
Testing and Evaluation of Virus Detectors for
Handheld Devices

Jose Andre Morales, Peter J. Clarke, Yi Deng
School of Computing and Information Sciences

Florida International University
Miami, Fl 33199

{ jmora009, clarkep, deng } @cis.fiu.edu

ABSTRACT
The widespread use of personal digital assistants and smartphones
should make securing these devices a high priority. Yet little
attention has been placed on protecting handheld devices against
viruses. Currently available antivirus software for handhelds is
few in number. At this stage, the opportunity exists for the
evaluation and improvement of current solutions. By pinpointing
weaknesses in the current antivirus software, improvements can
be made to properly protect these devices from a future tidal wave
of viruses. This research evaluates four currently available
antivirus solutions for handheld devices. A formal model of virus
transformation that provides transformation traceability is
presented. Ten tests were administered; nine involved the
modification of source code of a known virus for handheld
devices. The testing techniques used are well established in PC
testing; thus the focus of this research is solely on handheld
devices. The test results produced high false negative rates for
the antivirus software and an overall false negative rate of 42.5%.
This high rate shows that current solutions poorly identify
modified versions of a virus. The virus is left undetected and
capable of spreading, infecting and causing damage.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging; D.2.8
[Software Engineering]: Metrics – performance measures; D.4.6
[Operating Systems]: Security and Protection – Invasive
Software

General Terms
Measurement, Performance, Reliability, Security, Verification.

Keywords
Anti-virus, malware, black-box testing, virus, worm, handheld,
pda, windows mobile, smartphones, windows ce

1. INTRODUCTION
On June 14, 2004, the first computer virus infecting handheld
devices was identified [25]. The first virus to infect handhelds*
running Windows Mobile operating system was released July 17,
2004 [21]. This was the beginning of a new era for the virus and
antivirus community. At the time there were little if any antivirus
solutions available. An overwhelming majority of users were
vulnerable to any possible viral attack. In a reactionary effort,
security companies released antivirus solutions for the infected
devices that only protected against these specific viruses. Still
today many handhelds do not have some form of antivirus
software installed.

This research evaluates current antivirus solutions for handhelds
with the objective of identifying problems in their detection
mechanisms. To achieve this objective we introduce a formal
model to represent virus transformations and use the model in the
generation of test cases. This model provides detailed traceability
of the transformations produced by a virus. The transformed
viruses can be precisely ordered by creation time and
transformation type. The approach taken was to create test cases
that are modifications of an already identified virus and load them
into the handheld running the antivirus software. That is, we
wanted to test the detection accuracy of the antivirus software
against virus modifications. Specifically, the tests were designed
with the goal of producing false negatives, which occur when an
infected object is not detected as infected, by the virus detectors.
Testing virus detectors for production of false negatives has been
extensively performed in PCs [1, 26] and is well documented.
Therefore this research focuses only on testing handheld devices.
A high false negative rate would reveal virus detection
weaknesses in the software. The test environment consisted of a
Pocket PC running the Microsoft Windows Mobile operating
system and the antivirus software. The tested antivirus software
is specifically designed for this platform and currently available
to the public.

To our knowledge, this research is the first to evaluate current
antivirus solutions for the Windows Mobile Platform and for
handheld devices in general. The flaws and problems discovered
by this research can help lay the foundation for future study and
work in virus detection for handheld devices. The results of this

* Smartphones and personal digital assistants will be collectively

referred to as handheld devices or handhelds throughout this
paper.

work can be made public via vulnerability databases, such as the
National Vulnerability Database [19]. This research also provides
insight on the application of testing methodologies to a new
platform in the emerging area of handheld devices. Currently
there is no standard set of test cases for virus detectors on this
platform. Testing related organizations like Eicar.com and av-
test.org also have not yet addressed this issue. The test cases
created here can be applied to the development of a standardized
set of test cases for this platform and these devices.

In the next section we overview the terminology used in the
paper. Section 3 describes related work on testing virus detectors.
Section 4 describes a formal model for virus transformation and
the test categories used to generate the test cases. Section 5
describes the tests we performed and Section 6 our results.
Finally we conclude in Section 7.

2. BACKGROUND
1. Computer Viruses: A computer virus is defined as a program
that copies a possibly evolved version of itself [26]. Computer
viruses have become very sophisticated in detection avoidance,
fast spreading and causing damage. A highly populated
taxonomy of viruses exists with each classification having its own
challenges for successful detection and removal [26]. Today
viruses are regarded as a real global threat and viewed as a
weapon usable by those bent on creating large scale interruption
of everyday life [4, 10].

