The Bugs Framework (BF) -

Irena Bojanova
National Institute of Standards and Technology (NIST)

NIST SATE VI, September 19, 2019

https://samate.nist.gov/BF/

N HNuﬁonal Institute of Standards and Technology ¢ U.S. Department of Commerce




KAOW. Your VWeaknesses

e They Know Your Weaknesses — Do You?

e Knowing what makes your software systems vulnerable to attacks is critical,
- as software vulnerabilities hurt:

security
reliability, and
availability of the system as a whole

e Software — should be free of knewn weaknesses (bugs)



e Objective: Develop a complete, orthogonal, attributes based classification
of software bugs that would improve dramatically on:

— the current CWE definitions (vocabulary) used for defining software weaknesses, and
— how vulnerability classes are described for modern software development.

e Need:

v CWE is a repository of known (reported) weaknesses in the form of
a nomenclature (numbered items) that has overlaps and gaps in coverage.

v' Current CWEs definitions are often inaccurate, imprecise or ambiguous,
which makes it difficult to measure, express, and explain
applicability of different software quality assurance techniques or approaches for software security.

v Other existing classifications and guides also have
their own problems related to coverage, accuracy and precision.

e Gap: Software security issues are often described incorrectly, and defined inaccurately,

= which tremendously impacts on how threats, attacks, patches, and exposures are communicated.



am and External Experts

RD: External Collaborators:

e Irena Bojanova, NIST (Project Lead) e John Kelsy, CSD, NIST

e Paul E. Black, NIST Rene Peralta, CSD, NIST

e Yaacov Yesha, UMBC, NIST Andrew Regeinscheid, CSD, NIST
e Carlos Galhardo, NIST Nelson Hastings, CSD, NIST

e Yan Wu, BGST Kevin Greene, MITRE

Website (https://samate.nist.gov/BF/):
e Farhan Nadeem

e Kyle Sung

e Zack Evans

- Feel free to join us!



| Presentations

e Visibility + Seeking Collaboration - Presentations To:

NITRD SPSQ IWG — July 11, 2019: NITRD CSIA IWG — August 22, 2019:

- DISA, DHS, NSF, NRC, DARPA, NRL

- NSF, NASA, BLS, NIST, NOAA, NRL ; ’ ! ’ ; ’
SF, NASA, BLS, NIST, NOAA, ONR, OSD, DOE, DOD HPCMP, AFRL, NCO

( NITRD The Networking and Information Technology n The Networking and Information Technology
Research and Development Program seareh NITRD.gov NITRD Research and Development Program Search NITRD.gov n
. SRS ~ p 9

HOME | ABOUT NITRD ¥ | COORDINATION AREAS v | NEWS & EVENTS v | PUBLICATIONS & RESOURCES v | CONTACTUS ~

HOME | ABOUT NITRD v | COORDINATION AREAS v | NEWS & EVENTS v | PUBLICATIONS & RESOURCES v+ | CONTACTUS ~

Cyber Security and
Information Assurance
Interagency Working Group
(CSIA IWG)

Software Productivity,
Sustainability, and Quality
(SPSQ IWG)

The purpose of the SPSQ IWG is to
Cyber Security and Information Assurance
(CSIA) Interagency Working Group
coordinates the activities of the CSIA
Program Component Area.

coordinate the R&D efforts across agencies
that transform the frontiers of software
science and engineering and to identify R&D
areas in need of development that span the
science and the technology of software
creation and sustainment.

NITRD -> NITRD GROUPS -> CSIA IWG

NITRD -> NITRD GROUPS -> SPSQ IWG Cyber Security and Information Assurance (CSIA)
Interagency Working Group (IWG)

Software Productivity, Sustainability, and Quality (SPSQ)
Interagency Working Group (IWG) 5



The Bugs Framework (BF)

Existing Repositories of Bugs, Vulnerabilities, and Attacks
Problems with Current Bug Descriptions

Need for Structured, Precise, Orthogonal Approach
Developed BF Classes

o > L NN~



The Bugs Framework (BF)



ramework (BF)

The Bugs Framework (BF) is
a precise descriptive language for software bugs

- allows to more accurately and precisely define
software bugs and/or vulnerabilities.

< Factoring and restructuring of information in CWEs, SFPs, and STs,
and classifications from NSA CAS, IDA SOAR, SEI-CERT, and more.



B Ilaxonomy

BF is a set of bug classes. Each BF class:
e Has an accurate and precise definition and
e Comprises:
v" Level (high or low) - identifies the fault as language-related or semantic.

v’ Attributes — identify the software fault.

v' Causes — bring about the fault.

v' Consequences — to which the fault could lead.

v’ Sites — locations in code where the fault might occur.

e BF is descriptive, not prescriptive.
v' It explains what happens.

> BF uses precise definitions and terminology. v There’s not enough detail to
usefully predict the result.

e BF is language independent.

o Sites are identifiable mainly for low level classes




Causes Attributes Consequences

<<consequence>>

<<attribute>>:
v <<value>>
v <<value>>
Vo
<<attribute>>:
v <<value>>
v <<value>>
Vo
<<afttribute>>:
v <<value>>
v <<value>>
Vo
<<afttribute>>:
v <<value>>

v <<value>>
Vo

<<consequence>>

<<cause>>

<<sub-cause>>

<<class>>

<<class>>

<<class>>

oAt least one attribute (underlined) identifies the software fault.
oCauses and consequences are directed graphs. 10



Quick Examples of BF Classes:
e Buffer Overflow (BOF)
e Information Exposure (IEX)

11



e Buffer Overflow (BOF)

12



)

e Our Definition:

The software accesses through an array a memory location
that is outside the boundaries of that array.

- Clearer than CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer: “The
software performs operations on a memory buffer, but it can read from or write to a memory location that is
outside of the intended boundary of the buffer.”

v’ clarifies that access is through the same buffer to which the intended boundary pertains.
v’ accurately, precisely, and concisely describes violation of memory safety.

Related CWEs, SFP and ST:

e CWEs are 119, 120, 121, 122, 123, 124, 125, 126, 127, 786, 787, 788, 805, 806, 823.
e SFP cluster is SFP8 Faulty Buffer Access under Primary Cluster: Memory Access.

e ST is the Buffer Overflow Semantic Template.

