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Warnings 
Trade names or manufacturers’ names are used in this report for identification only. This usage 

does not constitute an official endorsement, either expressed or implied, by the National Security 

Agency. 

References to a product in this report do not imply endorsement by the National Security Agency 

of the use of that product in any specific operational environment, to include integration of the 

product under evaluation as a component of a software system. 

References to an evaluation tool, technique, or methodology in this report do not imply 

endorsement by the National Security Agency of the use of that evaluation tool, technique, or 

methodology to evaluate the functional strength or suitability for purpose of arbitrary software 

analysis tools. 

Citations of works in this report do not imply endorsement by the National Security Agency or 

the Center for Assured Software of the content, accuracy or applicability of such works. 

References to information technology standards or guidelines do not imply a claim that the 

product under evaluation is in conformance with such a standard or guideline. 

References to test data used in this evaluation do not imply that the test data was free of defects 

other than those discussed.  Use of test data for any purpose other than studying static analysis 

tools is expressly disclaimed. 

This report and the information contained in it may not be used in whole or in part for any 

commercial purpose, including advertising, marketing, or distribution. 

This report is not intended to endorse any vendor or product over another in any way. 

Trademark Information 
All company and product names used in this document are registered trademarks or trademarks 

of their respective owners in the United States of America and/or other countries.  
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Abstract 

 

 

Part of the mission for the National Security Agency’s Center for Assured Software (CAS) is to 

increase the degree of confidence that software used in the DoD is free from exploitable 

vulnerabilities. Over the past several years, commercial and open source static analysis tools 

have become more sophisticated at being able to identify flaws that can lead to such 

vulnerabilities.  As these tools become more reliable and popular with developers and clients, the 

need to fully understand their capabilities and shortcomings is becoming more important.   

To this end, the NSA CAS regularly conducts studies using a scientific, methodical approach that 

measures and rates effectiveness of these tools in a standard and repeatable manner.  The 

methodology (termed the CAS Static Analysis Tool Study Methodology) is based on a set of 

artificially created “known answer tests” that comprise examples of “good code” as well as 

“flawed code”. In applying the methodology, the tester tests all tools using the common “testing 

corpus”.  The methodology then offers a common way to “score” the tools so that they are easily 

compared. With this “known answer” approach, testers can have full insight into what a tool 

should report as a flaw, what it “misses”, and what it actually reports. The CAS has created and 

released the test corpus to the community for analysis, testing, and adoption.
a
   

This report provides a step by step description of this methodology in the hope that it can 

become part of the public discourse on the measurement and performance of static analysis 

technology.   It is available for public consumption, comment and adoption.  Comments on the 

methodology are welcome and can be sent to cas@nsa.gov. 

  

                                                 
a
 This test suite is available as “Juliet Test Suite” published as part of the National Institute of 

Standards and Technology Software Assurance Technology Exposition (SATE) project.  
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Section 1: Introduction 

1.1 Background 

Software systems support and enable mission-essential capabilities in the Department of 

Defense.  Each new release of a defense software system provides more features and performs 

more complex operations.  As the reliance on these capabilities grows, so does the need for 

software that is free from intentional or accidental flaws.  Flaws can be detected by analyzing 

software either manually or with the assistance of automated tools.   

Most static analysis tools are capable of finding multiple types of flaws, but the capabilities of 

tools are not necessarily uniform across the spectrum of flaws they detect.  Even tools that target 

a specific type of flaw are capable of finding some variants of that flaw and not others.  Tools’ 

datasheets or user manuals often do not explain which specific code constructs they can detect, 

or the limitations and strengths of their code checkers.  This level of granularity is needed to 

maximize the effectiveness of automated software evaluations. 

 

1.2 Center for Assured Software (CAS) 

In order to address the growing lack of Software Assurance in the Department of Defense (DoD), 

the National Security Agency’s CAS was created in 2005.  The CAS’s mission is to improve the 

assurance of software used within the DoD by increasing the degree of confidence that software 

used is free from intentional and unintentional exploitable vulnerabilities. The CAS 

accomplishes this mission by assisting organizations in deploying processes and tools to address 

assurance throughout the Software Development Lifecycle (SDLC). 

As part of an overall secure development process, the CAS advocates the use of static analysis 

tools at various stages in the SDLC, but not as a replacement for other software assurance efforts, 

such as manual code reviews.  The CAS also believes that some organizations and projects 

warrant a higher level of assurance that can be gained through the use of more than one static 

analysis tool. 

 

1.3 Feedback 

The CAS continuously tries to improve its methodology for running these studies. As you read 

this document, if you have any feedback or questions on the information presented, please 

contact the CAS via email at cas@nsa.gov. 
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Section 2: CAS Methodology 
The CAS methodology requires the use of test cases to perform tool evaluations. Upon 

completion, the tool results are assigned a result type that can be used for further analysis.  

2.1 Juliet Test Cases 

In order to study static analysis tools, users need software for tools to analyze.  There are two 

types of software to choose from: natural and artificial. Natural software is software that was not 

created to test static analysis tools.  Open source software applications, such as the Apache web 

server (httpd.apache.org) or the OpenSSH suite (www.openssh.com), are examples of natural 

software.  Artificial software contains intentional flaws and is created specifically to test static 

analysis tools.  

The CAS decided that the benefits of using artificial code outweigh the disadvantages and 

therefore created artificial code to study static analysis tools.  The CAS generates the source code 

as a collection of “test cases”.  Each test case contains exactly one intentional flaw and typically 

at least one non-flawed construct similar to the intentional flaw.  The non-flawed constructs are 

used to determine if the tools could discriminate flaws from non-flaws.  For example, one test 

case illustrates a type of buffer overflow vulnerability.  The flawed code in the test case passes 

the strcpy function a destination buffer that is smaller than the source string.  The non-flawed 

construct passes a large enough destination buffer to strcpy. 

The test cases created by the CAS and used to study static analysis tools are called the Juliet Test 

Suites. They are publicly available through the National Institute for Standards and Technology 

(NIST) at http://samate.nist.gov/SRD/testsuite.php. 

2.2 Assessment 

2.2.1 Tool Execution 

The CAS regularly evaluates commercial and open source static analysis tools with the use of the 

Juliet Test Suites. The tools are installed and configured on separate hosts in order to avoid 

conflicts and to allow independent analysis. It is important that each tool is treated the same and 

thus an equal amount of hardware resources is given to each one. Every tool is executed using its 

command line interface (CLI) and the results are exported upon completion. 

2.2.2 Scoring Results 

In order to determine the tool’s performance, tool results are scored using result types. Table 1 

contains the various result types that can be assigned as well as their definitions. 

 

 

 

 

 

 



 

- 3 - 

Result Type Explanation 

True Positive (TP) Tool correctly reports the flaw that is the target of the test case. 

False Positive (FP) 
Tool reports a flaw with a type that is the target of the test case, but the flaw is 
reported in non-flawed code. 