2. Virus Detectors: The problem of viral detection was studied
by Cohen which showed that detecting a virus is not decidable
[2]. Many detection algorithms have been presented [24], each
with its advantages and disadvantages. Virus detection can be
classified as one of two forms: signature based and behavior
based [26]. Signature based detectors work by searching through
objects for a specific sequence of bytes that uniquely identify a
specific version of a virus. Behavior based detectors identify an
object as being viral or not by scrutinizing the execution behavior
of a program [23]. Behavior based detection is viewed by many
including the authors as key to the future of virus detection [3, 15,
17] because of its ability to detect unknown viruses.

3. Handheld Devices: A handheld device can be described as a
pocket sized device with computing capabilities. Two types of
handheld devices are relevant to this paper: the personal digital
assistant, also called pda, and the smartphone. A pda is used as a
personal organizer that includes a contact list, calendar of events,
voice recorder, notes, and more. A smartphone can be viewed as
a cellular phone integrated with a pda. Both of these types of
handhelds share some basic limitations such as: limited screen
size, variable battery life, small storage space, operating system
installed with limited resources and reduced processing
capabilities [8, 27]. These limitations may not allow for antivirus
software to be as powerful as those found in desktop PC’s.
Signature databases and detection functionalities are limited in
size and scope. This can possibly result in more viruses being
able to easily spread and avoid detection in an environment with
weak security. Some handheld device security issues have been
previously addressed in [5, 6, 7, 13, 29].
4. Evolution of Virus Detectors: The evolution of virus
detectors has moved parallel with the release of viruses in a
reactionary manner [12]. As new viruses with new techniques

were identified, antivirus researchers rushed to include these new
tactics in their software [18, 26]. This evolution has produced a
learning curve, with virus authors and antivirus researchers as
both teacher and student. Antivirus companies need to develop
security solutions for these devices that defend against the types
of viruses seen in the past without having to go through the same
learning curve for a second time.

5. Software Testing: In this paper we use a black-box approach
to test the antivirus solutions for handheld devices. Black-box
testing is an approach that generates test data solely from the
application’s specification [16]. Since the software under test is
proprietary, we employ the end-user view of the software as our
specification. This specification is the detection of objects
infected with a virus. There are several techniques used to
generate test cases based on the specification of a software system
[30]. Two of these techniques are input space partitioning, and
random testing [30]. Partition testing uses domain analysis to
partition the input-output behavior space into subdomains such
that any two test points chosen in a subdomain generates the same
output value [20]. Random testing involves the selection of test
points in the input space based on some probability distribution
over the input space [16]. To generate the input data for our test
cases we used a combination of input space partitioning and
random selection of test points. Due to the limited access to the
full specification of the antivirus software, we informally apply
partition testing and random testing. We intuitively apply these
techniques using the results of previous studies in testing antivirus
software.

3. RELATED WORK
This research is motivated by the work done by Christodorescu
and Jha [1]. Their research proposed methods of testing malware
detectors based on program obfuscation [26]. They used
previously identified viruses to test the resilience of commercially
available antivirus software for PCs. Christodorescu and Jha
address two questions in their work; (1) the resistance of malware
detectors to obfuscations of known malware, (2) can a virus
author identify the algorithm used in a malware detector based on
obfuscations of the malware. The approach they used to answer
these questions involved: the generation of test cases using
program obfuscation, the development of a signature extraction
algorithm, and the application of their methodology to three
commercial virus scanners. The results of their work indicated
that the commercial virus scanners available for PCs are not
resilient to common obfuscation transformations. We use a
similar approach to test the virus detection ability for handheld
devices. Unlike the work by Christodorescu and Jha [1], we are
limited by the number of viruses available for handheld devices.
This limitation is based on the fact that virus authors have just
only started to write viruses targeting handheld devices. Our
experiments use similar transformations on the source code of the
malware to generate test cases.
Marx [14] presents a comprehensive set of guidelines for testing
anti-malware software in the “real world”. Marx claims that
many of the approaches used to test anti-malware software in
research do not translate into appropriate testing strategies for
small business and home office use. He further states that the
focus of testing for the real world should be to create tests that are
as exact as possible. That is, tests that focuses on on-demand, on-
access, disinfection and false positive testing of the anti-malware

software products. Although his article is targeted for data
security managers and professional testers, he outlines procedures
that should be taken when performing anti-virus software testing
in any environment. The work done by Marx [14] was used as a
reference guideline for this research. Other relevant research on
the subject of testing virus detectors can be found in [9, 11].