13


https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/123.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/127.html
https://cwe.mitre.org/data/definitions/786.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/788.html
https://cwe.mitre.org/data/definitions/805.html
https://cwe.mitre.org/data/definitions/806.html
https://cwe.mitre.org/data/definitions/823.html
http://faculty.ist.unomaha.edu/rgandhi/st/bufferoverflowtemplate.pdf

Causes

Input Not Checked Properly

Data Exceeds Array

Array Too Small

Too Much Data

Incorrect Calculation
ARC

Result Fault:
v Overflow
Off By One \/Undreﬂrflow No NULL Termination

v'Undefined

Missing Factor ¥Truncation
Operator:
Operand Error: Wrong Index /
Types: ointer Out of Range

Incorrect Argument

Incorrect Conversion

Attributes

Access:
* Read
* Write
Boundary:
* Below
* Above
Location:
* Heap
» Stack

\ Magnitude:

* Small

* Moderate
* Far

Data Size:

o Little

* Some

* Huge
Excursion:

* Continuous
* Discrete

Attributes, and Consequences

Consequences

Incorrect Results

Information

Change/Loss
& Altered Control Flow
" Arbitrary Code Execution

Resource Exhaustion
Program Crash

14



CVE-2014-0160 (Heartbleed)

CVE-2014-0160 (Heartbleed) description using BOF taxonomy:

Cause: Input Not Checked Properly leads to Data Exceeds Array (specifically, Too Much Data)
Attributes:

Access: Read
Boundary: Above
Location: Heap
Data Size: Huge
Excursion: Continuous
Consequence: |[EX (if not had been cleared)

See: https://samate.nist.qov/BF/Examples/BOF.html

15


https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://samate.nist.gov/BF/Examples/BOF.html

riptions of BOF Related CWEs

CWE BF Class
ID Name BOF BOF Attributes BOF
SEUEED) Access Boundary  Location Magnitude Data Size Excursion (SIS
119 Improper Restriction of Operations within the Wrong Index/ Pointer Out of Range  any any any any any any any
Bounds of a Memory Buffer
120 Buffer Copy without Checking Size of Input Array Too Small Write Above Continuous
('Classic Buffer Overflow'")
121 Stack-based Buffer Overflow any BOF cause Write Stack
122 Heap-based Buffer Overflow any BOF cause Write Heap
123 Write-what-where Condition any BOF cause Write Discrete
124 Buffer Underwrite ('‘Buffer Underflow') Wrong Index/ Pointer Out of Range  Write Below
125 Out-of-bounds Read PAR_leads to Pointer Out of Range  Read IEX
126 Buffer Over-read any BOF cause Read Above IEX
127 Buffer Under-read Wrong Index/ Pointer Out of Range  Read Below IEX
786 Access of Memory Location Before Wrong Index/ Pointer Out of Range Below
Start of Buffer
787 Out-of-bounds Write any BOF cause Write
788 Access of Memory Location After Wrong Index/ Pointer Out of Range Above
End of Buffer
805 Buffer Access with Incorrect Length Value Data Exceeds Array Above Continuous
806 Buffer Access Using Size of Source Buffer Too Much Data (source size used) Continuous
823 Use of Out-of-range Pointer Offset Incorrect Calculation leads to PAR Discrete

leads to Pointer Out of Range


https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/121.html
https://samate.nist.gov/BF/Classes/BOF.html
https://cwe.mitre.org/data/definitions/122.html
https://samate.nist.gov/BF/Classes/BOF.html
https://cwe.mitre.org/data/definitions/123.html
https://samate.nist.gov/BF/Classes/BOF.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://samate.nist.gov/BF/Classes/PAR.html
https://samate.nist.gov/BF/Classes/IEX.html
https://cwe.mitre.org/data/definitions/126.html
https://samate.nist.gov/BF/Classes/BOF.html
https://samate.nist.gov/BF/Classes/IEX.html
https://cwe.mitre.org/data/definitions/127.html
https://samate.nist.gov/BF/Classes/IEX.html
https://cwe.mitre.org/data/definitions/786.html
https://cwe.mitre.org/data/definitions/787.html
https://samate.nist.gov/BF/Classes/BOF.html
https://cwe.mitre.org/data/definitions/788.html
https://cwe.mitre.org/data/definitions/805.html
https://cwe.mitre.org/data/definitions/806.html
https://cwe.mitre.org/data/definitions/823.html
https://samate.nist.gov/BF/Classes/PAR.html

OF — # of Possible Weaknesses

Direct Causes: (2)

Attributes: (2,2,2,3,3,2)

Direct Consequences: (6)

Using only the attributes Access, Boundary, Location: 8 (=2x2x2)

Using all the attributes: 144 (=2x2x2x3x3x2)

Using all the attributes, the 3 direct causes, and 6 consequences, without constraints:
Total 2592 (= 3x(2x2x2x3x3x2)x6)

Using all the attributes, the 3 direct causes (Array Too Small, Too Much Data, and Wrong

Index / Pointer Out of Range), and the 6 direct consequences, with constraints: assuming that if the Cause is Array
Too Small or Too Much Data then Boundary=Above and Excursion=Continuous.

Total 1296 (=864+432)

Details:
864 (=6x144) (the cases in which cause = Wrong Index / Pointer Out of Range)
432 (=2x(2x1x2x3x3x1)x6) (the cases in which cause = Array Too Small or Too Much Data)

17



e Information Exposure (IEX)

18



. Session |
CPU
| ALU | [ Cache | [ Registers |

| datal/O
< >

instructions data

data exposure
Person

Memory cleanup

data {error message|

private variables | _ induce
launch Process side effects

I
RAM | [[ROM | _~n_Process 3

System

cloning
[seriqlization]
[responses |

measure

side effects
datal/O », launch

\
\

I
|
I
|
I

Storage | Execu'tables (queries |
|Data/Information | |Programs [hardcoded | side
(Source Code) [not encrypted] data exposure

| Disks | [ Files | [ Databases |
|

____________



Information Exposure (IEX)

e Our Definition:
Information is leaked through legitimate or side channels.

Note that leakage to an entity that should not have information is included,
not just leakage that is a security concern.

|IEX is related to: BOF, INJ, CIF, ENC, VRF, KMN, TRN, PRN.

Related CWEs and SFPs:

CWEs related to IEX are: 8, 11, 13, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215,
226, 244, 260, 359, 377, 385, 402, 403, 433, 488, 492, 495, 497, 498, 499, 524, 514, 515, 525, 527, 528, 529, 530,
532, 535, 536, 537, 538, 539, 540, 541,546, 548, 550, 552, 555, 598, 612, 615, 642, 651, 668.

There are many related CWEs, because information exposure can be the consequence of many weaknesses.

The only related SFP cluster is SFP Primary Cluster: Information Leak.

