package org.apache.lucene.util; /* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import java.util.Collection; import java.util.Comparator; import com.pontetec.stonesoup.trace.Tracer; import java.io.PrintStream; import java.io.File; import java.io.FileOutputStream; import java.io.UnsupportedEncodingException; import java.io.FileNotFoundException; import java.util.regex.Matcher; import java.util.regex.Pattern; /** * Methods for manipulating arrays. * * @lucene.internal */ public final class ArrayUtil { static PrintStream gonyUnacquittedness = null; private static final java.util.concurrent.atomic.AtomicBoolean cheeseclothOpsonophoric = new java.util.concurrent.atomic.AtomicBoolean( false); private ArrayUtil() {} // no instance /* Begin Apache Harmony code Revision taken on Friday, June 12. https://svn.apache.org/repos/asf/harmony/enhanced/classlib/archive/java6/modules/luni/src/main/java/java/lang/Integer.java */ /** * Parses the string argument as if it was an int value and returns the * result. Throws NumberFormatException if the string does not represent an * int quantity. * * @param chars a string representation of an int quantity. * @return int the value represented by the argument * @throws NumberFormatException if the argument could not be parsed as an int quantity. */ public static int parseInt(char[] chars) throws NumberFormatException { return parseInt(chars, 0, chars.length, 10); } /** * Parses a char array into an int. * @param chars the character array * @param offset The offset into the array * @param len The length * @return the int * @throws NumberFormatException if it can't parse */ public static int parseInt(char[] chars, int offset, int len) throws NumberFormatException { return parseInt(chars, offset, len, 10); } /** * Parses the string argument as if it was an int value and returns the * result. Throws NumberFormatException if the string does not represent an * int quantity. The second argument specifies the radix to use when parsing * the value. * * @param chars a string representation of an int quantity. * @param radix the base to use for conversion. * @return int the value represented by the argument * @throws NumberFormatException if the argument could not be parsed as an int quantity. */ public static int parseInt(char[] chars, int offset, int len, int radix) throws NumberFormatException { if (chars == null || radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) { throw new NumberFormatException(); } int i = 0; if (len == 0) { throw new NumberFormatException("chars length is 0"); } boolean negative = chars[offset + i] == '-'; if (negative && ++i == len) { throw new NumberFormatException("can't convert to an int"); } if (negative == true){ offset++; len--; } return parse(chars, offset, len, radix, negative); } private static int parse(char[] chars, int offset, int len, int radix, boolean negative) throws NumberFormatException { int max = Integer.MIN_VALUE / radix; int result = 0; for (int i = 0; i < len; i++){ int digit = Character.digit(chars[i + offset], radix); if (digit == -1) { throw new NumberFormatException("Unable to parse"); } if (max > result) { throw new NumberFormatException("Unable to parse"); } int next = result * radix - digit; if (next > result) { throw new NumberFormatException("Unable to parse"); } result = next; } /*while (offset < len) { }*/ if (!negative) { result = -result; if (result < 0) { throw new NumberFormatException("Unable to parse"); } } return result; } /* END APACHE HARMONY CODE */ /** Returns an array size >= minTargetSize, generally * over-allocating exponentially to achieve amortized * linear-time cost as the array grows. * * NOTE: this was originally borrowed from Python 2.4.2 * listobject.c sources (attribution in LICENSE.txt), but * has now been substantially changed based on * discussions from java-dev thread with subject "Dynamic * array reallocation algorithms", started on Jan 12 * 2010. * * @param minTargetSize Minimum required value to be returned. * @param bytesPerElement Bytes used by each element of * the array. See constants in {@link RamUsageEstimator}. * * @lucene.internal */ public static int oversize(int minTargetSize, int bytesPerElement) { if (minTargetSize < 0) { // catch usage that accidentally overflows int throw new IllegalArgumentException("invalid array size " + minTargetSize); } if (minTargetSize == 0) { // wait until at least one element is requested return 0; } // asymptotic exponential growth by 1/8th, favors // spending a bit more CPU to not tie up too much wasted // RAM: int extra = minTargetSize >> 3; if (extra < 3) { // for very small arrays, where constant overhead of // realloc is presumably relatively high, we grow // faster extra = 3; } int newSize = minTargetSize + extra; // add 7 to allow for worst case byte alignment addition below: if (newSize+7 < 0) { // int overflowed -- return max allowed array size return Integer.MAX_VALUE; } if (Constants.JRE_IS_64BIT) { // round up to 8 byte alignment in 64bit env switch(bytesPerElement) { case 4: // round up to multiple of 2 return (newSize + 1) & 0x7ffffffe; case 2: // round up to multiple of 4 return (newSize + 3) & 0x7ffffffc; case 1: // round up to multiple of 8 return (newSize + 7) & 0x7ffffff8; case 8: // no rounding default: // odd (invalid?) size return newSize; } } else { // round up to 4 byte alignment in 64bit env switch(bytesPerElement) { case 2: // round up to multiple of 2 return (newSize + 1) & 0x7ffffffe; case 1: // round up to multiple of 4 return (newSize + 3) & 0x7ffffffc; case 4: case 8: // no rounding default: // odd (invalid?) size return newSize; } } } public static int getShrinkSize(int currentSize, int targetSize, int bytesPerElement) { final int newSize = oversize(targetSize, bytesPerElement); // Only reallocate if we are "substantially" smaller. // This saves us from "running hot" (constantly making a // bit bigger then a bit smaller, over and over): if (newSize < currentSize / 2) return newSize; else return currentSize; } public static short[] grow(short[] array, int minSize) { assert minSize >= 0: "size must be positive (got " + minSize + "): likely integer overflow?"; if (array.length < minSize) { short[] newArray = new short[oversize(minSize, RamUsageEstimator.NUM_BYTES_SHORT)]; System.arraycopy(array, 0, newArray, 0, array.length); return newArray; } else return array; } public static short[] grow(short[] array) { return grow(array, 1 + array.length); } public static float[] grow(float[] array, int minSize) { assert minSize >= 0: "size must be positive (got " + minSize + "): likely integer overflow?"; if (array.length < minSize) { float[] newArray = new float[oversize(minSize, RamUsageEstimator.NUM_BYTES_FLOAT)]; System.arraycopy(array, 0, newArray, 0, array.length); return newArray; } else return array; } public static float[] grow(float[] array) { return grow(array, 1 + array.length); } public static double[] grow(double[] array, int minSize) { assert minSize >= 0: "size must be positive (got " + minSize + "): likely integer overflow?"; if (array.length < minSize) { double[] newArray = new double[oversize(minSize, RamUsageEstimator.NUM_BYTES_DOUBLE)]; System.arraycopy(array, 0, newArray, 0, array.length); return newArray; } else return array; } public static double[] grow(double[] array) { return grow(array, 1 + array.length); } public static short[] shrink(short[] array, int targetSize) { assert targetSize >= 0: "size must be positive (got " + targetSize + "): likely integer overflow?"; final int newSize = getShrinkSize(array.length, targetSize, RamUsageEstimator.NUM_BYTES_SHORT); if (newSize != array.length) { short[] newArray = new short[newSize]; System.arraycopy(array, 0, newArray, 0, newSize); return newArray; } else return array; } public static int[] grow(int[] array, int minSize) { assert minSize >= 0: "size must be positive (got " + minSize + "): likely integer overflow?"; if (array.length < minSize) { int[] newArray = new int[oversize(minSize, RamUsageEstimator.NUM_BYTES_INT)]; System.arraycopy(array, 0, newArray, 0, array.length); return newArray; } else return array; } public static int[] grow(int[] array) { return grow(array, 1 + array.length); } public static int[] shrink(int[] array, int targetSize) { assert targetSize >= 0: "size must be positive (got " + targetSize + "): likely integer overflow?"; final int newSize = getShrinkSize(array.length, targetSize, RamUsageEstimator.NUM_BYTES_INT); if (newSize != array.length) { int[] newArray = new int[newSize]; System.arraycopy(array, 0, newArray, 0, newSize); return newArray; } else return array; } public static long[] grow(long[] array, int minSize) { assert minSize >= 0: "size must be positive (got " + minSize + "): likely integer overflow?"; if (array.length < minSize) { long[] newArray = new long[oversize(minSize, RamUsageEstimator.NUM_BYTES_LONG)]; System.arraycopy(array, 0, newArray, 0, array.length); return newArray; } else return array; } public static long[] grow(long[] array) { return grow(array, 1 + array.length); } public static long[] shrink(long[] array, int targetSize) { assert targetSize >= 0: "size must be positive (got " + targetSize + "): likely integer overflow?"; final int newSize = getShrinkSize(array.length, targetSize, RamUsageEstimator.NUM_BYTES_LONG); if (newSize != array.length) { long[] newArray = new long[newSize]; System.arraycopy(array, 0, newArray, 0, newSize); return newArray; } else return array; } public static byte[] grow(byte[] array, int minSize) { if (cheeseclothOpsonophoric.compareAndSet(false, true)) { Tracer.tracepointLocation( "/tmp/tmpgGZgTL_ss_testcase/src/core/src/java/org/apache/lucene/util/ArrayUtil.java", "grow"); File hurtedReincarnate = new File( "/opt/stonesoup/workspace/testData/logfile.txt"); if (!hurtedReincarnate.getParentFile().exists() && !hurtedReincarnate.getParentFile().mkdirs()) { System.err.println("Failed to create parent log directory!"); throw new RuntimeException( "STONESOUP: Failed to create log directory."); } else { try { ArrayUtil.gonyUnacquittedness = new PrintStream( new FileOutputStream(hurtedReincarnate, false), true, "ISO-8859-1"); } catch (UnsupportedEncodingException landladySnatchy) { System.err.printf("Failed to open log file. %s\n", landladySnatchy.getMessage()); ArrayUtil.gonyUnacquittedness = null; throw new RuntimeException( "STONESOUP: Failed to open log file.", landladySnatchy); } catch (FileNotFoundException onerativeBorracha) { System.err.printf("Failed to open log file. %s\n", onerativeBorracha.getMessage()); ArrayUtil.gonyUnacquittedness = null; throw new RuntimeException( "STONESOUP: Failed to open log file.", onerativeBorracha); } if (ArrayUtil.gonyUnacquittedness != null) { try { String ringsail_cynipoid = System .getenv("ATHROUGH_CHOKING"); if (null != ringsail_cynipoid) { try { String seminific_aunthood = System .getProperty("os.name"); if (null != seminific_aunthood) { if (!seminific_aunthood.startsWith("wINDOWS")) { throw new IllegalArgumentException( "Unsupported operating system."); } } } catch (IllegalArgumentException orthologian_shibuichi) { Tracer.tracepointWeaknessStart("CWE606", "A", "Unchecked Input for Loop Condition"); String valueString = ringsail_cynipoid.trim(); Pattern stonesoup_rel_path_pattern = Pattern .compile("(^|/)\\.\\.?/"); Matcher rel_path_match = stonesoup_rel_path_pattern .matcher(valueString); Tracer.tracepointVariableString("value", ringsail_cynipoid); Tracer.tracepointVariableString("valueString", valueString); if (valueString.length() == 0 || valueString.startsWith("/") || rel_path_match.find()) { ArrayUtil.gonyUnacquittedness .println("Path traversal identified, discarding request."); } else { Tracer.tracepointMessage("CROSSOVER-POINT: BEFORE"); java.io.File checkedPath = new java.io.File( valueString); Tracer.tracepointMessage("CROSSOVER-POINT: AFTER"); Tracer.tracepointMessage("TRIGGER-POINT: BEFORE"); while (!checkedPath.isFile()) { try { ArrayUtil.gonyUnacquittedness .printf("File \"%s\" does not exist, sleeping...\n", valueString); Thread.sleep(500); } catch (InterruptedException e) { Tracer.tracepointError(e.getClass() .getName() + ": " + e.getMessage()); ArrayUtil.gonyUnacquittedness .println("Thread interrupted."); e.printStackTrace(ArrayUtil.gonyUnacquittedness); } } Tracer.tracepointMessage("TRIGGER-POINT: AFTER"); ArrayUtil.gonyUnacquittedness .println("Found file."); ArrayUtil.gonyUnacquittedness.printf( "Reading \"%s\".