4. TESTING AND EVALUATION
In this section we present a formal model for the transformation
of viruses and show how this model is used to generate the test
cases for our study. Descriptions of each of the five test
categories are also given.

4.1 Formal Model of Virus Transformation
As previously stated, a virus is defined as a program that copies a
possibly evolved version of itself [26]. A virus v є V where V is
the set of all possible viruses, enters during its execution a
transformation stage R where one or more possibly evolved
copies of v written v’, are produced and copied to some location
(see equation(1)). Successful transformation occurs when v’ has
preserved the original intended execution behavior XB of v (see
equation (2)). Thus we have the following:

Ri (pj, v, s) ≡ pij (v, s) = v’ (1)

Ri is the currently running transformation instance. pij є P is the
specific type of transformation where P = {T, H, B, L, C}, for
example B means substitution (see section 4.2 for descriptions of
these values). i holds a value representing the number of
transformations that have occurred, the current value of i is the ith
transformation to have taken place. j holds the value representing
the number of times, jth occurrence, a specific transformation type
p has occurred, if p = H and j = 3 that means that the
transformation type H has been used in 3 transformations up to
this point. v is the virus to be transformed. s is an element that
provides p the details for a specific transformation. For example
if p = B then s may contain the line numbers to substitute and the
new lines to use for substitution (see section 4.2 for details of s
for each transformation type). v’ is the transformed version of v.
When Ri occurs, the operation is always independent from every
other occurrence of R. The virus v used as input by R is always
the same; it is the virus currently executing that invokes R. The
output of R, written v’, is always a possible evolution of v. The
number of v’s that is produced is equal to the value of i. In each
occurrence of R, the only input that may change is the
information held in s. Thus the output v’ of two occurrences of R
may be the same if s was unchanged in both operations and the
same transformation type p was used.

If (XB(v’) = XB(v)) Then Ri (pj, v, s) = Success

 Else Ri (pj, v, s) = Failure (2)

v’ can equivalently be written as vijk where k is the symbol for the
transformation type used in a specific transformation Ri. k is
added to differentiate the value of j for each transformation type
p. This is necessary to illustrate that there are multiple instances
of j, one for each transformation type p that is used. Each j has its
own value representing the j number of times p has been used.
Therefore, if j = 2 and k = C, we know that this is the second time
compression is used. Assume virus v has finished one execution
of itself. During this execution 5 transformations occurred. The
transformation types used were: 1 substitution of source code, 2

compressions, 1 insertion of trash source code and 1 label
renaming. Using the notation above, we can formalize this as
follows:

R1 (B1, v, s) ≡ B11 (v, s) = v11B

R2 (C1, v, s) ≡ C21 (v, s) = v21C

R3 (C2, v, s) ≡ C32 (v, s) = v32C

R4 (H1, v, s) ≡ H41 (v, s) = v41H

R5 (L1, v, s) ≡ L51 (v, s) = v51L

We can see from this notation that placing the outputs v’ in order
of creation is simple. The notation facilitates identifying each
virus v’ by order of creation and input transformation type. Note
that virus v21C and v32C may have been transformed the same or
differently from one another. This is, as previously noted,
dependent on the information held in s.

A virus detector written D, is a software program meant to detect
and remove viruses before infecting a computer system [26].
When detection is complete only one of two outcomes can result.
The detection was successful or there was a failure. A successful
detection implies the correct identification of a virus infected
object Ov. This implies that the object O is infected with a virus
v. That is, the sequence of bits representing v is contained within
the sequence of bits representing O. Thus v becomes a
subsequence of O. The object could be a file, an address in
memory, or some other information stored in a computer system.
All objects O are assumed non-viral before detection starts. We
express this idea as follows:

v is a subsequence of O iff O is infected with v (3)

if v is a subsequence of O then O transforms to Ov (4)

D(O) = Success implies v is a subsequence of O (5)

A failed detection produces one of two outcomes: a false positive,
FP, or a false negative, FN. A false positive occurs when a non
viral object is detected as being viral. A false negative occurs
when a virus infected object is not detected as being viral. A
small amount of false positives is tolerable, but false negatives
must be avoided always. Therefore:

D(O) = FP falsely implies v is a subsequence of O for some
virus v (6)

D(Ov) = FN D fails to recognize that v is a subsequence of O
for a specific virus v (7)

Note (7) assumes that the object is already infected with a virus
thus justifying the use of the symbol Ov.

