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ABSTRACT 
 
This is the proceedings of a workshop held on November 7 and 8, 2005 in Long Beach, 
California, USA, hosted by the Software Diagnostics and Conformance Testing Division, 
Information Technology Laboratory, of the National Institute of Standards and 
Technology.  The workshop,  “Software Security Assurance Tools, Techniques, and 
Metrics,” is one of a series in the NIST Software Assurance Measurement and Tool 
Evaluation (SAMATE) project, which is partially funded by DHS to help identify and 
enhance software security assurance (SSA) tools.  The goal of this workshop is to discuss 
and refine the taxonomy of flaws and the taxonomy of functions, come to a consensus on 
which SSA functions should first have specifications and standards tests developed, 
gather SSA tools suppliers for “target practice” on reference datasets of code, and 
identify gaps or research needs in SSA functions.   

 
Keywords:  Software assessment tools; software assurance; software metrics; software 
security; target practice, reference dataset; vulnerability 
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Foreword 
 
The workshop on “Software Assurance Tools, Techniques, and Metrics” was held 7-8 
November 2005 at the Long Beach, California, USA, co-located with the Automated 
Software Engineering Conference 2005.   
 
This workshop consisted of eleven paper presentations for the first day.  The second day 
morning consisted of “target practice” and the review of the nature of the reference 
dataset.  
 
The Program Committee consisted of the following: 
 
Freeland Abbott   Georgia Tech   Paul Ammann George Mason U. 
Elizabeth Fong   NIST    Michael Hicks U. of Maryland 
Michael Koo    NIST    Richard Lippmann MIT 
Robert A. Martin   MITRE Corp.  W. Bradley Martin NSA 
Nachiappan Nagappan  Microsoft Research  Samuel Redwine James Madison U. 
Ravi Sandhu    George Mason U.  Larry D. Wagoner NSA 
 
These proceedings have five main parts: 

• Summary 
• Workshop Announcement 
• Workshop Agenda 
• Reference Dataset Target Practice, and 
• Papers 
 

We thank those who worked to organize this workshop, particularly Elizabeth Fong, who 
handled much of the correspondence and Debra A. Brodbeck, who provided conference 
support.  We appreciate the program committee for their efforts in reviewing the papers. 
We are grateful to NIST, especially the Software Diagnostics and Conformance Testing 
Division, for providing the organizers' time.  On behalf of the program committee and the 
whole SAMATE team, thanks to everyone for taking their time and resources to join us. 
 
Sincerely, 
 
Dr. Paul E. Black 
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Summary 

 
This is the proceeding of the workshop on Software Security Assurance Tools, 
Techniques, and Metrics, held on November 7 and 8, 2005 at Long Beach, California, 
USA, co-located with the Automated Software Engineering Conference 2005.   It was 
organized by the Software Diagnostics and Conformance Testing Division, Information 
Technology Laboratory, National Institute of Standards and Technology (NIST).  Forty-
two people attended, including people from government, universities, tool vendors and 
service providers, and research companies. 
 
The workshop is one of a series in the NIST  Software Assurance Measurement and Tool 
Evaluation (SAMATE) project, http://samate.nist.gov/  A previous workshop was on 
Defining the State of the Art in Software Security Tools, held on August 10 and 11, 2005 
at the NIST in Gaithersburg, MD, USA. 
 
The call for papers resulted in eleven accepted papers, which were presented on the first 
day of the workshop.  The second day was devoted to the discussion of reference dataset 
and target practice with three SSA tool vendors, and included an invited presentation 
“Correctness by construction:  The case for constructive static verification” by Rob 
Chapman. 
 
The material and papers for the workshop were distributed on USB drives to the 
participants.  The content of the USB drives was: 
 

• Introduction, 
• Workshop call of papers, 
• Workshop agenda, 
• Reference dataset target practice, 
• Flaw taxonomies, and  
• Accepted papers. 

 
Here are summaries of the workshop conclusions: 
 

• Today’s SSA tool does not add much value to real, large software products. 
• How do we score (rate) the risk of a piece of code is still a challenging question. 
• There is a need to harmonize the different taxonomy of vulnerabilities. 
•  Very substantive feedbacks were gathered on the shared reference dataset.  See 

write-up on SAMATE Reference Dataset “Target Practice” in this document. 
• There were consensuses that the first SSA specification and standard tests will be 

the source code scanner tools. 
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Workshop CALL FOR PAPERS  (SSATTM'05) 
------------------------------------------------------------------------------------------- 

National Institute of Standards and Technology (NIST) workshop on 
Software Security Assurance Tools, Techniques, and Metrics 

7-8 November 2005  
Co-located with ASE 2005, Long Beach, California, USA 

------------------------------------------------------------------------------------------- 
 
Funded in part by the Department of Homeland Security (DHS), the National Institute of 
Standards and Technology (NIST) started a long-term, ambitious project to improve software 
security assurance tools.  Security is the ability of a system to maintain the confidentiality, 
integrity, and availability of information processed and stored by a computer.  Software security 
assurance tools are those that help software be more secure by building security into software or 
determining how secure software is.  Among the project's goals are: 
  

(1) develop a taxonomy of software security flaws and vulnerabilities,  
(2) develop a taxonomy of software security assurance (SSA) tool functions and techniques 

which detect or prevent flaws, and 
(3) develop testable specifications of SSA functions and explicit tests to evaluate how closely 

tools implement the functions. The test materials include reference sets of buggy code. 
 
These goals extend into all phases of the software life cycle from requirements capture through 
design and implementation to operation and auditing. 
 
The goal of the workshop is to convene researchers, developers, and government and industrial 
users of  SSA tools to 
 

• discuss and refine the taxonomy of flaws and the taxonomy of functions, which are under 
development, 

• come to a consensus on which SSA functions should first have specifications and 
standard tests developed, 

• gather SSA tools suppliers for "target practice" on reference datasets of code, and 
• identify gaps or research needs in SSA functions. 

 
REFERENCE DATASET "TARGET PRACTICE" 
 
Sets of code with known flaws and vulnerabilities, with corresponding correct versions, can be 
references for tool testing to make research easier and to be a standard of evaluation.  Working 
with others, we will bring reference datasets of many types of code, like Java, C, binaries, and 
bytecode.  We welcome contributions of code you've used. 
 
To help validate the reference datasets, we solicit proposals not exceeding 2 pages to participate 
in SSA tool "target practice" on the datasets.  Tools can range from university projects to 
commercial products.  Participation is intended to demonstrate the state of the art in finding 
flaws, consequently the proposals should not be marketing write-ups, but should highlight 
technical contributions: techniques used, precision achieved, classes of vulnerabilities detected, 
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suggestions for extensions to and improvements of the reference datasets, etc.  Participants are 
expected to provide their own equipment. 
 
TOPICS OF PAPERS: 
 
SSATTM encourages contributions describing basic research, novel applications, and experience 
relevant to SSA tools and their evaluation.  Topics of particular interest are: 
 

- Benchmarks or reference datasets for SSA tools 
- Comparisons of tools 
- ROI effectiveness of SSA functions 
- Flaw catching effectiveness of SSA functions 
- Evaluating SSA tools 
- Gaps or research needs in SSA functions 
- SSA tool metrics 
- Software security assurance metrics 
- Surveys of SSA tools 
- Relation between flaws and the techniques that catch them 
- Taxonomy of software security flaws and vulnerabilities 
- Taxonomy of SSA functions or techniques 

 
PAPER SUBMISSION: 
 
Papers should not exceed 8 pages in the conference format 
http://www.acm.org/sigs/pubs/proceed/template.html.  Papers exceeding the length restriction 
will not be reviewed.  Papers will be reviewed by at least two program committee members.  All 
papers should clearly identify their novel contributions.  All papers should be submitted 
electronically in PDF format by 26 August 2005 to Elizabeth Fong  efong@nist.gov. 
 
PUBLICATION: 
 
Accepted papers will be published in the workshop proceedings.  The workshop proceedings, 
along with a summary of discussions and the output of the reference dataset "target practice", will 
be published as a NIST Special Publication. 
 
CURRENT PROGRAM COMMITTEE: 
 
Freeland Abbott  Georgia Tech       Paul Ammann George Mason U. 
Paul E. Black            NIST        Elizabeth Fong NIST 
Michael Kass            NIST        Michael Koo NIST 
Richard Lippmann MIT        Robert A. Martin      M ITRE Corp. 
W. Bradley Martin NSA        Samuel Redwine James Madison U. 
Larry D. Wagoner NSA 
 
---------------------------------------------------------------------- 
IMPORTANT DATES: 
 
19 Aug:   Paper and tool proposal submission deadline 
19 Sep:   Paper and proposal notification 
15 Oct:   Final camera-ready copy due 
7-8 Nov:  Workshop 
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Workshop Program 
 
November 7, 2005 
8:30 – 9:00 Welcome – Paul Black 
 
9:00 – 10:30 Tools and Metrics – Session Chair: Elizabeth Fong  

� Where do Software Security Assurance Tools Add Value – David 
Jackson, David Cooper 

� Metrics that Matter – Brian Chess 
� The Case for Common Flaw Enumeration – Robert Martin, Steven 

Christey, Joe Jarzombek 
 
10:30 – 11:00  Break 
 
11:00 – 12:30 Flaw Taxonomy and Benchmarks – Session Chair: Robert Martin  

• Seven Pernicious Kingdoms: A Taxonomy of Software Security 
Errors – Katrina Tsipenyuk, Brian Chess, Gary McGraw 

• A Taxonomy of Buffer Overflows for Evaluating Static and 
Dynamic Software Testing Tools – Kendra Kratkiewicz, Richard 
Lippmann 

• ABM – A Prototype for Benchmarking Source Code Analyzers – 
Tim Newsham, Brian Chess 

 
12:30 – 1:30 Lunch 
 
1:30  –  4:00 New Techniques – Session Chair: Larry Wagoner 

� A Benchmark Suite for Behavior-Based Security Mechanisms – 
Dong Ye, Micha Moffie, David Kaeli 

� Testing and Evaluation of Virus Detectors for Handheld Devices – 
Jose A. Morales, Peter Clarke, Yi Deng 

� Eliminating Buffer Overflows, Using the Compiler or a Standalone 
Tool – Thomas Plum, David Keaton 

� A Secure Software Architecture Description Language – Jie Ren, 
Richard Taylor 

� Prioritization of Threats Using the K/M Algebra – Supreeth 
Vendataraman, Warren Harrison 

 
November 8, 2005 
9:00 – 11:30 Reference Dataset Target Practice – Michael Kass 
 
11:30 – 1:00  lunch 
 
1:00 – 2:30  Invited Presentation -   Session Chair: Vadim Okun 

• Correctness by Construction:  The Case for Constructive Static Verification – Rod 
Chapman 
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SAMATE Reference Dataset “Target Practice” 
 

 Michael Kass*

National Institute of Standards and Technology 
 
 
Introduction 
 
The SAMATE Reference Dataset (SRD) is a rapidly growing set of contributed test cases 
for measuring software security assurance (SSA) tool capability against a functional 
specification for that tool.  This initial distribution is a compilation of C source code test 
cases that will be used for evaluating the functional capability of C source code scanning 
tools. Contributions from MIT Lincoln Lab and Fortify Software Inc. make up this initial 
set.  Additional contributions from Klocwork Inc. and Ounce Labs Inc. will be added 
soon.   We expect to expand the SRD to include other languages (e.g. C++, Java) as well 
as to include test suites for other SSA tools (such as requirements and software design 
documents). 
 
MIT Contribution 
 
Documentation for each test case is contained in the source files themselves. In the case 
of the MIT contribution, the first line of each test case contains a classification code 
describing the test case “signature” (in terms of code complexity). All MIT discrete test 
cases are “buffer overflow” examples, with permutations of some of the 22 coding 
variation factors to challenge a tool's ability to discover a buffer overflow or recognize a 
patched version of the overflow. Also, MIT contributed 14 models (scaled-down 
versions) of 3 real world applications (bind, sendmail, and wu-ftpd). 

Fortify Software Test Case Contribution 

 Fortify Software has contributed C code test cases, the majority of which are also buffer 
overflow vulnerabilities. Additionally a number of race condition, command injection 
and other vulnerabilities are also included in the test suite. Like the MIT test cases, the 
Fortify test cases are “self documenting”, with keyword describing the type of software 
flaw present in the code. Additionally, to provide a uniform way of classifying the 
complexity of the test cases, the MIT classification code is placed at the top of each test 
file. 

 

 

                                                 
* This paper is authored by an employee of the U.S. Government and is in the public domain.                           
SSATTM’05, 11/7-11/8/05, Long Beach, CA, USA  ISBN 1-59593-307-7/05/11 
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Klocwork Test Case Contribution 

Klocwork Inc. has donated an initial contribution of C++ test cases, the majority of which 
are memory management related (e.g. memory leak, bad frees, use after frees) They 
intend to follow up with an additional donation of Java test cases. 

Target Practice Test Suite  

A subset of both the MIT (152 discrete test cases and 3 models) and Fortify (12) test 
cases make up the “target practice” test suite. A representative group of well-understood 
and documented tests are presented as a “starting point” to get initial feedback from tool 
developers and users as to how useful the test suite is. Both a “bad” (flawed) and “good” 
(patched) version exists for each test case. 
 
Target Practice Test Suite Details 
 
• 12 Fortify Test Cases – (stack overflow tests) 

– 6 “BAD” 
– 6 “OK” 

• 152 MIT Discreet Test Cases – (inter-procedural, liaising, pointers, function-calls) 
–  76 “BAD” 
–  76 “OK” 

• 6  MIT “Model” Test Cases – (global variable underflow, buffer overflow) 
– 3 “BAD” 
-  3 “OK” 

Test Suite Execution 

 It is expected that each participant will run their tool against the target practice test suite 
before attending the workshop on Tuesday, so as to provide maximum time for 
discussion of the merits/deficiencies in the test suite. Tests are provided in two separate 
directories (MIT and Fortify). How a tool scans the test suite is at the discretion of the 
tool implementer/user. 