20


https://cwe.mitre.org/data/definitions/8.html
https://cwe.mitre.org/data/definitions/11.html
https://cwe.mitre.org/data/definitions/13.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/201.html
https://cwe.mitre.org/data/definitions/202.html
https://cwe.mitre.org/data/definitions/203.html
https://cwe.mitre.org/data/definitions/204.html
https://cwe.mitre.org/data/definitions/205.html
https://cwe.mitre.org/data/definitions/206.html
https://cwe.mitre.org/data/definitions/207.html
https://cwe.mitre.org/data/definitions/208.html
https://cwe.mitre.org/data/definitions/209.html
https://cwe.mitre.org/data/definitions/210.html
https://cwe.mitre.org/data/definitions/211.html
https://cwe.mitre.org/data/definitions/212.html
https://cwe.mitre.org/data/definitions/213.html
https://cwe.mitre.org/data/definitions/214.html
https://cwe.mitre.org/data/definitions/215.html
https://cwe.mitre.org/data/definitions/226.html
https://cwe.mitre.org/data/definitions/244.html
https://cwe.mitre.org/data/definitions/260.html
https://cwe.mitre.org/data/definitions/359.html
https://cwe.mitre.org/data/definitions/377.html
https://cwe.mitre.org/data/definitions/385.html
https://cwe.mitre.org/data/definitions/402.html
https://cwe.mitre.org/data/definitions/403.html
https://cwe.mitre.org/data/definitions/433.html
https://cwe.mitre.org/data/definitions/488.html
https://cwe.mitre.org/data/definitions/492.html
https://cwe.mitre.org/data/definitions/495.html
https://cwe.mitre.org/data/definitions/497.html
https://cwe.mitre.org/data/definitions/498.html
https://cwe.mitre.org/data/definitions/499.html
https://cwe.mitre.org/data/definitions/524.html
https://cwe.mitre.org/data/definitions/514.html
https://cwe.mitre.org/data/definitions/515.html
https://cwe.mitre.org/data/definitions/525.html
https://cwe.mitre.org/data/definitions/527.html
https://cwe.mitre.org/data/definitions/528.html
https://cwe.mitre.org/data/definitions/529.html
https://cwe.mitre.org/data/definitions/530.html
https://cwe.mitre.org/data/definitions/532.html
https://cwe.mitre.org/data/definitions/535.html
https://cwe.mitre.org/data/definitions/536.html
https://cwe.mitre.org/data/definitions/537.html
https://cwe.mitre.org/data/definitions/538.html
https://cwe.mitre.org/data/definitions/539.html
https://cwe.mitre.org/data/definitions/540.html
https://cwe.mitre.org/data/definitions/541.html
https://cwe.mitre.org/data/definitions/546.html
https://cwe.mitre.org/data/definitions/548.html
https://cwe.mitre.org/data/definitions/550.html
https://cwe.mitre.org/data/definitions/552.html
https://cwe.mitre.org/data/definitions/555.html
https://cwe.mitre.org/data/definitions/598.html
https://cwe.mitre.org/data/definitions/612.html
https://cwe.mitre.org/data/definitions/615.html
https://cwe.mitre.org/data/definitions/642.html
https://cwe.mitre.org/data/definitions/651.html
https://cwe.mitre.org/data/definitions/668.html

ibutes, and Consequences

Causes Attributes Consequences

Data Type:
* Credentials, System, State

* Cryptographic, Digital Documents
* Personally Identifiable, Business, ...
Data Sensitivity:
* High ATN/AUT
* Low
Data State:
» Stored
* Used
| ENC | | VRF | |KMN | |ATN/AUT] R ENC
Data Size:
o Little

Software/Hardware Behavior * Some
* Huge

Exposure:
Improper Details * Selective
* Random

Frequency:
INJ * Once, On-demand, On-timing KMN
* Rare, Often, Fast
Channel:
BOF * Legitimate

v Diagnostic
o Side IEX
CIF v Covert
Use:
* Direct
IEX * Indirect

Failure to Properly Sanitize Sensitive Data
Uncleared Before Cross-Boundary
Release Removal

Failure to Properly Protect Sensitive Data

VRF




Example — CVE-2017-5754 (Meltdown)

CVE-2017-5754 description using IEX taxonomy:

Cause: Hardware Behavior (CPU out-of-order execution)
Attributes:
Data Type: Any (passwords in password manager or browser, photos, emails, even business-critical documents)
Data Sensitivity: High
Data State: Stored (in kernel-memory registries of other processes or virtual machines in the cloud)
Data Size: Huge
Exposure: Selective
Frequency: On-Demand
Channel: Covert (cache-based timing)
Use: Any
Consequences: Any IEX consequence.

See: https://samate.nist.gov/BF/Examples/IEX.html

22


https://samate.nist.gov/BF/Examples/IEX.html

(Guidelines for developing and evaluation of BF classes)

BF — complete orthogonal, attributes based classification of software bugs.

BF Class Definition:
» Concise, unambiguous description of the fault(s).
+ Format: “the software does <<this and that wrong>>".

BF Class Taxonomy:
+ Causes
v' What leads to the fault?
+ Consequences (descriptive, not prescriptive)
v' What the fault leads to?
+ Attributes
v Focus on the failure attributes of this class.
v" What parts of the system are involved in the fault?
v' What are the details of the fault?
o What assumptions are violated? What parts of the definition are affected?

o What doesn’t happen that is supposed to? What happens that is not supposed
to? What exactly goes faulty (what data or resource)? How does it happen?

BF Description of a Vulnerability:

+ Format: <<cause>> [(specifically <<sub-cause>>)] {leads to <<cause>> [(specifically

<<sub-cause>>)]} [that] allows <<bug-description-via-attributes>>, which may be
exploited for <<consequence>>{, leading to <<consequence>>}

[1- "zero or one"; {} - "zero or more"

START

1. Identify BF Clusters and Relationships

1.1. Identifying a BF class and its place in BF

* Research bugs found in source code (examine CWE, SFPs, STs, etc.) and:
-> Identify a new BF class.

* Research relationships with other BF classes and:
- Add the class to a BF cluster

A 4

1.2. Evaluating BF
» Classify via BF at least three (eventually cover all) reported vulnerabilities (CVE and CAPEC).

Does defined BF structure allow
orthogonal representation of bugs
that lead to these vulnerabilities?

2. Develop BF Classes

2.1. Developing a BF class

» Research related weaknesses (CWEs, SFPs, etc.) and models (or create models):
- Create an accurate and precise class definition.
- Create taxonomy: chains of causes and consequences, attributes with values.

