

National Institute of
Standards and Technology
U.S. Department of Commerce

 NISTIR 7920

Report on the

Metrics and Standards for Software Testing (MaSST)

Workshop 2012

 Paul E. Black

 Elizabeth Fong

 Software and Systems Division

Information Technology Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899-8970

December 2012

Abstract

The NIST Software Assurance Metrics And Tool Evaluation (SAMATE) project conducted a
workshop on Metrics and Standards for Software Testing (MaSST) on June 20, 2012. This
workshop was co-located with the IEEE Sixth International Conference on Software Security
and Reliability (SERE) 2012 at the National Institute of Standards and Technology,
Gaithersburg, Maryland. The main goals of MaSST were to bring together researchers and
practitioners to (1) understand the state of the art and state of practice in software testing, (2)
define work needed for improved methods and tools for software testing, and (3) list any
important problems needing to be solved.

This report contains observations and recommendations based upon the workshop. This report
also includes position statements submitted to the workshop and presentation slides.
Presentations addressed software testing standards; best practices in testing; testing techniques
such as fuzzing, model-based, static and dynamic verification; and vulnerability reporting, etc.

Keywords:

Measurement; metrics; software assurance; software testing; standards.

Disclaimer:

This report includes position statements and presentation slides by authors who submitted their
material to the workshop. The views expressed by the authors therein do not necessarily reflect
those of the sponsors of this workshop.

Certain commercial entities, equipment, or materials may be identified in this document in order
to describe and experimental procedure or concept adequately. Such identification is not
intended to imply recommendation or endorsement by the National Institute of Standards and
Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily
the best available for the purpose.

Acknowledgement:

The authors wish to thank Ms. Terri Hunter for formatting this manuscript.

Table of Contents

1. Overview 1

1.1 Organization 1

1.2 Agenda and Schedule 2

2. Observation and Recommendations 2

2.1 Software Testing vs Software Assurance 2

2.2 Software Standards 3

2.3 Measures for Software Testing 5

2.4 Recommendations 6

2.5 References 7

3. Keynote Address “Standards for Testing,” Stuart Reid,
Testing Solutions Group 8

4. Position Papers and Presentations

4.1 “Paradigm in Verification of Access Control, “ JeeHyun Hwang,
Tao Xie, North Carolina state University, and Vincent Hu,
National Institute of Standards and Technology, USA. 10

4.2 “Viewpoint-based Test Architecture Design,” Yasuharu Nishi,
University of Electro-Communications, Tokyo, Japan. 24

4.3 “Software Testing of Business Applications,” Vijay Sampath
and Vipul Shah,Tata Consultancy Services, India. 28

4.4 “Why Fuzzing (Still) Works,” Allen D. Householder, CERT,
Software Engineering Institute, Carnegie Mellon University, USA. 39

4.5 “Model-based Testing: The State of the Practice,” Robert Binder,
System Verification Associates, LLC, USA.
No presentation given. 60

4.6 “Security testing: a key challenge for software engineering
of web apps,” Yves Le Traon.
No presentation given 61

1. Overview

The goals of this workshop are to bring together a select group of researchers and
practitioners to (1) understand the state of the art and state of practice in software testing and
(2) define work needed for improved methods and tools for software testing.

Topics of interest include, but are not limited to, the following areas:

• Advanced measurement techniques for properties of software related to testing,

• Theoretically justified means of comparing different coverage metrics,

• The sources of assurance in testing or static analysis,

• Languages to express testable policy or software requirements,

• Standards (in both etalon and norme senses) needed for software testing,

• Gaps and future directions of software analysis using static or dynamic analysis tools,

• Research topics to advance the state of the art in software testing,

• Technology transfer approaches so that current practice benefits from the state of the
art, and

• Software testing metrics and measurements.

1.1 Organization

The workshop was co-chaired by Paul E. Black and Elizabeth Fong, National Institute of
Standards and Technology. The program committee consisted of the following:

• Paul Ammann, George Mason University

• Taz Daughtrey, DACS

• Mary Ann Davidson, Oracle

• Helen Gill, NSF

• Mark Harman, University of College London

• Cem Kaner, Florida Institute of Technology

• Satoshi Masuda, IBM Japan

1

• Thomas Ostrand

• Alexander Pretschner, Karlsruhe Institute of Technology

• Gregg Rothermel, University of Nebraska, Lincoln

• Laurie Williams, North Carolina State University

1.2 Agenda and Schedule

The workshop was held at the National Institute of Standards and Technology, Gaithersburg,
Maryland, on June 20, 2012. The agenda for this one-day workshop was as follows:

1030 MaSST Keynote: Standards for testing? Stuart Reid, Testing Solutions Group

1100 Paradigm in Verification of Access Control, JeeHyun Hwang, North Carolina State
University

1200 Lunch & SERE talk

1400 Why Fuzzing (Still) Works, Allen D. Householder, CERT

1430 Viewpoint-based Testing Architecture Design, Yasuharu Nishi, University of electro-
Communications, Japan

1500 Break

1530 Discussion session: Gaps in and Roadmap for Measures and Standards in Software
Testing, led by Taz Daughtrey, DACS

1600 Software Testing of Business Applications, Vijay Sampath, Tata Consultancy Services,
India

2. Observations and Recommendations

Workshop participants came from government, academic, and industry organizations from
several countries.

The general observations below highlight significant trends associated with the activities,
standards, methodologies, techniques identified by the workshop participants.

2.1 Software Testing vs Software Assurance

The mainstream definition of software testing is the “process of exercising software to verify that
it satisfies specified requirement and to detect errors.” [BS7925-1] As such, software testing is

2

one way of performing both software verification and software validation and of achieving
confidence in properties of the software.

Static analysis is complementary to testing and involves examining the software instead of
executing it. Static analysis includes techniques and approaches ranging from manual design and
code reviews to fully automated source code scanners. Static analysis requires access to the
software, which may be difficult in proprietary cases or remote or embedded systems. However
at least in theory static analysis may consider the effects of all possible inputs subject to
imprecision from model abstractions and assumptions. For instance, testing could not find a
“back door” in code through which the user gains full rights if the user enters a specific string,
such as “JoshuaCaleb.” However, testing may exercise an entire system end to end. Some tools
combine testing and static analysis, gaining the best of both approaches.

The term “software assurance” has been adopted to include both static analysis and testing: any
technique to improve the assured security, safety, reliability, quality, etc. of software. The
definition of software assurance conveys the thought that development, assessment, and
operation processes must provide a reasonable level of justifiable confidence that the software
will function correctly and predictably in a manner consistent with its documented requirements
[SOAR2007]. Hereafter we use “software assurance” to be more inclusive.

The MaSST workshop adopted the “software assurance” approach in which presentations and
discussions were focused on reliability, safety, dependability, and security. In fact, the name of
any follow-on workshop should be changed from “Software Testing” to “Software Assurance.”

2.2 Software Testing Standards

The word “standard” has two distinct meanings. “Standard” may mean an artifact used as a
reference in measurement, for example, the standard kilogram in Paris. The meaning of standard-
as-a-thing may be referred to as an “etalon,” from a French word for standard. Another meaning
is an agreed-upon method or format, such as the C 99 standard, the HTML 5 standard, or ISO
29119. Another French word, “norme,” may be used for the standard-as-a-document meaning.

We have two kinds of standards (normes) in software assurance: normes for the software
development process and software engineering and normes for software itself. Process normes
touch upon steps in the process, roles, techniques, phases, and measurements of productivity and
progress. Product normes deal with the properties of software, such as measuring its size,
estimating number of remaining bugs, assessing security or safety attributes, validating
functionality, and verifying correctness. Product normes may be based on etalons (standard-as-a-
thing). For instance, the norme for estimating the number of bugs may be based on using several
reference programs with bug thoroughly identified as etalons.

