

 CAS Static Analysis Tool Study -

Methodology

Center for Assured Software

National Security Agency

9800 Savage Road

Fort George G. Meade, MD 20755-6738
cas@nsa.gov

December 2011

- ii -

Warnings
Trade names or manufacturers’ names are used in this report for identification only. This usage

does not constitute an official endorsement, either expressed or implied, by the National Security

Agency.

References to a product in this report do not imply endorsement by the National Security Agency

of the use of that product in any specific operational environment, to include integration of the

product under evaluation as a component of a software system.

References to an evaluation tool, technique, or methodology in this report do not imply

endorsement by the National Security Agency of the use of that evaluation tool, technique, or

methodology to evaluate the functional strength or suitability for purpose of arbitrary software

analysis tools.

Citations of works in this report do not imply endorsement by the National Security Agency or

the Center for Assured Software of the content, accuracy or applicability of such works.

References to information technology standards or guidelines do not imply a claim that the

product under evaluation is in conformance with such a standard or guideline.

References to test data used in this evaluation do not imply that the test data was free of defects

other than those discussed. Use of test data for any purpose other than studying static analysis

tools is expressly disclaimed.

This report and the information contained in it may not be used in whole or in part for any

commercial purpose, including advertising, marketing, or distribution.

This report is not intended to endorse any vendor or product over another in any way.

Trademark Information
All company and product names used in this document are registered trademarks or trademarks

of their respective owners in the United States of America and/or other countries.

- iii -

Table of Contents
Section 1: Introduction ...1

1.1 Background ..1

1.2 Center for Assured Software (CAS) ..1
1.3 Feedback ..1

Section 2: CAS Methodology ..2
2.1 Juliet Test Cases ...2
2.2 Assessment ...2

2.2.1 Tool Execution ..2

2.2.2 Scoring Results ...2
2.3 Metrics ...3

2.3.1 Precision, Recall, and F-Score ..3
2.3.2 Discriminations and Discrimination Rate ...5

Section 3: CAS Tool Study ..6
3.1 Tool Run ..6

3.1.1 Test Environment ..6
3.1.2 Tool Installation and Configuration ..6

3.1.3 Tool Execution and Conversion of Results ..6
3.1.4 Scoring of Tool Results ..6

Section 4: CAS Tool Analysis ...7

4.1 Weakness Classes ..7

4.1.1 Authentication and Access Control ..7
4.1.2 Buffer Handling ..8
4.1.3 Code Quality ...8

4.1.4 Control Flow Management ...8
4.1.5 Encryption and Randomness...8

4.1.6 Error Handling ..8
4.1.7 File Handling ..8
4.1.8 Information Leaks ...9

4.1.9 Initialization and Shutdown ..9
4.1.10 Injection ..9

4.1.11 Malicious Logic ..9
4.1.12 Miscellaneous ...9
4.1.13 Number Handling..9

4.1.14 Pointer and Reference Handling ...10
4.2 Metrics ...10

4.2.1 Precision ..10
4.2.2 Recall ..10
4.2.3 F-Score ..10

4.2.4 Weighting ..10
Section 5: CAS Reporting ..11

5.1 Results by Tool ..12

5.1.1 Precision, Recall and F-Score Table ...12
5.1.2 Precision Graph by Tool ...13

- iv -

5.1.3 Recall Graph by Tool ..14
5.1.4 Precision-Recall Graphs by Tool ..15
5.1.5 Discriminations and Discrimination Rate Table by Tool ...17
5.1.6 Discrimination Rate Graphs by Tool ..18

5.2 Results by Weakness Class ..18
5.2.1 Precision Graphs by Weakness Class ...18
5.2.2 Recall Graphs by Weakness Class ..20
5.2.3 Discrimination Rate Graphs by Weakness Class ..20
5.2.4 Precision-Recall and Discrimination Results by Weakness Class22

5.3 Results for Two Tool Combinations ..22
5.3.1 Combined Discrimination Rate and Recall Table ..22

5.3.2 Combined Discrimination Rate and Recall Graphs ..23
5.3.3 Tool Coverage ...24

Appendix A : Juliet Test Case CWE Entries and CAS Weakness Classes A-1

- v -

Abstract

Part of the mission for the National Security Agency’s Center for Assured Software (CAS) is to

increase the degree of confidence that software used in the DoD is free from exploitable

vulnerabilities. Over the past several years, commercial and open source static analysis tools

have become more sophisticated at being able to identify flaws that can lead to such

vulnerabilities. As these tools become more reliable and popular with developers and clients, the

need to fully understand their capabilities and shortcomings is becoming more important.

To this end, the NSA CAS regularly conducts studies using a scientific, methodical approach that

measures and rates effectiveness of these tools in a standard and repeatable manner. The

methodology (termed the CAS Static Analysis Tool Study Methodology) is based on a set of

artificially created “known answer tests” that comprise examples of “good code” as well as

“flawed code”. In applying the methodology, the tester tests all tools using the common “testing

corpus”. The methodology then offers a common way to “score” the tools so that they are easily

compared. With this “known answer” approach, testers can have full insight into what a tool

should report as a flaw, what it “misses”, and what it actually reports. The CAS has created and

released the test corpus to the community for analysis, testing, and adoption.
a

This report provides a step by step description of this methodology in the hope that it can

become part of the public discourse on the measurement and performance of static analysis

technology. It is available for public consumption, comment and adoption. Comments on the

methodology are welcome and can be sent to cas@nsa.gov.

a
 This test suite is available as “Juliet Test Suite” published as part of the National Institute of

Standards and Technology Software Assurance Technology Exposition (SATE) project.

- 1 -

Section 1: Introduction

1.1 Background

Software systems support and enable mission-essential capabilities in the Department of

Defense. Each new release of a defense software system provides more features and performs

more complex operations. As the reliance on these capabilities grows, so does the need for

software that is free from intentional or accidental flaws. Flaws can be detected by analyzing

software either manually or with the assistance of automated tools.

Most static analysis tools are capable of finding multiple types of flaws, but the capabilities of

tools are not necessarily uniform across the spectrum of flaws they detect. Even tools that target

a specific type of flaw are capable of finding some variants of that flaw and not others. Tools’

datasheets or user manuals often do not explain which specific code constructs they can detect,

or the limitations and strengths of their code checkers. This level of granularity is needed to

maximize the effectiveness of automated software evaluations.

1.2 Center for Assured Software (CAS)

In order to address the growing lack of Software Assurance in the Department of Defense (DoD),

the National Security Agency’s CAS was created in 2005. The CAS’s mission is to improve the

assurance of software used within the DoD by increasing the degree of confidence that software

used is free from intentional and unintentional exploitable vulnerabilities. The CAS

accomplishes this mission by assisting organizations in deploying processes and tools to address

assurance throughout the Software Development Lifecycle (SDLC).

As part of an overall secure development process, the CAS advocates the use of static analysis

tools at various stages in the SDLC, but not as a replacement for other software assurance efforts,

such as manual code reviews. The CAS also believes that some organizations and projects

warrant a higher level of assurance that can be gained through the use of more than one static

analysis tool.