Test Suite Evaluation  

After running their tool on the Target Practice test suite, participants will be asked to fill 
out a questionnaire regarding usefulness of the test suite in the following areas: 

o Validity of the tests 
o Do test cases reflect real world examples? 
o Test case coverage (What software flaws should we focus on initially?) 
o Complexity (Were the tests challenging/enlightening for discovering a 

tool's capability?) 
o Sufficient metadata for describing test case flaws and code complexity 

(e.g. MIT's metadata scheme - do we need more? If so what?) 
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Confidentiality of Test Results 
 
 At no time was a participant required to report anything about their tool's  performance 
against the Target Practice test suite.  
 
Discussion topics included:  
 
Test Case Validity 
 

• Do target practice test cases reflect real world examples? 
• What should be the ratio of  “manufactured” vs. “real world” test cases 
• Should we initially “set a bar” with the SRD to which all tool developers agree is 

realistic? 
 
FEEDBACK: Participants felt that discrete test cases provide a useful purpose in  
“establishing a minimal bar” of capability for source code scanners tools.  One participant  
stated that some of the discreet test cases were “beyond the capability of tools today”. 
Tools generally did well, with no “false positives” reported.  
 
Test Case Coverage 
 

• Where (what flaws) should we focus on initially? 
• 95% of initial tests are “buffer overflow” examples for C code (where else should 

be put our resources? 
• Coverage based upon: commonality, danger, and capability of tools? 
• Should coverage be the primary goal of the SRD? 

 
FEEDBACK: Participants pointed out that virtually all test cases were of the “buffer 
overflow variety, and that much more coverage of existing software flaws is necessary to 
make the SRD useful.  Some suggested focusing on “race conditions” as the next are of 
developing tests.   Others suggested creating test cases for “fringe areas” of research, 
since this could have a great impact in moving tool technology forward. 
 
 Test Case Variation 
 

• Expressed in Taxonomy of Flaws vs. Test Case attributes? (e.g. buffer 
overflow/buffer underflow) 

• Should variation be a primary goal for the SRD? 
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is truly effective.  It was generally viewed that a large variety of examples of a particular 
type of source code flaw will be necessary in order to truly measure a tool’s effectiveness 
of discovering such a flaw. 
 
Test Case Complexity 
 

• What is the minimal metadata necessary to describe test case complexity ? 
• In order to search/retrieve test cases with particular complexity and variation, a 

common set of attributes is needed 
 
FEEDBACK: It was generally agreed upon that some descriptors are necessary to permit 
a SRD user to “find” the test cases that are relevant to them.  Simply providing a “flaw 
classification” will not provide the granularity necessary for someone to “cull” the tests 
they need from potentially thousands of test cases.   The MIT metadata used to classify 
its buffer overflow test cases was used as an example.  No consensus was reached on 
exactly what general list of descriptors is necessary to tag any source code test case. 
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Where Do Software Security Assurance Tools Add Value?
David Jackson

QinetiQ
WWA109 Malvern Technology Centre

Malvern, WR14 3PS, UK
[+44] (0)1684 896689

DMJackson@QinetiQ.com

David Cooper
CESG

Room A2h, Hubble Road,
Cheltenham, GL51 0EX, UK

[+44] (0)1242 221491 ext 39049

David.Cooper@cesg.gsi.gov.uk

ABSTRACT
In developing security information technology products, we are 
presented with a wide choice of development and assurance 
processes, and of tools and techniques to support those processes.  
By considering a structured break-down of the goals of a 
development, and building on the results of a survey of the 
applicability of tools to certification, this paper proposes a 
framework for assessing the value of tools – both security 
specific and more general – to security assurance.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management–software quality 
assurance (SQA); Software/Program Verification–Validation

General Terms
Management, Measurement, Security.

Keywords
Software Assurance; Common Criteria for Information Security 
Evaluation

1. INTRODUCTION
Security is important in all aspects of life, and the increasing 
pervasiveness and capability of information technology makes IT 
infrastructure security increasingly so [1]. The continual and 
increasing publicity given to failures of IT security demonstrate 
the importance of developing and assuring systems to appropriate 
levels of security.

In spite of this attention, security remains a difficult attribute to 
assess and value [2]. Although the benefits of improved security 
can be difficult to quantify, as technologists and managers we are 
required to define and implement security measures which are 
appropriate to the threat and to the application. In the area of 
software security, these choices are further complicated by the 
wide range of techniques and tools have been used or proposed. 
Efforts are being made to categorize these tools and techniques, 

and to measure the effectiveness with which they perform their 
functions, but the variety of different approaches makes direct 
comparisons difficult.

This paper is a preliminary attempt to identify the role of various 
assurance activities and tools in the development of a software 
product, and the potential benefits of employing them. We 
believe that virtually all developments aimed at a non-trivial 
distribution will require some degree of security assurance.

This paper is based on the authors’ experience in a number of 
recent projects relating to software security assurance. Its 
principle inputs are:

• A study carried out on behalf of the UK Government 
CESG into the use of tools in support of Common 
Criteria (CC) evaluation [4]; 

• The SafSec project, which is investigating cost-
effective safety and security certification approaches for 
Integrated Modular Avionics (IMA) [5]; and

• Discussions around the NIST workshop on “Defining 
the State of the Art in Software Assurance Tools” [6].

The work described here is the first attempt to combine the goal-
based approach proposed by SafSec with the survey results of the 
other projects, and also takes into account the recent revision of 
the Common Criteria [17]. As a result, it poses questions for 
future research which are more wide-ranging than earlier studies.

2. BACKGROUND – THE ASSURANCE 
PROBLEM
Various approaches are used by those responsible for developing,
deploying and maintaining IT equipment and systems. 
Historically, most of the emphasis on information security came 
from government and military applications. Information security 
techniques developed which were appropriate for these highly-
regulated environments. These are typified by formal product 
approval schemes such as that established by the Common 
Criteria for Information Technology Security Evaluation [3]
(hereafter Common Criteria or CC).  In purely commercial 
applications, less rigorous division will typically exist between 
development and security assessment, but effective security 
processes will still generally contain elements of both [7].  In 
order to examine where the benefits of particular technologies in 
supporting security assurance lie, we will consider a general 
model of product development, taken from [5].

© 2005 Association for Computing Machinery. ACM acknowledges that 
this contribution was authored or co-authored by an affiliate of the U.S.
Government.  As such, the Government retains a nonexclusive, royalty-free 
right to publish or reproduce this article, or to allow others to do so, for 
Government purposes only.

SSATTM'05, 11/7-11/8/05, Long Beach, CA, USA.

© 2005 ACM 1-59593-307-7/05/11

14



2.1 Lifecycle of a Secure Product 
Figure 1 High-level Goals of a Product Development

Define 
requirements

Understand 
risks

Specify 
mitigations 
requirements

Specify 
functions

Specify 
assurance

Build secure 
product

Implement 
requirements

Implementation 
complete

Evidence 
relevant

Compliance
demonstrated

Evidence 
satisfactory

The security aspects of a development address a number of goals; 
these goals do not necessarily represent particular activities, but 
rather aspects of development which must be made, and 
maintained, valid through the course of development and 
deployment. A high-level view of a typical project is shown in 
Figure 1, which is based on that adopted by the SafSec project 
[5]. The notation is based on Kelly’s Goal Structuring Notation 
(GSN) [8].  The key goals are grouped into those which derive 
security specifications (understanding the risks, specifying 
mitigations) and those which ensure the specifications are 
implemented (completion and control of implementation, 
generation and adequacy of assurance evidence).
Although the emphasis given to these goals will differ widely 
between products according to the priorities of particular 
industries and applications, at some level each of these areas 
must be addressed by an adequately assured development.
Given a breakdown of the goals which a product development is 
seeking to achieve, we can assess the value of project activities 
by considering their contribution to meeting particular goals. 
Ultimately, we might assess the relative merits of different 
strategies by considering the relative economy (in terms of the 
necessary supporting solutions) with which each supports the 
goal. Obviously if the goals have been characterized purely in 
terms of security, only security aspects of the development will 
be illuminated by such an analysis.

2.2 Common Criteria Evaluation & Practical 
Security
In regulated applications, these development goals are often 
satisfied by adopting a formal certification scheme, of which the 
Common Criteria are the most widely accepted. Certification 
schemes generally involve additional time and expense in 
meeting their requirements, and thus the value of such schemes 
has been questioned. Areas in which the results of a certification 
program may differ from expectations include:

• Measurement of results: Is the objective to minimize 
vulnerabilities discovered or published, or to achieve a 
level of confidence that no significant risks remain?

• The scope of assessment: some evaluations are carried 
out under constraints which are too stringent to be 
widely practicable.

• Development processes: development technologies are 
continually evolving, and future developments may not 
match the expectations of the certification scheme.

Our previous work [4] includes a study aimed at addressing some 
of these issues and reviewing both assurance technologies and 
the CC assurance criteria to identify potential improvements to 
development and evaluation processes. The baseline for the work 
described here is the current formal release of the common 
criteria, version 2.2. The implications of the new draft of the CC, 
version 3, are discussed in Section 4.4 below.

2.2.1 Current evaluation practice
Current evaluation practice is driven by the evaluation method 
[9]. Many requirements are focused on a product’s 
documentation, rather than any formal artifact. This 
documentation – models of the design, or representations of the 
implementation, for example – is typically largely manually 
generated and intended for manual review. The CC evaluation 
process also makes assumptions about the development process. 
The information available is assumed to be consistent with a 
waterfall-style development: security functions are identified at 
the requirements level, and their presence and correct 
implementation verified through successive levels of design 
representation, culminating in their demonstration (by testing) in 
the final product. In consequence, only a small proportion of the 
evaluation effort is typically spent examining the product (code). 
Focus on implementation of identified security functions also 
poses pragmatic problems for evaluators: to make a sensible 
judgment on security issues, a thorough understanding of the 
product is necessary, but the targeted documentation provided to 
trace the security functions will not necessarily help build this 
understanding. Emphasis on the presence of specific security 
measures is also seen as encouraging the de-scoping of valuable, 
but difficult-to-assure, measures from the security targets which 
are claimed. This could result in the accreditation of products 
with increasingly unrealistic constraints on their operation, as 
opposed to real improvements in security. These factors do not 
encourage the types of assurance (e.g. scanning for potential 
vulnerabilities, or automated checks for compliance with 
implementation rules) that are amenable to automation (apart 
from standard document automation functions such as searching 
and indexing.). The product development process is, of course, 
likely to make some use of tools, for example to manage and 
organize source code, to generate and monitor tests, or to carry 
out customized consistency or style checks. Typically, however, 
such tools are used purely to benefit the development, not to 
contribute to the formal security assurance process. Evaluation 
may be facilitated by tools which contribute to the management 
of development (such as tools for configuration management, 
impact analysis, change control, or automated build and testing) 
but to no greater extent than any other process is facilitated by 
having good control of its inputs.

2.2.2 Desirable changes
The perceived weaknesses of current assurance regimes lead us 
to try and identify desirable features of future assurance 
approaches. Key attributes identified by a range of stakeholders 
in the CC scheme included:
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• Assurance should not introduce significant delay or 
additional cost into product development.

• Emphasis should be placed on identifying 
vulnerabilities in the product, rather than exploring 
attributes of the documentation.

• Assurance requirements should not list specific 
documents and checks, but allow flexibility to choose 
development environments and life-cycles which reflect 
current practices, and the goals to be addressed.

• Encouragement of broader good practice and 
approaches that facilitate understanding and assurance 
of the whole product, not simply a set of security 
functions. Also promotion of security targets which are 
broad enough to be practically applicable, rather than 
restricted to facilitate accreditation.

• Provision of concrete advice on the application of 
specific techniques, the use of tools in specific areas, 
and the identification and elimination of particular 
high-risk structures.

• Maintenance of the existing high standards for the 
quality of assurance, eg by maintaining mutual 
recognition and repeatability, and demanding 
appropriate validation of tools.

However, it was emphasized that any changes should not 
jeopardize the assurance of systems which are not covered by 
available tools, or introduce unrealistic expectations of the 
developers (e.g. by demanding manual resolution of many false 
positive reports from tools).

3. CLASSIFICATION OF ASSURANCE 
TOOLS AND TECHNOLOGIES
The tool survey carried out as part of the CC investigation 
examined a broad range of technologies, on the grounds that 
many tools might contribute to developing a secure system even 
if they are not specifically security-related. The classification 
used there is summarized here.

• Tools which aid human comprehension of software, 
including

o Reverse-engineering to graphical 
representations

o Enhanced code navigation
o Automatic documentation
o Presentation of multiple views

o Configuration management
o Integrated development environments

There are also tools targeted specifically at audit and 
assessment, which typically include a number of the 
above functions.

• Configuration management tools. Some form of 
configuration management is essential, but in this 
category we include related tools for controlling and 
supporting development. Additional facilities offered 
include:

o Comprehensive documentation management 
(not just source code)

o Change management

o Version / variant management
o Traceability
o Build management

o Access control
o Integration with the development 

environment

• Test support and dynamic analysis tools, covering not 
only conventional testing, but also other assurance 
activities based on execution of (a variant of) the 
product. Examples include:

o Test execution frameworks
o Test case generation, both white-box (based 

on the implementation) and black-box (based 
on a separate specification of intended 
behavior)

o Test coverage analysis
o Memory and execution profiling

• Subset conformance tools. Some forms of security risk 
can be avoided by eliminating certain classes of 
structure from allowable implementations, essentially 
defining a subset of the implementation language. 
These subsets can be standardized (as, for example, the 
MISRA subset of C [10]) or company- or project-
specific.

• Detection of general implementation weaknesses. 
Many means of exploiting vulnerabilities make use of 
errors in software implementation, even if the errors 
themselves do not constitute a direct vulnerability. 
Detection and elimination of general programming 
errors will improve the overall quality of a software 
product and reduce the potential for security functions 
to be bypassed or subverted.