2.2. Evaluating a BF class
* Research reported vulnerabilities (CVEs) related to this class and describe at least three
(eventually cover all) using defined taxonomy for this BF class.

Does defined taxonomy allow
clear, unambiguous description of
these vulnerabilities?

No

No
Is BF completed?
YesT

END

23



Let’s Step Back for a Moment

- Existing Repositories of Bugs,
Vulnerabilities, and Attacks

- Problems?

24



s of Bugs, Vulnerabilities, and Attacks

« Common Weakness Enumeration (CWE)

« Software Fault Patterns (SFP)

« Semantic Templates (ST)

« NSA Center for Assured Software (CAS) Weakness Classes

« Software State-of-the-Art Resources (SOAR) Matrix

« Software Engineering Institute (SEI), Carnegie Mellon University, CERT C Coding Standard
« Common Vulnerabilities and Exposures (CVE)

« Open Web Application Security Project (OWASP): Vulnerability

« Common Attack Pattern Enumeration and Classification (CAPEC)

- Let's take a look at them...

25



Common WWeakness Enumeration (CWE

Building CWE & Consensus

WatchFire

CWE is a “dictionary” of M James Madison

University IMU)

Publicly Available: Security Taxonomies

. i KDM Analytics Cenaic
observed bugs or flaws in software. Research, and Checklists Preliminary P et ) R
Other Work u'rp-.-r.(»:“"« Security  Checkmarx
Fortify Cigital OWASP Secure CVE-based ::(’.:’r:zb,h“ ,',' Stanford :
reliming Vi : Caverity SEI - CERT C
More than 600 distinct classes, e.g erian Chess [t cory Mool TopTen Y S "Ustor [ vuinerabity Taxonomies, :
Buffer overfl T wunacbiy B “iaerom Resarch 304 —viceom
rov w Researchers SR Parasoft ]
u e O e O (PLOVER) Unisy Purdue
i G
Directory traversal aockweork. [l Ounce Labs [l Gromms o Seurty T Uncon Las
inj i Berkelgy TOWECTHY Univ. of
OS InJeCtlon North Carolina State Maryland

University (NCSU)
o A 3 Oracle

Race condition
Cross-site scripting . I
Hard-coded password i) it

Database
(NVD) Standards

Insecure random numbers. Gt

Vulnerabilities W E - SANS
and Exposures ‘ National Secure
(CVE) DHS

Programmin
Software I gshulls .

GMU

DN N N N NN

CWE is a community effort.

Assurance Assessment
/ Common
Body of
Knowledge
— DHS's "SwA'
Object ' and ;
Management Build Security

In' Web Sites

Group System
Assurance Task

Open Web l

Force
Applicatio
iy DHS and NIST
Proiect ¢ . Software Assurance NSA Center for
— (O\:/l;;p) we hSApp'h:.mon CW.E ot Metrics and Tool Assured Software
( ecurity compat|b|||ty Evaluation (SAMATE)

Fig. CWE Efforts Context and Community WasO
[http://cwe.mitre.org/about/images/Ig_consensus.jpg] —1 Test Repositories J

e




CWE - for use by those who:
* Create software
* Analyze software for security flaws
* Provide tools & services for finding & defending against security flaws in software.

CWE Compatibility and Effectiveness Program:

1. CWE Searchable 4. CWE Documentation
2. CWE Output 5. CWE Coverage
3. Mapping Accuracy 6. CWE Test Results

Designations for products or services:
v CWE Compatible — meet 1) to 4)

v CWE Effective — meet all 1) to 6) Static analysis tools:
* encouraged to map their reports to corresponding CWEs,
» so that the results from different tools could have
a standard baseline to be matched and compared.

27



atterns (SFP)

e Software Fault Patterns (SFP) is a generalized description of
an identifiable family of computations that are:
v Described as patterns with an invariant core and variant parts
v Aligned with injury
v Aligned with operational views and risk through events
v Fully identifiable in code (discernable)
v Aligned with CWE
v" With formally defined characteristics.

- See the clusters in Table 2 here: DoD Software Fault Patterns (go to p.26)

28


http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADB381215

Software Fault Patterns (SFP)

Software Fault Patterns (SFP): Classify, Identify patterns, Test cases generator.

e SFP are a clustering of CWEs into related weakness categories.

e Each cluster is factored into formally defined attributes, with:

v

AN NN

Sites (“footholds”)
Conditions
Properties
Sources

Sinks, etc.

e SFP categories cover 632 CWEs,
e plus there are 8 deprecated CWEs.

In addition, there are:

e 21 primary clusters

e 62 secondary clusters
e 310 discernible CWEs
e 36 unique SFPs.

29



Semantic templates (ST) build mental models,
which help us understand software
weaknesses.

ST factor out chains of causes, resources and
consequences that are present in CWEs.

Each ST is a human and machine
understandable representation of the following

phases:
1. Software faults that lead to a weakness
2.Resources that a weakness affects
attributes
4. Consequences/failures resulting from the
weakness.

Fig. Phrases in descriptions and common
consequences of CWE-120, colored according to ST
Fault, Resource/Location, , Consequence

antic Templates (ST)

CWE 120: Buffer Copy without Checking Size of Input (‘Classic Buffer
Overflow )

eril
Description Summary: The program copies an input buffer to an output
buffer without verifying that the 51ze of the 1nput buffer is less than the size
of the output buffer, leading to a ! overflow.

Extended Description: A buffer overflow condition exists when a program
attempts to put more data in a buffer than it can hold, or when a program
attempts to put data in a memory area outside of the boundaries of a buffer.
The simplest type of error, and the most common cause of buticr overflows,
is the "classic" case in which the program copies the buffer without
restricting how much 1s copied.

Common Consequences: Puffer overflows often can be used to execute
arbitrary code, which 1s usually outside the scope of a program's implicit
security policy. This can often be used to subvert any other security service.
Sulter overtlows generally lead to crashes. Other attacks leading to lack of
availability are possible, including putting the program into an infinite loop.

30



https://cwe.mitre.org/data/definitions/120.html

Buffer Overflow Semantic Template

INTEGER

INTEGER

) _r SOFTWARE-FAULT

L) COERCION OVERFLOW IMPROPER STRING MISSING
ERROR #190 #680 HANDELING OF MANAGEMENT INITIALIZATION
SIGN #192 EXTRA VALUES APl ABUSE #456
INTEGER #231
ERRORS # 785 #134 #251
#194 #195 UNDERFLOW SE OF DANDEROU

#191 RETURN OF POINTER

VALUE OUTSIDE OF

#196 FUNCTIONS

. #242
STs build mental EXPECTED RANGE API ABUSE
) INCORRECT- #466 4297
BUFFER-SIZE- POINTER MPROPER NULL PROPER USE O
models, which help us BUFFER S1Z&. POINTER TERMINATION FREED MEMORY

understand software #170 #415 #416

weaknesses.