1.3 Feedback

The CAS continuously tries to improve its methodology for running these studies. As you read

this document, if you have any feedback or questions on the information presented, please

contact the CAS via email at cas@nsa.gov.

- 2 -

Section 2: CAS Methodology
The CAS methodology requires the use of test cases to perform tool evaluations. Upon

completion, the tool results are assigned a result type that can be used for further analysis.

2.1 Juliet Test Cases

In order to study static analysis tools, users need software for tools to analyze. There are two

types of software to choose from: natural and artificial. Natural software is software that was not

created to test static analysis tools. Open source software applications, such as the Apache web

server (httpd.apache.org) or the OpenSSH suite (www.openssh.com), are examples of natural

software. Artificial software contains intentional flaws and is created specifically to test static

analysis tools.

The CAS decided that the benefits of using artificial code outweigh the disadvantages and

therefore created artificial code to study static analysis tools. The CAS generates the source code

as a collection of “test cases”. Each test case contains exactly one intentional flaw and typically

at least one non-flawed construct similar to the intentional flaw. The non-flawed constructs are

used to determine if the tools could discriminate flaws from non-flaws. For example, one test

case illustrates a type of buffer overflow vulnerability. The flawed code in the test case passes

the strcpy function a destination buffer that is smaller than the source string. The non-flawed

construct passes a large enough destination buffer to strcpy.

The test cases created by the CAS and used to study static analysis tools are called the Juliet Test

Suites. They are publicly available through the National Institute for Standards and Technology

(NIST) at http://samate.nist.gov/SRD/testsuite.php.

2.2 Assessment

2.2.1 Tool Execution

The CAS regularly evaluates commercial and open source static analysis tools with the use of the

Juliet Test Suites. The tools are installed and configured on separate hosts in order to avoid

conflicts and to allow independent analysis. It is important that each tool is treated the same and

thus an equal amount of hardware resources is given to each one. Every tool is executed using its

command line interface (CLI) and the results are exported upon completion.

2.2.2 Scoring Results

In order to determine the tool’s performance, tool results are scored using result types. Table 1

contains the various result types that can be assigned as well as their definitions.

- 3 -

Result Type Explanation

True Positive (TP) Tool correctly reports the flaw that is the target of the test case.

False Positive (FP)
Tool reports a flaw with a type that is the target of the test case, but the flaw is
reported in non-flawed code.

False Negative (FN)
This row is not a tool result. A false negative result is added for each test case
for which there is no true positive.

(blank)

This row is a tool result where none of the result types above apply. More
specifically, either:

 The tool result is not in a test case file

 The tool result type is not associated with the test case in which it is reported

Table 1 – Summary of Result Types

For example, consider a test case that targets a buffer overflow flaw. The test case contains

flawed code in which data in a large buffer is attempted to be placed into a smaller one. If a tool

reports a buffer overflow in this code then the result is marked as a true positive. The test case

also contains non-flawed code in which a buffer overflow cannot occur. If a tool reports a buffer

overflow in this code then the result is marked as a false positive. If the tool fails to report a

buffer overflow in the flawed code, then a result should be added that is considered a false

negative. If a tool reports any other type of flaw, for example a memory leak, in the flawed or

non-flawed code, then the result type should be left blank as this type of flaw is not the target of

the test case and is considered an incidental flaw.

2.3 Metrics

Metrics are used to perform analysis of the tool results. After the tool results have been scored,

specific metrics can be calculated. Several metrics used by the CAS are described in the

following sections.

2.3.1 Precision, Recall, and F-Score

One set of metrics contains the Precision, Recall, and F-Scores of the tools based on the number

of true positive (TP), false positive (FP), and false negative (FN) findings for that tool on the test

cases. The following sections describe these metrics in greater detail.

Precision

In the context of the methodology, Precision (also known as “positive predictive value") means

the ratio of weaknesses reported by a tool to the set of actual weaknesses in the code analyzed. It

is defined as the number of weaknesses correctly reported (true positives) divided by the total

number of weaknesses actually reported (true positives plus false positives).

FPTP

TP
Precision

##

#

Precision is synonymous with the true positive rate and is the complement of the false positive

rate. It is also important to highlight that Precision and Accuracy are not the same. In this

methodology, Precision describes how well a tool identifies flaws, whereas accuracy describes

how well a tool identifies flaws and non-flaws as well.

- 4 -

Note that if a tool does not report any weaknesses, then Precision is undefined, i.e. 0/0. If

defined, Precision is greater than or equal to 0, and less than or equal to 1. For example, a tool

that reports 40 issues (false positives and true positives), of which only 10 are real flaws (true

positives), has a Precision of 10 out of 40, or 0.25.

Precision helps users understand how much trust can be given to a tool's report of weaknesses.

Higher values indicate more trust that issues reported correspond to actual weaknesses. For

example, a tool that achieves a Precision of 1 only reports issues that are real flaws on the test

cases. That is, it does not report any false positives. Conversely, a tool that has a Precision of 0

always reports issues incorrectly. That is, it only reports false positives.

Recall

The Recall metric (also known as "sensitivity" or “soundness”) represents the fraction of real

flaws reported by a tool. Recall is defined as the number of real flaws reported (true positives),

divided by the total number of real flaws – reported or unreported – that exist in the code (true

positives plus false negatives).

FNTP

TP
Recall

##

#

Recall is always a value greater than or equal to 0, and lesser than or equal to 1. For example, a

tool that reports 10 real flaws in a piece of code that contains 20 flaws has a Recall 10 out of 20,

or 0.5.

A high Recall means that the tool correctly identifies a high number of the target weaknesses

within the test cases. For example, a tool that achieves a Recall of 1 reports every flaw in the test

cases. That is, it has no false negatives. In contrast, a tool that has a Recall of 0 reports none of

the real flaws. That is, it has a high false negative rate.

F-Score

In addition to the Precision and Recall metrics, an F-Score is calculated by taking the harmonic

mean of the Precision and Recall values. Since a harmonic mean is a type of average, the value

for the F-Score will always be between the values for Precision and Recall (unless the Precision

and Recall values are equal, in which case the F-Score will be that same value). Note that the

harmonic mean is always less than the arithmetic mean (again, unless the Precision and Recall

are equal).

The F-Score provides weighted guidance in identifying a good static analysis tool by capturing

how many of the weaknesses are found (true positives) and how much noise (false positives) is

produced. An F-Score is computed using the following formula:

RecallPrecision

RecallPrecision
ScoreF 2

A harmonic mean is desirable since it ensures that a tool must perform reasonably well with

respect to both Precision and Recall metrics. In other words, a tool will not get a high F-Score

with a very high score in one metric but a low score in the other metric. Simply put, a tool that is

very poor in one area is not considered stronger than a tool that is average in both.

- 5 -

2.3.2 Discriminations and Discrimination Rate

Another set of metrics looks for areas where a tool showed it could discriminate between flaws

and non-flaws. This section describes these metrics in greater detail.