False Negative (FN) 
This row is not a tool result.  A false negative result is added for each test case 
for which there is no true positive. 

(blank) 

This row is a tool result where none of the result types above apply.  More 
specifically, either: 

 The tool result is not in a test case file 

 The tool result type is not associated with the test case in which it is reported 

Table 1 – Summary of Result Types 

For example, consider a test case that targets a buffer overflow flaw. The test case contains 

flawed code in which data in a large buffer is attempted to be placed into a smaller one. If a tool 

reports a buffer overflow in this code then the result is marked as a true positive. The test case 

also contains non-flawed code in which a buffer overflow cannot occur. If a tool reports a buffer 

overflow in this code then the result is marked as a false positive. If the tool fails to report a 

buffer overflow in the flawed code, then a result should be added that is considered a false 

negative. If a tool reports any other type of flaw, for example a memory leak, in the flawed or 

non-flawed code, then the result type should be left blank as this type of flaw is not the target of 

the test case and is considered an incidental flaw. 

2.3 Metrics 

Metrics are used to perform analysis of the tool results. After the tool results have been scored, 

specific metrics can be calculated. Several metrics used by the CAS are described in the 

following sections. 

2.3.1 Precision, Recall, and F-Score 

One set of metrics contains the Precision, Recall, and F-Scores of the tools based on the number 

of true positive (TP), false positive (FP), and false negative (FN) findings for that tool on the test 

cases.  The following sections describe these metrics in greater detail. 

Precision 

In the context of the methodology, Precision (also known as “positive predictive value") means 

the ratio of weaknesses reported by a tool to the set of actual weaknesses in the code analyzed.  It 

is defined as the number of weaknesses correctly reported (true positives) divided by the total 

number of weaknesses actually reported (true positives plus false positives). 

FPTP

TP
Precision

##

#


  

Precision is synonymous with the true positive rate and is the complement of the false positive 

rate.  It is also important to highlight that Precision and Accuracy are not the same.  In this 

methodology, Precision describes how well a tool identifies flaws, whereas accuracy describes 

how well a tool identifies flaws and non-flaws as well. 
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Note that if a tool does not report any weaknesses, then Precision is undefined, i.e. 0/0.  If 

defined, Precision is greater than or equal to 0, and less than or equal to 1.  For example, a tool 

that reports 40 issues (false positives and true positives), of which only 10 are real flaws (true 

positives), has a Precision of 10 out of 40, or 0.25.  

Precision helps users understand how much trust can be given to a tool's report of weaknesses.  

Higher values indicate more trust that issues reported correspond to actual weaknesses.  For 

example, a tool that achieves a Precision of 1 only reports issues that are real flaws on the test 

cases.  That is, it does not report any false positives.  Conversely, a tool that has a Precision of 0 

always reports issues incorrectly.  That is, it only reports false positives. 

Recall 

The Recall metric (also known as "sensitivity" or “soundness”) represents the fraction of real 

flaws reported by a tool.  Recall is defined as the number of real flaws reported (true positives), 

divided by the total number of real flaws – reported or unreported – that exist in the code (true 

positives plus false negatives). 

FNTP

TP
Recall

##

#


  

Recall is always a value greater than or equal to 0, and lesser than or equal to 1. For example, a 

tool that reports 10 real flaws in a piece of code that contains 20 flaws has a Recall 10 out of 20, 

or 0.5. 

A high Recall means that the tool correctly identifies a high number of the target weaknesses 

within the test cases.  For example, a tool that achieves a Recall of 1 reports every flaw in the test 

cases.  That is, it has no false negatives.  In contrast, a tool that has a Recall of 0 reports none of 

the real flaws.  That is, it has a high false negative rate. 

F-Score 

In addition to the Precision and Recall metrics, an F-Score is calculated by taking the harmonic 

mean of the Precision and Recall values.  Since a harmonic mean is a type of average, the value 

for the F-Score will always be between the values for Precision and Recall (unless the Precision 

and Recall values are equal, in which case the F-Score will be that same value).  Note that the 

harmonic mean is always less than the arithmetic mean (again, unless the Precision and Recall 

are equal). 

The F-Score provides weighted guidance in identifying a good static analysis tool by capturing 

how many of the weaknesses are found (true positives) and how much noise (false positives) is 

produced.  An F-Score is computed using the following formula: 















RecallPrecision

RecallPrecision
ScoreF 2  

A harmonic mean is desirable since it ensures that a tool must perform reasonably well with 

respect to both Precision and Recall metrics.  In other words, a tool will not get a high F-Score 

with a very high score in one metric but a low score in the other metric.  Simply put, a tool that is 

very poor in one area is not considered stronger than a tool that is average in both.  
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2.3.2 Discriminations and Discrimination Rate 

Another set of metrics looks for areas where a tool showed it could discriminate between flaws 

and non-flaws.  This section describes these metrics in greater detail. 

The purpose of discriminations and the discrimination rate is to differentiate unsophisticated 

tools doing simple pattern matching from tools that perform more complex analysis.   

For example, consider a test case for a buffer overflow where the flaw uses the strcpy function 

with a destination buffer smaller than the source data.  The non-flaw on this test case may also 

use strcpy, but with a sufficiently large destination buffer.  A tool that simply searches for the 

use of strcpy would correctly report the flaw in this test case, but also report a false positive on 

the non-flaw. 

If a tool behaved in this way on all test cases in a certain area, the tool would have a Recall of 1, 

a Precision of .5, and an F-Score of .67 (assuming that each test case had only one “good” or 

non-flawed construct).  These scores don’t accurately reflect the tool’s unsophisticated behavior.  

In particular, the tool is “noisy” (generates many false positive results), which is not reflected in 

its Precision of .5.   

Discriminations 

To address the issue described above, the CAS defines a metric called “Discriminations”.  A tool 

is given credit for a Discrimination when it correctly reports the flaw (a true positive) in a test 

case without incorrectly reporting the flaw in non-flawed code (that is, without any false 

positives).  For every test case, each tool receives 0 or 1 Discriminations. 

In the example above, an unsophisticated tool that is simply searching for the use of strcpy will 

not get credit for a Discrimination on the test case because while it correctly reports the flaw, it 

also reports a false positive. 

Discriminations must be determined for each test case individually.  The number of 

Discriminations in a set of test cases cannot be calculated from the total number of true positives 

and false positives. 

Over a set of test cases, a tool can report as many Discriminations as there are test cases (an ideal 

tool would report a Discrimination on each test case).  The number of Discriminations will 

always be less than or equal to the number of true positives over a set of test cases (because a 

true positive is necessary, but not sufficient, for a Discrimination). 

Discrimination Rate 

Over a set of test cases, the Discrimination Rate is the fraction of test cases where the tool 

reports a Discrimination.  That is: 

Flaws

tionsDiscrimina
RatetionDiscrimina

#

#
  

The Discrimination Rate is always a value greater than or equal to 0, and less than or equal to 1. 