• Run-time error detection. One specific class of software 
weakness which can be difficult to identify by testing is 
the occurrence of run-time exceptions such as overflow 
and arithmetic errors. Several approaches have been 
developed to identify where such errors may occur.

• Vulnerability detection. Of all the classes of flaws 
which we may search for in a product, those which 
present known vulnerabilities offers the most direct 
benefit. A range of tools is available according to the 
implementation technology and vulnerability classes of 
concern. This area is the main focus of many other 
surveys, including [11].

• Executable code analysis. Many of the attributes noted 
above can be determined either at source code level or 
by direct examination of object code or byte-code. 
Source code tools have potential access to richer 
information about the design intent that object-code 
tools, but the latter have the advantage of applying 
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directly to the delivered product, and could, for 
example, be applied to third-party or legacy 
components.

• Program correctness tools. Although typically 
applicable only to higher levels of assurance 
requirement, and thus of limited general applicability, 
some tools do exist which address the question of 
program correctness in a broader sense. As many 
security vulnerabilities are likely to lie outside the 
intended behaviour of a program, these are able to 
provide high levels of confidence in the security of a 
product. Typically, however, they require additional 
design and implementation effort, such as the 
preparation of formal specifications or program 
annotations.

Another recent proposal for a taxonomy of security assurance 
tools [11] identified the following classes:

• External 

o Network Scanners 
o Web Application Scanners 

o Web Services Network Scanners 
o Dynamic Analysis Tools 

• Internal 

o Software Requirements Verification Tools 
o Software Design/Modeling Verification Tools 
o Source Code Scanning Tools, further divided 

into identification of range and type errors, 
calls to vulnerable library functions, 
environmental problems synchronization and 
timing errors, locking problems, protocol 
errors, general logic errors and other flaws 
(file cycling issues, access control 
implementation, configuration violations)

o Byte Code Scanning Tools 

o Binary Code Scanning Tools 
o Database Scanning Tools

This breakdown provides more detail on security-specific tools, 
and includes, in its external category, tools that, being most 
useful after deployment, were not judged relevant to a product 
assurance process for the purposes of our earlier study. It 
provides less detail on tools which are not security specific. 
Ongoing work to develop a more general taxonomy is taking 
place as part of the NIST SAMATE project [6].

If tools are to be used in creating or assessing assurance 
evidence, it is necessary for the tools themselves to be fit for the 
purpose, in order to establish the requisite confidence in the 
results they produce. The problem of tool qualification is not 
unique to security, and has been addressed, for example, by the 
aerospace safety community [12]. The benchmark for any tool 
which replaces a life-cycle process is that its output should be at 
least equivalent to the processes replaced; this means that if the 
output of a tool is cross-checked independently by some other 
activity, the requirements place on the tool itself may be relaxed.

Attributes which may be expected of a qualified tool include:

• Clear definition of the function performed and 
requirements satisfied

• Accuracy

• Repeatability

• Completeness and lack of ambiguity of output

• Characterization of operating environment and 
behavior under abnormal conditions

• Demonstration of requirements coverage, and analysis 
of the degree of coverage achieved

• Evidence of previous evaluations, of previous 
successful deployments, and of the pedigree of other 
tools developed by the same process

• A traceable defect recording and corrective action 
system

Ultimately, if the requirements on a class of tool can be 
characterized with sufficient accuracy, we could expect to 
develop certification criteria and independent testing schemes.

4. POTENTIAL BENEFITS
The CC classify security requirements into security functional 
requirements (specifying particular security-related functions 
which a system must provide) and assurance requirements 
(specifying the measures to be taken to ensure correct 
implementation of the functional requirements). Assurance 
requirements are further subdivided into families:

• Configuration management (ACM)

• Delivery and operation (ADO)

• Development (ADV)

• Guidance documentation (AGD)

• Life cycle support (ALC)

• Tests (ATE)

• Vulnerability assessment (AVA)
Seven pre-defined packages of assurance requirements are 
defined, representing increasing levels of assurance – the 
Evaluation Assurance Levels (EAL) 1–7 where EAL 1 is the 
least stringent, and EAL 7 the most.
Analysis of the capabilities of the various classes of software 
development and assurance tools against the CC requirements 
led us to consider three areas in which tools can facilitate the 
development of an assured product, as follows.

o Tools employed in the development, but which support 
or facilitate assurance, 

o Tools of direct use in evaluating security, and

o Tools which support the implementation of security 
functional requirements rather than providing evidence 
that security assurance requirements have been met.

These areas are discussed in the following sub-sections.
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One additional aspect of tool use became clear in the course of 
the analysis: there are many areas in which tools which may not 
necessarily assist in one-off assurance of a particular 
development but contribute substantially to the effective 
maintenance and re-use of assurance evidence. Such re-use is 
important in many situations:

o In re-assurance of a modified or updated product,

o In assurance of a product in distinct, but related, 
environments (eg across different platforms), and 

o In developing composite systems that make use of 
previous assurance evidence about their components.

Of particular importance in these cases is the need to be able to 
identify where modifications have been made, and where 
dependencies arise which may need to be re-considered in the 
light of those changes. Our experience indicates that even given 
such facilities, re-assuring a complex system can still be difficult 
if an attempt is made to re-use parts of previous work in the 
production of complete new assurance arguments; re-use is more 
likely to be effective if complete assurance arguments are used as 
a whole, forming a baseline against which later assurance is 
documented as an assured set of changes.

4.1 Tools employed in development
Many tools used in development are useful in supporting 
assurance, because many of the factors which facilitate assurance 
also directly facilitate the development itself. Nevertheless, some 
development tool functions are of greater relevance than others. 
Areas of particular relevance are described below

4.1.1 Configuration Management (CC Assurance 
Class ACM).
Tool support for change and build management provides both 
developers and assessors with confidence that the product 
delivered – and its supporting configuration information, 
documentation, training material, etc – are derived from valid
sources and controlled appropriately. All serious product 
developments will use some forms of configuration management 
policy and tools; nevertheless, choice of appropriate tools can 
greatly simplify assuring an appropriate level of configuration 
management. Features of particular relevance include: 
comprehensive coverage of all documents (not simply code); 
access control; change control; traceability; and version 
comparison/impact analysis to support re-use of assurance 
evidence.

4.1.2 Life cycle support (CC Assurance Class ALC)
Confidence in the control of the development life-cycle is an 
important component of assurance. While few tools control the 
life-cycle directly, and lifecycle definition and control are general 
project-management issues beyond the scope of this paper, a 
number of aspects of assurance benefit from an appropriate 
development tool environment. Configuration management tools 
which provide formal release control, for example, may be used 
to enforce compliance to particular life-cycle features.
Development security (Class ALC_DVS) may also be enhanced 
by use of a CM system which enforces appropriate access 
controls and audit mechanisms. The level of assurance required 

of all tools used is also a life-cycle issue: maintenance of 
satisfactory assurance may require keeping all tools under 
configuration management, for example, and the use of 
additional tools (such as subset-conformance checkers) to ensure 
that other tools (such as compilers) are only employed within the 
limits of their own assurance. Direct assurance of one tool, a 
compiler for example, may also be established through the use of 
another (a de-compiler or compiler validation suite). See 
Section 3.

4.1.3 Development (CC Assurance Class ADV)
The CC approach to development concentrates on establishing 
consistency between increasingly detailed levels of design 
representation. Assurance of this consistency can be facilitated 
by tools which maintain traceability between representations. 
Integrated development environments using semi-formal 
notations such as UML [13] can be used to support such a 
lifecycle, the rigorous separation of functional specification, 
high-level design, low-level design and implementation 
representation which (the current version of) the CC requires is 
not necessarily natural in such frameworks. See Section 4.4 for 
further discussion. The task of demonstrating correspondence 
between implementation and low-level design is facilitated by 
many of the software quality tools identified in Section 3: subset 
conformance, detection of run-time errors and software 
weaknesses all support this goal, as do some forms of object code 
verification.

4.1.4 Testing (CC Assurance Class ATE)
Some degree of test automation is likely to be used in any 
substantial product development, and any mechanisms which 
encourage the repeatable and controlled execution of tests will 
provide a degree of assurance in the design process. Some 
assurance benefits maybe expected from coverage analysis tools, 
although measurement of the proportion of a design which is 
exercised may not be a good prediction of the actual performance 
of the tests in detecting security-related errors. Management 
tools, such as configuration management and traceability tools, 
will also be applicable to tests and the test process.

4.2 For evaluators
The areas in which tools are directly applicable to assurance are 
perhaps more restricted than the general benefits of development 
tools, but the specific value which could potentially be obtained 
in some cases is nevertheless substantial. In the analysis, it 
proved useful to consider areas in which evaluators seek 
confidence, such as:

• Correct functionality is crucial, but in the majority of 
cases restricted to an informal review

• Identification of specific risky constructs, including 
error conditions, common vulnerabilities such as buffer 
overflows, and issues regarding concurrency.

• Consistency between design representations, and across 
interfaces between different elements.

• Sensitivities to platform and compiler attributes, which 
may become weaknesses if external dependencies 
change.
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• General structure and behaviour of the program, as a 
prerequisite for assessing other issues, and also to 
illuminate information flow, for example.

Note that although these issues were examined from the 
perspective of an evaluator or assessor, developers are likely to 
use the same tools and techniques in order to reduce the risk that 
issues may be discovered later in the product life cycle.

4.2.1 Assurance of correct development (CC 
Assurance Class ADV)

The bulk of the information available to an assessor arises from 
the development process – any evaluation will therefore expect to 
make use of the tools discussed in the previous section. The 
applicability of other tools will depend largely on the nature of 
the information available: for medium and low-level assessment 
(the vast majority of cases) much of this information will be 
informal. In these cases, the key documentation (functional 
specifications, high- and low-level designs) may be natural 
language texts – there may be scope for the use of documentation 
tools such as readability metrics and indexing tools, but little 
true automation may be expected (NASA’s Automated 
Requirement Measurement tool (ARM) is an interesting 
extension to an important class of documents [14].) Where semi-
formal notations are used, mechanical consistency checks may be 
implemented (often as part of an IDE) ,but acceptance of such 
checks a assurance evidence is hampered by lack of commonly 
agreed representations and semantics for such checks.

In contrast, source code is by its nature formal and suited to the 
provision of mechanical support for the key assurance challenge 
of accessing and comprehending large quantities of technical 
information. Navigation and documentation aids (such as cross 
referencing and indexing tools) are important supports to 
assessment activities. Tools which provide some degree of 
abstraction (such as generating a call-tree or dependence graph) 
can be used to support comparison of the implementation with a 
low-level design, and can assist in identifying security-enforcing 
functions and their dependencies.

4.2.2 Assurance testing (CC Assurance Class ATE)
Assurance activities will typically include both an assessment of 
testing carried out during development and an element of 
independent testing. Both classes of activities will be facilitated 
by tools as discussed in the previous section (Section 4.1). The 
identification of specific vulnerabilities is also likely to involve 
testing in addition to the activities discussed in the next section.

4.2.3 Vulnerability identification (CC Assurance 
Class AVA)
The search for specific vulnerabilities is an essential element of 
security assurance. This is an area in which a number of specific 
vulnerability detection tools have been proposed (See Section 3) 
and their use is obviously a potentially valuable source of 
evidence, but the value of their results will be crucially 
dependent on parameters which are not necessarily easy to 
characterize, such as the proportion of identified problems which 
are not, in fact vulnerabilities (false positives) and the proportion 

of vulnerabilities which are present but not detected (false 
negatives). Similar concerns also apply to tools which look for 
general weaknesses which may be associated with breaches, such 
as run-time errors. The characterization and qualification of these 
tools is an important area of research (see also Section 3).

4.2.4 Manual assurance is essential
Although we have identified a number of areas in which tool 
support may support the assurance activities, there are a number 
of areas where no substitute to manual review and assessment is 
practical. This is the case, for example, in areas where the key 
attributes are the clarity and completeness of documentation, 
such as prevention of accidental misuse and installation and 
operational guidance generally. General purpose tools will also 
have limited use in some technical analysis, such as 
determination if the strength of security functions is appropriate.

4.3 Functional requirements
The discussion above has concentrated on assurance 
requirements – constraints on how a product is constructed –
rather than the function it actually performs. In general, tools will 
not be able to confirm functional correctness of a product, 
although customised tool-supported analysis may be justifiable 
for some specific projects. There are some specific areas, 
however, where tool support can be valuable in assuring 
functional correctness, including:

• Control and data flow analyses. The more sophisticated 
program analysis tools can derive the flow of data and 
control through a program. This can be valuable in 
demonstrating the adequacy of various controls and 
policies, such as ensuring that security functions are 
invoked prior to any action which might compromise 
security (mediation).

• Failure mode analysis. Tools which detect 
vulnerabilities or general weaknesses in 
implementation provide information about the possible 
ways in which an implementation or function may fail. 
This is necessary to establish the appropriateness of 
measures which manage failures such as fault-tolerance 
or fail-secure functionality.

• Protocol and algorithm correctness. Although full proof 
of correctness of an implementation is not likely to be 
practical for the vast majority of security products, 
there are elements which, because of their extreme 
criticality or wide deployment, may be subject to more 
stringent constraints. In these cases, formal verification 
with specialist tool support may be appropriate. Typical 
applications might be security protocols or algorithms 
used by fundamental network infrastructure. ([15], 
[16], for example).

4.4 Evolution of the CC Evaluation Scheme
Our review identified a number of recommendations which we 
felt should be considered for changes to the CC and the 
evaluation methodology which advises how the criteria should be 
applied. The key recommendations regarding the methodology 
were:
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• To require a search for known failure modes in the 
chosen implementation language, and mechanical 
enforcement of rules necessary to conform to well-
defined language subsets.

• To link the sizes chosen for sampling activities to 
general software quality measures (allowing sample 
size reduction to be argued for developments showing 
demonstrably good quality).