4.2 Test Categories
The test cases generated, using a non-strict approach to input
space partitioning and random testing, can be classified in five
categories. These are transposition of source code, insertion of
trash source code, substitution of source code, label renaming and
compression of the virus executable. These categories were
chosen due to the facilitation each one gives virus detectors to
produce a false negative [1]. These categories are also
characteristic of polymorphism [18, 26] and metamorphism [26],
powerful techniques used by virus authors. Test case
implementations of each category are presented in section 5.2.

1. Transposition of Source Code: Transposition is the
rearrangement of statements in the source code. This makes the
virus look differently by reorganizing its physical appearance. It
still preserves the original intended execution behavior.
Transposition can be done randomly or in specific areas. The
whole body of the source code or only pieces of it can be
transposed as long as the original intended execution behavior is
preserved. Applying (1) we have:

 Ri (Tj, v, s) ≡ Tij (v, s) = vijT (8)

where p = T indicates transposition and s provides the line
numbers of the source code to transpose. Transposition can result
in changing the area of source code that is used as the signature
by virus detectors. This is a result of a change in the byte
sequence of the executable version of the virus. The transposition
can also result in an increase in the byte size of the virus
executable. This is due to the addition of commands that preserve
the original intended execution behavior. These changes make
transposition of source code a possible cause of a virus detector
producing a false negative.

2. Insertion of Trash Source Code: This category inserts new
code into the original source code. This new code consists of
instructions that do nothing to change, alter or affect the intended
behavior of the original source code. It does, in some cases,
change the byte size of the executable version of the virus. By
changing the byte size of the executable, some virus detectors
may produce a false negative more easily. This occurs in the case
where the detector uses the length of the entire virus as part of the
detection process. Thus a change in this length could result in the
detector misreading the virus. What the newly inserted code does
is inconsequential as long as it does not change the original
intended behavior of the source code. Using rule (1) trash source
code insertion is expressed as:

 Ri (Hj, v, s) ≡ Hij (v, s) = vijH (9)

where p = H denotes trash insertion. s holds the trash code to be
inserted and source code locations of where to insert them.
3. Substitution of Source Code: The removal of lines of source
code is replaced with different lines of code. The lines of code
used for replacement are not copied from other areas of the code
body. The replacement lines can be the same size as the original.
They can also be deliberately shortened or lengthened. This is
done to manipulate the overall byte size of the virus executable.
The lines that are to be replaced cannot be in an area that can
disrupt the original intended execution behavior. This implies
that this process cannot be random. Careful selection of lines to
replace can assure preservation of execution behavior. Applying
(1) produces as follows:

 Rj (Bj, v, s) ≡ Bij (v, s) = vijB (10)

p = B specifies substitution and s details which lines to replace
and the lines to replace them with. A virus detector can produce a
false negative under this category for one of two possible reasons.
First, the substituted lines can change the source code used as a
signature by the detector for a given virus. Second, as discussed
before, if the byte size is not preserved it could cause the detector
to identify it as benign. This occurs in cases where the length of
the virus is used in detection.

4. Label Renaming: This category involves the substitution of
label names in the source code for new names. A label is
synonymous with a procedure or function name in a high level
language. The label is a pointer to an address space where the
instructions to be executed are located. A label therefore points to
a set of instructions that are always executed when the label is
referenced. The new labels can be kept the same byte size as the
original one and also can be purposely changed to a different size.
In addition, the corresponding calls to these labels must be
updated to ensure original intended execution behavior. The label
names chosen for substitution should be those that reference
blocks of instructions essential to the virus execution such as:
finding a file to infect, opening a file for infection and infecting
the file. A virus detector can produce a false negative in this
category only when a signature includes a label or a call to a label
that has been modified. If no labels are included in the virus
signature and the length of the entire virus is not used for
detection, the possibility of a false negative is greatly reduced.
This category is expressed as follows from (1):

 Ri (Lj, v, s) ≡ Lij (v, s) = vijL (11)

where p = L signifies label renaming and s holds a list of the label
names to replace and the new names to replace them with.

5. Compression of a Virus Executable: This category is the
compression of the original virus executable. Compression is
done by a commercial product or private software belonging to
the virus author. The original intended execution behavior is
fully preserved. When a virus transforms it can evolve into a new
version of itself that is self compressed. This new version makes
no modifications to alter the execution as it is originally intended.
Virus detectors can produce a false negative under this category
by failing to match the virus signature. The compression may
create a new byte sequence in achieving an overall byte size
reduction. This in turn may cause the source code used for the
virus signature to be completely modified and thus detection is
almost impossible. Virus compression can be simply expressed as
follows:

 Ri (Cj, v, s) ≡ Cij (v, s) = vijC (12)

p = C represents compression and s holds the file name for the
compressed version.