#467 #468

IMPROPER
VALIDATION OF
ARRAY INDEX
#129 #789

BUFFER COPY WITHOUT
CHECKING SIZE OF INPUT
('CLASSIC BUFFER OVERFLOW')
#120

MPROPER HANDLING OF
LENGTH PARAMETER
INCONSISTENCY
#130

INCORRECT-
CALCULATION
#682

VALIDATION
#20

CAN-PRECEDE
WEAKNESS CAN-PRECEDE

RESOURCE/LOCATION

STACK-BASED HEAP-BASED
#121 #122

MEMORY- INDEX
BUFFER (POINTER #466

#119 INTEGER #129)

ACCESS AND
OUT-OF-BOUNDS
READ #125, #126,
#127, #786

ACCESS AND OUT-
OF-BOUNDS WRITE
#787, #788, #124

OCCURS-IN

FAILURE TO CONSTRAIN IS-A

OPERATIONS WITHIN THE

BOUNDS OF A MEMORY
BUFFER

#119

INDEXABLE-
RESOURCE
#118

BUFFER
#119

CONSEQUENCES UNCONTROLLED
MEMORY
ALLOCATION
#789

IMPROPER-ACCESS-OF-
INDEXABLE-RESOURCE #118

WRITE-WHAT-WHERE

CONDITION INFORMATION
CAN-PRECEDE #123 LOSS OR

OMMISSION
#199 #221



sitories/Classifications

« The National Security Agency (NSA) Center for Assured Software (CAS) defines
Weakness Classes in its "Static Analysis Tool Study - Methodology*

« The Software State-of-the-Art Resources (SOAR) Matrix:

— Defines and describes a process for selecting and using appropriate analysis tools and
techniques for evaluating software for software (security) assurance.

— In particular, it identifies types of tools and techniques available for evaluating software,
as well as technical objectives those tools and techniques can meet.

« Software Engineering Institute (SEI), Carnegie Mellon University, CERT C Coding Standard
« Open Web Application Security Project (OWASP): Vulnerability

- See BF website.

32


https://samate.nist.gov/BF/

mmon Vulnerabilities and Exposures (CVE)

C0
Common Attack Pattern Enumeration and Classification (CAPEC)

« CVE is alist of instances of security vulnerabilities in software.
— More than 9000 CVEs assigned in 2014 — Heartbleed is CVE-2014-0160.

— NIST National Vulnerability Database (NVD) — adds fixes, severity ratings, etc. for CVEs.

« CAPEC is a dictionary and classification taxonomy of known attacks

- See: https://cve.mitre.org/

33


https://cve.mitre.org/

Problems with
Current Bug Descriptions

34



urrent Bug Descriptions

The rise in cyberattacks lead to considerable community and government efforts
to record software weaknesses, faults, failures, vulnerabilities and attacks.

- However, none of the resulting
repositories/enumerations are
complete nor close to formal.

35



t, but also ...

e CWE is widely used:
v' By far the best dictionary of software weaknesses.
v" Many tools, projects, etc. are based on CWE.

e However, in CWE:
v For very formal, exacting work, the Definitions are often inaccurate, imprecise or ambiguous.

v' Entrees are “coarse grained” —
each CWE bundles many stages, such as likely attacks, resources affected and consequences.

v" The coverage is uneven —
some combinations of attributes well represented and others not appearing at all.

36



CWE — Imprecise Definitions

e CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS
Command Injection'):

“The software constructs all or part of an OS command using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that could
modify the intended OS command when it is sent to a downstream component. *

= Note that “using input”, “intended command”, and “incorrectly neutralizes” are imprecise!

37



CWES — Overlaps or Gaps in Coverage

e.g. Buffer Overflow

e \Writes before start and after end:
CWE-124: Buffer Underwrite ('Buffer Underflow')
CWE-120: Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow')

versus

e Writes (not expressed in title) in stack and heap:

CWE-121: Stack-based Buffer Overflow _ _ _

CWE-122: Heap-based Buffer Overflow. ... While slight variants go on and on:
CWE-123: Write-what-where Condition

CWE-125: Out-of-bounds Read

CWE-787: Out-of-bounds Write

CWE-786: Access of Memory Location Before Start of Buffer
CWE-788: Access of Memory Location After End of Buffer
CWE-805: Buffer Access with Incorrect Length Value
CWE-823: Use of Out-of-range Pointer Offset

e Reads before start and after end:
CWE-127: Buffer Under-read
CWE-126: Buffer Over-read

but
e No reads from stack and heap.

38



CWE — Imprecise Definitions

e Looking just at the cluster of buffer overflows, we see many problems.

e Here is CWE-119, the “root” of buffer overflows.

CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer:

“The software performs operations on a memory buffer, but it can read from or write to a memory location that is
outside of the intended boundary of the buffer.”

- Note that “read from or write to a memory location” is not tied to the buffer!
—> Strictly speaking, this definition is not correct, as any variable is
“a memory location that is outside of the intended boundary of the buffer.”
—> Our definition says that the software can read or write through the buffer
a memory location that is outside that buffer.

And, this is just one example.

39



S — Overlaps or Gaps in Coverage

The empty cells in the table show the overlaps and gaps in the CWEs coverage of buffer overflow options
with the following attributes considered:

v' read/write
v' before/after

v’ stack/heap

CWE-127 CWE-126 CWE-125

CWE-124 CWE-120 CWE-123 CWE-121 CWE-122
CWE-787

CWE-786 CWE-788

40



CWE — Gaps > Use of Approximate CWE

CVE-2018-19842 described with BF BOF

Cause: Boundary Not Checked Properly leads to Pointer Out or Range
Attributes:

Access: Read

Boundary: Above

Location: Stack

Data Size: Small (1 byte)

Excursion: Continuous
Consequence: Program Crash leading to DoS

https://docs.qgoogle.com/document/d/11mbdNYAUSEH-IPsacmSYhZhOYkkiSCEDUULbYFAGKkM4/edit

Note: This CVE was identified by Kevin Greene (MITRE) as an illustration of assigning an
approximate CWE (specifically, the generic CWE-125 Out-of-bounds Read), because there is no exact
CWE about Read from Above the boundary of a buffer on the Stack.