The purpose of discriminations and the discrimination rate is to differentiate unsophisticated

tools doing simple pattern matching from tools that perform more complex analysis.

For example, consider a test case for a buffer overflow where the flaw uses the strcpy function

with a destination buffer smaller than the source data. The non-flaw on this test case may also

use strcpy, but with a sufficiently large destination buffer. A tool that simply searches for the

use of strcpy would correctly report the flaw in this test case, but also report a false positive on

the non-flaw.

If a tool behaved in this way on all test cases in a certain area, the tool would have a Recall of 1,

a Precision of .5, and an F-Score of .67 (assuming that each test case had only one “good” or

non-flawed construct). These scores don’t accurately reflect the tool’s unsophisticated behavior.

In particular, the tool is “noisy” (generates many false positive results), which is not reflected in

its Precision of .5.

Discriminations

To address the issue described above, the CAS defines a metric called “Discriminations”. A tool

is given credit for a Discrimination when it correctly reports the flaw (a true positive) in a test

case without incorrectly reporting the flaw in non-flawed code (that is, without any false

positives). For every test case, each tool receives 0 or 1 Discriminations.

In the example above, an unsophisticated tool that is simply searching for the use of strcpy will

not get credit for a Discrimination on the test case because while it correctly reports the flaw, it

also reports a false positive.

Discriminations must be determined for each test case individually. The number of

Discriminations in a set of test cases cannot be calculated from the total number of true positives

and false positives.

Over a set of test cases, a tool can report as many Discriminations as there are test cases (an ideal

tool would report a Discrimination on each test case). The number of Discriminations will

always be less than or equal to the number of true positives over a set of test cases (because a

true positive is necessary, but not sufficient, for a Discrimination).

Discrimination Rate

Over a set of test cases, the Discrimination Rate is the fraction of test cases where the tool

reports a Discrimination. That is:

Flaws

tionsDiscrimina
RatetionDiscrimina

#

#

The Discrimination Rate is always a value greater than or equal to 0, and less than or equal to 1.

Over a set of test cases, the Discrimination Rate is always less than or equal to the Recall. This

is because Recall is the fraction of test cases where the tool reported true positive(s), regardless

of whether it reported false positive(s). Every test case where the tool reports a Discrimination

“counts” toward a tool’s Recall and Discrimination Rate, but other, non-Discrimination test cases

may also count toward Recall (but not toward Discrimination Rate).

- 6 -

Section 3: CAS Tool Study
The CAS uses the methodology described in Section 2 during its regular static analysis tool

studies. The following sections describe how tools are analyzed in more detail.

3.1 Tool Run

The CAS follows a standard procedure for running each tool on the Juliet test cases. The purpose

is to provide a consistent process that can be used in future studies or, if the need arises, for

retesting a specific tool. This section provides an overview of the process. Detailed, step-by-step

records of each tool run are documented during the study.

3.1.1 Test Environment

The CAS sets up a “base” virtual machine running Microsoft Windows with all software needed

to compile and run the Juliet test cases. For each tool run, the CAS either copies the “base”

virtual machine or creates a new snapshot within the “base” virtual machine. All steps for the

tool runs are performed in separate virtual environments using the local administrative account in

order to prevent conflicts and to test each tool in isolation.

3.1.2 Tool Installation and Configuration

Each static analysis tool is installed on its own virtual machine in accordance with the vendor’s

specifications, along with the current version of the Juliet test cases. There are strict guidelines

established that limit the adjustment of settings to ensure that all tools are treated fairly. For

tools where no vendor input can be obtained, the approach is to turn on all of the rules related to

the test cases.

3.1.3 Tool Execution and Conversion of Results

Each tool is executed from the command line via CAS-created scripts. For tools that cover

multiple languages, each analysis of the test cases for a specific language family is considered a

separate run. If errors are found during or after the analysis, the tool can be run on individual test

cases.

The CAS then exports the results of the analysis from each tool. In order to perform analysis, all

the results must be in a similar format. Because each tool exports its results differently, the CAS

has developed its own data format.

3.1.4 Scoring of Tool Results

The final step in the tool run process is to determine which results represent real flaws in the test

cases (true positives) and which do not (false positives).

The “scoring” of results only includes result types that are related to the test case in which they

appear. Tool results indicating a weakness that is not the focus of the test case (such as an

unintentional flaw in the test case) are ignored in scoring and analysis and their result type is left

blank. Results are scored using a CAS created tool which automates the scoring process.

- 7 -

Section 4: CAS Tool Analysis

4.1 Weakness Classes

To help understand the areas in which a given tool excelled, similar test cases are grouped into a

Weakness Class. Weakness classes are defined using CWE entries that contain similar

weaknesses. Since each Juliet test case is associated with the CWE entry in its name, each test

case is contained in a Weakness Class.

For example, Stack-based Buffer Overflow (CWE-121) and Heap-based Buffer Overflow

(CWE-122) are both placed in the Buffer Handling Weakness Class. Therefore, all of the test

cases associated with CWE entries 121 and 122 are mapped to the Buffer Handling Weakness

Class. Table 2 provides a summary list of Weakness Classes used in the study, along with an

example weakness in that Weakness Class.

The Miscellaneous Weakness Class is used to hold a collection of individual CWE entries that

do not fit into the other classes. Therefore, the weaknesses in the Miscellaneous Weakness Class

do not have a common theme.

Weakness Class Example Weakness (CWE Entry)

Authentication and Access
Control

CWE-620: Unverified Password Change

Buffer Handling (C/C++ only) CWE-121: Stack-based Buffer Overflow

Code Quality CWE-561: Dead Code

Control Flow Management CWE-362: Race Condition

Encryption and Randomness CWE-328: Reversible One-Way Hash

Error Handling CWE-252: Unchecked Return Value

File Handling CWE-23: Relative Path Traversal

Information Leaks
CWE-534: Information Leak Through Debug Log
Files

Initialization and Shutdown CWE-415: Double Free

Injection CWE-89: SQL Injection

Malicious Logic CWE-506: Embedded Malicious Code

Miscellaneous CWE-480: Use of Incorrect Operator

Number Handling CWE-369: Divide by Zero

Pointer and Reference Handling CWE-476: Null Pointer Dereference

Table 2 – Weakness Classes

The following sections provide a brief description of the Weakness Classes defined by the CAS.

4.1.1 Authentication and Access Control

Attackers can gain access to a system if the proper authentication and access control mechanisms

are not in place. An example would be a hardcoded password or a violation of the least privilege

principle. The test cases in this Weakness Class test a tool’s ability to check whether or not the

source code is preventing unauthorized access to the system.

- 8 -

4.1.2 Buffer Handling

Improper buffer handling can lead to attackers crashing or gaining complete control of a system.

An example would be a buffer overflow that allows an adversary to execute his/her code. The

test cases in this Weakness Class test a tool’s ability to find buffer access violations in the source

code. This Weakness Class is only valid for the C/C++ language family.