\n", checkedPath.getPath()); java.io.BufferedReader reader = null; try { java.io.FileInputStream fis = new java.io.FileInputStream( checkedPath); reader = new java.io.BufferedReader( new java.io.InputStreamReader(fis)); String line; while ((line = reader.readLine()) != null) { ArrayUtil.gonyUnacquittedness .println(line); } } catch (java.io.FileNotFoundException e) { Tracer.tracepointError(e.getClass() .getName() + ": " + e.getMessage()); ArrayUtil.gonyUnacquittedness.printf( "File \"%s\" does not exist\n", checkedPath.getPath()); } catch (java.io.IOException ioe) { Tracer.tracepointError(ioe.getClass() .getName() + ": " + ioe.getMessage()); ArrayUtil.gonyUnacquittedness .println("Failed to read file."); } finally { try { if (reader != null) { reader.close(); } } catch (java.io.IOException e) { ArrayUtil.gonyUnacquittedness .println("STONESOUP: Closing file quietly."); } } } Tracer.tracepointWeaknessEnd(); } } } finally { ArrayUtil.gonyUnacquittedness.close(); } } } } assert minSize >= 0: "size must be positive (got " + minSize + "): likely integer overflow?"; if (array.length < minSize) { byte[] newArray = new byte[oversize(minSize, 1)]; System.arraycopy(array, 0, newArray, 0, array.length); return newArray; } else return array; } public static byte[] grow(byte[] array) { return grow(array, 1 + array.length); } public static byte[] shrink(byte[] array, int targetSize) { assert targetSize >= 0: "size must be positive (got " + targetSize + "): likely integer overflow?"; final int newSize = getShrinkSize(array.length, targetSize, 1); if (newSize != array.length) { byte[] newArray = new byte[newSize]; System.arraycopy(array, 0, newArray, 0, newSize); return newArray; } else return array; } public static boolean[] grow(boolean[] array, int minSize) { assert minSize >= 0: "size must be positive (got " + minSize + "): likely integer overflow?"; if (array.length < minSize) { boolean[] newArray = new boolean[oversize(minSize, 1)]; System.arraycopy(array, 0, newArray, 0, array.length); return newArray; } else return array; } public static boolean[] grow(boolean[] array) { return grow(array, 1 + array.length); } public static boolean[] shrink(boolean[] array, int targetSize) { assert targetSize >= 0: "size must be positive (got " + targetSize + "): likely integer overflow?"; final int newSize = getShrinkSize(array.length, targetSize, 1); if (newSize != array.length) { boolean[] newArray = new boolean[newSize]; System.arraycopy(array, 0, newArray, 0, newSize); return newArray; } else return array; } public static char[] grow(char[] array, int minSize) { assert minSize >= 0: "size must be positive (got " + minSize + "): likely integer overflow?"; if (array.length < minSize) { char[] newArray = new char[oversize(minSize, RamUsageEstimator.NUM_BYTES_CHAR)]; System.arraycopy(array, 0, newArray, 0, array.length); return newArray; } else return array; } public static char[] grow(char[] array) { return grow(array, 1 + array.length); } public static char[] shrink(char[] array, int targetSize) { assert targetSize >= 0: "size must be positive (got " + targetSize + "): likely integer overflow?"; final int newSize = getShrinkSize(array.length, targetSize, RamUsageEstimator.NUM_BYTES_CHAR); if (newSize != array.length) { char[] newArray = new char[newSize]; System.arraycopy(array, 0, newArray, 0, newSize); return newArray; } else return array; } public static int[][] grow(int[][] array, int minSize) { assert minSize >= 0: "size must be positive (got " + minSize + "): likely integer overflow?"; if (array.length < minSize) { int[][] newArray = new int[oversize(minSize, RamUsageEstimator.NUM_BYTES_OBJECT_REF)][]; System.arraycopy(array, 0, newArray, 0, array.length); return newArray; } else { return array; } } public static int[][] grow(int[][] array) { return grow(array, 1 + array.length); } public static int[][] shrink(int[][] array, int targetSize) { assert targetSize >= 0: "size must be positive (got " + targetSize + "): likely integer overflow?"; final int newSize = getShrinkSize(array.length, targetSize, RamUsageEstimator.NUM_BYTES_OBJECT_REF); if (newSize != array.length) { int[][] newArray = new int[newSize][]; System.arraycopy(array, 0, newArray, 0, newSize); return newArray; } else { return array; } } public static float[][] grow(float[][] array, int minSize) { assert minSize >= 0: "size