41


https://nvd.nist.gov/nvd.cfm?cvename=CVE-2018-19842
https://docs.google.com/document/d/11mbdNYAu8EH-lPsacmSYhZhOYkkiSCEDUULbYFAGkM4/edit
https://cwe.mitre.org/data/definitions/125.html

are Too Generic

E.g.. CWE-118 and CWE-119 are too generic.
They do not specifically talk about read or write, before or after, and stack or heap.

It's like to say "Oh, this is buffer overflow. Period." and give no specifics about the particular
bug you are describing.

While it is important to be able to give the specifics about the attributes we have identified
for BF BOF.

42



re Only Causes

e E.g., CWE-680 and CWE-823 describe causes for BOF.
e While they may lead to buffer overflow bugs, these are not buffer overflow bugs themselves.
> This is one more problem with CWE

v' some CWEs are classified not by the bug, but by a potential consequence (in this case
buffer overflow) from that bug.

43



CVWES — SO

e.g. Path Traversal — CWE for every tiny variant:
CWE-23:
CWE-24.:
CWE-25:
CWE-26:
CWE-27:
CWE-28:
CWE-29:
CWE-30:
CWE-31:
CWE-32:
CWE-33:
CWE-34:
CWE-35:

Relative Path Traversal

Path Traversal
Path Traversal

Path Traversal:
Path Traversal:
Path Traversal:
Path Traversal:
Path Traversal:
Path Traversal:
Path Traversal:
Path Traversal:
Path Traversal:

' ffiledir

/. [filedir’
'[dir/../[filename’
'dir/../..[filename’
" Miledir’
\..\filename’
\dir\..\filename’
'dir\..\..\filename’
"..." (Triple Dot)
"...." (Multiple Dot)
LA

Path Traversal: '.../...

e are Too Detalled

Buffer overflow isn’t the only cluster with problems.

Looks like, it is a waste to have CWEs
for every tiny variant of path traversal.

And if some other variant were identified,
a new CWE would have to be created.

44



CWES — Not Always Easy to Find

e Example: How to figure out this CWE is related to Information Exposure

CWE-433: Unparsed Raw Web Content Delivery

e SFP researchers found it by an automated process and put it in
SFP Secondary Cluster: Exposed Data.

e But if person had to do this, search in CWE does not help much.

45


https://cwe.mitre.org/data/definitions/433.html

(%

e SFP overcomes the problem of

combinations of attributes in CWE.

- For example, the SFP factored
attributes are more clear than the
irregular coverage of CWEs.

CWE-119: Improper Restriction of Operations within the
Bounds of a Memory Buffer

Summary: The software performs operations on a memory
buffer, but it can read from or write to a memory location that
is outside of the intended boundary of the buffer.

Extended description: Certain languages allow direct
addressing of memory locations and do not automatically
ensure that these locations are valid for the memory buffer
that is being referenced. This can cause read or write
operations to be performed on memory locations that may be
associated with other variables, data structures, or internal
program data. As a result, an attacker may be able to execute
arbitrary code, alter the intended control flow, read sensitive

|(r:1\fﬁ|r5rrﬁéo u(#’eca SSyF%thB%rPﬁgc l;erllsg Size of Input ('Classic
Buffer Overflow')

Summary: The program copies an input buffer to an output
buffer without verifying that the size of the input buffer is less
than the size of the output buffer, leading to a buffer
overflow.

Extended Description: A buffer overflow condition exists
when a program attempts to put more data in a buffer than it
can hold, or when a program attempts to put data in a
memory area outside of the boundaries of a buffer.

Common Consequences: Buffer overflows often can be used
to execute arbitrary code. Buffer overflows generally lead to
crashes.

Seftware Fault Patterns (SFP) — Improve on CWEs

Parameters

119 - Improper
Restriction of
Operations within
Bounds of Buffer

120 - Buffer
Copy without
Checking Size of
Input

121 - Stack
Overflow

122 - Heap

Overflow

123 - Write-what-
where Condition

124 - Buffer
Underwrite

125 - Out-of-
bounds read

126 - Buffer
Overread

127 - Buffer

Underread

Boundary

Access kind exceeded

Access position

VoA A A VoA
VoA y VoA
v y v
v y y VoA
VoA v
VoA v
v v v
v y y y
v v v




tes (ST) — Improve on CWEs, too

. . CWE-119: a . . Bounda
e STs build mental mOde|S, which help Parameters - Access kind  Access position exceederz
us understand software weaknesses. summary: The software performs operations on a , but .......
it can
. . Extended description: Certain languages allow direct addressing of 119 - Improper
o EaCh ST IS a h uman and maChIne and do not automatically ensure that these locations Restricﬁgn gf
understandable representation of: are valid for the memory buffer that is being referenced. This can Operations N N N N N N N
within Bounds of
1. Software faults that lead to a weakness Buffer
. As a result, an attacker may be able to execute arbitrary 120 - Buffer
2. RGSOUFCGS that a Weakness aﬁeCtS code, alter the intended control flow, read sensitive information, or Copy without \/ \/ \/ \/ \/ \/
3 attributes cause the system to crash. Checking Size
. of Input
4. Consequences/failures resulting from 121 - Stack 4| N N N
the weakness CWE-120: Copy without Checking Size of Input ('Classic Overflow
. )
. 122-Heap v Y v oA
Summary: The program copies an input to an output Overflow
without verifying that the size of the input is less than the size 123 - Write-
of the output leading to a what-where V v v V V
' Condition
Extended Description: A condition exists when a J J J J J
. . 124 - Buffer
program attempts to put more data in a than it can hold, or Underwrite
when a program attempts to put data in a outside of
he boundari 125 - Out-of- N N \ <\ N
the boundaries of a e ]
Common Consequences: often can be used to
execute arbitrary code. generally lead to crashes. 126 - Buffer v v \ \ \
Overread
127 - Buffer \/ \/ \/ \/ \/
Underread

47



SOFTWARE-FAULT

INTEGER INTEGER

COERCION OVERFLOW MPROPER STRING MISSING
ERROR #190 #680 ::_F‘g:‘l;w&jg; MANAGEMENT INITIALIZATION
#192 APIABUSE #456
INTEGER #231 #785 #134 #251
UNDERFLOW EOF DANDERO
#191 RETURN OF POINTER FUNCTIONS
VALUE OUTSIDE OF #242
EXPECTED RANGE APIABUSE
WRAP- #466
BUFFER-SIZE- AROUND POINTER PROPER NUL] IPROPER USE Ol
CALCULATION RROR #128 ERRORS TERMINATION FREED MEMORY
#131 #467 #468 #170 #415#416