• To encourage security targets to be defined according 
to practical application rather than to simplify 
evaluation.

Recommendations regarding the Common Criteria themselves 
were addressed more cautiously, because of the need to maintain 
consensus among all participants. The key suggestions were in 
the following areas:

• Fault elimination: Strengthening the functional 
specification of security functions to place greater 
emphasis on interfaces, and on the assumptions which 
the security functions make for correct behavior (e.g. 
integrity of memory, restrictions on flow of control). 
(Class ADV_FSP); inclusion in the development of 
evidence for the robustness of separation between 
security functions and other functions; and allowing 
tool support for maintenance of design representations, 
and relaxing requirements for strict refinement 
between design representations (while maintaining the 
necessary consistency).

• Fault discovery and removal: the requirement identified 
above, to search for known failure modes and 
insecurities, should ultimately be reflected in the CC.

• Failure tolerance. Designing systems to be tolerant of 
faults and failures is a crucial element in other product 
integrity domains, but is not emphasized in the CC. A 
requirement should be added to require analysis of 
possible failures and demonstrating that the design is 
appropriately robust.

• General changes: In other communities, standards-
setting is moving towards a less prescriptive goal-
oriented approach. The CC could be made less 
prescriptive, stating objectives of a successful 
evaluation and criteria which the recorded evidence 
must meet, but leaving open the means of meeting 
these objectives. This would facilitate competitive 
improvement of the evaluation process. To maintain 
mutual recognition in the light of this change, 
recognition should be based on establishing that 
different approaches are consistent in their 
effectiveness and findings, rather than that they 
produce identical results.

Since the completion of the work reported in [4], a new draft 
issue of the Common Criteria and the evaluation methodology 
has been published [17]. The new draft addresses many of the 
recommendations made here:

• Greater emphasis is placed on architectural integrity, 
and on demonstrating that other functions do not 
interfere with the security functions, although explicit 
failure mode analysis is not required.

• More explicit requirements are placed on specification 
of the interfaces of security functions.

• The development assurance family (ADV) has been 
revised to simplify the constraints placed on design 
documentation.

• The vulnerability analysis requirements include 
requirements to search for known classes of 
vulnerabilities.

The evaluation methodology remains too abstract to provide 
concrete advice on the use of tools, although clearly tool support 
will be advantageous for those activities which are required to be 
methodical.

Although the new version does significantly introduce noticeable 
simplification and significant re-structuring in many 
requirements, the majority of key assurance activities remain the 
same; the value and applicability of tool support will, therefore, 
remain unchanged.

5. CONCLUSIONS & FUTURE WORK
This paper takes results from number of existing studies:

• a goal-based view of the objectives of a secure product 
development [5],

• a review of the applicability of tools to security 
assurance [4] and

• Emerging work on taxonomies of software security 
tools [11],

and presents a summary which highlights where software tools 
may be expected to add value to development programs.

5.1 Applicability of Tools
Our review identified a number of areas where existing security 
evaluations could be supported by existing tools:

• Control of changes and configurations of products, 
product variants and assurance evidence

• Identification of general weaknesses, violations of 
coding standards and subsets, and potential run-time 
errors

• Identification of known vulnerabilities
• Assisting in an assessors understanding of a potentially 

large volume of potentially complex information
In the short term, use of tools in these areas appears most likely 
to improve the value of assurance (in terms of reduction of 
vulnerabilities discovered in service) rather than to decrease cost. 
We believe that it may be possible to achieve savings, primarily 
in the cost of developing the information required to support 
assurance, if increased use of automated document management 
and change control tools, and increased use of tools to enforce 
coding standards and subsets, were combined with a shift in the 
focus of development and evaluation processes.
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Any successful deployment of tools will require that the tools 
themselves are adequately assured.

5.2 Varieties of assurance
The security of a product depends on many factors, and 
consequently can be improved and demonstrated by a range of 
different measures. The benefits of different assurance measures 
can be comprehended, and trade-off decisions facilitated, by 
considering their contribution to a structured assurance 
argument. Such an argument can provide a framework for 
planning assurance activities and identifying the support which 
tools can provide.

Some of the more important measures are specific to security 
assurance, such as searching implementations for known 
vulnerabilities, but we believe that systematic examination of the 
goals of a secure development demonstrates that more general 
assurance tools provide significant value in areas including 
general software quality, robustness of architectures, 
configuration management and change control. Our studies 
further indicate that for benefits in cost as well as quality, 
security assurance must be an integral element of the 
development process, taken into consideration as key design 
decisions are being made.

5.3 Future Work
Although the opportunity for tool-supported security assurance is 
attractive, there are several questions which must be resolved if 
security assurance tools are to be widely adopted:

• Classification of tools and techniques, and development 
of common understandings of the value and function of 
each class, is necessary both to justify the adoption of 
tools, and to provide a basis for tool assurance. To 
support cost-benefit analysis, the classification must 
reflect benefits (eg risks reduced) rather than 
functional behaviour.

• Practical tools must be usable: issues such as consistent 
and informative output, reduction of false positive and 
false negative results, and scalability to large code 
bases are paramount.

• The qualitative discussion of assurance presented here 
must be refined to give quantitative cost-benefit 
arguments for tool adoption. A systematic approach to 
assurance will be required to allow tradeoffs to be 
made not only between the cost of assurance and the 
cost of failure, but between mechanisms which may 
each improve security in very different ways.
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Abstract 
Any endeavor worth pursuing is worth measuring, but software 
security presents new measurement challenges: there are no 
established formulas or procedures for quantifying the security 
risk present in a program. This document details the importance 
of measuring software security and discusses the less-than-
satisfying approaches that are prevalent today.  A new set of 
metrics is then proposed for ensuring an accurate and 
comprehensive view of software projects ranging from legacy 
systems to newly deployed web applications.  Many of the new 
metrics make use of source code analysis results. 
 
1. Introduction: Why measure? 
What would happen if your company cut its security budget in 
half?  What if the budget was doubled instead?  In most 
companies today, no one knows the answers to these questions.  
Security remains more art than science, and nothing is more 
indicative of this fact than the inability of security practitioners 
to quantify the effects of their work. 
 
Software security is no exception: nearly every major business-
critical application deployed today contains vulnerabilities—
buffer overflow and cross-site scripting are commonplace, and 
so are many other, less well-known, types of vulnerabilities.  
These problems can be exploited to cause considerable harm by 
external hackers or malicious insiders.  Security teams know that 
these errors exist, but are, for the most part, ill equipped to 
quantify the problem.  Any proposed investment in improving 
this situation is bound to bring up questions such as: 

• Are the applications more secure today than 
yesterday—or less secure?  

• Does security training really make a difference? 
• How will we know when our systems are secure? 
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This paper examines the current state of practice for measuring 
software security.  It then suggests two new approaches to the 
problem: quantifying the secure development lifecycle, and 
focusing on the root cause of many vulnerabilities using metrics 
built with source code analysis results. 
 
2. The State of Practice: Three Flawed 

Approaches to Measuring Security 
1. Build then Break: Penetration Testing as a Metric 
The de facto method that most organizations use for measuring 
software security today can be summarized as “build then 
break.” Developers create applications with only a minimum of 
attention paid to security, and the applications are deployed. The 
operations team then attempts to compensate for the problematic 
software with perimeter security.  When the team takes 
inventory of all of the ways that data moves through and around 
the perimeter defenses, it becomes clear that the perimeter 
security is insufficient.  At this point, the operations team may 
bring in penetration testers to find the problems before hackers 
or malicious insiders do.  The penetration testers generally have 
a fixed schedule for performing their work, and their goal is to 
find a small number of serious problems to justify their 
consulting fee.  Once these problems are resolved, everyone is 
happy.  But there’s no reason to believe that the penetration test 
revealed all of the problems with the application.  In fact, 
subsequent audits usually prove that it did not.  There’s also 
very little feedback to the developers, so penetration tests often 
find the same types of problems over and over again. 

 
2. Measure Software Security as Part of Software Quality 
A naive approach to software security calls for treating security 
as just another aspect of software quality.  The problem is that 
traditional quality assurance is aimed at verifying a set of 
features against a specification. Software security, however, 
requires much more than well-implemented security features. 
The reality is that a typical process for achieving good results 
with respect to traditional quality issues does not guarantee good 
results with respect to security issues.  In other words, you have 
to focus specifically on security in order to improve it.  Good 
security is not a byproduct of good quality. 
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Figure 1: A quality-oriented approach to security leaves many opportunities for attackers. 

 
 

Further complicating this approach, the majority of Quality 
Assurance (QA) departments lack the requisite security 
expertise to carry out adequate security tests.  Finally, as Figure 
1 illustrates, any approach to quality that is based on the 
behavior of regular users will leave many untested opportunities 
for attackers. 
3. The Feel-Good Metric: If It Hasn’t been Hacked Yet, It’s 

Probably Okay 
Because security so often goes unquantified, the bottom-line 
measure for security is often gut-feel.  Human nature and the 
nature of security are in conflict on this point: people and 
organizations tend to gain comfort with the status quo over time, 
but security may actually degrade as time passes.  New types of 
attacks and new applications for old types of attacks can harm a 
program’s security—even as an organization becomes more and 
more complacent because security “hasn’t been a problem yet!” 
 
A similar fallacy holds that the security of a program can be 
correlated to the breadth of its adoption.   Interestingly, this line 
of reasoning always seems to work in favor of the status quo. 
For applications with a small user base, people assume that 
attackers will not take an interest. For applications with a large 
user base, people assume that any security issues will be flushed 
out of the system shortly after release.  In truth, security is no 
more related to breadth of adoption than it is to longevity. The 
BugTraq mailing list (where news of many new vulnerabilities 
debuts) is filled with entries about small and obscure 
applications. Furthermore, the long history of buffer overflows 
in widely adopted programs as varied as SendMail and Internet 
Explorer shows that neither age nor a large install base prevents 
attackers from finding new exploits. 
 
3. A Positive Trailing Indicator 
There are encouraging signs that the longstanding neglect, 
ignorance, or apathy shown to software security is beginning to 
change. Microsoft has adopted the Trustworthy Computing 
Security Development Lifecycle (SDL) process for the creating 
software that needs to withstand malicious attack [4]. The 
process adds a series of security-focused activities and 
deliverables to each of the phases of Microsoft’s software 
development process. These activities and deliverables include 
risk analysis during software design, the application of source 

code analysis tools during implementation, and code reviews 
and security testing during a focused “security push.” Before 
software subject to the SDL can be released, it must undergo a 
final security review by a team independent from its 
development group. When compared to software that has not 
been subject to the SDL, software that has undergone the SDL 
has experienced a significantly reduced rate of external 
discovery of security vulnerabilities.  Figure 2 shows the number 
of security bulletins for Windows 2000 in its first 12 months 
after release versus the number of security bulletins for 
Windows Server 2003 in its first 12 months after release.  The 
number of issues has been reduced by more than 50%, even as 
the size and complexity of the operating system has increased.  

Figure 2. A measurable improvement in Microsoft OS 
security: the number of security bulletins issued in the first 
12 months following two major OS releases. 
 
However, Figure 2 is an example of a trailing indicator.  It only 
demonstrates that security has been improved after the OS has 
been released. It provides strong evidence that the SDL has a 
beneficial effect on the security of the resulting operating 
system, but if Microsoft only releases an operating system every 
five or six years, it requires five or six years to know whether 
there is a measurable improvement in software security from the 
previous release. That is far too slow. Security must be 
measured on an ongoing basis throughout the software 
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development lifecycle, and for that we need leading indicators 
for software security. 
 
4. Software security metrics you can use 

now 
Having explained the measurement problem and how not to 
solve it, we now turn to two practical methods for measuring 
software security.   
 
1. Quantify the Secure Development Lifecycle 
Software security must be addressed as part of the software 
development lifecycle [1,2].  There are practical steps that 
development groups can take during each phase of the lifecycle 
in order to improve the security of the resulting system. These 
steps include:  

• Evaluate the current state of software security and 
create a plan for dealing with it throughout the 
development life cycle. 

• Specify the threats, identify both business and 
technical risks, and plan countermeasures. 

• Review the code for security vulnerabilities 
introduced during development. 

• Test code for vulnerabilities based on the threats and 
risks identified earlier. 

• Build a gate to prevent applications with 
vulnerabilities from going into production.  Require 
signoff from key development and security personnel. 

• Measure the success of the security plan so that the 
process can be continually improved.  Yes, your 
measurement efforts should be measured! 

• Educate stakeholders about security so they can 
implement the security plan effectively. 

 
Each of these steps can be measured. For example, if your 
security plan includes educating developers, you can measure 
what percentage of developers have received software security 
training. 1 
 
Of course, not all organizations will adopt all steps to the same 
degree.  By tracking and measuring the adoption of secure 
development practices, you will have the data to draw 
correlations within your organization.  For example, you will 
likely find that the up-front specification of threats and risks 
correlates strongly to a faster and easier security signoff prior to 
release. 
 
2. Use Source Code Analysis to Measure Security 
All software organizations, regardless of programming 
language, development methodology, or product category, have 
one thing in common: they all have source code.  The source 
code is a very direct embodiment of the system, and many 
vulnerabilities manifest themselves in the source [3].  It follows 
that the source code is the one key artifact to measure as part of 
assessing software security.  Of course, source code review is 
useful for more than just metrics.  The following sections 
discuss some source code analysis fundamentals and then look 
at how source code analysis results can provide the raw material 
for powerful software security metrics. 

                                                
1 It seems reasonable to assume that Microsoft also produces metrics 
related to their SDL, but they have published very little on the topic. 

 
5. Source Code Analysis 
Source code analyzers process code looking for known types of 
security defects.  In an abstract sense, a source code analyzer 
searches the code for patterns that represent potential 
vulnerabilities and presents the code that matches these patterns 
to a human auditor for review.  The three key attributes for good 
source code analysis are accuracy, precision, and robustness. 
 