Over a set of test cases, the Discrimination Rate is always less than or equal to the Recall.  This 

is because Recall is the fraction of test cases where the tool reported true positive(s), regardless 

of whether it reported false positive(s).  Every test case where the tool reports a Discrimination 

“counts” toward a tool’s Recall and Discrimination Rate, but other, non-Discrimination test cases 

may also count toward Recall (but not toward Discrimination Rate). 
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Section 3: CAS Tool Study 
The CAS uses the methodology described in Section 2 during its regular static analysis tool 

studies. The following sections describe how tools are analyzed in more detail. 

3.1 Tool Run 

The CAS follows a standard procedure for running each tool on the Juliet test cases. The purpose 

is to provide a consistent process that can be used in future studies or, if the need arises, for 

retesting a specific tool. This section provides an overview of the process. Detailed, step-by-step 

records of each tool run are documented during the study. 

3.1.1 Test Environment 

The CAS sets up a “base” virtual machine running Microsoft Windows with all software needed 

to compile and run the Juliet test cases. For each tool run, the CAS either copies the “base” 

virtual machine or creates a new snapshot within the “base” virtual machine.  All steps for the 

tool runs are performed in separate virtual environments using the local administrative account in 

order to prevent conflicts and to test each tool in isolation. 

3.1.2 Tool Installation and Configuration 

Each static analysis tool is installed on its own virtual machine in accordance with the vendor’s 

specifications, along with the current version of the Juliet test cases. There are strict guidelines 

established that limit the adjustment of settings to ensure that all tools are treated fairly.  For 

tools where no vendor input can be obtained, the approach is to turn on all of the rules related to 

the test cases.   

3.1.3 Tool Execution and Conversion of Results 

Each tool is executed from the command line via CAS-created scripts. For tools that cover 

multiple languages, each analysis of the test cases for a specific language family is considered a 

separate run. If errors are found during or after the analysis, the tool can be run on individual test 

cases.  

The CAS then exports the results of the analysis from each tool. In order to perform analysis, all 

the results must be in a similar format. Because each tool exports its results differently, the CAS 

has developed its own data format.  

3.1.4 Scoring of Tool Results 

The final step in the tool run process is to determine which results represent real flaws in the test 

cases (true positives) and which do not (false positives).   

The “scoring” of results only includes result types that are related to the test case in which they 

appear.  Tool results indicating a weakness that is not the focus of the test case (such as an 

unintentional flaw in the test case) are ignored in scoring and analysis and their result type is left 

blank. Results are scored using a CAS created tool which automates the scoring process. 
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Section 4: CAS Tool Analysis 

4.1 Weakness Classes 

To help understand the areas in which a given tool excelled, similar test cases are grouped into a 

Weakness Class. Weakness classes are defined using CWE entries that contain similar 

weaknesses.  Since each Juliet test case is associated with the CWE entry in its name, each test 

case is contained in a Weakness Class.   

For example, Stack-based Buffer Overflow (CWE-121) and Heap-based Buffer Overflow 

(CWE-122) are both placed in the Buffer Handling Weakness Class. Therefore, all of the test 

cases associated with CWE entries 121 and 122 are mapped to the Buffer Handling Weakness 

Class.  Table 2 provides a summary list of Weakness Classes used in the study, along with an 

example weakness in that Weakness Class. 

The Miscellaneous Weakness Class is used to hold a collection of individual CWE entries that 

do not fit into the other classes. Therefore, the weaknesses in the Miscellaneous Weakness Class 

do not have a common theme. 

 

Weakness Class Example Weakness (CWE Entry) 

Authentication and Access 
Control 

CWE-620: Unverified Password Change 

Buffer Handling (C/C++ only) CWE-121: Stack-based Buffer Overflow 

Code Quality CWE-561: Dead Code 

Control Flow Management CWE-362: Race Condition 

Encryption and Randomness CWE-328: Reversible One-Way Hash 

Error Handling CWE-252: Unchecked Return Value 

File Handling CWE-23: Relative Path Traversal 

Information Leaks 
CWE-534: Information Leak Through Debug Log 
Files 

Initialization and Shutdown CWE-415: Double Free 

Injection  CWE-89: SQL Injection 

Malicious Logic CWE-506: Embedded Malicious Code 

Miscellaneous CWE-480: Use of Incorrect Operator 

Number Handling CWE-369: Divide by Zero 

Pointer and Reference Handling CWE-476: Null Pointer Dereference 

Table 2 – Weakness Classes 

The following sections provide a brief description of the Weakness Classes defined by the CAS. 

4.1.1 Authentication and Access Control 

Attackers can gain access to a system if the proper authentication and access control mechanisms 

are not in place. An example would be a hardcoded password or a violation of the least privilege 

principle. The test cases in this Weakness Class test a tool’s ability to check whether or not the 

source code is preventing unauthorized access to the system. 
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4.1.2 Buffer Handling 

Improper buffer handling can lead to attackers crashing or gaining complete control of a system. 

An example would be a buffer overflow that allows an adversary to execute his/her code. The 

test cases in this Weakness Class test a tool’s ability to find buffer access violations in the source 

code. This Weakness Class is only valid for the C/C++ language family. 

4.1.3 Code Quality 

Code quality issues are typically not security related; however they can lead to maintenance and 

performance issues. An example would be unused code. This is not an inherent security risk; 

however it may lead to maintenance issues in the future. The test cases in this Weakness Class 

test a tool’s ability to find poor code quality issues in the source code. 

The test cases in this Weakness Class cover some constructs that may not be relevant to all 

audiences.  The test cases are all based on weaknesses in CWEs, but even persons interested in 

code quality may not consider some of the tested constructs to be weaknesses.  For example, this 

Weakness Class includes test cases for flaws such as an omitted break statement in a switch 

(CWE-484), an omitted default case in a switch (CWE-478), and dead code (CWE-561). 

4.1.4 Control Flow Management 

Control flow management deals with timing and synchronization issues that can cause 

unexpected results when the code is executed. An example would be a race condition. One 

possible consequence of a race condition is a deadlock which leads to a denial of service. The 

test cases in this Weakness Class test a tool’s ability to find issues in the order of execution 

within the source code. 

4.1.5 Encryption and Randomness 

Encryption is used to provide data confidentiality. However, if a weak or wrong encryption 

algorithm is used, an attacker may be able to convert the ciphertext into its original plain text. An 

example would be the use of a weak Pseudo Random Number Generator (PRNG). Using a weak 

PRNG could allow an attacker to guess the next number that is generated. The test cases in this 

Weakness Class test a tool’s ability to check for proper encryption and randomness in the source 

code. 

4.1.6 Error Handling 

Error handling is used when a program behaves unexpectedly. However, if a program fails to 

handle errors properly, it could lead to unexpected consequences. An example would be an 

unchecked return value. If a programmer attempts to allocate memory and fails to check if the 

allocation routine was successful then a segmentation fault could occur if the memory failed to 

allocate properly. The test cases in this Weakness Class test a tool’s ability to check for proper 

error handling within the source code.   

