
National Aeronautics and Space Administration
Jet Propulsion Laboratory
California Institute of Technology

Talking Points on
Reducing Software Vulnerabilities
Formal Methods

Dr. Richard Doyle
JPL Space Asset Protection Team

with contributions from
Dr. Rajeev Joshi, Dr. Klaus Havelund
JPL Laboratory for Reliable Software

Software and Supply Chain Assurance Forum
The MITRE Corporation
McLean, VA

July 14, 2016
© 2016 California Institute of Technology.
Government sponsorship acknowledged.

Formal Methods
Lifecycle Model

requirements capture & analysis using formal specs,
automated consistency and completeness checking

model checking of finite state models,
theorem proving of infinite state models,
refinement verification (theorem proving)

requirements

design

coding

testing

operations

checking coding guide lines, static analysis,
program synthesis (program generation from models)

test case generation, model-driven testing,
test oracles

log file analysis, command/sequence verification,
program monitoring, fault protection

Formal Methods
Approaches and Assessment

Metric/	
Method

Properties Coverage Scalability Effort Application and	Trend

Dynamic	
analysis	
(DA)

A+ D A B Up	and	coming	field.	
Monitoring,	 security,	
machine	learning.

Static	
analysis
(SA)

C A+ A+ A+ Commercialized	and
used in	practice.	Millions	
of	lines	of	code.

Model	
checking
(MC)

B A C C Trend towards	MC	of	
code.		Competitions.	Use	
of	parallelism/cloud

Theorem	
proving
(TP)

A+ A+ D D Trend towards	TP	of	
code.	To	become	part	of	
dev.	environments	 (IDEs)	

Program	
synthesis
(PS)

B A+ D B Trend	towards	program	
sketching.	AI: planning	
and	scheduling.

Formal Methods
Experience internal to JPL

Static Analysis
Integrated with peer code reviews (using the scrub tool),
Custom checkers for checking JPL coding standards for C & Java,
Required for all JPL flight code

Model Checking
Used for critical modules (MER arbiter, MSL/SMAP data management, Cassini
DRS),
Model-Driven Verification technique developed for checking C code using SPIN

Dynamic Analysis
Log file analysis (LADEE command checking, MSL telemetry analysis),
Randomized differential testing (MSL/SMAP flash file system)

Program Synthesis
State-Machine auto coder (MSL)

Theorem Proving
Analysis of req'ts expressed in the K language for the planned Europa mission

Formal Methods
Experience external to JPL

Static Analysis
Custom checkers for coding standards for many languages,
Analysis of runtime errors,
Commercial industry: Coverity, Code Sonar, Semmle, …

Model Checking
Flood control, ATT switch, Deep Space 1,
B&O audio video protocol

Dynamic Analysis
Deadlock and data race analysis,
Model-based testing

Program Synthesis
State-Machine auto coders,
Spreadsheet formulas (Microsoft)

Theorem Proving
SEL 4 kernel, Microsoft hypervisor, Pentium floating point,
Formulation and proofs of aerospace theories (NASA Langley)

Formal Methods
Open Problems, Recommendations

• Main problems:
– DA: monitoring with low impact, increase expressive power of spec. languages.
– SA: reduce false positives, increase expressive power of checks performed.
– MC: model checking using many CPUs. MC of code directly.
– TP: guessing loop invariants in theorem provers. Automated SMT.
– PS: finding the right abstraction level from which to generate code.

• Integration of formal methods with:
– graphical model-based engineering systems (UML, SysML, …), preferably:

design new unified approach(es).
– programming, programming languages that are designed for abstraction,

modeling and verification.
– programming IDEs. It becomes an extension of the standard type checker.

• Combine techniques into unified framework.

