF

IMPROPER
HANDELING OF
EXTRA VALUES

#231
USE OF DANDEROUS

FUNCTIONS
#242

API ABUSE
#227

IMPROPER NULL
TERMINATION

#170

IMPROPER USE OF
FREED MEMORY

#415 #416

MISSING
INITIALIZATION

#456SIGN
ERRORS
#194 #195

#196

STRING
MANAGEMENT

API ABUSE
785 #134 #251

UNCONTROLLED
MEMORY

ALLOCATION
#789

INFORMATION
LOSS OR

OMMISSION
#199 #221

POINTER
ERRORS
#467 #468

INTEGER
COERCION

ERROR
#192

IMPROPER HANDLING OF
LENGTH PARAMETER

INCONSISTENCY
130

IS-A

CAN PRE-CEDE

OCCURS IN

CAN PRECEDE

CAN
PRECEDE

CWE-119: Improper Restriction of Operations within the Bounds
of a Memory Buffer
Summary: The software performs operations on a memory
buffer, but it can read from or write to a memory location that is
outside of the intended boundary of the buffer.
Extended description: Certain languages allow direct addressing
of memory locations and do not automatically ensure that these
locations are valid for the memory buffer that is being
referenced. This can cause read or write operations to be
performed on memory locations that may be associated with
other variables, data structures, or internal program data. As a
result, an attacker may be able to execute arbitrary code, alter
the intended control flow, read sensitive information, or cause
the system to crash.

CWE-120: Buffer Copy without Checking Size of Input ('Classic
Buffer Overflow')
Summary: The program copies an input buffer to an output

buffer without verifying that the size of the input buffer is less
than the size of the output buffer, leading to a buffer overflow.
Extended Description: A buffer overflow condition exists when
a program attempts to put more data in a buffer than it can
hold, or when a program attempts to put data in a memory
area outside of the boundaries of a buffer.
Common Consequences: Buffer overflows often can be used to
execute arbitrary code. Buffer overflows generally lead to
crashes.

49

But SFP & ST Also Have Problems

l Software Fault Patterns (SFP):

ü are an excellent advance

ü “factor” weaknesses into parameters,

ü But:

• do not include upstream causes or consequences, and

• are based solely on CWEs.

à SFPs do not tie fault clusters to:

– causes or chains of fault patterns

– consequences of a particular vulnerability.

à Since SFP were derived from CWEs, more work is needed for embedded or mobile concerns, such as,
battery drain, physical sensors (e.g. Global Positioning System (GPS) location, gyroscope, microphone,
camera) and wireless communications.

Note: SFP is coupled with a meta-language, Semantics of Business Vocabularies and Rules (SBVR), in which causes,
threats, consequences, etc. may be expressed. However, SFP does not have an integrated means of expressing them.

50

But SFP & ST Also Have Problems

l Semantic Templates (ST):

ü Collect CWEs into four general areas:

• Software-fault

• Weakness

• Resource/Location

• Consequences.

ü But:

• are only guides to aid human comprehension.

__

l The other existing bug descriptions also have their own limitations.

l They are based on CWEs and don’t go beyond CWEs.

51

è Need for Structured, Precise,
Orthogonal Approach

52

Need for Structured, Precise,
Orthogonal Approach

Ø Without accurate and precise classification and comprehension of all possible types of
software bugs, the development of reliable software will remain extremely challenging.

Ø As a result the newly delivered and the legacy systems will continue having security holes
despite all the patching to correct errant behavior.

We don’t (yet) know the best structure for bugs descriptions.

But, for analogies on what we are embarking on, let’s look at
some well-know organizational structures in science …

53

Periodic Table & Others to Describe Molecules

l Greeks used the terms element and atom.
Aristotle: substances are a mix of Earth, Fire, Air, or Water.

l Alchemists cataloged substances, such as alcohol, sulfur, mercury, and salt.
(note: Lavoisier had light and caloric on his 33 elements list!)

l Periodic table reflects atomic structure & forecasts properties of missing elements.

(Source: Wikimedia Commons)

(Source: Reich Chemistry)

Zofran ODT has a chemical formula (C18H19N3O),
structural formula (picture), and a detailed name.

https://commons.wikimedia.org/w/index.php?curid=31017351
http://reich-chemistry.wikispaces.com/Ancient%20Time%20LG

54

Tree of Life

Discoveries of more than 1,000 new types of
Bacteria and Archaea over the past 15 years
have dramatically rejiggered the Tree of Life to
account for these microscopic life forms.

l Divides life into three domains:

ü Bacteria

ü Archaea

ü Eukaryotes.

l Clearly shows "life we see around us – plants,
animals, humans” and other Eukaryotes –
represent a tiny percentage of world’s biodiversity.

Fig. The Tree of Life (Source: Berkeley)

http://www.nature.com/articles/nmicrobiol201648

55

Geographic Coordinate System

Geographic Coordinate System (Source: Wikipedia)

Specify Terrestrial Location with
Latitude, Longitude, and Elevation

Specify Any Terrestrial Location using Latitude, Longitude, and Elevation.

http://en.wikipedia.org/wiki/Geographic_coordinate_system

56

Precise Medical Language

Medical professionals have terms to precisely name muscles, bones, organs, conditions, diseases, etc.

• The caption uses precise medical terminology.
• They are not trying to obfuscate.
• They are "painting a picture" (adding arrows and

circles) with words.

(Source: http://i.stack.imgur.com/uLH9P.jpg)

à So, just as a doctor would be hampered by only
being able to say, “this thingy here”, software
assurance work is more difficult, because of the lack
of a precise common vocabulary (ontology).

http://i.stack.imgur.com/uLH9P.jpg

57

Current BF Classes

58

Current BF Classes

1. Information Exposure (IEX)

2. Randomness Cluster (RND)

• Pseudo-Random Number Bugs (PRN)

• True-Random Number Bugs (TRN)

3. Cryptography Cluster (CRY)

• Key Management Bugs (KMN)

• Encryption Bugs (ENC)

• Verification Bugs (VRF)

4. Access Control Cluster (ACC)

• Identity Proofing (IDP)

• Authentication Bugs (ATN)

• Authorization Bugs (ATZ)

5. Memory Cluster (MEM)

• Memory Allocation Bugs (MAL)

• Memory Use Bugs (MUS)
Buffer Overflow (BOF) à refined

6. Injection (INJ) à refined

7. Control of Interaction Frequency (CIF) à refined

59

Benefits of Using BF

60

Benefits of Using BF

BF provides a superior, unified approach that allows us to:

l Precisely and unambiguously express software bugs or vulnerabilities.

l Explain clearly applicability and utility of different software quality or assurance
techniques or approaches.

l More formally reason about assurance techniques or mitigation approaches that may
work for a fault with certain attributes (but not for the same fault with other attributes).

61

Benefits of Using BF

With BF practitioners and researchers can more accurately, precisely and clearly:

l Describe problems in software.

l Clearly document the classes of bugs that a tool does and does not report.

l Explain what vulnerabilities the proposed techniques prevent.

Ø Those concerned with software quality, reliability of programs and digital systems, or cybersecurity
à will be able to make more rapid progress by more clearly labeling the results of errors in software.

Ø Those responsible for designing, operating and maintaining computer complexes
à can communicate with more exactness about threats, attacks, patches and exposures.

62

BF: Future Work

l One of our next steps is to explain more vulnerabilities using the developed BF classes.

l Another step is to develop more and more BF classes.

à Our goal is for BF to become the software developers’ and testers’ “Best Friend.”

62

63

Questions

https://samate.nist.gov/BF/