4.1.7 File Handling 

File handling deals with reading from and writing to files. An example would be reading from a 

user-provided file on the hard disk. Unfortunately, adversaries can sometimes provide relative 

paths to a file that contain periods and slashes. An attacker can use this method to read to or 

write to a file in a different location on the hard disk than the developer expected. The test cases 
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in this Weakness Class test a tool’s ability to check for proper file handling within the source 

code. 

4.1.8 Information Leaks 

Information leaks can cause unintended data to be made available to a user. For example, 

developers often use error messages to inform users that an error has occurred. Unfortunately, if 

sensitive information is provided in the error message an adversary could use it to launch future 

attacks on the system. The test cases in this Weakness Class test a tool’s ability to check for 

information leaks within the source code. 

4.1.9 Initialization and Shutdown 

Initializing and shutting down resources occurs often in source code. For example, in C/C++ if 

memory is allocated on the heap it must be deallocated after use. If the memory is not 

deallocated, it could cause memory leaks and affect system performance. The test cases in this 

Weakness Class test a tool’s ability to check for proper initialization and shutdown of resources 

in the source code. 

4.1.10 Injection 

Code injection can occur when user input is not validated properly. One of the most common 

types of injection flaws is cross-site scripting (XSS). An attacker can inject malicious scripts to 

acquire elevated privileges or steal session tokens in order to gain access to sensitive 

information.  This can often be prevented using proper input validation and/or data encoding. 

The test cases in this Weakness Class test a tool’s ability to check for injection weaknesses in the 

source code. 

4.1.11 Malicious Logic 

Malicious logic is the implementation of a program that performs an unauthorized or harmful 

action. In source code, unauthorized or harmful actions can be indicators of malicious logic. 

Examples of malicious logic include Trojan horses, viruses, backdoors, worms and logic bombs. 

The test cases in this Weakness Class test a tool’s ability to check for malicious logic in the 

source code.   

4.1.12 Miscellaneous 

The weaknesses in this class do not fit into any of the other Weakness Classes. An example 

would be an assignment instead of a comparison. Control flow statements allow developers to 

compare variables to certain values in order to determine the proper path to execute. 

Unfortunately, they also allow developers to make variables assignments. If an assignment is 

made where a comparison was intended then it could lead to the wrong path of execution. 

4.1.13 Number Handling 

Number handling issues include incorrect calculations as well as number storage and 

conversions. An example is an integer overflow. On a 32-bit system, a signed integer’s 

maximum value is 2,147,483,647. If this value is increased by one, its new value will be a 

negative number rather than the expected 2,147,483,648 due to the limitation of the number of 

bits used to store the number. The test cases in this Weakness Class test a tool’s ability to check 

for proper number handling in the source code. 
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4.1.14 Pointer and Reference Handling 

Pointers are often used in source code to refer to a block of memory without having to reference 

the memory block directly. One of the most common pointer errors is a NULL pointer 

dereference. This occurs when the pointer is expected to point to a block of memory, but instead 

it points to the value of NULL. If referenced, this can cause an exception and lead to a system 

crash. The test cases in this Weakness Class test a tool’s ability to check for proper pointer and 

reference handling. 

4.2 Metrics  

Using the factors described in Section 2.3, the CAS generates metrics by adhering to certain 

rules, detailed in the following sections, as part of its overall analysis strategy.  

4.2.1 Precision 

When calculating the Precision, duplicate true positive values are ignored.  That is, if a tool 

reports two or more true positives on the same test case, the Precision is calculated as if the tool 

reports only one true positive on that test case.  Duplicate false positive results are included in 

the calculation, however. 

Some of the Juliet test cases are considered bad-only, meaning they only contain a flawed 

construct.  Since the bad-only test cases can impact the results, they are excluded from all 

Precision calculations. 

4.2.2 Recall 

Like with Precision, duplicate true positive values are ignored when calculating Recall.  That is, 

if a tool reports two or more true positives on the same test case, the Recall is calculated as if the 

tool reports only one true positive on that test case.   

4.2.3 F-Score 

Equal weighting is used for both Precision and Recall when calculating the F-Score.  Alternate 

F-Scores can be calculated by using higher weights for Precision (thus establishing a preference 

that tool results will be correct) or by using higher weights for Recall (thus establishing a 

preference that tools will find more weaknesses). 

As previously explained, some of the Juliet test cases are considered bad-only, meaning they 

only contain a flawed construct.  Since the bad-only test cases can impact the results, they are 

excluded from all F-Score calculations. 

4.2.4 Weighting 

The Juliet test cases are designed to test a tool’s ability to analyze different control and data 

flows. However, for each flaw, a single test case is created that contains no control or data flows 

and is generated to test the basic form of the flaw (“baseline” test cases).  

In the past, all test cases for a given flaw were weighted equally. Therefore, the Precision, 

Recall, and F-Score for baseline test cases were calculated using the same weighting as the test 

cases containing control and data flows. Based upon feedback from the software assurance 

community and further research by the CAS, it was determined that the baseline test cases should 
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merit more “weight” than the control and data flow test cases. In general, if a tool is able to find 

a given flaw then it should be able to at least find it in the baseline test case. 

Instead of each test case being weighted equally, the total weight for all test cases covering a 

given flaw is now equal to 1. The baseline test case is given a weight of 0.5 and the remaining 

weight (0.5) is distributed equally among the remaining test cases. Therefore, all control and data 

flow variants are weighted equally for a given flaw. Some flaws do not allow for additional 

control and data flow test cases, such as class-based flaws. In these instances, there is a single 

test case for which the weight is equal to 1. 

Table 1 shows sample tool results for a given flaw containing a baseline, two data flow, and 

three control flow test cases. Table 2 shows the Precision, Recall, and F-Score calculation 

differences when adding weights to the test cases. 

 

 

 #TPs #FPs #FNs Weight 
Weighted 

TPs 
Weighted 

FPs 
Weighted 

FNs 

Baseline 1 0 0 0.5 0.5 0 0 

Data Flow1 0 1 1 0.1 0 0.1 0.1 

Data Flow2 1 2 0 0.1 0.1 0.2 0 

Control Flow1 1 1 0 0.1 0.1 0.1 0 

Control Flow2 1 2 0 0.1 0.1 0.2 0 

Control Flow3 0 2 1 0.1 0 0.2 0.1 

Totals 4 8 2 1 0.8 0.8 0.2 

Table 1 – Sample Tool Results for a Single Flaw Type 

 

 Unweighted Weighted 

Precision 4 / (4 + 8 ) = 0.33 0.8 / ( 0.8 + 0.8 ) = 0.50 

Recall 4 / ( 4 + 2 ) = 0.67 0.8 / ( 0.8 + 0.2 ) = 0.80 

F-Score 
2 * ( ( 0.33 * 0.67 )  /  ( 0.33 + 0.67 ) ) = 

0.44 
2 * ( ( 0.50 * 0.80 )  /  ( 0.50 + 0.80 ) ) = 

0.62 

Table 2 – Sample Precision, Recall, and F-Score values for a Single Flaw Type 

As shown in the tables above, the sample values for Precision, Recall, and F-Score increase 

when using weighted values; however, this is not always the case when using real data.  