A source code analyzer should accurately identify vulnerabilities 
that are of concern to the type of program being analyzed.  For 
example, web applications are typically at risk for SQL 
injection, cross-site scripting, and access control problems, 
among others.  Further, the analysis results should indicate the 
likely importance of each result. 
 
The source code analyzer must also be precise, pointing to a 
manageable number of issues without generating a large number 
of false positives.  Furthermore, if a program is analyzed today, 
and subsequently re-analyzed tomorrow, it is likely that only a 
small amount of code will have changed. The source code 
analyzer must be able to give the same name to the same issue 
today and tomorrow, allowing for the ability to track when 
issues appear and disappear.  This capability is critical for 
extracting meaningful metrics from source code analysis results. 
 
Finally, the source code analyzer must be robust: it must be able 
to deal with large, complex bodies of code. Of course, not every 
issue the source code analyzer identifies will be a true 
vulnerability. Therefore, part of being robust is allowing human 
auditors to evaluate and prioritize potential issues.  A preferred 
scenario has a human auditor classify the output from the 
analyzer into 1) severe vulnerabilities that must be corrected 
immediately, 2) bad practices, and 3) issues that are not relevant 
to the organization.   An even better application of source code 
analysis allows developers to analyze their own code as they 
write it, making source code analysis part of the daily process of 
program development. 
 
6. Security Metrics Based on Source Code 

Analysis 
The best metrics that can be derived from source code analysis 
results are, to a certain extent, dependent upon the way in which 
an organization applies source code analysis.  We will consider 
the following scenarios: 

1. Developers use the source code analyzer on a regular 
basis as part of their development work.  They are 
proactively coding with security in mind. 

2. A software security team uses the source code 
analyzer as part of a periodic code review process.  A 
large body of code has been created with little regard 
for security.  The organization plans to remediate this 
code over time. 

 
Of course, the first scenario is preferable, but most organizations 
cannot achieve that overnight.  For the near future, it is likely 
that both scenarios will co-exist in most organizations. 
 
Metrics for Secure Coding 
After a development team adopts a source code analysis tool and 
tunes it for the security policies that are important for their 
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project, they can use source code analysis results in aggregate 
for trending and project comparison purposes.  Figure 3 shows a 
comparison between two projects, one red and one blue, where 
the source code analysis results have been grouped by severity.  
The graph suggests a plan of action: eliminate the critical issues 
for the red project, then move on to the high-importance issues 
for the blue project. 

 
It can also be useful to look at the types of issues found broken 
down by category.  Figure 4 shows the results for the same two 
projects in this fashion.  Here, the differences between the red 
and the blue project become pronounced: the blue project has a 
significant number of buffer overflow issues.  A strategy for 
preventing buffer overflow is in order.

 
 
 

Figure 3: Source code analysis results broken down by severity for two projects. 
 
 

 
Figure 4: Source code analysis issues organized by vulnerability type.
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Source code analysis results can also be used to examine 
vulnerability trends.  Teams that are focused on security will 
decrease the number of source code analysis findings over time 
as they increasingly use the automation to mitigate security 
problems.  A sharp increase in the number of issues found is 
likely to indicate a new security concern. Figure 5 shows the 
number of issues found during each nightly build.  Trend 

indicators show how the project is evolving.  In this case, the 
spike in the number of issues found is a result of the 
development group taking over a module from a group that has 
not been focused on security.  This code represents a risk that 
will need mitigation throughout the remaining portion of the 
development life cycle.

 

 
Figure 5: Source code analysis results over time. 

 
 

 
Figure 6: Vulnerability dwell as a function of priority. 

 
 
Metrics for Legacy codebases 
For large codebases where security has not historically been a 
priority, the security challenge has a different flavor.  In most 
cases, it is not possible to instantaneously remodel the entire 
codebase for security purposes.  Instead, an audit team needs to 
prioritize the problems and work to remove the worst ones.  Of 
course, new development will continue even as the triage takes 
place. 
 
Metrics for legacy codebases leverage the ability of the source 
code analyzer to give the same issue the same name across 
different builds.  By following the same issue over time and 
associating it with the feedback provided by a human auditor, 

the source code analyzer can provide insight into the evolution 
of the project. 
 
For example, the source code analysis results can reveal the way 
a development team responds to security vulnerabilities.  After 
an auditor identifies a vulnerability, how long on average does it 
take for the developers to make a fix?  This metric is named 
“Vulnerability Dwell.”  Figure 6 shows a project where the 
developers fix critical vulnerabilities within two days and take 
progressively longer to address less severe problems. 
 
Because a legacy codebase often continues to evolve, auditors 
will need to return to the same projects again and again over 
time.  But how often?  Every month?  Every six months?  The 
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rate of auditing should keep pace with the rate of development, 
or rather the rate at which potential security issues are 
introduced into the code.  By tracking individual issues over 
time, the output from a source code analysis tool can show an 
audit team how many unaudited issues a project contains.  

Figure 7 presents a typical graph.  At the point the project is first 
audited, audit coverage goes to 100%.  Then, as the code 
evolves over time, the audit coverage decays until the project is 
audited again. 

 
 

 
Figure 7: Audit coverage over time. 

 
 

 
Figure 8: Audit history. 
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Another view of this same data gives a more comprehensive 
view of the project.  An audit history shows the total number of 
issues, number of issues reviewed, and number of vulnerabilities 
identified as a function of time.  This view takes into account 
not just the work of the auditors, but the effect the developers 
have on the project, too.  Figure 8 shows an audit (shown in red) 
conducted over several product builds.  At the same time the 
audit is taking place, the number of issues in the codebase 
(shown in blue) is growing.  As the auditors work, they report 
vulnerabilities (shown in yellow).  When the blue and red meet, 
the auditors have looked at all of the issues.  Development work 
is not yet complete though, and soon the project once again 
contains unaudited issues.  As the developers respond to some of 
the vulnerabilities identified by the audit team, the number of 
issues begins to decrease and some of the identified 
vulnerabilities are fixed.  At the far right side of the graph, the 
uptick in the red indicates that another audit is beginning. 

7. Conclusion 
While software security has been a universally recognized risk, 
there has been an absence of established procedures for 
quantifying the security risk present software. Only by 
measuring can organizations conquer the software security 
problem.  
 
The first step in this journey is the adoption of security-focused 
activities and deliverables throughout each phase of the software 
development process. These activities and deliverables include 
risk analysis during software design, code review during 
development, and security-oriented testing that targets the risks 
that are specific to the application at hand.  By tracking and 
measuring the security activities adopted into the development 
process, an organization can begin to quantify their software 
security risk.    

The data produced by source code analysis tools can be 
particularly useful for this purpose, giving insight into whether 
or not code review is taking place and whether or not the results  
of the review are being acted upon. 
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ABSTRACT 
Software acquirers want assurance that the software products they 
are obtaining are reviewed for known types of security flaws.  The 
acquisition groups in large government and private organizations 
are moving forward to use these types of reviews as part of future 
contracts.  The tools and services that can be used for this type of 
review are fairly new at best.  However, there are no 
nomenclature, taxonomies, or standards to define the capabilities 
and coverage of these tools and services.  This makes it difficult 
to comparatively decide which tool/service is best suited for a 
particular job.  A standard taxonomy of software security 
vulnerabilities can serve as a unifying language of discourse and 
measuring stick for tools and services.  Leveraging the diverse 
thinking on this topic from academia, the commercial sector, and 
government, we can pull together the most valuable breadth and 
depth of content and structure to serve as a unified standard.  As a 
starting point, we plan to leverage the wide acceptance and use of 
the Common Vulnerabilities and Exposures (CVE) list of publicly 
known software security flaws.  In conjunction with industry and 
academia, we propose to extend the coverage of the CVE concept 
[1] into security-based code assessment tools and services.  Our 
objective is to help shape and mature this new code security 
assessment industry and also dramatically accelerate the use and 
utility of these capabilities for organizations in reviewing the 
software systems they acquire or develop. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification 

General Terms 
Software, Security, Testing, Verification, Flaws, Faults. 

Keywords 
taxonomies, static analysis, security flaws, weaknesses, 
idiosyncrasies, WIFF, Common Vulnerabilities and Exposures, 
CVE, vulnerabilities, secure software, software security 
assurance. 

1. INTRODUCTION 
More and more organizations want assurance that the software 
products they acquire and develop are free of known types of 
security flaws. High quality tools and services for finding security 
flaws in code are new.  The question of which tool/service is 
appropriate/better for a particular job is hard to answer given the 
lack of structure and definition in the code assessment industry.  

There are several efforts currently ongoing to begin to resolve 
some of these shortcomings including the Department of 
Homeland Security (DHS) National Cyber Security Division 
(NCSD) sponsored Software Assurance Metrics and Tool 
Evaluation (SAMATE) project [2] being led by the National 
Institute of Standards and Technology (NIST), and the 
Department of Defense (DOD) sponsored Code Assessment 
Methodology Project (CAMP) which is part of the Protection of 
Vital Data (POVD) effort [3] being conducted by Concurrent 
Technologies Corporation (CTC), among others. While these 
efforts are well placed, timely in their objectives and will surely 
yield high value in the end, they both would benefit from a 
common description of the underlying security vulnerabilities in 
software that they are targeted to resolve. Without such a common 
taxonometric description, many of these efforts cannot move 
forward in a meaningful fashion or be aligned and integrated with 
each other to provide strategic value.   

Past efforts at developing this kind of taxonomy have been limited 
by a very narrow technical domain focus or have largely focused 
on high-level theories, taxonomies, or schemes that do not reach 
the level of detail or variety of security issues that are found in 
today's products.  As an alternate approach, under sponsorship of 
DHS NCSD, MITRE investigated the possibility of leveraging the 
CVE initiative’s experience in analyzing nearly 13,000 real-world 
vulnerabilities reported and discussed by industry and academia. 

As part of the creation of the CVE List, over the last five years 
MITRE's CVE initiative, sponsored by DHS NCSD, has 
developed a preliminary classification and categorization of 
vulnerabilities, attacks, faults, and other concepts that can be used 
to help define this arena. However, the current groupings used in 
the development of CVE, while sufficient for that task, are too 
rough to be used to identify and categorize the functionality 
offered within the offerings of the code security assessment 
industry. Additional fidelity and succinctness is needed to support 
this type of usage and there needs to be additional details and 
description for each of the different nodes and groupings such as 
the effects, behaviors, and implementation details, etc. 
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As part of MITRE's participation in the DHS-sponsored NIST 
SAMATE project MITRE took a first cut at revising the internal 
CVE category work for usage in the code assessment industry.  
The resultant document, called the Preliminary List Of 
Vulnerability Examples for Researchers (PLOVER) [4], is a 
working document that lists over 1,400 diverse, real-world 
examples of vulnerabilities, identified by their CVE name.  The 
vulnerabilities are organized within a detailed conceptual 
framework that currently enumerates 290 individual types of 
Weaknesses, Idiosyncrasies, Faults, Flaws (WIFFs), with a large 
number of real-world vulnerability examples for each type of 
WIFF. PLOVER represents the first cut of a truly bottom-up 
effort to take real-world observed faults and flaws that do exist in 
code, abstract them and group them into common classes 
representing more general potential vulnerabilities that could exist 
in code, and then finally to organize them in an appropriate 
relative structure so as to make them accessible and useful to a 
diverse set of audiences for a diverse set of purposes. The initial 
details of this enumeration can be found at the end of this paper.  

Working with the community under the NIST SAMATE project, 
we are establishing acceptable definitions and descriptions of 
these CWEs. When completed, this will serve as a mechanism for 
describing code vulnerability assessment capabilities in terms of 
their coverage of the different CWEs. If necessary, this will also 
be scoped to specific languages, frameworks, platforms and 
machine architectures. More work is required to group PLOVER 
WIFFs into a taxonomy more useful for SAMATE. 

2. OBJECTIVES 
As discussed above, we are leveraging PLOVER as a starting 
point for the creation of a formal enumeration of the set of 
software security Weaknesses, Idiosyncrasies, Faults, Flaws 
(WIFFs) to serve as a common language for describing software 
security vulnerabilities, to serve as a standard measuring stick for 
software security tools targeting these vulnerabilities, and to 
provide a common glue for vulnerability identification, mitigation 
and prevention efforts.  When complete, this Common WIFF 
Enumeration (CWE) will not only encompass a large portion of 
the CVE List's 12,000 plus CVE names but it will also include 
detail and breadth from a diverse set of other industry and 
academic sources and examples.  Once a comprehensively broad 
set of CWEs has been identified and collected, we will again look 
to these other sources and examples for approaches to organizing 
this enumeration in order to provide more simplicity to various 
potential users through taxonometric layering. 

Working with the community under the DHS-sponsored NIST 
SAMATE project we are proceeding to establish acceptable 
definitions and descriptions of these CWEs to support finding 
these types of software security flaws in code prior to fielding. 
When completed this will be a mechanism for describing each of 
the industry's software security flaw code assessment capabilities 
in terms of their coverage of the different CWEs.  If necessary, 
this will also be scoped to specific languages, frameworks, 
platforms and machine architectures.  

Additionally, we are working with researchers and software 
suppliers to determine what sort of metadata and resources (e.g. 
code exemplars, patterns, code snippets, etc.) will be needed to 
allow tools to be tailored or enhanced to identify CWEs in code.  
This work will also align with and leverage the SAMATE 
project’s various sub-efforts including its development of a corpus 

of data to determine precision and recall statistics for verifying the 
effectiveness of these types of code assessment tools with respect 
to finding CWEs.   

Beyond the creation of the vulnerability taxonomy for the stated 
reasons, a further end goal of this effort will be to take the 
findings and results of this work and roll them into the CVE 
initiative as the foundation of a new type of compatibility that can 
be directly used by organizations in their selection and evaluation 
of tools and/or services for assessing their acquired software for 
known types of flaws. 