Spot: A computer language specifically targeted at testability,
verifiability and validation of complex software systems

The problem with software: uncontrolled state space and complexity

Why Spot is different: Spot manages and constrains state space
• In Spot we discretely identify state parameters and place them in well defined

structures, noting constraints such as valid ranges and important state combinations
or sequences

• In Spot, we retain only those distinctions in state space that are meaningful relative
to mission objectives – not all state distinctions are useful

• In Spot we tightly control the configuration and use of memory and inter-module
communication that can cause state space expansion, logic errors and other
programming hazards

Benefit:
• A run time monitoring system can check system state for correctness, and an

external tester such as Spin can automatically generate and apply millions of test
vectors, generate models and perform analysis to verify correct operation.

Focus on design phase
Addressing software complexity

Credit:	 R.	Some

Motivation
Traditional	integrated	testing	focuses	on	scripted	scenarios,	each	exercising	a	single	system	feature
Does	not	usually	explore	interactions among	features	that	lead	to	unexpected	behaviors
Manually	writing	individual	tests	to	exercise	multiple	features	is	expensive

Approach
Test	engineers	write	“scenario	skeletons”	 in	declarative	form	(easy	to	read	and	maintain)
Each	scenario	skeleton	 exercises	a	specific	function	or	feature	by	specifying
- initial	state	assumptions,	commands	for	exercising	function,	and	properties	to	be	checked
From	such	a	description,	a	test	engine	automatically	generates	large	numbers	of	test	cases

Benefits
Randomization	forces	system	into	unexpected	corners	(not	biased	by	human	expectations)
A	declarative	notation	makes	it	easier	to	write	new	tests	quickly
Easy	to	parallelize

Focus on test phase
Scenario-based randomized testing

Credit:	 R.	Joshi

• given	a	formula	in	linear	temporal	logic	and	a	
program,	a	model	checker	tries	to	find	executions		
of	the	program	that	violate	the	formula

9

Model
Checker

Program
Source

temporal	
logic	

formula

the	checker	finds	a
counter-example

the	available	 resources	are
not	sufficient	 to	decide

the	Spin	Model	Checker,	
developed	and	maintained	
by	JPL’s	Gerard	Holzmann,	
is	a	popular	explicit-state	
logic	model	checking	tool.

It	uses	several	strategies	to	
deal	with	“state	space	
explosion”	problems.

Focus on verification phase
Software model checking

Credit:	 G.	Holzmann

Objective: Develop a Resilient Spacecraft Executive to:
• adapt to component failures to allow graceful degradation
• accommodate environments, science observations, and

spacecraft capabilities that are not fully known in advance
• make risk-aware decisions without waiting for slow ground-

based reactions

Why this is important to NASA and JPL:
• Enables robotic explorations of harsh, remote, and inaccessible

destinations
• Reduces operational risk and associated cost

JPL Team

Resilient Risk-Aware Autonomy for the Exploration
of Uncertain and Extreme Environments
Use of Correct-by-Construction Techniques

Venus Lander

Interstellar probe

KISS-funded collaborators
Prof. Richard Murray
(Caltech)

Prof. Brian Williams
(MIT)
Dr. Richard Camilli
(Woods-Hole O.I.)

FY15: Design and develop core algorithms of RSE; develop formal
behavior models; validate algorithms through small-scale demo
using simulation, rover testbed in Mars Yard, and AUV submarine.
FY16: Integrate algorithms and behavior models; deploy RSE on
simulator/hardware for Venus lander and/or Mars rover scenarios.

Deliberative	Layer
Risk	awareness

Habitual	Layer
Adaptiveness

Reflexive	Layer
Quick	responsiveness	

Resilient Spacecraft Executive

Overview of Approach and Early Results:
System adapts its behavior depending on acceptable level of risk

	

	
	

	
Low	Risk	

	
High	Risk	

Dr. Mitch Ingham
Dr. Hiro Ono
Dr. Tara Estlin
Dr. Leslie Tamppari
(JPL)

Artist’s Concepts

Focus on operations phase
Risk-aware autonomy