Section 5: CAS Reporting 
Graphs and tables are used to show the tool results for various metrics including Recall, 

Precision, Discrimination Rate and F-Score.  Examining just a single metric does not give the 

whole picture and obscures details that are important in understanding a tool's overall strengths.  

For example, just looking at Recall tells the analyst how many issues are found, but these issues 

can be hidden in a sea of false positives, making it extremely time-consuming to interpret the 
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results.  The Recall metric alone does not give the analyst this perspective.  By examining both 

the Recall and Precision values, the analyst can get a better picture of the tool's overall strengths. 

5.1 Results by Tool 

5.1.1 Precision, Recall and F-Score Table 

To summarize each tool’s Precision, Recall, and F-Score on the test cases, a table is produced to 

show how the tool performs regarding each metric.  However, when interpreted in isolation, each 

metric can be deceptive in that it does not reflect how a tool performs with respect to other tools, 

i.e., it is not known what a “good” number is.  It is impossible for an analyst to know if a 

Precision of .45 is a good value or not.  If every other tool has a Precision value of .20, then a 

value of .45 would suggest that the tool outperforms its peers.  On the other hand, if every other 

tool has a Precision of .80, then a value of .45 would suggest that the tool underperforms on this 

metric. 

For Precision, if a tool does not report any findings in a given Weakness Class, it is excluded 

from the calculation of the average for that Weakness Class.  For Recall and F-Score, all results 

are used to calculate the average even if a tool does not report any findings for that Weakness 

Class. 

If the tool has a higher value than the average, a small green triangle pointing up was used.  For 

values below average, a small red triangle pointing down is used.  If the value is within .05 of the 

average, then no icon is used meaning the tool results are close to average. 

 Sample Size Tool Results 

Weakness Class # of Flaws Precision F-Score Recall 

Weakness Class A 511 ▼ .25 ▼ .20 ▼ .17 

Weakness Class B 953  -  -  0 

Weakness Class C 433 ▲ .96 ▲ .72 ▲ .58 

Weakness Class D 720 ▼ .56  .57 ▲ .58 

Weakness Class E 460  1  .29  .17 

Legend: ▲ = .05 or more above average ▼ = .05 or more below average 

Table 3 – Precision-Recall Results for SampleTool by Weakness Class 

In this example, Table 3 shows that SampleTool has a precision of .96, an F-Score of .72, and a 

recall of .58, which are all more than 0.05 above the average with respect to Precision, Recall, 

and F-Score for Weakness Class C.  Its performance is mixed in Weakness Class D, with below-

average Precision of .56 and an above-average Recall of .58.  Within Weakness Class E, 

SampleTool has average results – even though the Precision was 1 – which suggests that all tools 

had high Precision within this Weakness Class. 

Note that if a tool does not produce any true positive findings or false positive findings for a 

given Weakness Class, then Precision cannot be calculated because of division by zero, which is 

reflected as a dash (“-”) in the table.  This can be interpreted as an indication that the tool does 

not attempt to find flaws related to the given Weakness Class, or at least does not attempt to find 

the flaw types represented by the test cases for that Weakness Class. 

Also note that the number of flaws represents the total number of test cases in that Weakness 

Class.  This represents a sample size and gives the analyst an idea of how many opportunities a 

tool has to produce findings.  In general, when there are more opportunities, one can have more 

statistical confidence in the metric. 
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To help understand the Precision, Recall, and F-Score results for a tool, each metric is compared 

against the weighted average of all the tools.  The weighted average was calculated for each 

functional variant with one-half weighting placed on the baseline flow variant, and the other half 

of the weighting being distributed equally across the remaining flow variants. 

5.1.2 Precision Graph by Tool 

Figure 1 shows an example of a Precision Graph for a single tool.  Even when all values are 

relatively small, the Y-axis scale on these graphs is not adjusted in order to compare tools to the 

ideal Precision of 1. The tool’s Precision for a given Weakness Class is indicated by a blue 

square. The average Precision for a given Weakness Class is indicated by a red square. The 

dotted line connecting the averages is shown as a visual aid; however, the averages are not 

related. If a tool did not report at least one true positive for a given Weakness Class, the 

Precision is undefined and is indicated on the graph by a black line-filled square at 0 on the x-

axis. 

 

Figure 1 – Example Precision Graph for a single tool 

In the example in Figure 1, the graph shows that the SampleTool is relatively strong when 

focusing on Weakness Class C, and less strong, when compared to the other tools, for Weakness 

Class A and Weakness Class D.   
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5.1.3 Recall Graph by Tool 

Figure 2 shows an example of a Recall Graph for a single tool.  Even when all values are 

relatively small, the Y-axis scale on these graphs is not adjusted in order to compare tools to the 

ideal Recall of 1. The tool’s Recall for a given Weakness Class is indicated by a purple square. 

The average Recall for a given Weakness Class is indicated by a red square. The dotted line 

connecting the averages is shown as a visual aid; however, the averages are not related.  

 

 

Figure 2 – Example Recall Graph for a single tool 

In the example in Figure 2, the graph shows that the SampleTool is strong when focusing on 

Weakness Class C and Weakness Class D, but not strong related to Weakness Class A and 

Weakness Class B. The graph also indicates the tool found 0 true positives for Weakness Class 

B. 
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5.1.4 Precision-Recall Graphs by Tool 

Figure 3 shows an example of a Precision-Recall graph. Notice that the Precision metric is 

mapped to the vertical axis and the Recall metric is mapped to the horizontal axis.  A tool's 

relation to both metrics is represented by a point on the graph. If a tool did not report at least one 

true positive for a given Weakness Class then it is not shown on the graph.  The closer the point 

is to the top right, the stronger the tool is in the given area. The square marker (in white) 

represents the tool’s actual metric values for the specified Weakness Class as calculated by the 

scoring function.  The other point, shown as a black circle, represents the average metric values 

for all the tools that produced findings for the given Weakness Class. 

A solid line is drawn between the two related points and helps visually state how a given tool 

compared to the average. Note that the longer the line, the greater the difference between the tool 

and the average.  In general, movement of a specific tool away from the average toward the 

upper right demonstrates a relatively greater capability in the given area. 
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Figure 3 – Example Precision-Recall Graph for single tool  

In the example in Figure 3, the graph shows that the SampleTool is stronger than the average of 

all tools when focusing on Weakness Class C.  Both Precision and Recall for the tool are above 

average as evident by moving from the black dot upward, meaning higher Precision, and to the 

right, indicating higher Recall. SampleTool is less strong compared to the average of all tools 

relating to Weakness Class A.  Both metrics are below average, and the line moves from the 

black dot downward, meaning less Precision, and to the left, indicating less Recall.  