3

In reviewing the landscape of software testing and assurance standards, the following software
testing and assurance standards were discussed:

The MaSST workshop’s keynote speaker, Stuart Reid, considered the usefulness of software
testing standards such as ISO/IEC 29119. He also briefly covered what should be included in a
standard and what is mostly likely to prevent a standard from being adopted. ISO/IEC 29119
comprises four parts:

 Part 1: Concepts and vocabulary

 Part 2: Test Process

Part 3: Test Documentation

Part 4: Testing Techniques

Part 2 will cover a generic testing process model that can be used within any software
development and testing lifecycle. This process will be a layered process covering:
organizational test process, test management processes, and fundamental test processes.

Part 3 will cover test documentation across the entire software testing lifecycle. This will
include templates across all layers of the 29119 software testing process model, for example:
organization test policy process, organizational test strategy process, project test management
process, and fundamental test process. IEEE has given ISO permission to use the well-known
IEEE 829 test documentation standard as a basis for this part of the standard.

Part 4 will cover software testing techniques across all types of testing, including static (e.g.,
reviews, inspections, walkthroughs), functional (e.g., black-box, white-box), non-functional
(e.g., performance, security, usability) and experience-based (e.g., error guessing, exploratory).
The choice of testing techniques is based on the list of application-specific risks. The British
Computer Society has given ISO permission to use the BS-7925-1/2 component testing standards
as a basis for this part of the standard.

It will replace a number of existing IEEE and BSI standards for software testing:

 IEEE 829 Test Documentation

 IEEE 1008 Unit Testing

 BS 7925-1 Vocabulary of Terms in Software Testing

 BS7925-2 Software Component Testing Standard

A future part 5 of the 29119 structure is planned. This part is “Process Assessment” which will
be based on ISO/IEC 33063.

4

Although not discussed at the workshop, other work in software standards is going on. The IEEE
software and systems engineering standards committee (S2ESC), chaired by Paul Croll, has
many working groups related to Software testing, including:

o No. 730 – Standard for software quality assurance plans, chair: Sue Carroll

o No. 1008 – Standard for software unit testing, chair: Jim Moore

o No. 1012 – Standard for system and software verification and validation, chair:
Roger Fujii

o No. 15026 – System and software assurance, chair: Paul Croll

IEEE P1671, Standard for Automatic Test Markup Language (ATML), is for exchanging
automatic test equipment and test information via XML. ATML defines a standard exchange
medium for sharing information between components of automatic test systems. This
information includes test data, resource data, diagnostic data and historic data.

In the software assurance area, there are some standardization activities in the quality and
metrics area. The ISO/IEC 9126 standard addresses the quality model, external metrics, internal
metrics, and quality in use metrics. The external metrics and internal metrics define six broad,
independent categories of quality characteristics as follows: Functionality, Reliability, Usability,
Efficiency, Maintainability, and Portability.

The ISO/IEC 15026 system and software engineering committee revised the standard to
incorporate the concept of “assurance case.” Because the assurance case is considered a life
cycle artifact, the revised 15026 also specified how it should be defined, maintained, and revised
throughout the system/software life cycle. By 2006, IEEE initiated project P15026 to take over
work on the 15026 revision. The latest ISO/IEC draft of the revised standard defines the
following life cycle processes, expectations and outcomes: plan assurance activities; establish
and maintain the assurance case; and monitor assurance activities and products.

There are many standardization activities in the application-specific areas. There are some
standardization activities in the process improvement area. Due to the breadth of the testing
discipline covered by the different types of testing standards, this is not discussed here.

2.3 Measures for Software Testing

Can one measure software testing? As a process, yes, but as a product, the answer is more
complex. It depends upon which attributes or product characteristics one needs.

In the MaSST workshop, Taz Daughtrey led a discussion session on “gaps in and roadmap for
measures and standards in software testing.” In attempting to quantify scales of measure for

5

values of software testing, he compared testing to Kirkpatrick’s four levels of evaluation of
training. This measure can be compared to levels of software testing result.

 Level 1 – Yes/No; The equivalent in testing is did you run the tests you planned?

 Level 2 – You pass the quiz or an immediate feedback. The testing equivalent is what are
the results?

 Level 3 – Your performance improved on the job. The testing equivalent is applying test
results to improve the code.

 Level 4 – Your work generated return of investment in dollar value. For testing, how
much did we improve the code for an amount spent on testing?

Most testers are between levels 1 and 2. Cost-effective education and certification focuses on
improving the practice of the bottom 90% of testers. People at the bottom need clear guidance on
what to do. Test managers are so busy they do not have time to carefully analyze new techniques
or approaches.

There are many papers published in the area of measurement in software engineering and testing
as a process. There are few concrete metrics and measurement to precisely and objectively
measure the effectiveness or the value of software testing on a software product. In fact, there is
no agreement, let alone standards, regarding exactly what can and should be measured as a
meaningful indicator that software is “totally” tested or secure (or not vulnerable). Developers
need to measure not just return on investment, but properties like correctness and meeting
customers’ expectations. It would be useful to know how much testing is worth the risk of, say,
$1 million? Do we have a model of predictive software quality? For instance if event A (some
level of testing) occurs, what is the chance of event B (some level of quality)? If we know the
life-cycle cost of software, we may be able to justify levels of testing. With input from Computer
Emergency Readiness Team (CERT) and its equivalent in other countries, the software
community can ask, what testing would have caught each problem?

2.4 Recommendations

In the area of standards for software testing, there are several working groups; however, the
standards for software testing are mainly process oriented. There was agreement that there are
big gaps in standards, but no agreement on what the most urgently needed standards are.

We believe that widespread software engineer certification with a continuing education
component would require software engineers to keep learning.

In the software testing metrics and measurements area, we believe that very little progress was
made toward answering the hard question, how much testing is enough? Future research in this

6

area is very much needed. As Reid said, “The only way to do research is to compare
effectiveness [of a technique] against a standard.”

We believe that future areas of research, possibly focused more narrowly on a workshop, might
be the following:

• Precise definitions of testing techniques [BBT2012];

• Measurement theory which is based on insights from other disciplines such as
psychology and physics;

• Laws of software quality and usability;

• Requirements for the next standards needed for software testing;

• Gaps and future directions of software testing using tools;

• Measurement techniques for properties of software;

• The place and future of automated testing [DGG2009].

2.5 References

[BS7925-1] British Standard BS7925-1 Software Testing vocabulary, 1998.

[SOAR2007] Goertzel, K.M., Winograd, T, McKinley, H. L., Oh, L, Colon, M,. McGibbon, T,
Fedchak, E, Vienneau, R., “Software Security Assurance: A State-of-the-Art Report (SOAR)”,
July 31, 2007.

[BBT2012] Cem Kaner, Black Box Software Testing course site, accessed 27 November 2012.

[DGG2009] Elfriede Dustin, Thom Garrett, and Bernie Gauf , “Implementing Automated
Software Testing: How to Save Time and Lower Costs While Raising Quality”, Addison-
Wesley, 2009.

7

Keynote

‘Standards for Testing?’

for Metrics and Standards for Software Testing (MaSST) 2012, NIST, Gaithersburg

This presentation shall consider the topic of software testing standards, briefly covering the following
questions:

• Are software testing standards, such as ISO 29119, required by the discipline?
• How do standards authors justify the inclusion of content into standards? – and how should this

change?
• What is most likely to stop ISO 29119 being adopted by the testing industry?

The presenter has been the convener of WG26, the working group developing the new ISO/IEC
standard, since its inception in 2007 and will provide personal insights into the development of
testing standards, having been involved in this area since 1990.

8

thunter
Typewritten Text

Standards
for

Testing?

Speaker - Stuart Reid

29 Years in Software Eng/IT
 Working on Standards since 1990

Founder of ISTQB
Convener - ISO WG26 - Software Testing

ISO/IEC 29119

Are software testing standards,
such as ISO 29119, required by
the discipline?