5. TEST IMPLEMENTATION
As of the writing of this paper there were only two known viruses
for the Windows Mobile platform: WinCE.Duts.A and
Backdoor.Brador.A [21, 22]. Of these two viruses we were only
able to conduct testing with one of them, WinCE.Duts.A. Though
the source code for both of these is readily available to the public
[21, 22], Duts is the only one whose available source code can be
assembled and executed. The Duts virus consists of 531 lines of
source code. This virus was created as a proof of concept code by
virus author Ratter formerly of the virus writers group 29A. It
exposes some of the vulnerabilities already present in the
Windows Mobile platform. It is written in the ARM processor
assembly language.

5.1 Testing Environment
Four commercially available antivirus products for handheld
devices were tested: Norton, Avast!, Kaspersky, and

Airscanner.com. The handheld device used for testing was a
Toshiba 2032SP Pocket PC running Windows Mobile 2002
(version 3.0.11171, build 11178) with full phone functionality
provided by Sprint PCS. The central processing unit is the ARM
processor SA1110. The Operating System of the PC used was
Windows XP service pack 2. Before administering the test cases
a control test was given. The original virus was tested for
detection to assure each antivirus product properly identified it.
Each of the ten test cases were allowed to fully execute to assure
that infection of the system was occurring. Thus showing the
original intended execution behavior of the virus had been
preserved after modifications was made.

5.2 Description of Test Cases
The test cases were introduced to the handheld device via the
synchronization functionality from a PC. The version used here
was Microsoft ActiveSync version 3.7.1 build 4034. The
antivirus software performed a complete virus scan with every
test. Before testing commenced the antivirus software was
checked for updates from the software company’s website
including the latest virus signature database. Due to the page
limit of this paper we are unable to show the complete code
listing for the test cases. However, we show relevant segments of
code for several test cases.

1. Transposition of Source Code
Test Case 1.1: We took a set of blocks of source code and
inserted labels to each of these blocks. The area of the source
code chosen for this is the area where the actual file infection
takes place, thus assuring probable execution of the transposed
source code. Then with the use of branch statements each labeled
block branched to the next block in the set thus preserving the
original execution order. As a final step, all the blocks were
rearranged and taken out of its original physical order. The
following is an implementation of this starting at line 308 of the
virus source code:

Test Case 1.2: This involved manipulation of values held in
various registers at a given moment during the execution. In
assembly language, registers are used extensively to hold values

and addresses. The manipulation of these values was done via
addition and/or subtraction of a value in a particular register.
Moving the value to other registers was also used. The result
was an extended piece of source code that took a value, modified
it via 2 to 5 instructions and finished by placing back the original
value in the original register. This transformation preserved the
execution order of the virus and the intended values held in the
registers at a given instant in execution. The following is an
implementation starting at line 80 of the virus source code:

Original Source Code Modified Source Code

mov r0, r5
mov r1, r4
mov lr, pc
ldr pc, [r11, #-20]
cmp r0, #0
bne find_files_iterate

mov r0, r5
mov r1, r4
add r0, r0, #2
add r0, r0, #4
add r1, r1, #6
sub r0, r0, #6
sub r1, r1, #4
sub r1, r1, #2
mov r4, r1
mov r5, r0
mov lr, pc
ldr pc, [r11, #-20]
cmp r0, #0
bne find_files_iterate

2. Insertion of Trash Source Code
Test Case 2.1: This involved a copy of an original single line of
code. The line was pasted back into the source code immediately
following the original one. This did not change the behavior
because the line of source code chosen consists of the instruction
DCB which defines a byte with a string value. This insertion only
increased the byte size of the file by the size of the line of code.

Test Case 2.2: In this test, the same instruction as in test case 2.1
was inserted right after five lines of source code. The five lines
were not in successive order and deliberately chosen to cover the
whole body of the source code. Each chosen line represented an
essential part of the execution sequence such as: finding a file to
infect and reading the stack pointer. The insertion did not affect
the intended execution of the code and increased the file’s byte
size by length of the insert line multiplied by five.