4.1.3 Code Quality

Code quality issues are typically not security related; however they can lead to maintenance and

performance issues. An example would be unused code. This is not an inherent security risk;

however it may lead to maintenance issues in the future. The test cases in this Weakness Class

test a tool’s ability to find poor code quality issues in the source code.

The test cases in this Weakness Class cover some constructs that may not be relevant to all

audiences. The test cases are all based on weaknesses in CWEs, but even persons interested in

code quality may not consider some of the tested constructs to be weaknesses. For example, this

Weakness Class includes test cases for flaws such as an omitted break statement in a switch

(CWE-484), an omitted default case in a switch (CWE-478), and dead code (CWE-561).

4.1.4 Control Flow Management

Control flow management deals with timing and synchronization issues that can cause

unexpected results when the code is executed. An example would be a race condition. One

possible consequence of a race condition is a deadlock which leads to a denial of service. The

test cases in this Weakness Class test a tool’s ability to find issues in the order of execution

within the source code.

4.1.5 Encryption and Randomness

Encryption is used to provide data confidentiality. However, if a weak or wrong encryption

algorithm is used, an attacker may be able to convert the ciphertext into its original plain text. An

example would be the use of a weak Pseudo Random Number Generator (PRNG). Using a weak

PRNG could allow an attacker to guess the next number that is generated. The test cases in this

Weakness Class test a tool’s ability to check for proper encryption and randomness in the source

code.

4.1.6 Error Handling

Error handling is used when a program behaves unexpectedly. However, if a program fails to

handle errors properly, it could lead to unexpected consequences. An example would be an

unchecked return value. If a programmer attempts to allocate memory and fails to check if the

allocation routine was successful then a segmentation fault could occur if the memory failed to

allocate properly. The test cases in this Weakness Class test a tool’s ability to check for proper

error handling within the source code.

4.1.7 File Handling

File handling deals with reading from and writing to files. An example would be reading from a

user-provided file on the hard disk. Unfortunately, adversaries can sometimes provide relative

paths to a file that contain periods and slashes. An attacker can use this method to read to or

write to a file in a different location on the hard disk than the developer expected. The test cases

- 9 -

in this Weakness Class test a tool’s ability to check for proper file handling within the source

code.

4.1.8 Information Leaks

Information leaks can cause unintended data to be made available to a user. For example,

developers often use error messages to inform users that an error has occurred. Unfortunately, if

sensitive information is provided in the error message an adversary could use it to launch future

attacks on the system. The test cases in this Weakness Class test a tool’s ability to check for

information leaks within the source code.

4.1.9 Initialization and Shutdown

Initializing and shutting down resources occurs often in source code. For example, in C/C++ if

memory is allocated on the heap it must be deallocated after use. If the memory is not

deallocated, it could cause memory leaks and affect system performance. The test cases in this

Weakness Class test a tool’s ability to check for proper initialization and shutdown of resources

in the source code.

4.1.10 Injection

Code injection can occur when user input is not validated properly. One of the most common

types of injection flaws is cross-site scripting (XSS). An attacker can inject malicious scripts to

acquire elevated privileges or steal session tokens in order to gain access to sensitive

information. This can often be prevented using proper input validation and/or data encoding.

The test cases in this Weakness Class test a tool’s ability to check for injection weaknesses in the

source code.

4.1.11 Malicious Logic

Malicious logic is the implementation of a program that performs an unauthorized or harmful

action. In source code, unauthorized or harmful actions can be indicators of malicious logic.

Examples of malicious logic include Trojan horses, viruses, backdoors, worms and logic bombs.

The test cases in this Weakness Class test a tool’s ability to check for malicious logic in the

source code.

4.1.12 Miscellaneous

The weaknesses in this class do not fit into any of the other Weakness Classes. An example

would be an assignment instead of a comparison. Control flow statements allow developers to

compare variables to certain values in order to determine the proper path to execute.

Unfortunately, they also allow developers to make variables assignments. If an assignment is

made where a comparison was intended then it could lead to the wrong path of execution.

4.1.13 Number Handling

Number handling issues include incorrect calculations as well as number storage and

conversions. An example is an integer overflow. On a 32-bit system, a signed integer’s

maximum value is 2,147,483,647. If this value is increased by one, its new value will be a

negative number rather than the expected 2,147,483,648 due to the limitation of the number of

bits used to store the number. The test cases in this Weakness Class test a tool’s ability to check

for proper number handling in the source code.

- 10 -

4.1.14 Pointer and Reference Handling

Pointers are often used in source code to refer to a block of memory without having to reference

the memory block directly. One of the most common pointer errors is a NULL pointer

dereference. This occurs when the pointer is expected to point to a block of memory, but instead

it points to the value of NULL. If referenced, this can cause an exception and lead to a system

crash. The test cases in this Weakness Class test a tool’s ability to check for proper pointer and

reference handling.

4.2 Metrics

Using the factors described in Section 2.3, the CAS generates metrics by adhering to certain

rules, detailed in the following sections, as part of its overall analysis strategy.

4.2.1 Precision

When calculating the Precision, duplicate true positive values are ignored. That is, if a tool

reports two or more true positives on the same test case, the Precision is calculated as if the tool

reports only one true positive on that test case. Duplicate false positive results are included in

the calculation, however.

Some of the Juliet test cases are considered bad-only, meaning they only contain a flawed

construct. Since the bad-only test cases can impact the results, they are excluded from all

Precision calculations.

4.2.2 Recall

Like with Precision, duplicate true positive values are ignored when calculating Recall. That is,

if a tool reports two or more true positives on the same test case, the Recall is calculated as if the

tool reports only one true positive on that test case.

4.2.3 F-Score

Equal weighting is used for both Precision and Recall when calculating the F-Score. Alternate

F-Scores can be calculated by using higher weights for Precision (thus establishing a preference

that tool results will be correct) or by using higher weights for Recall (thus establishing a

preference that tools will find more weaknesses).

As previously explained, some of the Juliet test cases are considered bad-only, meaning they

only contain a flawed construct. Since the bad-only test cases can impact the results, they are

excluded from all F-Score calculations.

4.2.4 Weighting

The Juliet test cases are designed to test a tool’s ability to analyze different control and data

flows. However, for each flaw, a single test case is created that contains no control or data flows

and is generated to test the basic form of the flaw (“baseline” test cases).

In the past, all test cases for a given flaw were weighted equally. Therefore, the Precision,

Recall, and F-Score for baseline test cases were calculated using the same weighting as the test

cases containing control and data flows. Based upon feedback from the software assurance

community and further research by the CAS, it was determined that the baseline test cases should

- 11 -

merit more “weight” than the control and data flow test cases. In general, if a tool is able to find

a given flaw then it should be able to at least find it in the baseline test case.

Instead of each test case being weighted equally, the total weight for all test cases covering a

given flaw is now equal to 1. The baseline test case is given a weight of 0.5 and the remaining

weight (0.5) is distributed equally among the remaining test cases. Therefore, all control and data

flow variants are weighted equally for a given flaw. Some flaws do not allow for additional

control and data flow test cases, such as class-based flaws. In these instances, there is a single

test case for which the weight is equal to 1.