For the results associated with Weakness Class E and Weakness Class D, where the line moves 

to the upper left or the lower right, more analysis is often needed.  In these situations, the tool is 

above average for one metric but below average for the other. 
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5.1.5 Discriminations and Discrimination Rate Table by Tool 

To summarize each tool’s Discrimination Rate on the test cases, a table is produced to show how 

the tool performs regarding Discriminations.  However, similar to Precision, Recall, and F-Score, 

when interpreted in isolation, each metric can be deceptive in that it does not reflect how a tool 

performs with respect to other tools, i.e., it is not known what a “good” number is.  

For Discrimination Rates, all tools are included in the calculation of the average for that 

Weakness Class. 

If the tool has a higher value than the average, a small green triangle pointing up was used.  For 

values below average, a small red triangle pointing down is used.  If the value is within .05 of the 

average, then no icon is used meaning the tool results are close to average. 

A tool’s Discriminations and Discrimination Rates on each Weakness Class are shown in a table 

like Table 4. 

 Sample Size Tool Results 

Weakness Class # of Flaws Discriminations Disc. Rate 

Weakness Class A 511 50 ▼ .10 

Weakness Class B 953 0  0 

Weakness Class C 433 234 ▲ .54 

Weakness Class D 720 150  .21 

Weakness Class E 460 15  .03 

Legend: ▲ = .05 or more above average  ▼ = .05 or more below average 

Table 4 – Discrimination Results for SampleTool by Weakness Class 

 

In this example, Table 4 shows that SampleTool has a Discrimination Rate of .10 for Weakness 

Class A, which is at least .05 below the average of all tools, and a Discrimination Rate of .54 for 

Weakness Class C, which is at least .05 above the average. For Weakness Classes D and E, with 

Discrimination Rates of .21 and .03, respectively, SampleTool has average results. It also 

indicates that the tools overall performed poorly on Weakness Class E with respect to 

Discriminations since the average Discrimination Rate can be no higher than .08 (Weakness 

Class E’s rate of .03 plus .05) . SampleTool did not report any Discriminations for Weakness 

Class B, indicating poor complex analysis in that area. 
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5.1.6 Discrimination Rate Graphs by Tool 

Discrimination Rate Graphs like Figure 4 are used to show the Discrimination Rates for a single 

tool across different Weakness Classes.  Even when all values are relatively small, the Y-axis 

scale on these graphs is not adjusted in order to compare tools to the ideal Discrimination Rate of 

1. 

 

Figure 4 – Example Discrimination Rate Graph for a single tool 

In the example in Figure 4, the graph shows that SampleTool has an above average 

Discrimination Rate in Weakness Class C and below average Discrimination Rate in Weakness 

Class A and Weakness Class B. SampleTool has an average Discrimination Rate in Weakness 

Class D and Weakness Class E. 

5.2 Results by Weakness Class 

5.2.1 Precision Graphs by Weakness Class 

Figure 5 shows an example of a Precision Graph for a single Weakness Class. Even when all 

values are relatively small, the Y-axis scale on these graphs is not adjusted in order to compare 

tools to the ideal Precision of 1. An individual tool’s Precision for the Weakness Class is 

indicated with a blue bar. The average Precision for all tools across the Weakness Class is 

indicated by a red bar and is always located on the far right side of the graph. The average is 
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calculated using only the tools that cover this Weakness Class. In the example below, 

SampleTool2 is not included in the average Precision calculation. 

 

Figure 5 – Example Precision Graph for a single Weakness Class 

In the example in Figure 5, the graph shows that SampleTool1 and SampleTool3 performed 

above average in this Weakness Class. SampleTool4 and SampleTool5 performed below average 

and SampleTool2 did not cover this Weakness Class. 
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5.2.2 Recall Graphs by Weakness Class 

Figure 6 shows an example of a Recall Graph for a single Weakness Class. Even when all values 

are relatively small, the Y-axis scale on these graphs is not adjusted in order to compare tools to 

the ideal Precision of 1. An individual tool’s Recall for the Weakness Class is indicated with a 

purple bar. The average Recall for all tools across the Weakness Class is indicated by a red bar 

and is always located on the far right side of the graph. The average is calculated using all tools, 

which includes those that do not cover this Weakness Class. 

 

Figure 6 – Example Recall Graph for a single Weakness Class 

In the example in Figure 6, the graph shows that SampleTool1 and SampleTool4 performed 

above average in this Weakness Class. SampleTool3 and SampleTool5 performed below average 

and SampleTool2 did not cover this Weakness Class. 

5.2.3 Discrimination Rate Graphs by Weakness Class 

Figure 7 shows an example of a Discrimination Rate Graph for a single Weakness Class. Even 

when all values are relatively small, the Y-axis scale on these graphs is not adjusted in order to 

compare tools to the ideal Discrimination Rate of 1. An individual tool’s Discrimination Rate for 

the Weakness Class is indicated with a purple bar. The average Discrimination Rate for all tools 

across the Weakness Class is indicated by a red bar and is always located on the far right side of 

the graph. The average is calculated using all tools, which includes those that do not cover this 

Weakness Class. 
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Figure 7 – Example Discrimination Rate Graph for a single Weakness Class 

In the example in Figure 7, the graph shows that SampleTool1 and SampleTool4 performed 

above average in this Weakness Class. SampleTool3 and SampleTool5 performed below average 

and SampleTool2 did not cover this Weakness Class. 
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5.2.4 Precision-Recall and Discrimination Results by Weakness Class 

Table 5 shows an example of a Precision-Recall and Discrimination results chart. This chart can 

be used to view the results of all tools in a Weakness Class. This table supports the graphs shown 

in the previous sections. 

Tool Precision F-Score Recall Disc. Rate 

SampleTool1 .54 .61 .69 .45 

SampleTool2 - 0 0 0 

SampleTool3 .68 .28 .18 .13 

SampleTool4 .30 .31 .33 .25 

SampleTool5 .10 .12 .15 .09 

Average .41 .26 .27 .18 

Table 5 –Weakness Class Precision-Recall and Discrimination Results 

5.3 Results for Two Tool Combinations 

Since there are a variety of commercial and open source static SCA tools available, developers 

can use more than one tool to analyze a code base. The purpose of comparing two tools is to 

show how adding a second tool might complement the tool already in use. Since tools can have 

some overlap, the goal would be to use a second tool that is stronger in the areas where the 

current tool is lacking. 

This section describes the tables and graphs used to show the effects of combining two tools. 