3. APPROACH 
A main theme of this effort is to leverage the existing work on this 
topic area [5]-[14] in light of the large number of diverse real-
world vulnerabilities in CVE. We will leverage as many sources 
and examples as we can gain access to as well as collaborate with 
key industry players who are currently tackling this subject. We 
will work in conjunction with researchers at the NIST, The Open 
Web Application Security Project (OWASP), Ounce Labs, 
Cigital, Fortify Software, Cenzic, Microsoft, Klocwork, and 
Secure Software, and other interested parties, to develop specific 
and succinct definitions of the CWE list elements that adequately 
describe and differentiate the various CWEs while capturing their 
specific effects, behaviors, exploit mechanisms, and 
implementation details.  In addition, we will assign the 
appropriate CWE to the CVE names so that each CWE group will 
have a list of the CVE names that belong to that CWE category of 
software security flaws. In constructing the CWE list, we will 
strive for maximum comprehensive coverage across appropriate 
conceptual, business and technical domains. 

In our efforts to define organizational structure to the CWE list 
elements, we will look not only to PLOVER, but also to leading 
thoughts in this area including the McGraw/Fortify “Kingdoms” 
taxonomy [15], Howard, LeBlanc & Viega’s 19 Deadly Sins [16], 
Secure Software’s CLASP [17], among others. In defining the 
organizational structure, we will strive for simplicity and 
appropriateness of description for leveraging by various audiences 
and for various purposes through the use of taxonometric layering. 
We currently foresee using a three tiered approach, in which the 
lowest level consists of the full CWE list (likely hundreds of 
nodes) and that is applicable to tool vendors and detailed research 
efforts.  The middle tier would consist of descriptive affinity 
groupings of CWEs (likely 25-50 nodes) that are useful to 
software security and software development practitioners.  The 
top level would consist of high-level groupings of the middle tier 
nodes (likely 5-10 nodes) to define strategic classes of 
vulnerability and is useful for high level discourse among 
software practitioners, business people, tool vendors, researchers, 
etc. 

Once an initial CWE list and organizational structure have been 
defined, we will collaborate with our colleagues in the industry to 
further refine the required attributes of CWE list elements into a 
more formal schema defining the metadata structure necessary to 
support the various uses of the taxonomy. This schema will also 
be driven by a desire to align with and support the other 
SAMATE and CAMP efforts such as software metrics, software 
security tool metrics, the software security tool survey, the 
methodology for validating software security tool claims, and the 
reference datasets. 

30



With a schema defined, an initial comprehensive list of CWEs 
identified and defined and an organizational structure in place, 
this set of content will be submitted to a much broader audience of 
industry participants to discuss, review and revise. This cycle will 
iterate until a general consensus can be reached on what will 
become the first release of the specification (a defacto standard). 

4. IMPACT AND TRANSITION 
OPPORTUNITIES 
The completion of this effort will yield consequences of three 
types: direct impact and value, alignment with and support of 
other existing efforts, and enabling of new follow-on efforts to 
provide value that is not currently being pursued. 

Following is a list of the direct impacts this effort will yield. Each 
impact could be the topic of much deeper ongoing discussion. 

1. Provide a common language of discourse for discussing, 
finding and dealing with the causes of software security 
vulnerabilities as they are manifested in code. 

2. Allow software security tool vendors and service providers to 
make clear and consistent claims of the security vulnerability 
causes that they cover to their potential user communities in 
terms of the CWEs that they look for in a particular code 
language. Additionally, a new type of CVE Compatibility 
will be developed to allow security tool and service providers 
to publicly declare their capability's coverage of CWEs 

3. Allow purchasers to compare, evaluate and select software 
security tools and services that are most appropriate to their 
needs including having some level of assurance of the level 
of CWEs that a given tool would find. Software purchasers 
would be able to compare coverage of tool and service 
offerings against the list of CWEs and the programming 
languages that are used in the software they are acquiring. 

4. Enable the verification of coverage claims made by software 
security tool vendors and service providers (this is supported 
through CWE metadata and alignment with the SAMATE 
reference dataset). 

5. Enable government and industry to leverage this 
standardization in the contractual terms and conditions. 

Following is a list of alignment opportunities with existing efforts 
that are provided by the results of this effort. Again, each of these 
items could be the topic of much deeper ongoing discussion. 

1. Mapping of CWEs to CVEs. This mapping will help bridge 
the gap between the potential sources of vulnerabilities and 
examples of their observed instances providing concrete 
information for better understanding the CWEs and 
providing some validation of the CWEs themselves.  

2. Bidirectional alignment between the vulnerability taxonomy 
and the SAMATE metrics effort. 

3. The SAMATE software security tool/service capability 
framework effort that is tasked with designing a framework 
and schema to quantitatively and qualitatively describe the 
capabilities of tools and services would be able to leverage 
this vulnerability taxonomy as the core layer of the 
framework. This framework effort is not an explicitly called 

out item in the SAMATE charter but is implied as necessary 
to meet the project’s other objectives. 

4. The SAMATE software security tool and services survey 
effort would be able to leverage this vulnerability taxonomy 
as part of the capability framework to effectively and 
unambiguously describe various tools and services in a 
consistent apples-to-apples fashion. 

5. There should be bidirectional alignment between this source 
of vulnerability taxonomy and the SAMATE reference 
dataset effort such that CWEs could reference supporting 
reference dataset entries as code examples of that particular 
CWE for explanatory purposes and reference dataset entries 
could reference the associated CWEs that they are intended 
to demonstrate for validation purposes. Further, by working 
with industry, an appropriate method could be developed for 
collecting, abstracting, and sharing code samples from the 
code of the products that the CVE names are assigned to with 
the goal of gathering these code samples from industry 
researchers and academia so that they could be shared as part 
of the reference dataset and aligned with the vulnerability 
taxonomy.  These samples would then be available as 
tailoring and enhancement aides to the developers of code 
assessment security tools. We could actively engage closed 
source and open source development organizations that work 
with the CVE initiative to assign CVE names to 
vulnerabilities to identify an approach that would protect the 
source of the samples while still allowing us to share them 
with others.  By using the CVE-based relationships with 
these organizations, we should be able to create a high-
quality collection of samples while also improving the 
accuracy of the security code assessment tools that are 
available to the software development groups to use in 
vetting their own product's code 

6. The SAMATE software security tool/service assessment 
framework effort that is tasked with designing a test and 
validation framework to support the validation of tool/service 
vendor claims by either the purchaser directly or through a 
3rd party, would rely heavily on this sources of vulnerability 
taxonomy as its basis of analysis.  To support this, we would 
work with researchers to define the mechanisms used to 
exploit the various CWEs for the purposes of helping to 
clarify the CWE groupings and as a possible verification 
method for validating the effectiveness of the tools that 
identify the presence of CWEs in code by exploring the use 
of several testing approaches on the executable version of the 
reviewed code.  The effectiveness of these test approaches 
could  be explored with the goal of identifying a method or 
methods that are effective and economical to apply to the 
validation process 

7. Bidirectional mapping between CWEs and Coding Rules, 
such as those deployed as part of the DHS NCSD “Build 
Security In” (BSI) website [18], used by tools and in manual 
code inspections to identify vulnerabilities in software. 

8. There should be bidirectional alignment between the 
vulnerability taxonomy and the CAMP malware repository 
effort similar to the alignment with the SAMATE reference 
dataset described in #5 above. 
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Following is a list of new, unpursued follow-on opportunities for 
creating added value to the software security industry. 

1. Expansion of the Coding Rules Catalog on the DHS BSI 
website to include full mapping against the CWEs for all 
relevant technical domains. 

2. Identification and definition of specific domains (language, 
platform, functionality, etc.) and relevant protection profiles 
based on coverage of CWEs. These domains and profiles 
could provide a valuable tool to security testing strategy and 
planning efforts. 

With this fairly quick research and refinement effort, this work 
should be able to help shape and mature this new code security 
assessment industry, and dramatically accelerate the use and 
utility of these capabilities for organizations and the software 
systems they acquire, develop, and use. 

5. Initial Weaknesses, Idiosyncrasies, Faults, 
Flaws (WIFFs) Enumeration 
The following section introduces the current content we have 
derived through studying a large portion of the CVE list.  The 
listing below, which is comprised of 290 specific types of 
weakness, idiosyncrasies, faults and flaws (WIFFs) is not 
exhaustive and will certainly evolve.   

Our purpose in coining the term “WIFFs” is avoid the use of 
the term “vulnerability” for these items.  The term “vulnerability” 
is frequently used in the community to apply to other concepts 
including bugs, attacks, threats, risks, and impact.  Also, there are 
widely varying opinions regarding what “risk level” must be 
associated with a problem in order to call it a vulnerability, e.g. in 
terms of denial-of-service attacks and minor information leaks. 
Finally, not every instance of the items listed below, or those 
collected in this overall effort, will need to be removed or 
addressed in the applications they reside in.  While they most 
certainly need to be examined and evaluated for their potential 
impact to the application, there will certainly be a large number of 
these items that could be safely left as is, or dealt with by making 
some minimal adjustments or compensations to keep them from 
manifesting into exploitable vulnerabilities.  If we went forward 
using the term “vulnerability” for these items, there would be a 
built-in bias and predisposition to remove and eliminate each and 
every one of them, which would be a massive and unnecessary 
waste of time and resources. 

The items below have not been categorized except in the most 
obvious and expeditious manner.  With the incorporation of the 
other contributions from academia and industry sources we will 
most certainly reorganize these groupings as more examples and 
specifics are added.  With this caveat we provide the following 
summary of the 28 main categories which contain the 290 
individual types of WIFFs we have enumerated to-date. 

1.   Buffer overflows, format strings, etc. [BUFF] (10 types) 

 These categories cover the increasingly diverse set of 
WIFFs that are generally referred to as “buffer overflows.” 
The specific types in this group are: Buffer Boundary 
Violations (“buffer overflow”), Unbounded Transfer 
(“classic overflow”), Boundary beginning violation (“buffer 
underflow”), Out-of-bounds Read, Buffer over-read, Buffer 
under-read, Array index overflow, Length Parameter 

Inconsistency, Other length calculation error, Format string 
vulnerability 

2.   Structure and Validity Problems [SVM] (10 types) 

 These categories cover certain ways in which “well-
formed” data could be malformed. The specific types in this 
group are: Missing Value Error, Missing Parameter Error, 
Missing Element Error, Extra Value Error, Extra Parameter 
Error, Undefined Parameter Error, Undefined Value Error, 
Wrong Data Type, Incomplete Element, Inconsistent 
Elements 

3.   Special Elements (Characters or Reserved Words) [SPEC]  
(19 types) 

 These categories cover the types of special elements 
(special characters or reserved words) that become security-
relevant when transferring data between components. The 
specific types in this group are: General Special Element 
Problems, Parameter Delimiter, Value Delimiter, Record 
Delimiter, Line Delimiter, Section Delimiter, Input 
Terminator, Input Leader, Quoting Element, Escape, Meta, 
or Control Character / Sequence, Comment Element, Macro 
Symbol, Substitution Character, Variable Name Delimiter, 
Wildcard or Matching Element, Whitespace, Grouping 
Element / Paired Delimiter, Delimiter between Expressions 
or Commands, Null Character / Null Byte 

4.   Common Special Element Manipulations [SPECM] (11 
types) 

 These categories include different ways in which special 
elements could be introduced into input to software as it  
operates. The specific types in this group are: Special 
Element Injection, Equivalent Special Element Injection, 
Leading Special Element, Multiple Leading Special 
Elements, Trailing Special Element, Multiple Trailing 
Special Elements, Internal Special Element, Multiple 
Internal Special Element, Missing Special Element, Extra 
Special Element, Inconsistent Special Elements 

5.   Technology-Specific Special Elements [SPECTS] (17 
types) 

 These categories cover special elements in commonly used 
technologies and their associated formats. The specific 
types in this group are: Cross-site scripting (XSS), Basic 
XSS, XSS in error pages, Script in IMG tags, XSS using 
Script in Attributes, XSS using Script Via Encoded URI 
Schemes, Doubled character XSS manipulations, e.g. 
“<<script”, Null Characters in Tags, Alternate XSS syntax, 
OS Command Injection, Argument Injection or 
Modification, SQL injection, LDAP injection, XML 
injection (aka Blind Xpath injection), Custom Special 
Character Injection, CRLF Injection, Improper Null 
Character Termination 

6.   Pathname Traversal and Equivalence Errors [PATH] (47 
types) 

 These categories cover the use of file and directory names 
to either “escape” out of an intended restricted directory, or 
access restricted resources by using equivalent names. The 
specific types in this group are: Path Traversal, Relative 
Path Traversal, “/directory/../filename”,  “../filedir”, 
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“/../filedir”, “directory/../../filename”, “..\filename” (“dot 
dot backslash”), “\..\filename” (“leading dot dot 
backslash”), “\directory\..\filename”, 
“directory\..\..\filename”, “...” (triple dot), “....” (multiple 
dot), “....//” (doubled dot dot slash), Absolute Path 
Traversal, /absolute/pathname/here, “.../...//”,  
\absolute\pathname\here (“backslash absolute path”), 
“C:dirname” or C: (Windows volume or “drive letter”), 
“\\UNC\share\name\” (Windows UNC share), Path 
Equivalence, Trailing Dot - “filedir.”, Internal Dot - 
“file.ordir”, Multiple Internal Dot - “file...dir”, Multiple 
Trailing Dot - “filedir....”, Trailing Space - “filedir “, 
Leading Space - “ filedir”, file[SPACE]name (internal 
space), filedir/ (trailing slash, trailing /), 
//multiple/leading/slash (“multiple leading slash”), 
/multiple//internal/slash (“multiple internal slash”), 
/multiple/trailing/slash// (“multiple trailing slash”), 
\multiple\\internal\backslash, filedir\ (trailing backslash), /./ 
(single dot directory), filedir* (asterisk / wildcard), 
dirname/fakechild/../realchild/filename, Windows 8.3 
Filename, Link Following, UNIX symbolic link (symlink) 
following, UNIX hard link, Windows Shortcut Following 
(.LNK), Windows hard link, Virtual Files, Windows MS-
DOS device names, Windows ::DATA alternate data 
stream, Apple “.DS_Store”, Apple HFS+ alternate data 
stream 