Table 1 shows sample tool results for a given flaw containing a baseline, two data flow, and

three control flow test cases. Table 2 shows the Precision, Recall, and F-Score calculation

differences when adding weights to the test cases.

 #TPs #FPs #FNs Weight
Weighted

TPs
Weighted

FPs
Weighted

FNs

Baseline 1 0 0 0.5 0.5 0 0

Data Flow1 0 1 1 0.1 0 0.1 0.1

Data Flow2 1 2 0 0.1 0.1 0.2 0

Control Flow1 1 1 0 0.1 0.1 0.1 0

Control Flow2 1 2 0 0.1 0.1 0.2 0

Control Flow3 0 2 1 0.1 0 0.2 0.1

Totals 4 8 2 1 0.8 0.8 0.2

Table 1 – Sample Tool Results for a Single Flaw Type

 Unweighted Weighted

Precision 4 / (4 + 8) = 0.33 0.8 / (0.8 + 0.8) = 0.50

Recall 4 / (4 + 2) = 0.67 0.8 / (0.8 + 0.2) = 0.80

F-Score
2 * ((0.33 * 0.67) / (0.33 + 0.67)) =

0.44
2 * ((0.50 * 0.80) / (0.50 + 0.80)) =

0.62

Table 2 – Sample Precision, Recall, and F-Score values for a Single Flaw Type

As shown in the tables above, the sample values for Precision, Recall, and F-Score increase

when using weighted values; however, this is not always the case when using real data.

Section 5: CAS Reporting
Graphs and tables are used to show the tool results for various metrics including Recall,

Precision, Discrimination Rate and F-Score. Examining just a single metric does not give the

whole picture and obscures details that are important in understanding a tool's overall strengths.

For example, just looking at Recall tells the analyst how many issues are found, but these issues

can be hidden in a sea of false positives, making it extremely time-consuming to interpret the

- 12 -

results. The Recall metric alone does not give the analyst this perspective. By examining both

the Recall and Precision values, the analyst can get a better picture of the tool's overall strengths.

5.1 Results by Tool

5.1.1 Precision, Recall and F-Score Table

To summarize each tool’s Precision, Recall, and F-Score on the test cases, a table is produced to

show how the tool performs regarding each metric. However, when interpreted in isolation, each

metric can be deceptive in that it does not reflect how a tool performs with respect to other tools,

i.e., it is not known what a “good” number is. It is impossible for an analyst to know if a

Precision of .45 is a good value or not. If every other tool has a Precision value of .20, then a

value of .45 would suggest that the tool outperforms its peers. On the other hand, if every other

tool has a Precision of .80, then a value of .45 would suggest that the tool underperforms on this

metric.

For Precision, if a tool does not report any findings in a given Weakness Class, it is excluded

from the calculation of the average for that Weakness Class. For Recall and F-Score, all results

are used to calculate the average even if a tool does not report any findings for that Weakness

Class.

If the tool has a higher value than the average, a small green triangle pointing up was used. For

values below average, a small red triangle pointing down is used. If the value is within .05 of the

average, then no icon is used meaning the tool results are close to average.

 Sample Size Tool Results

Weakness Class # of Flaws Precision F-Score Recall

Weakness Class A 511 ▼ .25 ▼ .20 ▼ .17

Weakness Class B 953 - - 0

Weakness Class C 433 ▲ .96 ▲ .72 ▲ .58

Weakness Class D 720 ▼ .56 .57 ▲ .58

Weakness Class E 460 1 .29 .17

Legend: ▲ = .05 or more above average ▼ = .05 or more below average

Table 3 – Precision-Recall Results for SampleTool by Weakness Class

In this example, Table 3 shows that SampleTool has a precision of .96, an F-Score of .72, and a

recall of .58, which are all more than 0.05 above the average with respect to Precision, Recall,

and F-Score for Weakness Class C. Its performance is mixed in Weakness Class D, with below-

average Precision of .56 and an above-average Recall of .58. Within Weakness Class E,

SampleTool has average results – even though the Precision was 1 – which suggests that all tools

had high Precision within this Weakness Class.

Note that if a tool does not produce any true positive findings or false positive findings for a

given Weakness Class, then Precision cannot be calculated because of division by zero, which is

reflected as a dash (“-”) in the table. This can be interpreted as an indication that the tool does

not attempt to find flaws related to the given Weakness Class, or at least does not attempt to find

the flaw types represented by the test cases for that Weakness Class.

Also note that the number of flaws represents the total number of test cases in that Weakness

Class. This represents a sample size and gives the analyst an idea of how many opportunities a

tool has to produce findings. In general, when there are more opportunities, one can have more

statistical confidence in the metric.

- 13 -

To help understand the Precision, Recall, and F-Score results for a tool, each metric is compared

against the weighted average of all the tools. The weighted average was calculated for each

functional variant with one-half weighting placed on the baseline flow variant, and the other half

of the weighting being distributed equally across the remaining flow variants.

5.1.2 Precision Graph by Tool

Figure 1 shows an example of a Precision Graph for a single tool. Even when all values are

relatively small, the Y-axis scale on these graphs is not adjusted in order to compare tools to the

ideal Precision of 1. The tool’s Precision for a given Weakness Class is indicated by a blue

square. The average Precision for a given Weakness Class is indicated by a red square. The

dotted line connecting the averages is shown as a visual aid; however, the averages are not

related. If a tool did not report at least one true positive for a given Weakness Class, the

Precision is undefined and is indicated on the graph by a black line-filled square at 0 on the x-

axis.

Figure 1 – Example Precision Graph for a single tool

In the example in Figure 1, the graph shows that the SampleTool is relatively strong when

focusing on Weakness Class C, and less strong, when compared to the other tools, for Weakness

Class A and Weakness Class D.

- 14 -

5.1.3 Recall Graph by Tool

Figure 2 shows an example of a Recall Graph for a single tool. Even when all values are

relatively small, the Y-axis scale on these graphs is not adjusted in order to compare tools to the

ideal Recall of 1. The tool’s Recall for a given Weakness Class is indicated by a purple square.

The average Recall for a given Weakness Class is indicated by a red square. The dotted line

connecting the averages is shown as a visual aid; however, the averages are not related.

Figure 2 – Example Recall Graph for a single tool

In the example in Figure 2, the graph shows that the SampleTool is strong when focusing on

Weakness Class C and Weakness Class D, but not strong related to Weakness Class A and

Weakness Class B. The graph also indicates the tool found 0 true positives for Weakness Class

B.

- 15 -

5.1.4 Precision-Recall Graphs by Tool

Figure 3 shows an example of a Precision-Recall graph. Notice that the Precision metric is

mapped to the vertical axis and the Recall metric is mapped to the horizontal axis. A tool's

relation to both metrics is represented by a point on the graph. If a tool did not report at least one

true positive for a given Weakness Class then it is not shown on the graph. The closer the point

is to the top right, the stronger the tool is in the given area. The square marker (in white)

represents the tool’s actual metric values for the specified Weakness Class as calculated by the

scoring function. The other point, shown as a black circle, represents the average metric values

for all the tools that produced findings for the given Weakness Class.