DCB " just looking "

Inserted after each of the following lines

Line 18 mov r11, sp
Line 64 ldr pc, [r11, #-24] ; find first file
Line 228 cmp r0, #0
Line 303 ldr r6, [r4, #0x28] ; gimme entrypoint rva
Line 361 mov lr, pc

Original Source Code Modified Source Code

ldr r8, [r0, #0xc]
add r3, r3, r8

 str r3, [r4, #0x28

sub r6, r6, r3
sub r6, r6, #8

mov r10, r0
ldr r0, [r10, #0x10]
add r0, r0, r7
ldr r1, [r4, #0x3c]
bl _align_

section19
 ldr r8, [r0, #0xc]
 add r3, r3, r8
 str r3, [r4, #0x28]
 bl section20

 section21
 mov r10, r0
 ldr r0, [r10, #0x10]
 add r0, r0, r7
 ldr r1, [r4, #0x3c]
 bl _align_
 bl section22

 section20
 sub r6, r6, r3
 sub r6, r6, #8

 bl section21

3. Substitution of Source Code
Test Case 3.1: Here we replaced line 514 of the virus source
code:

DCB "This is proof of concept code. Also, i wanted to make
avers happy."

With

DCB "This is foorp fo tpecnoc code. Also, i wanted to make
avers happy."

The substitution preserved the length of the original line while
making a modification to a subsection of it. This was done to
make a modification that did not affect the byte size of the virus.
This substitution did not affect the intended execution of the
virus. Finally, it is worth noting that the format of the two lines is
indeed identical with respect to spaces and character alignments.

Test Case 3.2: This test is similar to test case 3.1. We replaced
the same line 514 of the virus source code with an almost
identical one. This new line also had a modification to a
subsection of it. The modification was not the same as that of the
first test. This modification made the length of the line smaller
than the original and thus also decreased the overall byte size.
Also the character and space alignment was not preserved. The
following is the performed line substitution:

DCB “This is proof of concept code. Also, i wanted to make
avers happy."

Changed to

DCB “This is poc code. Also, i wanted to make avers
happy."

Test Case 3.3: Here we again substituted line 514 of the virus
source code with a new one. The new line of code was
maximally modified while still preserving the ability to assemble
the source code. The line used for replacement was the same
length as the original line but space and character alignment were
purposely not preserved. The following is the actual substitution:

DCB “This is proof of concept code. Also, i wanted to make
avers happy."

Changed to

DCB “dkfjvd dkfje dkfdsfg kd934,d kdick 3949rie jdkckdke
345r dlie4 vhg"

4. Label Renaming
The labels that were used for substitution were purposely kept the
same byte size and also made different sizes in the tests. Also the
corresponding calls or branches to these labels were also modified
to ensure original execution behavior. The label names chosen
for substitution referenced blocks of instructions essential to the
virus execution such as: finding a file to infect, opening a file for
infection and infecting the file.

Test Case 4.1: This test was a simple reversal of four label
names found throughout the source code. The byte size was
preserved. Also character alignment was preserved. Two of the
labels, appearing in lines 79 and 397 of the virus source code
were renamed as follows:

Line Number Original Source
Code

Modified Source
Code

79 find_next_file next_file_find

397 open_file file_open

Test Case 4.2: In this test, the label names were purposely made
longer thus increasing the byte size. In this test the character and
space alignment were not preserved. Two of these labels, located
at lines 79 and 482 of the virus source code were renamed as
follows:

Line
Number

Original
Source Code Modified Source Code

79 find_next_file next_file_to_find_for_use

482 ask_user user_ask_question_to_continue

5. Compression of a Virus Executable
Test Case 5.1: Compression of the virus executable was done by
compressing the executable version of the original virus using
commercially available software. The software PocketRAR [28]
was chosen for this task. This choice was made based on the
experience of using the software and there is a version available
for Windows Mobile. The compressed file was placed in the
handheld device and opened to view its contents. Then the virus
scan was performed. This was done to find out if the antivirus
software would not only detect the virus in compressed form but
also delete it or at a minimum keep it from executing.

6. TEST RESULTS
Table 1 shows results of applying the tests described above.
Column 1 is the test categories. Column 2 is the individual tests
in the order described in Section 5. Columns 3 through 6 contain
the individual tests results for the antivirus software used in the
test executions. The last row shows the false negative rate of each
of the software tested. A value of 0 represents detection failure,
thus the virus was not detected and deleted and was still capable
of execution. A value of 1 represents detection success and
deletion of the infected file. A value of 2 denotes successful
detection but not deletion, this value was added for the special
case of compression. Clearly a value of 0 is a false negative.