Demand for existing 'standards'
Gap in the market
A Baseline for the Testing Discipline

How do standards authors
justify the inclusion of
content into standards?
- and how should this change?

Input from existing standards
Input from published texts
ISO/IEEE Review processes
Evidence-based inclusion?
Feedback from use

What is most likely to stop
ISO 29119 being adopted
by the testing industry?

Fear of change
'Not invented here'
Competition
Lack of required use
Anti-standardization
No evidence of efficacy
Cost of use
Complexity
Lack of responsiveness

Standard Questions Presentation.mmap - 18/06/2012 - Mindjet
9

Reprinted from - 2012 IEEE Sixth International Conference on Software Security and Reliability Companion

Paradigm in Verification of Access Control

(Position Paper)

JeeHyun Hwang1, Vincent Hu2, Tao Xie1

1Department of Computer Science, North Carolina State University, Raleigh, USA
2Computer Security Division, National Institute of Standards and Technology, Gaithersburg, USA

jhwang4@ncsu.edu, vincent.hu@nist.gov, xie@csc.ncsu.edu

Access control (AC) is one of the most fundamental and

widely used requirements for privacy and security. Given a
subject’s access request on a resource in a system, AC
determines whether this request is permitted or denied based on
AC policies (ACPs). In a system, an ACP is implemented at
various places with different purposes. For example, operating
systems adopt AC to regulate which users or groups are
permitted to read/write/execute files or folders.

The main objective of AC is to protect resources against
unauthorized user access. Faults in AC may result in critical
consequences such as unauthorized user access on sensitive
resources. However, it is a challenging task to implement and
maintain AC correctly for two main reasons. First, AC can be
complex, especially, when an ACP includes a large number of
resources in a sophisticated structure for various groups and
users. Second, policy authors may make mistakes when
specifying or combining ACPs.

This position paper introduces our approach to ensure the
correctness of AC using verification. More specifically, given a
model of an ACP, our approach detects inconsistencies
between models, specifications, and expected behaviors of AC.
Such inconsistencies represent faults (in the ACP), which we
target at detecting before ACP deployment. At a high level,
ACPs are policy specifications, which encapsulate the expected
AC behaviors from policy authors. An ACP model is a
representation of ACP behaviors in a formal language.

An ACP consists of a set of rules, which regulate which
subject can take a specific action on a specific resource under
which condition. In the context of ACPs, input and output are a
request (e.g., can user A access resource B?) and a response
(e.g., Permit), respectively. Policy authors may write properties,
which can be verified against a given AC model. Properties are
different from rules because users create properties based on
business practice or user experience. For example, properties
can be known security vulnerabilities or a user’s security and
privacy concerns of interest in AC. We use safety and liveness
properties where safety and liveness are characteristics of a
given property, denoted by p.

Safety property. Safety denotes that p is satisfied against an
AC model. In other words, there exist no rules in the AC model
to violate p. Therefore, verification of safety properties is to
ensure that “something bad” (i.e., faults) does not happen. For
example, a conference program committee member should not
review her own submitted paper.

Liveness property. Liveness denotes that an AC model does
“something good” (i.e., desired system behaviors). Therefore, verification of a liveness property is to ensure that a “good

thing” does happen eventually. One example is deadlock free.
Deadlock denotes that a system does not make progress forever
since a system waits for an action forever due to more than two
competing actions, each of which waits for the other to finish.

Figure 1. Overview of our approach
Figure 1 illustrates our approach. More specifically, we

translate an ACP to its corresponding AC model, which is
represented as a finite state machine. In this paper, our
approach is applied to mandatory access control (MAC)
policies, which regulate user and process access to resources.

Our verification uses black-box and white-box checking
techniques. For black-box checking, policy authors specify
either properties P. Given an AC model q, if there is no
violation, we ensure that q is correct according to P. Otherwise,
q is not correct and should be fixed to satisfy property p’ ϵ P
that causes violations. In such cases, we use white-box
checking to modify q to satisfy P. For example, we create
another p’’ (called a confined property [1]) modified from p’
where p’’ is a subset of p that is responsible for violations. p’’
can be converted to a rule. We add this rule in q where p’ is
satisfied after this addition based on the confined property.

We use NuSMV (http://nusmv.irst.itc.it/), a symbolic model
checker to model an ACP. NuSMV supports both BDD-based
and SAT-based model-checking approaches, and various
analyses including Linear Temporal Logic (TTL) and
Computation Tree Logic (CTL) model checking for safety and
liveness properties, and counterexample generation. Manually
writing properties is tedious and error-prone. To address this
issue, our approach generates test requests that can be used as
properties for testing AC implementations. An AC
implementation evaluates test requests and produces responses,
which testers need to inspect to determine whether the
responses are correct. We have implemented a prototype [1, 2]
for the approach.
Acknowledgment. This work is supported in part by a NIST grant.

REFERENCES
[1] V. Hu, R. Kuhn, T. Xie, and J. Hwang. Model checking for verification

of mandatory access control models and properties, in IJSEKE, Volume
21, Issue 1, Pages 103-127, 2011.

[2] J. Hwang, T. Xie, V. Hu, and M. Altunay, ACPT: A tool for modeling
and verifying access control policies. In Proc. POLICY, Demo, Pages
40-43, 2010.

978-0-7695-4743-5/12 $26.00 © 2012 IEEE
DOI 10.1109/SERE-C.2012.14

193

10

mailto:jhwang4@ncsu.edu
mailto:jhwang4@ncsu.edu
mailto:xie@csc.ncsu.edu
http://nusmv.irst.itc.it/)
thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

Computer Science

1

Paradigm in Verification of Access
Control

JeeHyun Hwang1, Tao Xie1, and Vincent Hu2

North Carolina State University1

National Institute of Standards and Technology2

(MaSST 2012 position paper)

Automated Software Engineering Research Group 2

Access Control Vulnerabilities

2

2010 Report
1. Cross‐site scripting
2. SQL injection
3. Classic buffer overflow
4. Cross‐site request forgery

Improper access control causes problems (e.g.,
information exposures, and arbitrary code
execution)

11

Automated Software Engineering Research Group 3

Access Control

• Access control is one of the most widely used
privacy and security mechanisms
– protect critical IT infrastructures such as
healthcare, military, intelligence systems

– prevent security vulnerabilities by controlling
access to resources

• Access control is often governed by security
policies called Access Control Policies (ACP)
– include rules that specify which principals such as users or

processes have access to which resources

3

Automated Software Engineering Research Group 4

PDP (Policy Decision
Point)

Access Control Mechanism

• Access control mechanisms control which
subjects (such as users or processes) have access
to which resources
• A request is evaluated by the Policy Decision Point

(PDP) security function based on ACPs

Request

(e.g., can user A
access

resource B?)