A solid line is drawn between the two related points and helps visually state how a given tool

compared to the average. Note that the longer the line, the greater the difference between the tool

and the average. In general, movement of a specific tool away from the average toward the

upper right demonstrates a relatively greater capability in the given area.

- 16 -

Figure 3 – Example Precision-Recall Graph for single tool

In the example in Figure 3, the graph shows that the SampleTool is stronger than the average of

all tools when focusing on Weakness Class C. Both Precision and Recall for the tool are above

average as evident by moving from the black dot upward, meaning higher Precision, and to the

right, indicating higher Recall. SampleTool is less strong compared to the average of all tools

relating to Weakness Class A. Both metrics are below average, and the line moves from the

black dot downward, meaning less Precision, and to the left, indicating less Recall.

For the results associated with Weakness Class E and Weakness Class D, where the line moves

to the upper left or the lower right, more analysis is often needed. In these situations, the tool is

above average for one metric but below average for the other.

- 17 -

5.1.5 Discriminations and Discrimination Rate Table by Tool

To summarize each tool’s Discrimination Rate on the test cases, a table is produced to show how

the tool performs regarding Discriminations. However, similar to Precision, Recall, and F-Score,

when interpreted in isolation, each metric can be deceptive in that it does not reflect how a tool

performs with respect to other tools, i.e., it is not known what a “good” number is.

For Discrimination Rates, all tools are included in the calculation of the average for that

Weakness Class.

If the tool has a higher value than the average, a small green triangle pointing up was used. For

values below average, a small red triangle pointing down is used. If the value is within .05 of the

average, then no icon is used meaning the tool results are close to average.

A tool’s Discriminations and Discrimination Rates on each Weakness Class are shown in a table

like Table 4.

 Sample Size Tool Results

Weakness Class # of Flaws Discriminations Disc. Rate

Weakness Class A 511 50 ▼ .10

Weakness Class B 953 0 0

Weakness Class C 433 234 ▲ .54

Weakness Class D 720 150 .21

Weakness Class E 460 15 .03

Legend: ▲ = .05 or more above average ▼ = .05 or more below average

Table 4 – Discrimination Results for SampleTool by Weakness Class

In this example, Table 4 shows that SampleTool has a Discrimination Rate of .10 for Weakness

Class A, which is at least .05 below the average of all tools, and a Discrimination Rate of .54 for

Weakness Class C, which is at least .05 above the average. For Weakness Classes D and E, with

Discrimination Rates of .21 and .03, respectively, SampleTool has average results. It also

indicates that the tools overall performed poorly on Weakness Class E with respect to

Discriminations since the average Discrimination Rate can be no higher than .08 (Weakness

Class E’s rate of .03 plus .05) . SampleTool did not report any Discriminations for Weakness

Class B, indicating poor complex analysis in that area.

- 18 -

5.1.6 Discrimination Rate Graphs by Tool

Discrimination Rate Graphs like Figure 4 are used to show the Discrimination Rates for a single

tool across different Weakness Classes. Even when all values are relatively small, the Y-axis

scale on these graphs is not adjusted in order to compare tools to the ideal Discrimination Rate of

1.

Figure 4 – Example Discrimination Rate Graph for a single tool

In the example in Figure 4, the graph shows that SampleTool has an above average

Discrimination Rate in Weakness Class C and below average Discrimination Rate in Weakness

Class A and Weakness Class B. SampleTool has an average Discrimination Rate in Weakness

Class D and Weakness Class E.

5.2 Results by Weakness Class

5.2.1 Precision Graphs by Weakness Class

Figure 5 shows an example of a Precision Graph for a single Weakness Class. Even when all

values are relatively small, the Y-axis scale on these graphs is not adjusted in order to compare

tools to the ideal Precision of 1. An individual tool’s Precision for the Weakness Class is

indicated with a blue bar. The average Precision for all tools across the Weakness Class is

indicated by a red bar and is always located on the far right side of the graph. The average is

- 19 -

calculated using only the tools that cover this Weakness Class. In the example below,

SampleTool2 is not included in the average Precision calculation.

Figure 5 – Example Precision Graph for a single Weakness Class

In the example in Figure 5, the graph shows that SampleTool1 and SampleTool3 performed

above average in this Weakness Class. SampleTool4 and SampleTool5 performed below average

and SampleTool2 did not cover this Weakness Class.

- 20 -

5.2.2 Recall Graphs by Weakness Class

Figure 6 shows an example of a Recall Graph for a single Weakness Class. Even when all values

are relatively small, the Y-axis scale on these graphs is not adjusted in order to compare tools to

the ideal Precision of 1. An individual tool’s Recall for the Weakness Class is indicated with a

purple bar. The average Recall for all tools across the Weakness Class is indicated by a red bar

and is always located on the far right side of the graph. The average is calculated using all tools,

which includes those that do not cover this Weakness Class.

Figure 6 – Example Recall Graph for a single Weakness Class

In the example in Figure 6, the graph shows that SampleTool1 and SampleTool4 performed

above average in this Weakness Class. SampleTool3 and SampleTool5 performed below average

and SampleTool2 did not cover this Weakness Class.

5.2.3 Discrimination Rate Graphs by Weakness Class

Figure 7 shows an example of a Discrimination Rate Graph for a single Weakness Class. Even

when all values are relatively small, the Y-axis scale on these graphs is not adjusted in order to

compare tools to the ideal Discrimination Rate of 1. An individual tool’s Discrimination Rate for

the Weakness Class is indicated with a purple bar. The average Discrimination Rate for all tools

across the Weakness Class is indicated by a red bar and is always located on the far right side of

the graph. The average is calculated using all tools, which includes those that do not cover this

Weakness Class.

- 21 -

Figure 7 – Example Discrimination Rate Graph for a single Weakness Class

In the example in Figure 7, the graph shows that SampleTool1 and SampleTool4 performed

above average in this Weakness Class. SampleTool3 and SampleTool5 performed below average

and SampleTool2 did not cover this Weakness Class.

- 22 -

5.2.4 Precision-Recall and Discrimination Results by Weakness Class

Table 5 shows an example of a Precision-Recall and Discrimination results chart. This chart can

be used to view the results of all tools in a Weakness Class. This table supports the graphs shown

in the previous sections.

Tool Precision F-Score Recall Disc. Rate

SampleTool1 .54 .61 .69 .45

SampleTool2 - 0 0 0

SampleTool3 .68 .28 .18 .13

SampleTool4 .30 .31 .33 .25

SampleTool5 .10 .12 .15 .09

Average .41 .26 .27 .18

Table 5 –Weakness Class Precision-Recall and Discrimination Results

5.3 Results for Two Tool Combinations

Since there are a variety of commercial and open source static SCA tools available, developers

can use more than one tool to analyze a code base. The purpose of comparing two tools is to

show how adding a second tool might complement the tool already in use. Since tools can have

some overlap, the goal would be to use a second tool that is stronger in the areas where the

current tool is lacking.