CAN PRE-CEDE
WEAKNESS

ACCESSAND
OUT-OF-BOUNDS
READ #125, #126,
#127,#786

ACCESSAND OUT-
OF-BOUNDS WRITE
#787,#788, #124

MPROPER- PROPER HANDLING O IMPROPER BUFFER COPY WITHOUT
INPUT- INCORRECT- LENGTH PARAMETER VALIDATION OF CHECKING SIZE OF INPUT
VALIDATION CALCULATION INCONSISTENGY ARRAY INDEX (‘'CLASSIC BUFFER OVERFLOW)
#20 #682 #129#789 #120
=
CAN
PRECEDE

FAILURE TO CONSTRAIN
OPERATIONS WITHIN THE
BOUNDS OF AMEMORY

BUFFER
#119

IMPROPER-ACCESS-OF-
INDEXABLE-RESOURCE #118

OCCURS IN

RESOURCE/LOCATION

STACK-BASED
#121

MEMORY-

HEAP-BASED
#122

INDEX
(POINTER #466
INTEGER #129)

INDEXABLE-
RESOURCE

CAN PRECEDE CONS

#119
PART-OF
EQUENCES UNCONTROLLED
MEMORY
ALLOCATION
#789
WRITE-WHAT-WHERE
CONDITION
123

INFORMATION
LOSSOR
OMMISSION
#199 #221

CWE-119:
a

Summ e software perfor

- operations on a
, but it can

result, an attacker may be a
the intended control flow, rea
the system to crash.

CWE-120: Copy without Che 'Classic
1)
Ty: The program copies an input to an output
without verifying that the siz¢ of the input is less

than the size of the output , leading to a

Extended Description: A condition exists when

a program attempts to put mor¢ data in a than it can

often can be used to
generally lead to

TUte arbitrary code.
crashes.

Parameters

119 - Improper
Restriction of
Operations
within Bounds of
Buffer

120 - Buffer
Copy without
Checking Size
of Input

121 - Stack
Overflow

122 - Heap
Overflow
123 - Write-
what-where
Condition

124 - Buffer
Underwrite

125 - Out-of-
bounds read

126 - Buffer
Overread

127 - Buffer

Underread

tes (STs) — Improve on CWEs, too

Access kind Access position

Boundary
exceeded

2

N .

\/

;
;
;
;

\/

48



Ut SEP & ST Also Have Problems

Software Fault Patterns (SFP):

v are an excellent advance

v “factor” weaknesses into parameters,

v' But:
« do not include upstream causes or consequences, and
- are based solely on CWEs.

> SFPs do not tie fault clusters to:
— causes or chains of fault patterns
— consequences of a particular vulnerability.

> Since SFP were derived from CWEs, more work is needed for embedded or mobile concerns, such as,
battery drain, physical sensors (e.g. Global Positioning System (GPS) location, gyroscope, microphone,
camera) and wireless communications.

Note: SFP is coupled with a meta-language, Semantics of Business Vocabularies and Rules (SBVR), in which causes,
threats, consequences, etc. may be expressed. However, SFP does not have an integrated means of expressing them.

49



Also Have Problems

e Semantic Templates (ST):

v Collect CWEs into four general areas:
« Software-fault
* Weakness
* Resource/Location
« Consequences.

v' But:
« are only guides to aid human comprehension.

e The other existing bug descriptions also have their own limitations.
e They are based on CWEs and don’t go beyond CWEs.

50



= Need for Structured, Precise,
Orthogonal Approach

51



Need for Structured, Precise,
pproach

» Without accurate and precise classification and comprehension of all possible types of
software bugs, the development of reliable software will remain extremely challenging.

» As a result the newly delivered and the legacy systems will continue having security holes
despite all the patching to correct errant behavior.

We don’t (yet) know the best structure for bugs descriptions.

But, for analogies on what we are embarking on, let’s look at
some well-know organizational structures in science ...

52



Greeks used the terms element and atom.
Aristotle: substances are a mix of Earth, Fire, Air, or Water.

Alchemists cataloged substances, such as alcohol, sulfur, mercury, and salt.
(note: Lavoisier had light and caloric on his 33 elements list!)

Periodic table reflects atomic structure & forecasts properties of missing elements.

(Source: Reich Chemistry)

1 2
H He
3 4 5 7 8 9 110
Li | Be B F N|[O|F |Ne CH;
1 |12 13|14 |15 17 [ 18 |
Na | Mg Al | Si | P cl | Ar N
192021222324 [25 .i 28 30 | 31 32 34 | 35 | 36 CHs C,gH;gN;O
K |C [Sc|[Ti [V |[C [Mn Co | Ni Zn | Ga| Ge Se | Br [ Kr /
37 [ 38 | 39 | 40 | 41 | 42 |43 | 44 | 45 | 46 48 | 49 52 | 53 | 54 —N
Rb|Sr | Y | Zr [Nb[Mo|[Tc | Ru| Rh [ Pd Cd | In Te | | Xe
55 (56 | 57| 72|73 |74 |75 | 76|77 |78 81 83 [ 84| 85| 86 N\)
Cs|Ba|-71| Hf | Ta |W [Re | Os | Ir | Pt Tl Bi | Po | At | Rn O
87 | 88 | 89 | 104|105 106|107 | 108| 109|110 | 111|112 [113| 114 | 115|116 [ 117|118 -
Fr [ Ra |-103| Rf [ Db| Sg [Bh | Hs | Mt [ Ds | Rg | Cn Fl_|Uup| Lv |Uus|Uuo (%) 1, 2, 3, 9-tetrahydro-9-methyl-3-[(2-methyl- 1H-
imidazol-1-yl)methyl]-4H-carbazol-4-one
57158 |59 |60 |61|62|63)|64|65|66|67|68|69]|70] 71
la |Ce | Pr [Nd[Pm|Sm | Eu [Gd | Tb | Dy | Ho| Er [Tm [ Yb | Lu
89|90 |91 [92 | 93|94 |95 |96 | 97 | 98 | 99 | 100| 101|102 | 103 .
ac | Th | Pa | U | Npl pu | amlcm| 8k | cf | Es | Fm| md| No | Lr Zofran ODT hasachemlcal formula (Q18H19N30),
.IKnown in antiquity I:]akaeaborg published his periodic table (1945) StrUCturaI formUIa (pICture)s and a detalled name
Dalso known when (akw) Levoisier published his list of elements (1789) I:] also known (ak) up to 2000
EI akw Mendeleev published his periodic table (1869) D akto 2012

|:|akw Deming published his periodic table (1923) (SOU rce: W|k|med|a CommonS) 53



https://commons.wikimedia.org/w/index.php?curid=31017351
http://reich-chemistry.wikispaces.com/Ancient%20Time%20LG