Response

(Permit, Deny, or Not-applicable)
ACPsACPsACPs

12

Automated Software Engineering Research Group 5

XACML ACP example

OASIS standard

XML‐based language to specify
ACPs

<Rule Effect=“permit“ RuleId="rule-1">
<Target>
<Subjects>
<Subject>federal employee</Subject>

</Subjects>
<Actions>
<Action>access </Action>

</Actions>
<Resources>
<Resource>confidential document </Resource>

</Resources>
</Target>

</Rule>
<Rule Effect=“deny“ RuleId="rule-2">

<Target>
<Subjects>
<Subject>state employee</Subject>

</Subjects>
<Actions>
<Action>access </Action>

</Actions>
<Resources>
<Resource>confidential document </Resource>

</Resources>
</Target>
</Rule>

Organization for the Advancement of Structured
Information Standards

1. The Federal employee
is permitted to access
the confidential
document

2. The State employee is
denied to access the
confidential document

5

Automated Software Engineering Research Group 6

Motivation

• Ensure correctness of ACPs

– ACPs specification may not encapsulate security
requirements

• manual verification of ACPs against user‐defined properties is
tedious and error‐prone

– ACPs are becoming more complex and manage a large
amount of information

• manual verification of request/response is time‐consuming and
incomplete

6

13

Automated Software Engineering Research Group 7

Motivation – con’t

• Our approach includes:
– Static verification: check whether properties are

satisfied by a policy
• Confidence on policy correctness is dependent on

the quality of specified properties
• Check for semantic correctness of the ACP models

– Dynamic verification: evaluate requests and check
whether their evaluated decisions are correct
• Consider test effort and their effectiveness together
• Complement static verification
• Check for syntactic correctness of the ACP

implementations

Automated Software Engineering Research Group 8

Agenda

• Our approach

– ACP verification
• Static verification

– Safety properties

– Liveness properties

– Verification using NuSMV

• Dynamic verification
– Combinatorial Array Method by ACTS

• Prototype

• Comparison

• Conclusion

8

14

Automated Software Engineering Research Group 9

Overview of Our Proposed Approach

9

GUI

Static
Verification

Dynamic
Verification

Test
requests

Policy Modeling Properties

Detected
Faults

Formal
ACPs
Formal
ACPs

Policy
Requirements

Automated Software Engineering Research Group 10

Static Verification

• Static verification requires ACPs and properties for
checking
– Verify a formal ACP against given properties
– Verification result is “pass” (i.e., satisfied) or “fail” (I.e.,

unsatisfied)

• Properties
– Properties are written based on business practice or user

experience
• e.g.) known security vulnerabilities, security and privacy concerns of
interest in ACP

10

15

Automated Software Engineering Research Group 11

Safety Properties

• Safety denotes that a property p is satisfied
against a formal ACP
– To ensure the safety, a formal ACPs do not include
rules that violate p

– verification of safety properties is to ensure that
“something bad” (i.e., faults) does not happen.

• e.g.) a conference program committee member should
not review her own submitted paper

– p is checked on finite executions of a formal ACP

11

Automated Software Engineering Research Group 12

Liveness Properties

• Liveness denotes that a formal ACP does
“something good” (i.e., desired ACP behaviors)
– verification of a liveness property is to ensure that
a “good thing” does happen eventually

– e.g.) whenever any process requests to access its
critical section, the request will eventually be
permitted

– Liveness properties are checked on infinite
executions of a formal ACP

12

16

Automated Software Engineering Research Group 13

Our Static Verification Approach

13

• adopt NuSMVModel Checker, which is
Symbolic model checker based on binary decision
diagram (BDD) and Boolean satisfiability (SAT)

• An ACP is represented as Finite State Machine

• Properties are expressed in temporal logic formula
such as LTL (Linear Temporal Logic) or CTL
(Computational Temporal Logic)

• Can control search space by bound search strategy

Automated Software Engineering Research Group 14

14

NuSMV Representation

var decision: {Pending, Permit, Deny}
…
init(decision) := Pending;
next (decision) :=

case
subject = federal employee
& Resource = confidential doc
& Action = access: Permit;
subject = state employee
& Resource = confidential doc
& Action = access: Deny ;
…
1 : Deny;

esac;
…

Specify
ACP

behavior

Declare
variables

Initialize
variables

17

Automated Software Engineering Research Group 1515

Static Verification: Property Checking

• Conditions
– C1: Subject = federal employee & Resource = confidential doc &

Action = access
– C2: Subject = state employee & Resource = confidential doc &

Action = access

Pending

Deny Permit

C1

C1

C2 V
~ C1

C2 V ~ C1

• Search states where a user‐
specified property is violated

• Properties
‐ Safety property example: In

case of C1, state always
reach “Permit” state

- Liveness property example:
a path exists to reach state
“Permit” state

Automated Software Engineering Research Group 16

Our Approach: ‐Dynamic Verification
(Testing)

• Automatically generate test inputs (requests) for
testing of ACP implementations

– White box testing
• based on policy structural coverage (e.g., rule)

– Black box testing
• based on combinatorial coverage
Cover n‐wise (e.g., pair‐wise) combinations of attribute values

16

Expected
Responses

ResponsesRequests

ACP

Implementations

18

Automated Software Engineering Research Group 17

Rule Coverage

Rationale: when the policy rule containing a fault is
not checked (i.e., “covered”) with a property, the fault
is not exposed

• A rule r is covered by a property p when the access
decision d of p depends on r of the ACP model

– “CM(r, p) = True” means that a property p depends on r to
reach the access decision

We write properties to cover each rule at lease once

Automated Software Engineering Research Group 18

Impact Analysis

In order to determine whether a rule is covered
by p, we use impact analysis by mutating
chosen rule’s decision (e.g., permit ‐> deny)

• Given r’s decision‐mutated rule ~r

– CM(r, p) = True & CM(~r, p) = True: r is not covered by p

– CM(r, p) = True & CM(~r, p) = False: r is covered by p

19

Automated Software Engineering Research Group 19

Our prototype

• Our prototype is developed as a part of Access Control Policy
Tool (ACPT) research in collaboration with NIST

• model ACPs via GUI

• verify ACPs via dynamic / static verification

• Beta‐tested in agencies/labs and companies

Automated Software Engineering Research Group 20

ACP Modeling via GUI

• Assist users to compose ACPs
(such as Role Based, Multi‐Level,
workflow policy models) via GUI

– Help specifying ACPs and properties
through model templates

– Support various ACP combining
algorithms (e.g., first applicable or
permit‐overrides)

20

Modeling Multi-Level ACP via GUI

ACP
Modeling

Policy
Workspace

Policy
Editor

Output
Window

20

Automated Software Engineering Research Group 21

2

Verify the property against Policy A, the result
return false with counterexample.

Static Verification

Automated Software Engineering Research Group 22

2

Verify the property against Policy B, the result
return true.

Static Verification (cont.)

21

Automated Software Engineering Research Group 23

2

Test Input Generation and Evaluation

Automated Software Engineering Research Group 24

2

XACML ACP Generation

22

Automated Software Engineering Research Group 25

Comparison

Product
Modeling
via GUI

Static
Verification

Dynamic
Verification

Our approach

Existing model checking
approaches [1,2,3]

Partial

IBM Security
Policy Manager V7.0 [4]

Partial

Cisco Policy Manager [5]

25

Comparison with commercial or research tools ACP management
tools do not have all the capabilities that our approach has

1. N. Zhang et al., Evaluating access control policies through model checking. In Proc. 8th ISC, 2005.
2. S. Kikuchi, et al., Policy verification and validation framework based on model checking approach, in Proc. ICAC, 2007.
3. A. Schaad, V. Lotz, and K. Sohr, A model‐checking approach to analysing organisational controls in a loan origination process, in Proc

SACMAT, 2006.
4. IBM Policy Manager V7.0: http://www.redbooks.ibm.com/redpapers/pdfs/redp4512.pdf
5. Cisco Policy Manager: http://www.cisco.com/en/US/products/ps9530/index.html

Automated Software Engineering Research Group 26

Conclusion

• ACP verification to ensure correctness of
ACPs
– Formally verify ACPs against user‐specified

properties

– Generate test inputs (requests) for dynamic
verification

• Our future plan
– Improve our static and dynamic
verification

• Condition, ordering, state‐transition, role hierarchy, …

– Extend our approach to different
application domains

• Healthcare, Law statutes, Military, …

26

23

Viewpoint-based Test Architecture Design

Yasuharu NISHI
Department of Informatics, Graduate School of Informatics and Engineering

The University of Electro-Communications, Tokyo
Tokyo, Japan

e-mail: Yasuharu.Nishi@uec.ac.jp

Abstract— Software test recently becomes large-scale and
complicated artifact as software itself. Research and practices
has to be boosted such as test architecture. In this paper first
we mention TDLC: Test Development Life Cycle, which
includes test requirement design phase and test architecture
design phase instead of test planning from engineering view.
Second we discuss concepts of test architecture and propose
NGT: Notation for Generic Testing, which is a set of concepts
or notation for design of software test architecture. Viewpoint
is discussed as a key concept of test architecture representing a
group of test cases and test objective. And this paper gives an
example of test architecture model. Finally this paper shows
possibility that viewpoint diagram will be a platform of test
architecture design technology such as test design patterns, test
architecture style, variability analysis of product line
engineering and so on.