Norton had the highest false negative rate with Avast! having the
lowest. Not including scanning the original virus, a total number
of 40 tests were performed. Of these, 23 tests were successful
detections, leaving 17 as failures. This is an overall 42.5% false
negative rate, very high and unacceptable. In the test for
compression of source code, a special note should be taken
regarding the behavior of the virus. The compression software
apparently creates a temporary copy of the contents of a
compressed file when the files are viewed. The virus scan detects
and deletes this temporary copy, however, the original virus file
can still be executed from within the compressed file view. Thus
the compression software does not allow the antivirus to delete

the contents of a compressed file. We count this as a failure
because the virus is still in the handheld device, even though it
was detected, and can still be executed. Table 2 shows false
negative rates with columns 1 and 2 similar to Table 1, Columns
3 and 4 shows successful and failed detections, and Columns 5
and 6 show false negative rates by individual test and test
category.

Compression had the highest false negative rate followed by
transposition of source code and insertion of trash source code. In
the individual test results, the second test of trash insertion caused
all the antivirus software to produced false negatives. Yet the first
test only caused one false negative. This shows the insertion of
trash source code within actual lines of instruction code is enough
to cause the detector to incorrectly identify the file as viral. The
transposition test category, the first test caused the most false
negatives. The insertion of branch statements in the source code
results in a different physical appearance while maintaining the
same execution behavior proved to be very effective in avoiding
detection.

In the substitution of source code category the false negative
produced in test two hints that a slight decrease in the byte size of

the virus executable may cause the virus to go undetected. In test
three of the same category, we purposely made space and
character alignments different than the original line of source
code while keeping the byte size the same which caused some
false negatives to occur.

In the label renaming category preserving and purposely changing
the byte size of the labels did not affect the virus detectors. This
implies that changing the byte size may have the affect of
avoiding detection if the byte size reduction is done in certain
areas of the source code. Also one can infer that labels may not
be used by the virus signatures. When a byte size reduction
causes a false negative, the modified area might be of critical
importance to the detector deciding if the code is viral or not.
During the test case creation, we were not aware if the signature
used by a detector was modified. Many of the successful
detections could have occurred because the transformation did not
affect the virus signature. Overall, with a 42.5% false negative
rate, there is clearly room for improvement.

7. CONCLUSION
We have presented a technique of testing handhelds based on a
formal model of virus transformation. The results show multiple

Table 1 Virus scanner test results and false negative percentage by software

 Norton Avast! Kaspersky Airscanner.com

Original virus 1 1 1 1

Transposition Test 1.1 0 1 0 0

 Test 1.2 0 1 1 0

Trash Insertion Test 2.1 0 1 1 1

 Test 2.2 0 0 0 0

Substitution Test 3.1 1 1 1 1

 Test 3.2 0 1 1 1

 Test 3.3 1 1 0 0

Label Renaming Test 4.1 1 1 1 1

 Test 4.2 1 1 1 1

Compression Test 5.1 2 2 2 2

False Negative % 60% 20% 40% 50%

Table 2 False negative percentage by individual test and category

Successful
Detection

Failed
Detection

Per Test
False Negative %

Test Category
False Negative %

Transposition Test 1.1 1 3 75% 62.50%

 Test 1.2 2 2 50%

Trash Insertion Test 2.1 3 1 25% 62.50%

 Test 2.2 0 4 100%

Substitution Test 3.1 4 0 0% 25%

 Test 3.2 3 1 25%

 Test 3.3 2 2 50%

Label Renaming Test 4.1 4 0 0% 0%

 Test 4.2 4 0 0%

Compression Test 5.1 0 4 100% 100%

flaws in current virus detectors for handheld devices. The tests
led to high false negative rates for each antivirus product and an
extremely high overall false negative rate of 42.5%. These results
suggest that current virus detectors are purely simple signature
based detection. The formal model shows how detailed
traceability of the virus transformations can be done. Future work
includes the detailed study of false negative productions in any of
the given tests. Byte size changes, substitution and transposition
of source code and compression require further study to improve
virus detection under these conditions. Currently we have a great
archive of knowledge of viruses for PCs. This information can be
used to produce sophisticated virus scanners for handheld devices
given their limitations. Ideally, this will occur expeditiously and
preemptively to help avoid infections of future viruses for
handheld devices.

8. ACKNOWLEDGEMENTS
This was supported in part by the National Science Foundation
under Grant No. HRD-0317692. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements either expressed or implied by the above agencies.
The authors thank Gonzalo Argote-Garcia, Konstantin Beznosov
and Mihai Barbulescu for their contributions to this research.

9. REFERENCES
[1] Christodorescu M. and Jha S. Testing Malware Detectors.

International Symposium on Software Testing and Analysis
(ISSTA) 2004.