7.   Channel and Path Errors [CP] (13 types) 

 These categories cover the ways in which the use of 
communication channels or execution paths could be 
security-relevant. The specific types in this group are: 
Channel Errors, Unprotected Primary Channel, Unprotected 
Alternate Channel, Alternate Channel Race Condition, 
Proxied Trusted Channel, Unprotected Windows Messaging 
Channel (“Shatter”), Alternate Path Errors, Direct Request 
aka “Forced Browsing”, Miscellaneous alternate path 
errors, Untrusted Search Path, Mutable Search Path, 
Uncontrolled Search Path Element, Unquoted Search Path 
or Element 

8.   Cleansing, Canonicalization, and Comparison Errors [CCC]  
(16 types) 

 These categories cover various ways in which inputs are not 
properly cleansed or canonicalized, leading to improper 
actions on those inputs. The specific types in this group are: 
Encoding Error, Alternate Encoding, Double Encoding, 
Mixed Encoding, Unicode Encoding, URL Encoding (Hex 
Encoding), Case Sensitivity (lowercase, uppercase, mixed 
case), Early Validation Errors, Validate-Before-
Canonicalize, Validate-Before-Filter, Collapse of Data into 
Unsafe Value, Permissive Whitelist, Incomplete Blacklist, 
Regular Expression Error, Overly Restrictive Regular 
Expression, Partial Comparison 

9.   Information Management Errors [INFO] (19 types) 

 These categories involve the inadvertent or intentional 
publication or omission of sensitive data, which is not 
resultant from other types of WIFFs. The specific types in 
this group are: Information Leak (information disclosure), 
Discrepancy Information Leaks, Response discrepancy 
infoleak, Behavioral Discrepancy Infoleak, Internal 
behavioral inconsistency infoleak, External behavioral 

inconsistency infoleak, Timing discrepancy infoleak, 
Product-Generated Error Message Infoleak, Product-
External Error Message Infoleak, Cross-Boundary 
Cleansing Infoleak, Intended information leak, Process 
information infoleak to other processes, Infoleak Using 
Debug Information, Sensitive Information Uncleared 
Before Use, Sensitive memory uncleared by compiler 
optimization, Information loss or omission, Truncation of 
Security-relevant Information, Omission of Security-
relevant Information, Obscured Security-relevant 
Information by Alternate Name 

10.   Race Conditions [RACE] (6 types) 

 These categories cover various types of race conditions. 
The specific types in this group are: Race condition 
enabling link following, Signal handler race condition, 
Time-of-check Time-of-use race condition, Context 
Switching Race Condition, Alternate Channel Race 
Condition, Other race conditions 

11.   Permissions, Privileges, and ACLs [PPA] (20 types) 

        These categories include the improper use, assignment, or 
management of permissions, privileges, and access control 
lists. The specific types in this group are: Privilege / 
sandbox errors, Incorrect Privilege Assignment, Unsafe 
Privilege, Privilege Chaining, Privilege Management Error, 
Privilege Context Switching Error, Privilege Dropping / 
Lowering Errors, Insufficient privileges, Misc. privilege 
issues, Permission errors, Insecure Default Permissions, 
Insecure inherited permissions, Insecure preserved inherited 
permissions, Insecure execution-assigned permissions, Fails 
poorly due to insufficient permissions, Permission 
preservation failure, Ownership errors, Unverified 
Ownership, Access Control List (ACL) errors, User 
management errors 

12.   Handler Errors [HAND] (4 types) 

        These categories, which are not very mature, cover various 
ways in which “handlers” are improperly applied to data. 
The specific types in this group are: Handler errors, Missing 
Handler, Dangerous handler not cleared/disabled during 
sensitive, Raw Web Content Delivery, File Upload of 
Dangerous Type 

13.   User Interface Errors [UI] (7 types) 

 These categories cover WIFFs in a product's user interface 
that lead to insecure conditions. The specific types in this 
group are: Product UI does not warn user of unsafe actions, 
Insufficient UI warning of dangerous operations, User 
interface inconsistency, Unimplemented or unsupported 
feature in UI, Obsolete feature in UI, The UI performs the 
wrong action, Multiple Interpretations of UI Input, UI 
Misrepresentation of Critical Information 
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14. Interaction Errors [INT] (7 types) 

 These categories cover WIFFs that only occur as the result 
of interactions or differences between multiple products that 
are used in conjunction with each other. The specific types 
in this group are: Multiple Interpretation Error (MIE), Extra 
Unhandled Features, Behavioral Change, Expected 
behavior violation, Unintended proxy/intermediary, HTTP 
response splitting, HTTP Request Smuggling 

15. Initialization and Cleanup Errors [INIT] (6 types) 

 These categories cover incorrect initialization. The specific 
types in this group are: Insecure default variable 
initialization, External initialization of trusted variables or 
values, Non-exit on Failed Initialization, Missing 
Initialization, Incorrect initialization, Incomplete Cleanup. 

16. Resource Management Errors [RES] (11 types) 

 These categories cover ways in which a product does not 
properly manage resources such as memory, CPU, network 
bandwidth, or product-specific objects. The specific types 
in this group are: Memory leak, Resource leaks, UNIX file 
descriptor leak, Improper resource shutdown, Asymmetric 
resource consumption (amplification), Network 
Amplification, Algorithmic Complexity, Data 
Amplification, Insufficient Resource Pool, Insufficient 
Locking, Missing Lock Check 

17.   Numeric Errors [NUM] (6 types) 

 These categories cover WIFFs that involve erroneous 
manipulation of numbers. The specific types in this group 
are: Off-by-one Error, Integer Signedness Error (aka 
“signed integer” error), Integer overflow (wrap or 
wraparound), Integer underflow (wrap or wraparound), 
Numeric truncation error, Numeric Byte Ordering Error 

18.   Authentication Error [AUTHENT] (12 types) 

 These categories cover WIFFs that cause authentication 
mechanisms to fail. The specific types in this group are: 
Authentication Bypass by Alternate Path/Channel, 
Authentication bypass by alternate name, Authentication 
bypass by spoofing, Authentication bypass by replay, Man-
in-the-middle (MITM), Authentication Bypass via 
Assumed-Immutable Data, Authentication Logic Error, 
Missing Critical Step in Authentication, Authentication 
Bypass by Primary WIFF, No Authentication for Critical 
Function, Multiple Failed Authentication Attempts not 
Prevented, Miscellaneous Authentication Errors 

19.   Cryptographic errors [CRYPTO] (13 members) 

 These categories cover problems in the design or 
implementation of cryptographic algorithms and protocols, 
or their misuse within other products. The specific types in 
this group are: Plaintext Storage of Sensitive Information, 
Plaintext Storage in  File or on Disk, Plaintext Storage in 
Registry, Plaintext Storage in Cookie, Plaintext Storage in 
Memory, Plaintext Storage in GUI, Plaintext Storage in 
Executable, Plaintext Transmission of Sensitive 
Information, Key Management Errors, Missing Required 
Cryptographic Step, Weak Encryption, Reversible One-
Way Hash, Miscellaneous Crypto Problems 

20.   Randomness and Predictability [RAND] (9 types) 

 These categories cover WIFFs in security-relevant 
processing that depends on sufficient randomness to be 
effective. The specific types in this group are: Insufficient 
Entropy, Small Space of Random Values, PRNG Seed 
Error, Same Seed in PRNG, Predictable Seed in PRNG, 
Small Seed Space in PRNG, Predictable from Observable 
State, Predictable Exact Value from Previous Values, 
Predictable Value Range from Previous Values 

21.   Code Evaluation and Injection [CODE] (4 types) 

 These categories cover WIFFs in components that process 
and evaluate data as if it is code. The specific types in this 
group are: Direct Dynamic Code Evaluation, Direct Static 
Code Injection, Server-Side Includes (SSI) Injection, PHP 
File Inclusion 

22.   Error Conditions, Return Values, Status Codes [ERS] (4 
types) 

 These categories cover WIFFs that occur when a product 
does not properly handle rare or erroneous operating 
conditions. The specific types in this group are: Unchecked 
Error Condition, Missing Error Status Code, Wrong Status 
Code, Unexpected Status Code or Return Value 

23.   Insufficient Verification of Data [VER] (7 types) 

 These categories cover WIFFs in which the source and 
integrity of incoming data are not properly verified. The 
specific types in this group are: Improperly Verified 
Signature, Use of Less Trusted Source, Untrusted Data 
Appended with Trusted Data, Improperly Trusted Reverse 
DNS, Insufficient Type Distinction, Cross-Site Request 
Forgery (CSRF), Other Insufficient Verification 

24.   Modification of Assumed-Immutable Data [MAID] (2 
types) 

 These categories cover WIFFs in which data that is 
assumed to be immutable by a product, can be modified by 
an attacker. The specific types in this group are: Web 
Parameter Tampering, PHP External Variable Modification 

25.   Product-Embedded Malicious Code [MAL] (7 types) 

 These categories cover WIFFs for intentionally malicious 
code that has been introduced into a product sometime 
during the software development lifecycle. The specific 
types in this group are: Back Door, Back Door, Developer-
Introduced Back Door, Outsider-Introduced Back Door, 
Hidden User-Triggered Functionality, Logic Bomb, Time 
Bomb 

26.   Common Attack Mitigation Failures [ATTMIT] (3 types) 

 These categories cover certain design problems that are 
more frequently known by the attacks against them. The 
specific types in this group are: Insufficient Replay 
Protection, Susceptibility to Brute Force Attack, 
Susceptibility to Spoofing 
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27.   Containment errors (container errors) [CONT] (3 types) 

 These categories cover WIFFs that involve the storage or 
transfer of data outside of its logical boundaries. The 
specific types in this group are: Sensitive Entity in 
Accessible Container, Sensitive Data Under Web Root, 
Sensitive Data Under FTP Root 

28.   Miscellaneous WIFFs [MISC] (7 types) 

 These categories do not fit cleanly within any of the other 
main categories. The specific types in this group are: 
Double-Free Vulnerability, Incomplete Internal State 
Distinction, Other Types of Truncation Errors, Signal 
Errors, Improperly Implemented Security Check for 
Standard, Misinterpretation Error, Business Rule Violations 
or Logic Errors 

6. ACKNOWLEDGMENTS 
The work contained in this paper was funded by DHS NCSD. 

7. REFERENCES 
[1] “The Common Vulnerabilities and Exposures (CVE) 

Initiative,” MITRE Corporation, (http://cve.mitre.org). 

[2] “The Software Assurance Metrics and Tool Evaluation 
(SAMATE) project,” National Institute of Science and 
Technology (NIST), (http://samate.nist.gov).  

[3] Code Assessment Methodology Project (CAMP), part of the 
Protection of Vital Data (POVD) effort, Concurrent 
Technologies Corporation, (http://www.ctc.com). 

[4] “The Preliminary List Of Vulnerability Examples for 
Researchers (PLOVER),” MITRE Corporation, 
(http://cve.mitre.org/docs/plover/).  

[5] Householder, A. D., Seacord, R. C., “A Structured Approach 
to Classifying Security Vulnerabilities,” CMU/SEI-2005-
TN-003, January 2005. 

[6] Leek, T., Lippmann, R., Zitser, M., “Testing Static Analysis 
Tools Using Exploitable Buffer Overflows From Open 

Source Code,” Foundations of Software Engineering 
December, 2005 Newport Beach, CA. 

[7] Waters, J. K., “Don’t Let Your Applications Get You 
Down,” Application Development Trends, July 2005. 

[8] Wang, C., Wang, H., “Taxonomy of Security Considerations 
and Software Quality,” Communications of the ACM, June 
2003, Vol. 46. No. 6. 

[9] Plante, A., “Beefed up OWASP 2.0 introduced at BlackHat,” 
SearchSecurity.com, 28 July, 2005. 

[10] Viega, J., “Security, Problem Solved?,” QUEUE, June 2005. 

[11] Ball, T., Das, M., DeLine, R., Fahndrich, M., Larus, J. R., 
Pincus, J., Rajamani, S. K., Venkatapathy, R., “Righting 
Software,” IEEE Software, May/June 2004. 

[12] Ranum, M. J., “SECURITY, The root of the problem,” 
QUEUE, June 2004. 

[13] Messier, M., Viega, J., “It’s not just about the buffer 
overflow,” QUEUE, June 2004. 

[14] Weber, S., Karger, P. A., Paradkar, A., “A Software Flaw 
Taxonomy: Aiming Tools at Security,” ACM Software 
Engineering for Secure Systems – Building Trustworthy 
Applications (SESS’05) St. Louis, Missouri, USA., June 
2004. 

[15] McGraw, G., Chess, B., Tsipenyuk, K., “Seven Pernicious 
Kingdoms: A Taxonomy of Software Security Errors”. 
“NIST Workshop on Software Security Assurance Tools, 
Techniques, and Metrics,” November, 2005 Long Beach, 
CA. 

[16] Howard, M., LeBlanc, D., and Viega, J., “19 Deadly Sins of 
Software Security”. McGraw-Hill Osborne Media, July 
2005.  

[17] Viega, J., The CLASP Application Security Process, Secure 
Software, Inc., http://www.securesoftware.com, 2005. 

[18] Department of Homeland Security National Cyber Security 
Division’s “Build Security In” (BSI) web site, 
(http://buildsecurityin.us-cert.gov).

 
 

35



Seven Pernicious Kingdoms: 
A Taxonomy of Software Security Errors 

Katrina Tsipenyuk 
Fortify Software 

2300 Geng Road, Suite 102 
Palo Alto, CA 94303 

1-650-213-5600 

katrina@fortifysoftware.com 

Brian Chess 
Fortify Software 

2300 Geng Road, Suite 102 
Palo Alto, CA 94303 

1-650-213-5600 

brian@fortifysoftware.com 
 

Gary McGraw 
Cigital 

21351 Ridgetop Circle, Suite 400 
Dulles, VA 20166 
1-703-404-9293 

gem@cigital.com 
 

 
ABSTRACT 
We want to help developers and security practitioners understand 
common types of coding errors that lead to vulnerabilities. By 
organizing these errors into a simple taxonomy, we can teach 
developers to recognize categories of problems that lead to 
vulnerabilities and identify existing errors as they build software. 