Keywords- test architecture; test development life cycle; test
requirement analysis; test suite; viewpoint; UTP; NGT;

I. INTRODUCTION
Software test recently becomes large-scale and

complicated artifact as software itself. There can be a test
project with over one million test cases or with over ten test
levels. Technology of large-scale and complicated software
test has just begun advance and has to be boosted.

"Software architecture" technology arose in 1990s for
development of large-scale and complicated software based
on abstraction, separation of concerns, modeling, patterns
and so on. "Software test architecture" technology has just
arising in our age, and we have to boost research and
practices on software test architecture technology more and
more. This paper shows perspective of research and practices
on software test architecture.

Architecture of software system has two kinds of scope:
system architecture and software architecture. System
architecture is for software, platform, peripherals,
environment, network et al. Software architecture is only for
software inside, which mainly consists of modules (groups of
statements) such as classes.

Test architecture also has two kinds of scope: test system
architecture and test suite architecture. Test system
architecture is for test system, system/software to be tested
(SUT), platform where SUT is executed, generator of test
cases et al. Test suite architecture is for test suite inside,
which mainly consists of groups of test cases such as test
levels and test types.

Figure 1. A Test system architecture example on UTP[1]

Figure 2. A Test suite architecture example on NGT

II. TEST SYSTEM ARCHITECTURE AND
TEST SUITE ARCHITECTURE

There are several research and practices on test system
architecture. UML Test Profile[1] is standardized as a
notation based on UML for test system architecture. But
research and practices of test suite architecture stays just
experiences and heuristics. In this paper hereinafter the word
"test architecture" means test suite architecture. Fig.1 shows
an example of test system architecture according to UTP,
UML Test Profile. Fig.2 shows an example of test suite
architecture according to NGT, Notation of Generic Testing
discussed in chapter V.

Reprinted from - 2012 IEEE Sixth International Conference on Software Security and Reliability Companion

 978-0-7695-4743-5/12 $26.00 © 2012 IEEE

 DOI 10.1109/SERE-C.2012.15 24

thunter
Typewritten Text

thunter
Typewritten Text
194

thunter
Typewritten Text

thunter
Typewritten Text

III. TEST PLANNING AND
TEST ARCHITECTURE DESIGN

Test process is recognized roughly by tradition as below:
Test planning, test design and test execution. Traditional test
design means a phase to derive test cases by test techniques
such as control path testing. Traditional test planning means
a phase which includes planning test project and drawing big
picture of test cases, that is, which includes both tasks of
management side and engineering side.

In software development project planning phase includes
only tasks of management side and software architecture
design phase fills a role of drawing big picture of software,
that is, just engineering side. A lot of companies have both
positions of project manager and software architect. In
software testing tasks of management side and engineering
side are traditionally mixed as test planning, test strategy or
test approach, because software testing is tight and careful
task for budget and effort. Fig.3 shows Heuristic Test
Strategy Model by James Bach [2]. Mixture and severe
constraint lead test researchers and practitioners to one-sided
view. A lot of companies have a position of "test manager"
but only a few companies have a position of "test architect".

Figure 3. Heuristic Test Strategy Model [2]

To boost research and practices on software test

architecture technology, we have to distinguish management
side and engineering side. It is necessary to re-define test
process only from engineering side named TDLC, Test
Development Life Cycle. Fig. 4 shows TDLC, which
consists of four phases: test requirement analysis, test
architecture design, test detail design and test
implementation. TDLC is just to develop test cases or test
script. Whole test process needs test execution phase, test
result recording phase and several test management tasks.

Test
architecture

design

Test
detail
design

Test
requirement

analysis

Test
imple-

mentation

…

…

Test design
[engineering side]

Test planning
[management side]

Traditional mixed-side test process

TDLC (Test Development Life Cycle)

Figure 4. TDLC (Test Development Life Cycle)

IV. CONCEPTS FOR TEST ARCHITECTURE
As there is still no agreement on the precise definition of

the term "software architecture", the precise definition of test
architecture is impossible for the present. For example IEEE
std. 1471[3] defines "architecture" as "The fundamental
organization of a system embodied in its components, their
relationships to each other, and to the environment, and the
principles guiding its design and evolution". To follow
IEEE's definition, we have to clarify what are components
and relationships as well as statements in software testing.

It is natural for statements to correspond to test cases or
test scripts. This correspondence leads components to be
group of test cases such as test types or test levels, which are
essentially hierarchical. It should be noted that classes, which
are components in OO paradigm, has two angles. The one is
group of statements (and data) as an extension of structured
programming as a way of OOP. The other one is constituent
of the world as a way of OOA. Test types or test levels may
be from the former angle. We should deeply discuss which
angle is suitable for test architecture just following test
requirement analysis and how seamless test requirement
analysis model and test architecture model should be.

Relationships are more difficult than statements and
components. There may be at least two types of relationships.
The one is for combinatorial testing. If a load test type
should be tested combinatorially with a configuration test
type, they have some relationship. The other one is
sequential dependency. As an integration test level should be
tested after a unit test level, they have some relationship. We
should find various types of relationships.

In addition some principles for software design can be
applicable such as abstraction, separation of concerns,
modularity. Quality characteristics of test suite can indicate
and assist good test design such as maintainability of test
suite or test cases. Notation or formulation can make
engineers easy to store reusable test assets, test design
patterns and test architecture styles. Product line engineering
of test suite can arise separately from test design just for
software product line.

V. NGT: NOTATION FOR
TEST ARCHITECTURE DESIGN

For design of test architecture, notation or a set of
concepts is necessary. It should consist of concepts of a
group of test cases, hierarchical structure, relationship for
combinatorial testing, relationship for sequential dependency.
It would be better if it can harmonize the principles,
abstraction, separation of concerns, modularity, quality
characteristics.

We propose notation or a set of concepts named NGT,
Notation for Generic Testing. NGT consists of three
concepts which are viewpoint, hierarchical relationship and
interactive relationship. Viewpoint is a concept of a group of
test cases. Hierarchical relationship is used for hierarchical
structure of viewpoints. Hierarchical relationship means
abstraction (is-a), composition (has-a), cause-effect and
object-attribute. Interactive relationship means necessity for
combinatorial testing.

195

25

Lowest boxes (most detailed viewpoints) usually mean
coverage items of groups of test cases or test detail design.
Test detail design is a phase to extract test cases by test
design technique such as equivalence partitioning, control
flow testing and state transition testing. When control flow
testing is used, “control flow” is most detailed viewpoints.

In Fig.2 viewpoint diagram of NGT, boxes represent
viewpoints. Directional lines represent hierarchical
relationships and unidirectional curved lines represent
interactive relationships. This diagram is named as
“Viewpoint diagram”.

Though viewpoint diagram looks similar to classification
tree[4], viewpoint diagram is more suitable for drawing big
picture of software testing than classification tree. Viewpoint
concept doesn’t include only equivalence partition but
coverage item. Viewpoint diagram can represent
combinatorial relationships in the same diagram as
viewpoints at higher abstraction level, i.e. coverage item
level, although classification tree can do so in different
diagrams at lower abstraction level, i.e. parameter level.

Viewpoint diagram has also two angles. Like an angle of
OOP, which is lower abstraction level, viewpoint means a
group of test cases. Like an angle of OOA, which is higher
abstraction level, viewpoint means test objective. In test
requirement analysis phase test objectives are listed and
refined. Fig.5 shows an example of viewpoint diagram for
testing of some mission critical system in test requirement
analysis phase. Viewpoints are listed enough but
combinatorial relationships are too many and too
complicated to test. In test architecture design phase the
viewpoints diagram should be well-organized using
modeling technique.