This section describes the tables and graphs used to show the effects of combining two tools.

5.3.1 Combined Discrimination Rate and Recall Table

Table 6 shows the combined Discrimination Rate and Recall results when combining two sample

static SCA tools. The tool’s own results are shown in the light gray boxes. The green boxes

indicate the highest combined values in the table for both Discrimination Rate and Recall.

Tool

A

Tool

B

SampleTool1 SampleTool2 SampleTool3 SampleTool4 SampleTool5

D
is

c
.
R

a
te

R
e
c
a
ll

D
is

c
.
R

a
te

R
e
c
a
ll

D
is

c
.
R

a
te

R
e
c
a
ll

D
is

c
.
R

a
te

R
e
c
a
ll

D
is

c
.
R

a
te

R
e
c
a
ll

SampleTool1 .25 .53 .27 .59 .60 .77 .45 .73 .26 .59

SampleTool2 .27 .59 .06 .11 .47 .70 .35 .52 .07 .25

SampleTool3 .60 .77 .47 .70 .45 .67 .80 .91 .47 .80

SampleTool4 .45 .73 .35 .52 .80 .91 .33 .50 .34 .62

SampleTool5 .26 .59 .07 .25 .47 .80 .34 .62 .02 .22

Legend: Individual Tool Result Highest Discrimination Rate / Recall in Table

Table 6 – Combined Discrimination Rate and Recall for Two Tools

- 23 -

In the example in Table 6, the table shows that SampleTool3 performs the best of all individual

tools studied, but when combined with SampleTool4, yields the best results for both

Discrimination Rate and Recall. Notice that the data in the table is symmetric, so the results for

each tool are the same whether you are looking down a column or across a row.

5.3.2 Combined Discrimination Rate and Recall Graphs

Figure 8 shows combined Discrimination Rate and Recall graphs. Each bar chart shows the

overlap between the tool named below the chart (the “base” tool) and each of the other tools (the

“additional” tools). Each vertical bar shows the overlap between the base tool and one additional

tool. The lowest, blue segment shows the results (Discrimination Rate or Recall) for the base

tool only; the topmost, green segment shows the results for the additional tool only; and the

middle segment shows the overlap, or the same results reported by both tools. That is, the bottom

two segments combined indicate the overall results for the base tool, while the top two segments

combined indicate the overall results for the additional tool.

Note that in each multiple bar chart, a “water line” appears at the same height for each bar. This

shows the base tool’s own results (although its overlap, and hence its results for flaws reported

only by the base tool, varies).

 LEGEND:

 Additional Tool, But
 Not Base Tool

 Both Tools

 Base Tool, But Not
 Additional Tool

Figure 8 – Combined Discrimination Rate and Recall for Two-Tool Combinations

The Discrimination Rate chart example shows that combining SampleTool1 with SampleTool3

yields the best results. In fact, adding SampleTool3 more than doubles the Discrimination Rate

as opposed to using SampleTool1 alone. Combining SampleTool1 with SampleTool2 or

SampleTool5 is ineffective as the Discrimination Rate shows a very small increase using these

tool combinations.

The Recall chart example shows that combining SampleTool1 with SampleTool3 yields the best

results. However, there is a large amount of overlap when combining these two tools. Although

the combination of SampleTool1 and SampleTool4 does not generate the highest combined

Recall, the overlap between the two tools is smaller than the overlap between SampleTool1 and

SampleTool3 and should be taken into consideration.

- 24 -

5.3.3 Tool Coverage

Table 7 shows the overall coverage for all tools across all of the test cases. For each number of

tools, the number of test cases where exactly that number of tools reported the flaw (a “True

Positive”) and reported the flaw without reporting any False Positives (a “Discrimination”) is

shown. This table also shows the number of test cases where no tool reported the flaw or a

Discrimination. Figure 9 shows the percentage of flaws and Figure 10 shows the percentage of

discriminations shown in Table 7 as pie charts.

Tool

Test Cases

with True

Positives

True

Positive %

Test Cases with

Discriminations

Discrimination

%

Exactly One Tool 625 32.7% 550 28.8%

Exactly Two Tools 350 18.3% 250 13.1%

Exactly Three Tools 200 10.5% 80 4.2%

Exactly Four Tools 50 2.6% 40 2.1%

Exactly Five Tools 25 1.3% 0 .0%

No Tools 660 34.6% 990 51.8%

Total 1910 100% 1910 100%

 Table 7 – Tool Coverage Results

- 25 -

Figure 9 – Tool True Positive Coverage Graph

Figure 10 – Tool Discrimination Coverage Graph

- A-1 -

Appendix A : Juliet Test Case CWE Entries

and CAS Weakness Classes
Table 8 shows the CWE entries included in each Weakness Class defined by the CAS ordered by

Weakness Class.