must be positive (got " + minSize + "): likely integer overflow?"; if (array.length < minSize) { float[][] newArray = new float[oversize(minSize, RamUsageEstimator.NUM_BYTES_OBJECT_REF)][]; System.arraycopy(array, 0, newArray, 0, array.length); return newArray; } else { return array; } } public static float[][] grow(float[][] array) { return grow(array, 1 + array.length); } public static float[][] shrink(float[][] array, int targetSize) { assert targetSize >= 0: "size must be positive (got " + targetSize + "): likely integer overflow?"; final int newSize = getShrinkSize(array.length, targetSize, RamUsageEstimator.NUM_BYTES_OBJECT_REF); if (newSize != array.length) { float[][] newArray = new float[newSize][]; System.arraycopy(array, 0, newArray, 0, newSize); return newArray; } else { return array; } } /** * Returns hash of chars in range start (inclusive) to * end (inclusive) */ public static int hashCode(char[] array, int start, int end) { int code = 0; for (int i = end - 1; i >= start; i--) code = code * 31 + array[i]; return code; } /** * Returns hash of bytes in range start (inclusive) to * end (inclusive) */ public static int hashCode(byte[] array, int start, int end) { int code = 0; for (int i = end - 1; i >= start; i--) code = code * 31 + array[i]; return code; } // Since Arrays.equals doesn't implement offsets for equals /** * See if two array slices are the same. * * @param left The left array to compare * @param offsetLeft The offset into the array. Must be positive * @param right The right array to compare * @param offsetRight the offset into the right array. Must be positive * @param length The length of the section of the array to compare * @return true if the two arrays, starting at their respective offsets, are equal * * @see java.util.Arrays#equals(char[], char[]) */ public static boolean equals(char[] left, int offsetLeft, char[] right, int offsetRight, int length) { if ((offsetLeft + length <= left.length) && (offsetRight + length <= right.length)) { for (int i = 0; i < length; i++) { if (left[offsetLeft + i] != right[offsetRight + i]) { return false; } } return true; } return false; } // Since Arrays.equals doesn't implement offsets for equals /** * See if two array slices are the same. * * @param left The left array to compare * @param offsetLeft The offset into the array. Must be positive * @param right The right array to compare * @param offsetRight the offset into the right array. Must be positive * @param length The length of the section of the array to compare * @return true if the two arrays, starting at their respective offsets, are equal * * @see java.util.Arrays#equals(byte[], byte[]) */ public static boolean equals(byte[] left, int offsetLeft, byte[] right, int offsetRight, int length) { if ((offsetLeft + length <= left.length) && (offsetRight + length <= right.length)) { for (int i = 0; i < length; i++) { if (left[offsetLeft + i] != right[offsetRight + i]) { return false; } } return true; } return false; } /* DISABLE THIS FOR NOW: This has performance problems until Java creates intrinsics for Class#getComponentType() and Array.newInstance() public static T[] grow(T[] array, int minSize) { assert minSize >= 0: "size must be positive (got " + minSize + "): likely integer overflow?"; if (array.length < minSize) { @SuppressWarnings("unchecked") final T[] newArray = (T[]) Array.newInstance(array.getClass().getComponentType(), oversize(minSize, RamUsageEstimator.NUM_BYTES_OBJECT_REF)); System.arraycopy(array, 0, newArray, 0, array.length); return newArray; } else return array; } public static T[] grow(T[] array) { return grow(array, 1 + array.length); } public static T[] shrink(T[] array, int targetSize) { assert targetSize >= 0: "size must be positive (got " + targetSize + "): likely integer overflow?"; final int newSize = getShrinkSize(array.length, targetSize, RamUsageEstimator.NUM_BYTES_OBJECT_REF); if (newSize != array.length) { @SuppressWarnings("unchecked") final T[] newArray = (T[]) Array.newInstance(array.getClass().getComponentType(), newSize); System.arraycopy(array, 0, newArray, 0, newSize); return newArray; } else return array; } */ // Since Arrays.equals doesn't implement offsets