Figure 5. An example of viewpoint diagram
in test requirement analysis phase

Figure 6. Organized viewpoint diagram in test architecture design phase

196

26

Fig.6 shows an organized viewpoint diagram in test
architecture design phase. Fig 5 includes less viewpoints and
more interaction, which means combinatorial relationship.
Fig.6 includes more viewpoints and less interaction. Fig.6 is
more complicated visually and conducts far more test cases
because test cases conducted by interaction are proportional
to multiplication among test cases conducted by each
viewpoint. Fig 5 is larger visually but conducts less test cases
because it has less interaction.

In test architecture design phase, we use some modeling
techniques such as unification and re-define of viewpoint,
unification and abstraction of interaction, clustering
viewpoints, separation of key interaction and so on.

Each modeling technique is usually applied in test
planning phase with experiences and heuristics. Viewpoint
diagram can makes it easier to develop, accumulate and
reuse experiences and heuristics as modeling techniques or
test design patterns. In other words, viewpoint diagram will
be a platform of test architecture design technology such as
test design patterns, test architecture style, variability
analysis of product line engineering and so on.

NGT can complement UML Test Profile because
research and application of UTP mainly focus on test system
architecture such as automation at present and NGT focuses
on test suite architecture. NGT should harmonize UTP in
future research.

VI. CONCLUSION
Software test recently becomes large-scale and

complicated artifact as software itself. Research and
practices has to be boosted such as test architecture. In this
paper first we mentioned TDLC: Test Development Life
Cycle, which includes test requirement design phase and test
architecture design phase instead of test planning from
engineering view. Second we discussed concepts of test
architecture and propose NGT: Notation for Generic Testing,
which is a set of concepts or notation for design of software
test architecture. Viewpoint is discussed as a key concept of
test architecture representing a group of test cases and test
objective. And this paper gave an example of test
architecture model. Finally this paper showed possibility that
viewpoint diagram will be a platform of test architecture
design technology such as test design patterns, test
architecture style, variability analysis of product line
engineering and so on.

REFERENCES
[1] OMG, “UML Testing Profile (UTP) Version 1.1 RTF - Beta 1,”

http://www.omg.org/spec/UTP/1.1/PDF/, June 2011.
[2] J. Bach, “Heuristic Test Strategy Model,” http://www.satisfice.com

/tools/satisfice-tsm-4p.pdf, March 2006.
[3] IEEE, “IEEE Recommended Practice for Architectural Description of

Software-Intensive Systems,” IEEE Std 1471-2000, September 2000.
[4] M. Grochtmann, K. Grimm, “Classification trees for partition

testing,” Software Testing, Verification and Reliability, Vol. 3, Issue
2, pp. 63–82, June 1993.

197

27

Software Testing of Business Applications

Vijay Sampath
Tata Consultancy Services

Siruseri, Navalur Post, Kancheepuram District
Chennai - 603 103, India

Email: sampath.vijay@tcs.com

Vipul Shah
Tata Consultancy Services

54 B, Hadapsar Industrial Estate,
Pune - 411 013, India
Email: v.shah@tcs.com

As an IT service provider, we develop and maintain a
large number of business applications for our customers.
Functional and regression tests for business applications are
often carried out by dedicated test teams using a black box
approach. Test teams design and develop test scenarios and
test cases from functional specifications and execute the
test cases against the system. Automation levels are low,
less than 20%, and that too for test execution only. In this
position statement, we present a couple of challenges faced
by the test teams. Instrumentation tools and techniques,
along with measures need to be developed to address the
same.

Coverage: Traditionally, one of key measures to describe
the degree to which the application has been tested, is
code coverage. A number of instrumentation tools, both
commercial and open source, are available that provide
path, decision, condition, function and other forms of code
coverage measures. Several fault localization techniques
have been developed that use coverage information to help
developers find faults in the system. However, code coverage
tools and measures are of little use to test teams that do
not have access to the source code, which is primarily
the case with functional test teams. In absence of tools
and techniques, the test teams use manual approaches to
gather coverage information. A common approach is to
create a traceability matrix that links requirements to test
cases and another matrix that links test scenarios to test
cases. Coverage is computed in terms of requirements and
scenarios covered by the test cases that are selected for
execution.

As one can gather, there are several problems with the
practiced approach.

• Both the requirement and scenario traceability matri-
ces are usually maintained as spreadsheets and the
coverage information is manually computed based on
the test cases that have been executed. Maintainability
and Scalability of such an approach is an issue for
large and complex business applications. Test suites
having several thousand test cases and hundreds of
requirements are common.

• The above method does not address the completeness
and correctness aspects. It is difficult to determine if

the test cases adequately cover the requirements, if the
requirements are in sync with the implementation, and
if the requirements are complete.

Clearly, there is a need to develop coverage measures
for functional test teams that, like code coverage, provide
relevant and appropriate coverage information in the absence
of code. The measurement could be for elements that are
well understood by test teams or in terms of input parameters
and the coverage over possible range of values. Another
common practice followed during regression, is to replay
production logs. Coverage or rather absence of coverage
information becomes critical to understand the scenarios that
were tested by the production log replay.

Test Selection: While several test selection methods have
been developed, it is common in the industry to use a risk
based approach to test selection. A subset of test cases is
identified for creation and execution, based on the risks
foreseen. The test cases are prioritized to be executed in
the order of minimizing the higher risks first, and then
the lower order risks. When defects are identified, and the
risks mitigated or eliminated, the purpose of designing and
executing that test case is achieved. However, if a test case
does not detect a defect, then while the confidence level in
the scenario tested increases, in reality, it is a waste of time
and effort to execute the test case and adds to the cost of
quality.

It is a practice to classify the requirements based on
their business criticality (impact on failure) and probability
of failure, and quantified risk. While impact on failure is
easier to enumerate, based on the business context, by the
subject matter expert, the probability of failure computation
is difficult as it depends on several factors, some of which
are non-deterministic.

The challenge, therefore, lies in designing a risk model
that lead to selection of those test cases which increase the
probability of finding defects. While this may be an ex-
tremely difficult goal to achieve, what measures do we adopt
that would help us quantify and measure risk dynamically?
What risk model do we need to bring us closer to our goal?
Also, over a period of time, high risk scenarios are likely
to be tested more frequently and hence, less likely to detect
defects. Can the risk model take this factor into account?

2012 IEEE Sixth International Conference on Software Security and Reliability Companion

28

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text
Reprinted from -

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text
192

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text
978-0-7695-4743-5/12 $26.00 © 2012 IEEE

thunter
Typewritten Text
DOI 10.1109/SERE-C.2012.48

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

thunter
Typewritten Text

29

30

31

32

33

34

35

36

37

38

Why Fuzzing (Still) Works

Allen D. Householder,
Software Engineering Institute, CERT

adh@cert.org

Abstract:

Despite improvements in grammar-aware (i.e., “white box”) fuzz testing, static source code
analysis, and other techniques, mutational (“black box”) fuzz testing remains an effective way to
discover vulnerabilities in fielded software.

Our experience with developing software tools and techniques that implement a naïve approach
to mutational fuzz testing demonstrates that it yields effective results with low infrastructure cost
and developer startup time and effort. (Dormann, 2010) Additionally, in coordinating
information about software vulnerabilities and practical attacks we have bserved that these
techniques are still widely used by attackers to discover new vulnerabilities. (CERT, 2012)

We propose several possible reasons for the continued effectiveness of this approach. Perhaps
most importantly, although black box fuzzing is formally specified as an activity in some
software development life cycles, there is little consistency in benchmarks and metrics of
efficacy. In the current state of the practice, a software developer has ittle insight into how to
answer the question of “how do I know if I have fuzzed enough?” A related issue is that it is
easy for developers o perform many iterations of ineffective mutation testing, resulting in
low code coverage and the erroneous conclusion that their software has undergone some
rigorous testing process.