Tenericutes

Bacteria

Actinobacteria Armatimonadete Nomurabacteriae @ Kaiserbacteria

. ® Adlerbacteria
Chloroflexi ® Campbellbacteria

Firmicutes

Zixibacteria  Atribacteria
Cloacimonetes  Aquificae
Fil teres alesc
» >

WOR-3

. TAO6  Thermotogae
LaPon_li)aacteV@ Deinococcus-Therm.
tescibacteria  Synergistetes
BRC1 /-'xsob%rrenn

Cyanobacteria

/ Giovan nonib?f:tg‘rli: .
s ’ 0 ® Wolfebacteria
o Melainabacteria wlorgensenbac(etia

PPRm
o RBXI

Bacteroidetes 91
Chlorobi

‘e Azambacteria i
- Parcubacteria

Discoveries of more than 1,000 new types of e A \\\V/ | oo
Bacteria and Archaea over the past 15 years R e —— \\1¥ = s Candidate

Omnitrophica ® o= Phyla Radiation

have dramatically rejiggered the Tree of Life to o re— — o sy

. t : - @ Gracilibacteria BD1-5, GNO2
Tectom:crob-a.Moc‘lﬁliltl;g’cl‘enr:’ae so0 == — ori%‘s'c'or?éiﬁa'l'imerias 1

. . . Saccharib
account for these microscopic life forms. o Sy : P acmianas
(The vl cteria) = — = —
-
ykop g;;i!rghacres ” \ » \gaoglsg‘l')gcleria
2 e Amesbacteria

T™6 @ ®®  (ollierbacteria
oo ° Pacebacteria
Beckwithbacteria

e Divides life into three domains: uRcnpmestacis
Roizmanbacteria
H 4 Gottesmanbacteria
v' Bacteria o |o.ie wctera Microgenomates
‘/ Ar C h a e a Alphaproteobacteria

Katanobocteria Curtissbacteria
v Eukaryotes.

WWE3

Acidithiobacillia

Betaproteobacteri T ) . o e
B Major lineages with isolated representative - italics

Major lineage lacking isolated representative - ®
04

Gammaproteobacteria

e Clearly shows "life we see around us — plants,
animals, humans” and other Eukaryotes —
represent a tiny percentage of world’s biodiversity.

Micrarchaeota ®

Eukaryotes

Diapherotrites

Nanohaloarchaeota ¢ ' J1
Aenigmarchaeota ®fl
arvarchaeota

DPANN

Pacearchacota @ ®
Nanoarchaeota
Woesearchaeota :

Altiarchaeales Halobacteria
Z7ME43

orarch.

A\ Opisthokonta

Methanopyri TACK
) . ] A rc h aea Merhan’oco«l Excavata
Fig. The Tree of Life (Source: Berkele :,’A,,‘t’;’m;')’"!  Thaumarchaeota Archaeplastida
iethanobacteria
thm)g asmata Chromalveolata

Methanomicrobia Amoebozoa


http://www.nature.com/articles/nmicrobiol201648

Geographic Coordinate System

Specify Any Terrestrial Location using Latitude, Longitude, and Elevation.

Latitude
(North /South)
Q0°N
45°N
00
45°5
Q0°5
Latitude wvaries from 0°
at the equator to 90°
North and South at the
poles

Longitude
(West/East)

Longitude varies
from 0° at
Greenwich to 180°
East and West

Geographic Coordinate System (Source: Wikipedia)

Elevation Histogram of the Earth’s Crust

elevation
in meters

8,000

6,000
lo— highest known permanent settlement; La Rinconada, southern Peru (5,100 m / 16,728 ft)

4.000 (a mining town with a population of around 7,000)

ook

Sea Level

-2,000

4,000

6,000

-8,000

-10,000

each tick-mark represents 10% of the surface of the earth
(about 51,006,560 km?)

55


http://en.wikipedia.org/wiki/Geographic_coordinate_system

Figure 2: Computed tomography of a comatose patient with a
left temporal epldural haematoma, right parenchymal temporal
lobe haematoma, and a right convexity subdural haematoma
before and after cranlotomy and evacuation of haematomas

ise Medical Language

The caption uses precise medical terminology.
They are not trying to obfuscate.

They are "painting a picture" (adding arrows and
circles) with words.

So, just as a doctor would be hampered by only
being able to say, “this thingy here”, software
assurance work is more difficult, because of the lack
of a precise common vocabulary (ontology).

(Source: http://i.stack.imgur.com/ul.H9P.jpg)

56


http://i.stack.imgur.com/uLH9P.jpg

Current BF Classes

57



1. Information Exposure (IEX)
2. Randomness Cluster (RND)

Pseudo-Random Number Bugs (PRN)
True-Random Number Bugs (TRN)

3. Cryptography Cluster (CRY)

Key Management Bugs (KMN)
Encryption Bugs (ENC)
Verification Bugs (VRF)

4. Access Control Cluster (ACC)
 |dentity Proofing (IDP)
« Authentication Bugs (ATN)
« Authorization Bugs (ATZ)
5. Memory Cluster (MEM)
Memory Allocation Bugs (MAL)

« Memory Use Bugs (MUS)
Buffer Overflow (BOF) = refined

6. Injection (INJ) = refined
7. Control of Interaction Frequency (CIF) - refined

58



Benefits of Using BF

59



BF provides a superior, unified approach that allows us to:
e Precisely and unambiguously express software bugs or vulnerabilities.

e Explain clearly applicability and utility of different software quality or assurance
techniques or approaches.

e More formally reason about assurance techniques or mitigation approaches that may
work for a fault with certain attributes (but not for the same fault with other attributes).

60



With BF practitioners and researchers can more accurately, precisely and clearly:

Describe problems in software.

Clearly document the classes of bugs that a tool does and does not report.

Explain what vulnerabilities the proposed techniques prevent.

Those concerned with software quality, reliability of programs and digital systems, or cybersecurity
—> will be able to make more rapid progress by more clearly labeling the results of errors in software.

Those responsible for designing, operating and maintaining computer complexes
—> can communicate with more exactness about threats, attacks, patches and exposures.

61



- Future Work

e One of our next steps is to explain more vulnerabilities using the developed BF classes.
e Another step is to develop more and more BF classes.

- Our goal is for BF to become the software developers’ and testers’ “Best Friend.”

62 62



https://samate.nist.gov/BF/

63