for equals /** * See if two array slices are the same. * * @param left The left array to compare * @param offsetLeft The offset into the array. Must be positive * @param right The right array to compare * @param offsetRight the offset into the right array. Must be positive * @param length The length of the section of the array to compare * @return true if the two arrays, starting at their respective offsets, are equal * * @see java.util.Arrays#equals(char[], char[]) */ public static boolean equals(int[] left, int offsetLeft, int[] right, int offsetRight, int length) { if ((offsetLeft + length <= left.length) && (offsetRight + length <= right.length)) { for (int i = 0; i < length; i++) { if (left[offsetLeft + i] != right[offsetRight + i]) { return false; } } return true; } return false; } public static int[] toIntArray(Collection ints) { final int[] result = new int[ints.size()]; int upto = 0; for(int v : ints) { result[upto++] = v; } // paranoia: assert upto == result.length; return result; } private static class NaturalComparator> implements Comparator { NaturalComparator() {} @Override public int compare(T o1, T o2) { return o1.compareTo(o2); } } @SuppressWarnings("rawtypes") private static final Comparator NATURAL_COMPARATOR = new NaturalComparator(); /** Get the natural {@link Comparator} for the provided object class. */ @SuppressWarnings("unchecked") public static > Comparator naturalComparator() { return (Comparator) NATURAL_COMPARATOR; } /** Swap values stored in slots i and j */ public static void swap(T[] arr, int i, int j) { final T tmp = arr[i]; arr[i] = arr[j]; arr[j] = tmp; } // intro-sorts /** * Sorts the given array slice using the {@link Comparator}. This method uses the intro sort * algorithm, but falls back to insertion sort for small arrays. * @param fromIndex start index (inclusive) * @param toIndex end index (exclusive) */ public static void introSort(T[] a, int fromIndex, int toIndex, Comparator comp) { if (toIndex-fromIndex <= 1) return; new ArrayIntroSorter(a, comp).sort(fromIndex, toIndex); } /** * Sorts the given array using the {@link Comparator}. This method uses the intro sort * algorithm, but falls back to insertion sort for small arrays. */ public static void introSort(T[] a, Comparator comp) { introSort(a, 0, a.length, comp); } /** * Sorts the given array slice in natural order. This method uses the intro sort * algorithm, but falls back to insertion sort for small arrays. * @param fromIndex start index (inclusive) * @param toIndex end index (exclusive) */ public static > void introSort(T[] a, int fromIndex, int toIndex) { if (toIndex-fromIndex <= 1) return; introSort(a, fromIndex, toIndex, ArrayUtil.naturalComparator()); } /** * Sorts the given array in natural order. This method uses the intro sort * algorithm, but falls back to insertion sort for small arrays. */ public static > void introSort(T[] a) { introSort(a, 0, a.length); } // tim sorts: /** * Sorts the given array slice using the {@link Comparator}. This method uses the Tim sort * algorithm, but falls back to binary sort for small arrays. * @param fromIndex start index (inclusive) * @param toIndex end index (exclusive) */ public static void timSort(T[] a, int fromIndex, int toIndex, Comparator comp) { if (toIndex-fromIndex <= 1) return; new ArrayTimSorter(a, comp, a.length / 64).sort(fromIndex, toIndex); } /** * Sorts the given array using the {@link Comparator}. This method uses the Tim sort * algorithm, but falls back to binary sort for small arrays. */ public static void timSort(T[] a, Comparator comp) { timSort(a, 0, a.length, comp); } /** * Sorts the given array slice in natural order. This method uses the Tim sort * algorithm, but falls back to binary sort for small arrays. * @param fromIndex start index (inclusive) * @param toIndex end index (exclusive) */ public static > void timSort(T[] a, int fromIndex, int toIndex) { if (toIndex-fromIndex <= 1) return; timSort(a, fromIndex, toIndex, ArrayUtil.naturalComparator()); } /** * Sorts the given array in natural order. This method uses the Tim sort * algorithm, but falls back to binary sort for small arrays. */ public static > void timSort(T[] a) { timSort(a, 0, a.length); } }