Second, even "safe" development languages and environments typically require interaction with,
or incorporation of, legacy software components in unmanaged native code. Black box fuzzing is
particularly effective at revealing the underlying defects that arise from thisintegration.

Finally, despite being readily scalable, an industrialization of this approach has not enjoyed
widespread adoption in the testing of software.

Recent advances in white box testing and static analysis techniques are promising and begin to
bridge the gap towards formal software verification. However in their present state such
techniques may present a challenge for resource constrained developers to implement
effectively. A fast, naïve approach leverages the fact that computation is cheap (and only getting
cheaper), while reasoning about complex software systems is difficult and time-intensive. Black
box testing can be initiated with a minimum of expertise yet when coupled with simple
stochastic techniques (Householder & Foote, 2012) can act as a stopgap until more advanced
approaches can be realized.

We feel that this approach fits naturally with the practical observation that security quality
assurance can be better measured in terms of conditional probability than a collection of check

39

boxes. Were these techniques to be incorporated into the SDL, it may be feasible to take
blind mutational fuzz testing off the table as a viable means of vulnerability discovery in fielded
software.

We propose to discuss the above in the context of our experiences with the CERT Basic Fuzzing
Framework in a short talk for the workshop.

References :

CERT. (2012). Retrieved Feb 23, 2012, from US-CERT Vulnerability Notes:
http://www.kb.cert.org/vuls

Dormann, W. (2010, May 26). CERT Basic Fuzzing Framework. Retrieved Feb
23, 2012, from
http://www.cert.org/blogs/certcc/2010/05/cert_basic_fuzzing_framework.html

Householder, A., & Foote, J. (2012). Probability-based parameter
selection for dynamic randomized-input functional testing. [Publication
pending].

40

http://www.kb.cert.org/vuls
http://www.cert.org/blogs/certcc/2010/05/cert_basic_fuzzing_framework.html

© 2011 Carnegie Mellon University

© 2012 Carnegie Mellon University

Why Fuzzing (Still)
Works

Allen D. Householder

2

Why Does Fuzzing (Still) Work?
What is the question exactly?

Why are attackers still finding vulnerabilities using
fuzzing?

Why can fuzzing be expected to remain an effective
way to find vulnerabilities in software for some time to
come?

41

© 2011 Carnegie Mellon University

3

Fuzzing works because…
Vulnerabilities arise where assumptions meet reality

Input spaces are huge while test coverage of that
space is comparatively small

You’re not doing your own fuzzing (effectively)

4

Fuzzing works because…
Vulnerabilities arise where assumptions meet reality

Input spaces are huge while test coverage of that
space is comparatively small

You’re not doing your own fuzzing (effectively)

42

© 2011 Carnegie Mellon University

5

Vulnerability Discovery

What you
expect

What it
does

Vuls
found
here

6

Vulnerabilities arise in the mismatch
between assumptions and reality
“[A]utomobiles have not yet been subjected to
significant adversarial pressures. Traditionally
automobiles have not been network-connected and
thus manufacturers have not had to anticipate the
actions of an external adversary…”

“…virtually all vulnerabilities emerged at the interface
boundaries between code written by distinct
organizations.”

Comprehensive Experimental Analyses of Automotive Attack Surfaces,
Checkoway, Koscher, et al., USENIX Security 2011

43

© 2011 Carnegie Mellon University

7

Software is an aggregate of
subcomponents
Interfaces instantiate assumptions

Even “safe” languages have to interact with
unmanaged components, e.g.,

• Native code on Android
• API hooks into other libraries
• Scripting languages

Can you enumerate all the interfaces in your software
all the way down to the metal?

• See CVE-2012-0217 / VU#649219 http://www.kb.cert.org/vuls/id/649219

8

Fuzzing works because…
Vulnerabilities arise where assumptions meet reality

Input spaces are huge while test coverage of that
space is comparatively small

• Attackers can exploit small exposures

You’re not doing your own fuzzing (effectively)

44

© 2011 Carnegie Mellon University

9

Fuzzing increases input space
coverage
Model-aware

• Generational
• Mutational

Modeling is hard
• Human effort
• Computation

Model-agnostic
• Mutational

Much of the input space
won’t make it into the
interesting parts of the
code

• Format matters

Model-agnostic
mutational fuzzing works

• Surprisingly well if tuned
appropriately

• Poorly if not

10

Fuzzing works because…
Vulnerabilities arise where assumptions meet reality

Input spaces are huge while test coverage of that
space is comparatively small

You’re not doing your own fuzzing (effectively)

45

© 2011 Carnegie Mellon University

11

Fuzzing in a nutshell
Start with known good inputs
Mutate those inputs
Observe program behavior
Analyze anomalous behavior

12

Fuzzing in a nutshell
Start with known good inputs

• Generational
— Build a model, then create instances

• Mutational
— Collect instances
— Saves on time spent modeling
— Need to be cognizant of code coverage

• Choosing which input to use becomes an issue
Mutate those inputs
Observe program behavior
Analyze anomalous behavior

46

© 2011 Carnegie Mellon University

13

Fuzzing in a nutshell
Start with known good inputs
Mutate those inputs

• Model-aware
— Format specific
— Good for high-structure formats where symmetry matters

(e.g., XML)
• Model-agnostic

— Format independent
— Good for low structure formats (binary formats, etc.)
— Can work on high-structure formats if tuned accordingly

Observe program behavior
Analyze anomalous behavior

14

Fuzzing in a nutshell
Start with known good inputs
Mutate those inputs
Observe program behavior

• Does the mutated input cause unexpected behavior?
• Watch for crashes, signals, exceptions, or other

indicators of potentially exploitable behavior
Analyze anomalous behavior

47

© 2011 Carnegie Mellon University

15

Fuzzing in a nutshell
Start with known good inputs
Mutate those inputs
Observe program behavior
Analyze anomalous behavior

• Are the symptoms already known?
• Is the behavior exploitable?
• Can you isolate the problem in the code?

16

Common Issues with Fuzzing
Ineffective fuzzing is easy to do

Null results mean one of two things:
1. You have really good code
2. You’re doing something wrong

We observe #2 much more often

Simple metrics can help

48

© 2011 Carnegie Mellon University

17

Metrics of efficacy
Our most useful metric to date has been Crash
Density

• Crash Density = Unique crashes per iteration

Other useful metrics include:
• Iteration Rate = Iterations per core per unit time

— Has more to do with the program you’re testing than fuzzing
approach

• Crash Rate = Crash Density x Iteration Rate

• Code Coverage
— Can be slow to collect
— Remember: code coverage space != input space

Unit: iterations / core-hour

Unit: crashes / core-hour

Unit: Varies…functions, basic blocks?

18

Crash Density Metric Applied

1�

10�

100�

10� 100� 1,000� 10,000� 100,000� 1,000,000� 10,000,000�

U
n
iq
u
e
�C
ra
sh

er
s�
Fo

u
n
d
�

Trials�

BFF�1.1� BFF�2.0� BFF�2.5�

BFF 1.1
2010

10 @ 6.7M

BFF 2.0
2011

10 @ 31K

BFF 2.5
2012

10 @ 3.1K

2,100x improvement

49

© 2011 Carnegie Mellon University

19

Fuzzing results depend on good
parameter selection
Which known good input to use?

How much should you mutate it?