5.3.1 Combined Discrimination Rate and Recall Table 

Table 6 shows the combined Discrimination Rate and Recall results when combining two sample 

static SCA tools. The tool’s own results are shown in the light gray boxes. The green boxes 

indicate the highest combined values in the table for both Discrimination Rate and Recall. 
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SampleTool1 .25 .53 .27 .59 .60 .77 .45 .73 .26 .59 

SampleTool2 .27 .59 .06 .11 .47 .70 .35 .52 .07 .25 

SampleTool3 .60 .77 .47 .70 .45 .67 .80 .91 .47 .80 

SampleTool4 .45 .73 .35 .52 .80 .91 .33 .50 .34 .62 

SampleTool5 .26 .59 .07 .25 .47 .80 .34 .62 .02 .22 

Legend: Individual Tool Result Highest Discrimination Rate / Recall in Table 

Table 6 – Combined Discrimination Rate and Recall for Two Tools 
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In the example in Table 6, the table shows that SampleTool3 performs the best of all individual 

tools studied, but when combined with SampleTool4, yields the best results for both 

Discrimination Rate and Recall. Notice that the data in the table is symmetric, so the results for 

each tool are the same whether you are looking down a column or across a row.  

5.3.2 Combined Discrimination Rate and Recall Graphs 

Figure 8 shows combined Discrimination Rate and Recall graphs. Each bar chart shows the 

overlap between the tool named below the chart (the “base” tool) and each of the other tools (the 

“additional” tools). Each vertical bar shows the overlap between the base tool and one additional 

tool.  The lowest, blue segment shows the results (Discrimination Rate or Recall) for the base 

tool only; the topmost, green segment shows the results for the additional tool only; and the 

middle segment shows the overlap, or the same results reported by both tools. That is, the bottom 

two segments combined indicate the overall results for the base tool, while the top two segments 

combined indicate the overall results for the additional tool.  

Note that in each multiple bar chart, a “water line” appears at the same height for each bar.  This 

shows the base tool’s own results (although its overlap, and hence its results for flaws reported 

only by the base tool, varies). 

  

  LEGEND: 
 
 Additional Tool, But 
 Not Base Tool  
 
 Both Tools 
 
  
 Base Tool, But Not  
 Additional Tool 

Figure 8 – Combined Discrimination Rate and Recall for Two-Tool Combinations 

The Discrimination Rate chart example shows that combining SampleTool1 with SampleTool3 

yields the best results. In fact, adding SampleTool3 more than doubles the Discrimination Rate 

as opposed to using SampleTool1 alone. Combining SampleTool1 with SampleTool2 or 

SampleTool5 is ineffective as the Discrimination Rate shows a very small increase using these 

tool combinations. 

The Recall chart example shows that combining SampleTool1 with SampleTool3 yields the best 

results. However, there is a large amount of overlap when combining these two tools. Although 

the combination of SampleTool1 and SampleTool4 does not generate the highest combined 

Recall, the overlap between the two tools is smaller than the overlap between SampleTool1 and 

SampleTool3 and should be taken into consideration. 
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5.3.3 Tool Coverage 

Table 7 shows the overall coverage for all tools across all of the test cases.  For each number of 

tools, the number of test cases where exactly that number of tools reported the flaw (a “True 

Positive”) and reported the flaw without reporting any False Positives (a “Discrimination”) is 

shown. This table also shows the number of test cases where no tool reported the flaw or a 

Discrimination. Figure 9 shows the percentage of flaws and Figure 10 shows the percentage of 

discriminations shown in Table 7 as pie charts. 

 

Tool 

# Test Cases 

with True 

Positives 

True 

Positive % 

# Test Cases with 

Discriminations 

Discrimination 

% 

Exactly One Tool 625 32.7% 550 28.8% 

Exactly Two Tools 350 18.3% 250 13.1% 

Exactly Three Tools 200 10.5% 80 4.2% 

Exactly Four Tools 50 2.6% 40 2.1% 

Exactly Five Tools 25 1.3% 0 .0% 

No Tools 660 34.6% 990 51.8% 

Total 1910 100% 1910 100% 

 Table 7 – Tool Coverage Results 
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Figure 9 – Tool True Positive Coverage Graph 

 

 

Figure 10 – Tool Discrimination Coverage Graph
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Appendix A : Juliet Test Case CWE Entries 

and CAS Weakness Classes 
Table 8 shows the CWE entries included in each Weakness Class defined by the CAS ordered by 

Weakness Class. 

Weakness Class 
CWE Entry 

ID 
CWE Entry Name 

Authentication and Access 
Control 

15 
External Control of System or Configuration 
Setting 

247 Reliance on DNS Lookups in a Security Decision 

256 Plaintext Storage of a Password 

259 Use of Hard-coded Password 

272 Least Privilege Principal 

284 Access Control (Authorization) Issues 

491 
Public cloneable() Method Without Final ('Object 
Hijack') 

500 Public Static Field Not Marked Final 

549 Missing Password Field Masking 

560 Use of umask() with chmod-style Argument 

566 
Access Control Bypass Through User-Controlled 
SQL Primary Key 

582 Array Declared Public, Final, and Static 

607 
Public Static Final Field References Mutable 
Object 

613 Insufficient Session Expiration 

614 
Sensitive Cookie in HTTPS Session Without 
'Secure' Attribute 

620 Unverified Password Change 

784 
Reliance on Cookies without Validation and 
Integrity Checking in a Security Decision 

Buffer Handling 

121 Stack-based Buffer Overflow 

122 Heap-based Buffer Overflow 

123 Write-what-where Condition 

124 Buffer Underwrite (‘Buffer Underflow’) 

126 Buffer Over-read 

127 Buffer Under-read 

242 Use of Inherently Dangerous Function 

680 Integer Overflow to Buffer Overflow 

785 
Use of Path Manipulation Function without 
Maximum-sized Buffer 

Code Quality 

398 Indicator of Poor Code Quality 

477 Use of Obsolete Functions 

478 Missing Default Case in Switch Statement 
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Weakness Class 
CWE Entry 

ID 
CWE Entry Name 

484 Omitted Break Statement in Switch 

547 Use of Hard-coded Security-relevant Constants 

561 Dead Code 

563 Unused Variable 

570 Expression is Always False 

571 Expression is Always True 

585 Empty Synchronized Block 

676 Use of Potentially Dangerous Function 

Control Flow Management 

180 
Incorrect Behavior Order: Validate Before 
Canonicalize 

364 Signal Handler Race Condition 

366 Race Condition Within a Thread 

367 
Time-of-check Time-of-use (TOCTOU) Race 
Condition 

382 J2EE Bad Practices: Use of System.exit() 

383 J2EE Bad Practices: Direct Use of Threads 

479 Signal Handler Use of a Non-reentrant Function 

483 Incorrect Block Delimitation 

572 Call to Thread run() instead of start() 

584 Return Inside Finally Block 

606 Unchecked Input for Loop Condition 

609 Double-Checked Locking 

674 Uncontrolled Recursion 

698 Redirect Without Exit 

764 Multiple Locks of a Critical Resource 

765 Multiple Unlocks of a Critical Resource 

832 Unlock of a Resource that is not Locked 

833 Deadlock 

835 
Loop with Unreachable Exit Condition ('Infinite 
Loop') 

Encryption and Randomness 

315 Plaintext Storage in a Cookie 

319 Cleartext Transmission of Sensitive Information 

327 Use of a Broken or Risky Cryptographic Algorithm 

328 Reversible One-Way Hash 

329 Not Using a Random IV with CBC Mode 

330 Use of Insufficiently Random Values 

336 Same Seed in PRNG 

338 Use of Cryptographically Weak PRNG 

523 Unprotected Transport of Credentials 

759 Use of a One-Way Hash without a Salt 

760 Use of a One-Way Hash with a Predictable Salt 
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Weakness Class 
CWE Entry 