[2] Cohen F. A short course on computer viruses. Wiley
Professional Computing, 1994.

[3] Conry-Murray A. Behavior Blocking Stops Unknown
Malicious Code. Network Magazine, June 2002.

[4] Denning D. Cyberterrorism. Testimony before the Special
Oversight Panel of Terrorism Committee on Armed Services,
US House of Representatives, 23 May 2000.

[5] Fogie S. Pocket PC Abuse: To Protect and Destroy. Black
Hat USA 2004

[6] Foley S. and Dumigan R. Are Handheld Viruses a Threat?
Communications of the ACM, January 2001, Vol. 44, No. 1.

[7] Ford R. The Wrong Stuff?, IEEE Security & Privacy, 2004.
[8] Francia G. Embedded System Programming. Journal of

Computing Sciences in Colleges, Dec 2001, Vol. 17 Issue 2.
[9] Gordon S. and Howard F. Antivirus Software Testing for the

New Millennium. Proceedings of National Information
Systems Security Conference (NISSC) 2000.

[10] Gordon S. and Ford R. Cyberterrorism?. Symantec Security
Response White Paper, 2003.

[11] Gordon S. and Ford R. Real World Anti-Virus Product
Reviews and Evaluations - The current state of Affairs.
Proceedings of the 1996 National Information Systems
Security Conference.

[12] IBM Research. Virus Timeline.
http://www.research.ibm.com/antivirus/timeline.htm.

[13] Mackey D., Gossels J. and Johnson B.C. Securing your
handheld devices. The ISSA Journal, April 2004.

[14] Marx A. A guideline to anti-malware-software testing.
European Institute for Computer Anti-Virus Research
(EICAR) 2000 Best Paper Proceedings, pp.218-253.

[15] Messmer E. Behavior blocking repels new viruses.
NetworkWorldFusion, January 28, 2002.

[16] Myers G. J. The Art of Software Testing. John Wiley &
Sons, second edition, June 2004.

[17] Nachenberg C. Behavior Blocking: The Next Step in Anti-
Virus Protection. Security Focus, March 19, 2002.
http://www.securityfocus.com/infocus/1557.

[18] Nachenberg C. Computer Virus-Antivirus Coevolution.
Communications of the ACM, January 1997, Vol. 40 No. 1.

[19] National Vulnerability Database. http://nvd.nist.gov/.
[20] Ntafos S. C. On random and partition testing. In

Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis 1998
(ISSTA’98) pp. 42-48, Clearwater Beach FL, Mar 1998.
ACM Press.

[21] Peikari C., Fogie S. and Ratter/29A. Details Emerge on the
First Windows Mobile Virus,.
http://www.informit.com/articles/article.asp?p=337069.

[22] Peikari C., Fogie S., Ratter/29A and Read J. Reverse
Engineering the first Pocket PC Trojan.
http://www.samspublishing.com/articles/article.asp?p=34054
4.

[23] Schneider F. Enforceable Security Policies. ACM
Transactions on Information and System Security. Vol. 2,
No. 1, February 2000, pages 30-50

[24] Singh P. and Lakhotia A. Analysis and Detection of
Computer Viruses and Worms: An Annotated Bibliography.
ACM SIGPLAN Notices, February 2002.

[25] Symantec Antivirus Research Center.
http://securityresponse.symantec.com/avcenter/venc/data/sy
mbos.cabir.html

[26] Szor P. The Art of Computer Virus Research and Defense,
Addison-Wesley, 2005.

[27] Vahid F. and Givargis T. Embedded System Design a
Unified Hardware/Software Introduction. Wiley 2002.

[28] WinRAR, http://www.win-rar.com/.
[29] Wireless Handheld and Smartphone Security, Symantec

Security White Paper, http://www.symanctec.com.
[30] Zhu H., Hall P. A. V. and May J. H. R. Software Unit Test

Coverage and Adequacy. ACM Computing Surveys, 29(4),
pp. 366 – 427,1997. ACM Press

	1. INTRODUCTION
	2. BACKGROUND
	3. RELATED WORK
	4. TESTING AND EVALUATION
	4.1 Formal Model of Virus Transformation
	4.2 Test Categories
	5. TEST IMPLEMENTATION
	5.1 Testing Environment
	5.2 Description of Test Cases
	1. Transposition of Source Code
	2. Insertion of Trash Source Code
	3. Substitution of Source Code
	4. Label Renaming
	
	5. Compression of a Virus Executable

	6. TEST RESULTS
	7. CONCLUSION
	8. ACKNOWLEDGEMENTS
	9. REFERENCES