Knowing what to do a priori is hard
• Apply machine learning to automate parameter tuning

Related work: Multi-armed bandit problem
• http://research.microsoft.com/en-us/projects/bandits/

20

Seed file selection method
Model fuzzing as Bernoulli trials and unique crashes as
Poisson-distributed random events

For each seed file, maintain a confidence interval or Bayesian
MLE on the expected crash density

• based on empirical measurement during the course of a fuzz
campaign

Choose seed files with likelihood in proportion to their
expected crash density

Result: Seed files that yield more crashes get more attention
Householder, Foote, 2012 publication pending

50

© 2011 Carnegie Mellon University

21

Successful seed files
should get more

attention…

…but don’t lock in
too quickly

Seed file selection (2)

The same technique can be applied
to decide how much to fuzz (1% of
the bits? 80% of the bits? Etc.) with
similar improvements.

22

0

100

200

300

400

500

600

700

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000

U
n
iq
u
e
 C
ra
sh
e
s
Fo
u
n
d

Iteration Count

Ffmpeg (random) Ffmpeg (learning)

0

20

40

60

80

100

120

0 200,000 400,000 600,000 800,000 1,000,000

U
n
iq
u
e
 C
ra
sh
e
s
Fo
u
n
d

Iteration Count

Outside In (random) Outside In (learning)

Machine learning improves parameter
selection

FFmpeg Outside In

Householder, Foote, 2012 publication pending

51

© 2011 Carnegie Mellon University

23

Success breeds abundance
Fuzzing can yield too
many crashes

• Isn’t this a problem you
want to have?

Result reduction is
necessary

• Uniqueness
• Minimization
• Exploitability triage
• Other analysis

— Code coverage similarity
— Valgrind etc.

100k
crashers

100M
tests

100 unique
crashers

10 exploitable
crashers

The Fuzzing Pipeline
Numbers shown are order-of-magnitude examples

24

Google meets Flash
20 TB of SWF files

2,000 cores x 1 week to
find 20k files with maximal
coverage (minset)

2,000 cores x 3 weeks to
fuzz Flash

Found 400 unique crash
signatures

Adobe initially triaged to
106 unique bugs

Final tally was 80 unique
bugs

Fuzzing at scale,
Blog post by Evans, Moore, and Ormandy

http://googleonlinesecurity.blogspot.com/2011/08/fuzzing-at-scale.html

52

© 2011 Carnegie Mellon University

25

Crash Uniqueness
Hash last N calls in a crash backtrace to create a
signature

Implementations vary, but can be found in
• Fedora Automated Bug Reporting Tool (abrt)
• Microsoft MSEC !exploitable
• Apple CrashWrangler
• Many others…

CERT BFF adds heuristics to ignore libc and other
common library functions typically unrelated to the
underlying defect

26

Crash Minimization
Given a fuzzed input that causes a crash, find the
minimal changes from the original non-crashing input
to recreate the same crash.

• Requires uniqueness to tell if you have the same crash
• CERT BFF / FOE tools implement a probabilistic

approach to minimization

Similar concept found in Delta Debugging work by
Andreas Zeller et al.

• http://www.st.cs.uni-saarland.de/dd/

53

© 2011 Carnegie Mellon University

27

What Minimizer Does
Known good seedfile – does not cause crash

Fuzzed file – causes crash, many changed bytes are not involved in the crash

Minimized fuzzed file – causes same crash, all changed bytes are involved in the crash

Fuzz

Minimize

original byte

fuzzed byte

crash byte

28

Exploitability Triage
Windows

• WinDbg + MSEC !exploitable extension
— Used by CERT FOE 1.0

OS X
• Apple CrashWrangler

— Used by CERT BFF 2.5 on OSX

Linux
• Valgrind memcheck, (rumored) private debuggers
• CERT Triage Tools 1.0

54

© 2011 Carnegie Mellon University

29

Crash function call similarity

Use TF-IDF + cosine
similarity on vectors of
function counts from callgrind
output

30

Future work
Unique crashes != Unique bugs

Binary instrumentation & coverage analysis

Symbolic execution & constraint solvers

Further application of machine learning &
evolutionary computing techniques

Improve crash density estimators

The future is already here — it's
just not very evenly distributed.

- Willam Gibson

55

© 2011 Carnegie Mellon University

31

Fuzzing works because…
Vulnerabilities arise where assumptions meet reality

Input spaces are huge while test coverage of that
space is comparatively small

• Attackers can exploit small exposures

You’re not doing your own fuzzing (effectively)

32

Fuzzing works because…
The community is fragmented

• Security and Testing
• Academics and Enterprise
• Development and Operations

The testing literature has a lot to offer to security
• Models still apply although assumptions may differ

56

© 2011 Carnegie Mellon University

33

Fuzzing (Still) Works

2010 vulnerabilities

34

For More Information
Visit CERT® web sites:
http://www.cert.org/vuls/discovery/
http://www.cert.org/blogs/certcc/
http://www.kb.cert.org/vuls

Contact Presenter
Allen D. Householder
adh@cert.org
(412) 268-5651

Contact CERT:
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh PA 15213-3890

57

© 2011 Carnegie Mellon University

35

Copyright 2011 Carnegie Mellon University.

This material is based upon work supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon
University for the operation of the Software Engineering Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the United States Department of Defense.

NO WARRANTY
THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS”
BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted,
provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.
External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form
without requesting formal permission. Permission is required for any other external and/or commercial use. Requests for permission
should be directed to the Software Engineering Institute at permission@sei.cmu.edu.
*These restrictions do not apply to U.S. government entities.

CERT ® is a registered mark of Carnegie Mellon University.

36

Backup Slides

58

© 2011 Carnegie Mellon University

37

Fuzzing System Attributes

Input
Creation

Input
Creation

Model-aware
• Generational

• Mutational

Model-agnostic
• Mutational

ExecutionExecution

Concrete

Symbolic

ObservationObservation

Crash Detection
• Signals

• Exceptions
• Exit codes

Binary
Instrumentation

• Exploitability
• Code coverage
• Fault isolation

59

Model-based Testing: The State of the Practice

Robert Binder

System Verification Associates, LLC

Abstract:

A recent survey of model-based testing (MBT) users indicates some interesting trends. MBT
usage spans a wide range of application stacks, software processes, application domains and
development organizations. This talk will present the findings of the study and offer some
reflections on the state of the practice and its prospects.

The full report may be viewed at

Http://www.robertvbinder.com/docs/arts/MBT-User-Survey.pdf

60

http://www.robertvbinder.com/docs/arts/MBT-User-Survey.pdf

 Security testing: a key challenge for software engineering of web apps

Yves Le Traon

Abstract:

While important efforts are dedicated to system functional testing, very few work study how to
specifically and systematically test security mechanisms. In this position paper, we plead for a
systematic standardization of security testing benchmarks. We will illustrate the security testing
issues with two categories of approaches, taken from our ongoing research. The first ones aim at
assessing security mechanisms compliance with declared policies. Any security policy is
strongly connected to system functionality: testing function includes exercising many security
mechanisms. However, testing functionality does not intend at exercising all security
mechanisms. We thus propose test selection criteria to produce tests from a security policy.
Empirical results will be presented about access control policies and about Android apps
permission checks.

The second ones concern the attack surface of web apps, with a particular focus on web browser
sensitivity to XSS attacks. Indeed, one of the major threats against web applications is Cross-Site
Scripting (XSS) that crosses several web components: web server, security components and
finally the client’s web browser. The final target is thus the client running a particular web
browser. During this last decade, several competing web browsers (IE, Netscape, Chrome,
Firefox) have been upgraded to add new features for the final users benefit. However, the
improvement of web browsers is not related with systematic security regression testing.
Beginning with an analysis of their current exposure degree to XSS, we extend the empirical
study to a decade of most popular web browser versions. The results reveal a chaotic behavior in
the evolution of most web browsers attack surface over time. This particularly shows an urgent
need for regression testing strategies to ensure that security is not sacrificed when a new version
is delivered.

In both cases, security must become a specific target for testing in order to get a satisfying level
of confidence in security mechanisms.

61

	Blank Page
	Blank Page
	Blank Page
	Blank Page