Weakness Class
CWE Entry

ID
CWE Entry Name

Authentication and Access
Control

15
External Control of System or Configuration
Setting

247 Reliance on DNS Lookups in a Security Decision

256 Plaintext Storage of a Password

259 Use of Hard-coded Password

272 Least Privilege Principal

284 Access Control (Authorization) Issues

491
Public cloneable() Method Without Final ('Object
Hijack')

500 Public Static Field Not Marked Final

549 Missing Password Field Masking

560 Use of umask() with chmod-style Argument

566
Access Control Bypass Through User-Controlled
SQL Primary Key

582 Array Declared Public, Final, and Static

607
Public Static Final Field References Mutable
Object

613 Insufficient Session Expiration

614
Sensitive Cookie in HTTPS Session Without
'Secure' Attribute

620 Unverified Password Change

784
Reliance on Cookies without Validation and
Integrity Checking in a Security Decision

Buffer Handling

121 Stack-based Buffer Overflow

122 Heap-based Buffer Overflow

123 Write-what-where Condition

124 Buffer Underwrite (‘Buffer Underflow’)

126 Buffer Over-read

127 Buffer Under-read

242 Use of Inherently Dangerous Function

680 Integer Overflow to Buffer Overflow

785
Use of Path Manipulation Function without
Maximum-sized Buffer

Code Quality

398 Indicator of Poor Code Quality

477 Use of Obsolete Functions

478 Missing Default Case in Switch Statement

- A-2 -

Weakness Class
CWE Entry

ID
CWE Entry Name

484 Omitted Break Statement in Switch

547 Use of Hard-coded Security-relevant Constants

561 Dead Code

563 Unused Variable

570 Expression is Always False

571 Expression is Always True

585 Empty Synchronized Block

676 Use of Potentially Dangerous Function

Control Flow Management

180
Incorrect Behavior Order: Validate Before
Canonicalize

364 Signal Handler Race Condition

366 Race Condition Within a Thread

367
Time-of-check Time-of-use (TOCTOU) Race
Condition

382 J2EE Bad Practices: Use of System.exit()

383 J2EE Bad Practices: Direct Use of Threads

479 Signal Handler Use of a Non-reentrant Function

483 Incorrect Block Delimitation

572 Call to Thread run() instead of start()

584 Return Inside Finally Block

606 Unchecked Input for Loop Condition

609 Double-Checked Locking

674 Uncontrolled Recursion

698 Redirect Without Exit

764 Multiple Locks of a Critical Resource

765 Multiple Unlocks of a Critical Resource

832 Unlock of a Resource that is not Locked

833 Deadlock

835
Loop with Unreachable Exit Condition ('Infinite
Loop')

Encryption and Randomness

315 Plaintext Storage in a Cookie

319 Cleartext Transmission of Sensitive Information

327 Use of a Broken or Risky Cryptographic Algorithm

328 Reversible One-Way Hash

329 Not Using a Random IV with CBC Mode

330 Use of Insufficiently Random Values

336 Same Seed in PRNG

338 Use of Cryptographically Weak PRNG

523 Unprotected Transport of Credentials

759 Use of a One-Way Hash without a Salt

760 Use of a One-Way Hash with a Predictable Salt

- A-3 -

Weakness Class
CWE Entry

ID
CWE Entry Name

780 Use of RSA Algorithm without OAEP

Error Handling

248 Uncaught exception

252 Unchecked Return Value

253 Incorrect Check of Function Return Value

273 Improper Check for Dropped Privileges

390 Detection of Error Condition Without Action

391 Unchecked Error Condition

392 Missing Report of Error Condition

396 Declaration of Catch for Generic Exception

397 Declaration of Throws for Generic Exception

440 Expected Behavior Violation

600 Uncaught Exception in Servlet

617 Reachable Assertion

File Handling

23 Relative Path Traversal

36 Absolute Path Traversal

377 Insecure Temporary File

378
Creation of Temporary File With Insecure
Permissions

379
Creation of Temporary File in Directory with
Insecure Permissions

675 Duplicate Operations on Resource

Information Leaks

204 Response Discrepancy Information Leak

209 Information Exposure Through an Error Message

226 Sensitive Information Uncleared Before Release

244
Improper Clearing of Heap Memory Before
Release (‘Heap Inspection’)

497
Exposure of System Data to an Unauthorized
Control Sphere

499 Serializable Class Containing Sensitive Data

533 Information Leak Through Server Log Files

534 Information Leak Through Debug Log Files

535 Information leak Through Shell Error Message

591
Sensitive Data Storage in Improperly Locked
Memory

598
Information Leak Through Query Strings in GET
Request

615 Information Leak Through Comments

Initialization and Shutdown

400
Uncontrolled Resource Consumption ('Resource
Exhaustion')

401
Improper Release of Memory Before Removing
Last Reference ('Memory Leak')

404 Improper Resource Shutdown or Release

415 Double Free

416 Use After Free

- A-4 -

Weakness Class
CWE Entry

ID
CWE Entry Name

457 Use of Uninitialized Variable

459 Incomplete Cleanup

568 finalize() Method Without super.finalize()

580 clone() Method Without super.clone()

586 Explicit Call to Finalize()

590 Free of Memory not on the Heap

665 Improper Initialization

672
Operation on Resource After Expiration or
Release

761 Free of Pointer Not At Start Of Buffer

762 Mismatched Memory Management Routines

772
Missing Release of Resource after Effective
Lifetime

773
Missing Reference to Active File Descriptor or
Handle

775
Missing Release of File Descriptor or Handle After
Effective Lifetime

789 Uncontrolled Memory Allocation

Injection

78
Improper Neutralization of Special Elements used
in an OS Command ('OS Command Injection')

80
Improper Neutralization of Script-Related HTML
Tags in a Web Page (Basic XSS)

81
Improper Neutralization of Script in an Error
Message Web Page

83
Improper Neutralization of Script in Attributes in a
Web Page

89
Improper Neutralization of Special Elements used
in an SQL Command ('SQL Injection')

90
Improper Neutralization of Special Elements used
in an LDAP Query ('LDAP Injection')

113
Failure to Sanitize CRLF Sequences in HTTP
Headers (aka 'HTTP Response Splitting')

129 Improper Validation of Array Index

134 Uncontrolled Format String

436 Untrusted Search Path

427 Uncontrolled Search Path Element

470
Use of Externally-Controlled Input to Select
Classes or Code (aka 'Unsafe Reflection')

601
URL Redirection to Untrusted Site ('Open
Redirect')

643
Improper Neutralization of Data within XPath
Expressions ('XPath Injection')

Malicious Logic

111 Direct Use of Unsafe JNI

114 Process Control

304 Missing Critical Step in Authentication

321 Use of Hard-coded Cryptographic Key

325 Missing Required Cryptographic Step

- A-5 -

Weakness Class
CWE Entry

ID
CWE Entry Name

506 Embedded Malicious Logic

510 Trapdoor

511 Logic/Time Bomb

514 Covert Channel

546 Suspicious Comment

Miscellaneous

188 Reliance on Data/Memory Layout

222 Truncation of Security-relevant Information

223 Omission of Security-relevant Information

464 Addition of Data Structure Sentinel

475 Undefined Behavior For Input to API

480 Use of Incorrect Operator

481 Assigning instead of Comparing

482 Comparing instead of Assigning

486 Comparison of Classes by Name

489 Leftover Debug Code

579
J2EE Bad Practices: Non-serializable Object
Stored in Session

581
Object Model Violation: Just One of Equals and
Hashcode Defined

597 Use of Wrong Operator in String Comparison

605 Multiple Binds to Same Port

666
Operation on Resource in Wrong Phase of
Lifetime

685 Function Call With Incorrect Number of Arguments

688
Function Call With Incorrect Variable or Reference
as Argument

758
Reliance on Undefined, Unspecified, or
Implementation-Defined Behavior

Number Handling

190 Integer Overflow or Wraparound

191 Integer Underflow (Wrap or Wraparound)

193 Off-by-one Error

194 Unexpected Sign Extension

195 Signed to Unsigned Conversion Error

196 Unsigned to Signed Conversion Error

197 Numeric Truncation Error

369 Divide By Zero

681 Incorrect Conversion between Numeric Types

Pointer and Reference
Handling

374 Passing Mutable Objects to an Untrusted Method

395
Use of NullPointerException Catch to Detect NULL
Pointer Dereference

467 Use of sizeof() on a Pointer Type

468 Incorrect Pointer Scaling

469 Use of Pointer Subtraction to Determine Size

- A-6 -

Weakness Class
CWE Entry

ID
CWE Entry Name

476 NULL Pointer Dereference

562 Return of Stack Variable Address

587 Assignment of a Fixed Address to a Pointer

588 Attempt to Access Child of a Non-structure Pointer

690
Unchecked Return Value to NULL Pointer
Dereference

843
Access of Resource Using Incompatible Type
('Type Confusion')

Table 8 – CWE Entries and Test Cases in each Weakness Class