ID 
CWE Entry Name 

780 Use of RSA Algorithm without OAEP 

Error Handling 

248 Uncaught exception 

252 Unchecked Return Value 

253 Incorrect Check of Function Return Value 

273 Improper Check for Dropped Privileges 

390 Detection of Error Condition Without Action 

391 Unchecked Error Condition 

392 Missing Report of Error Condition 

396 Declaration of Catch for Generic Exception 

397 Declaration of Throws for Generic Exception 

440 Expected Behavior Violation 

600 Uncaught Exception in Servlet 

617 Reachable Assertion 

File Handling 

23 Relative Path Traversal 

36 Absolute Path Traversal 

377 Insecure Temporary File 

378 
Creation of Temporary File With Insecure 
Permissions 

379 
Creation of Temporary File in Directory with 
Insecure Permissions 

675 Duplicate Operations on Resource 

Information Leaks 

204 Response Discrepancy Information Leak 

209 Information Exposure Through an Error Message 

226 Sensitive Information Uncleared Before Release 

244 
Improper Clearing of Heap Memory Before 
Release (‘Heap Inspection’) 

497 
Exposure of System Data to an Unauthorized 
Control Sphere 

499 Serializable Class Containing Sensitive Data 

533 Information Leak Through Server Log Files 

534 Information Leak Through Debug Log Files 

535 Information leak Through Shell Error Message 

591 
Sensitive Data Storage in Improperly Locked 
Memory 

598 
Information Leak Through Query Strings in GET 
Request 

615 Information Leak Through Comments 

Initialization and Shutdown 

400 
Uncontrolled Resource Consumption ('Resource 
Exhaustion') 

401 
Improper Release of Memory Before Removing 
Last Reference ('Memory Leak') 

404 Improper Resource Shutdown or Release 

415 Double Free 

416 Use After Free 
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Weakness Class 
CWE Entry 

ID 
CWE Entry Name 

457 Use of Uninitialized Variable 

459 Incomplete Cleanup 

568 finalize() Method Without super.finalize() 

580 clone() Method Without super.clone() 

586 Explicit Call to Finalize() 

590 Free of Memory not on the Heap 

665 Improper Initialization 

672 
Operation on Resource After Expiration or 
Release 

761 Free of Pointer Not At Start Of Buffer 

762 Mismatched Memory Management Routines 

772 
Missing Release of Resource after Effective 
Lifetime 

773 
Missing Reference to Active File Descriptor or 
Handle 

775 
Missing Release of File Descriptor or Handle After 
Effective Lifetime 

789 Uncontrolled Memory Allocation 

Injection 

78 
Improper Neutralization of Special Elements used 
in an OS Command ('OS Command Injection') 

80 
Improper Neutralization of Script-Related HTML 
Tags in a Web Page (Basic XSS) 

81 
Improper Neutralization of Script in an Error 
Message Web Page 

83 
Improper Neutralization of Script in Attributes in a 
Web Page 

89 
Improper Neutralization of Special Elements used 
in an SQL Command ('SQL Injection') 

90 
Improper Neutralization of Special Elements used 
in an LDAP Query ('LDAP Injection') 

113 
Failure to Sanitize CRLF Sequences in HTTP 
Headers (aka 'HTTP Response Splitting') 

129 Improper Validation of Array Index 

134 Uncontrolled Format String 

436 Untrusted Search Path 

427 Uncontrolled Search Path Element 

470 
Use of Externally-Controlled Input to Select 
Classes or Code (aka 'Unsafe Reflection') 

601 
URL Redirection to Untrusted Site ('Open 
Redirect') 

643 
Improper Neutralization of Data within XPath 
Expressions ('XPath Injection') 

Malicious Logic 

111 Direct Use of Unsafe JNI 

114 Process Control 

304 Missing Critical Step in Authentication 

321 Use of Hard-coded Cryptographic Key 

325 Missing Required Cryptographic Step 
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Weakness Class 
CWE Entry 

ID 
CWE Entry Name 

506 Embedded Malicious Logic 

510 Trapdoor 

511 Logic/Time Bomb 

514 Covert Channel 

546 Suspicious Comment 

Miscellaneous 

188 Reliance on Data/Memory Layout 

222 Truncation of Security-relevant Information 

223 Omission of Security-relevant Information 

464 Addition of Data Structure Sentinel 

475 Undefined Behavior For Input to API 

480 Use of Incorrect Operator 

481 Assigning instead of Comparing 

482 Comparing instead of Assigning 

486 Comparison of Classes by Name 

489 Leftover Debug Code 

579 
J2EE Bad Practices: Non-serializable Object 
Stored in Session 

581 
Object Model Violation: Just One of Equals and 
Hashcode Defined 

597 Use of Wrong Operator in String Comparison 

605 Multiple Binds to Same Port 

666 
Operation on Resource in Wrong Phase of 
Lifetime 

685 Function Call With Incorrect Number of Arguments 

688 
Function Call With Incorrect Variable or Reference 
as Argument 

758 
Reliance on Undefined, Unspecified, or 
Implementation-Defined Behavior 

Number Handling 

190 Integer Overflow or Wraparound 

191 Integer Underflow (Wrap or Wraparound) 

193 Off-by-one Error 

194 Unexpected Sign Extension 

195 Signed to Unsigned Conversion Error 

196 Unsigned to Signed Conversion Error 

197 Numeric Truncation Error 

369 Divide By Zero 

681 Incorrect Conversion between Numeric Types 

Pointer and Reference 
Handling 

374 Passing Mutable Objects to an Untrusted Method 

395 
Use of NullPointerException Catch to Detect NULL 
Pointer Dereference 

467 Use of sizeof() on a Pointer Type 

468 Incorrect Pointer Scaling 

469 Use of Pointer Subtraction to Determine Size 
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Weakness Class 
CWE Entry 

ID 
CWE Entry Name 

476 NULL Pointer Dereference 

562 Return of Stack Variable Address 

587 Assignment of a Fixed Address to a Pointer 

588 Attempt to Access Child of a Non-structure Pointer 

690 
Unchecked Return Value to NULL Pointer 
Dereference 

843 
Access of Resource Using Incompatible Type 
('Type Confusion') 

 

Table 8 – CWE Entries and Test Cases in each Weakness Class 

  