The information contained in our taxonomy is most effectively 
enforced via a tool.  In fact, all of the errors included in our 
taxonomy are amenable to automatic identification using static 
source code analysis techniques. 

We demonstrate why our taxonomy is not only simpler, but also 
more comprehensive than other modern taxonomy proposals and 
vulnerability lists. We provide an in-depth explanation and one or 
more code-level examples for each of the errors on a companion 
web site: http://vulncat.fortifysoftware.com. 

Categories and Subject Descriptors 
D.4.6 [Operating Systems]: Security and Protection – access 
controls, authentication, cryptographic controls, information flow 
controls, invasive software. K.6.5 [Management of Computing 
and Information Systems]: Security and Protection – 
authentication, invasive software, unauthorized access. 

General Terms 
Security, standardization. 

Keywords 
Software security, security defects, taxonomy, static analysis 
tools. 

1. INTRODUCTION 
We believe that software developers play a crucial role in 
building secure computer systems. Because roughly half of all 
security defects are introduced at the source code level [15], 
coding errors (a.k.a. “bugs”) are a critical problem in software 
security. 
 
“(c) 2005 Association for Computing Machinery. ACM acknowledges 
that this contribution was authored or co-authored by an affiliate of the 
U.S. Government.  As such, the Government retains a nonexclusive, 
royalty-free right to publish or reproduce this article, or to allow others to 
do so, for Government purposes only.” 
SSATTM'05, 11/7-11/8/05, Long Beach, CA, USA 
(c) 2005 ACM 1-59593-307-7/05/11. 

In defining this taxonomy of coding errors, our primary goal is to 
organize sets of security rules that can be used to help software 
developers understand the kinds of errors that have an impact on 
security. We believe that one of the most effective ways to deliver 
this information to developers is through the use of tools. Our 
hope is that, by better understanding how systems fail, developers 
will better analyze the systems they create, more readily identify 
and address security problems when they see them, and generally 
avoid repeating the same mistakes in the future. 
 
When put to work in a tool, a set of security rules organized 
according to this taxonomy is a powerful teaching mechanism.  
Because developers today are by and large unaware of the myriad 
ways they can introduce security problems into their work, 
publication of a taxonomy like this should provide tangible 
benefits to the software security community. 
 
Defining a better classification scheme can also lead to better 
tools: a better understanding of the problems will help researchers 
and practitioners create better methods for ferreting them out. 
 
We propose a simple, intuitive taxonomy, which we believe is the 
best approach for our stated purpose of organizing sets of 
software security rules that will teach software developers about 
security. Our approach is an alternative to a highly specific list of 
attack types and vulnerabilities offered by CVE (Common 
Vulnerabilities and Exposures) [7], which lacks in the way of 
categorization and is operational in nature. Our classification 
scheme is amenable to automatic identification and can be used 
with static analysis tools for detecting real-world security 
vulnerabilities in software. Our approach is also an alternative to 
a number of broad classification schemes that focus exclusively 
on operating-system-related vulnerabilities [1,2,3,12,19]. We 
discuss these taxonomies in Section 2.  
 
Section 3 motivates our work and discusses the relationship 
between coding errors and corresponding attacks. It also defines 
terminology used throughout the rest of this paper. Section 4 
describes the scheme we propose. We refer to a type of coding 
error as a phylum and a related set of phyla as a kingdom. A 
complete description of each phylum is available on this paper’s 
companion web site [8]. Section 5 draws parallels between two 
other vulnerability lists [11,17]. Section 6 concludes. 
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2. RELATED WORK 
All scientific disciplines benefit from a method for organizing 
their topic of study, and software security is no different. The 
value of a classification scheme is indisputable: a taxonomy is 
necessary in order to create a common vocabulary and an 
understanding of the ways computer security fails.  The problem 
of defining a taxonomy has been of great interest since the mid-
1970s. Several classification schemes have been proposed since 
then [4].  
 
One of the first studies of computer security and privacy was the 
RISOS (Research Into Secure Operating Systems) project [1].  
RISOS proposed and described seven categories of operating 
system security defects. The purpose of the project was to 
understand security problems in existing operating systems, 
including MULTICS, TENEX, TOPS-10, GECOS, OS/MVT, 
SDS-940, and EXEC-8, and to determine ways to enhance the 
security of these systems. The categories proposed in the RISOS 
project include: 

• Incomplete Parameter Validation 
• Inconsistent Parameter Validation 
• Implicit Sharing of Privileges / Confidential Data 
• Asynchronous Validation / Inadequate Serialization 
• Inadequate Identification  / Authentication / Authorization 
• Violable Prohibition / Limit 
• Exploitable Logic Error 

The study shows that there are a small number of fundamental 
defects that recur in different contexts. 
 
The objective of the Protection Analysis (PA) project [3] was to 
enable anybody (with or without any knowledge about computer 
security) to discover security errors in the system by using a 
pattern-directed approach. The idea was to use formalized 
patterns to search for corresponding errors. The PA project was 
the first project to explore automation of security defects 
detection. However, the procedure for reducing defects to abstract 
patterns was not comprehensive, and the technique could not be 
properly automated. The database of vulnerabilities collected in 
the study was never published. 
 
Landwehr, Bull, McDermott, and Choi [12] classify each 
vulnerability from three perspectives: genesis (how the problem 
entered the system), time (at which point in the production cycle 
the problem entered the system), and location (where in the 
system the problem is manifest). Defects by genesis were broken 
down into intentional and inadvertent, where the intentional class 
was further broken down into malicious and non-malicious. 
Defects by time of introduction were broken down into 
development, maintenance, and operation, where the 
development class was further broken down into design, source 
code, and object code. Defects by location were broken down into 
software and hardware, where the software class was further 
broken down into operating system, support, and application. A 
very similar scheme was proposed by Weber, Karger, and 
Paradkar [21]. However, their scheme classifies vulnerabilities 
only according to genesis. 
 
The advantage of this type of hierarchical classification is the 
convenience of identifying strategies to remedy security 
problems. For example, if most security issues are introduced 
inadvertently, increasing resources devoted to code reviews 

becomes an effective way of increasing security of the system. 
The biggest disadvantage of this scheme is inability to classify 
some existing vulnerabilities. For example, if it is not known how 
the vulnerability entered the system, it cannot be classified by 
genesis at all.  
 
Another scheme relevant to our discussion is ODC (Orthogonal 
Defect Classification) [19] proposed and widely used at IBM. 
ODC categorizes defects according to error type (a low-level 
programming mistake) and trigger event (environment 
characteristics that caused a defect). Additionally, each defect is 
characterized by severity and symptom. However, ODC focuses 
on operating system quality issues rather than security issues.  
 
The schemes discussed above have several limitations in 
common. One of them is the breadth of the categories making 
classification ambiguous. In some cases, one issue can be 
classified in more than one category. The category names, while 
useful to some groups of researchers, are too generic to be 
quickly intuitive to a developer in the context of day-to-day work. 
Additionally, these schemes focus mostly on operating system 
security problems and do not classify the ones associated with 
user-level software security. Furthermore, these taxonomies mix 
implementation-level and design-level defects and are not 
consistent about defining the categories with respect to the cause 
or effect of the problem.  
 
The work done by Landwehr, Bull, McDermott, and Choi was 
later extended by Viega [20]. In addition to classifying 
vulnerabilities according to genesis, time, and location, he also 
classifies them by consequence (effects of the compromise 
resulting from the error) and other miscellaneous information, 
including platform, required resources, severity, likelihood of 
exploit, avoidance and mitigation techniques, and related 
problems. Each category is discussed in detail and provides 
specific examples, including, in some cases code excerpts. This 
“root-cause” database, as Viega calls it, strives to provide a 
lexicon for the underlying problems that form the basis for the 
many known security defects. As a result, not all of the issues in 
this taxonomy are security problems. Furthermore, the “root-
cause” database allows the same problem to be classified 
differently depending upon the interests of the person doing the 
classification. 
 
A good list of attack classes is provided by Cheswick, Bellovin, 
and Rubin [5]. The list includes: 

• Stealing Passwords 
• Social Engineering 
• Bugs and Back Doors 
• Authentication Failures 
• Protocol Failures 
• Information Leakage 
• Exponential Attacks—Viruses and Worms 
• Denial-of-Service Attacks 
• Botnets 
• Active Attacks 

A thorough description with examples is provided for each class. 
These attack classes are applicable to a wide range of software, 
including user-level enterprise software. This fact distinguishes 
the list from other classification schemes. The classes are simple 
and intuitive. However, this list defines attack classes rather than 
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categories of common coding errors that cause these attacks. A 
similar, but a more thorough list of attack patterns is given by 
Hoglund and McGraw [10]. Attack-based approaches are based 
on knowing your enemy and assessing the possibility of similar 
attack. They represent the black-hat side of the software security 
equation. A taxonomy of coding errors is more positive in nature. 
This kind of thing is most useful to the white-hat side of the 
software security world. In the end, both kinds of approaches are 
valid and necessary. 
 
The classification scheme proposed by Aslam [2] is the only 
precise scheme discussed here. In this scheme, each vulnerability 
belongs to exactly one category. The decision procedure for 
classifying an error consists of a set of questions for each 
vulnerability category.  Aslam’s system is well-defined and offers 
a simple way for identifying defects by similarity. Another 
contribution of Aslam’s taxonomy is that it draws on software 
fault studies to develop its categories. However, it focuses 
exclusively on implementation issues in the UNIX operating 
system and offers categories that are still too broad for our 
purpose. 
 
The most recent classification scheme we are aware of is 
PLOVER (Preliminary List of Vulnerability Examples for 
Researchers) [6], which is a starting point for the creation of a 
formal enumeration of WIFFs (Weaknesses, Idiosyncrasies, 
Faults, Flaws) called CWE (Common WIFF Enumeration) [13]. 
Twenty-eight main categories that comprise almost three hundred 
WIFFs put Christey’s and Martin’s classification scheme at the 
other end of the ambiguity spectrum—the vulnerability categories 
are much more specific than in any of the taxonomies discussed 
above. Their bottom-up approach is complimentary to our efforts. 
PLOVER and CWE are extensions of Christey’s earlier work in 
assigning CVE (Common Vulnerabilities and Exposures) [7] 
names to publicly known vulnerabilities. An attempt to draw 
parallels between theoretical attacks and vulnerabilities known in 
practice is an important contribution and a big step forward from 
most of the earlier schemes. 

3. MOTIVATION 
Most existing classification schemes, as is evident, begin with a 
theoretical and comprehensive approach to classifying security 
defects. Most research to date has been focusing on making the 
scheme deterministic and precise, striving for a one-to-one 
mapping between a vulnerability and the category the 
vulnerability belongs to. Another facet of the same goal has been 
to make classification consistent for different levels of 
abstraction: the same vulnerability should be classified into the 
same category regardless of whether it is considered from a 
design or implementation perspective. 
 
Most of the proposed schemes focus on classifying operating-
systems-related security defects rather than the errors in software 
security. Furthermore, categories that comprise many of the 
existing taxonomies were meant to be both broad and rigorously 
defined instead of intuitive and specific. Overall, most of the 
schemes cannot easily be applied to organizing security rules 
used by a software developer who wants to learn how to build 
secure software. 
 

To further our goal of educating software developers about 
common errors, we forgo the breadth and complexity essential to 
theoretical completeness in favor of practical language centered 
on programming concepts that are approachable and meaningful 
to developers. 
 
Before we proceed, we need to define the terminology borrowed 
from Biology which we use to talk about our classification 
scheme throughout the rest of the paper.  
 
Definition 1. By phylum we mean a specific type of coding error. 
For example, Illegal Pointer Value is a phylum. 
 
Definition 2. A kingdom is a collection of phyla that share a 
common theme. For example, Input Validation and 
Representation is a kingdom. 
 
In defining our taxonomy, we value concrete and specific 
problems that are a real concern to software security over abstract 
and theoretical ones that either have not been seen in practice or 
are a result of high-level unsafe specification decisions. We did 
not make it a goal to create a theoretically complete classification 
scheme. Instead, we offer a scheme that is open-ended and 
amenable to future expansion. We expect the list of important 
phyla to change over time. We expect the important kingdoms to 
change too, though at a lesser rate. Any evolution will be 
influenced by trends in languages, frameworks, and libraries; 
discovery of new types of attacks; new problems and verticals 
toward which software is being applied; the regulatory landscape, 
and social norms. 
 
We value simplicity over parallelism in order to create kingdoms 
that are intuitive to software developers who are not security 
experts. As opposed to most of the classification schemes 
discussed in Section 2, our taxonomy focuses on code-level 
security problems that occur in a range of software applications 
rather than errors that are most applicable to specific kinds of 
software, such as operating systems. For example, Buffer 
Overflow and Command Injection [8] are a part of our taxonomy, 
while analysis of keystrokes and timing attacks on SSH [18], as 
well as other kinds of covert-channel-type attacks, are not 
included. There is no reason to believe that the kingdoms we have 
chosen would not work for operating systems or other types of 
specialized software, however there are many more developers 
working on business applications and desktop programs than on 
operating systems. 
 
To better understand the relationship between the phyla our 
taxonomy offers, consider a recently found vulnerability in 
Adobe Reader 5.0.x for Unix [9]. The vulnerability is present in a 
function UnixAppOpenFilePerform() that copies user-
supplied data into a fixed-size stack buffer using a call to 
sprintf(). If the size of the user-supplied data is greater than 
the size of the buffer it is being copied into, important 
information, including the stack pointer, is overwritten. By 
supplying a malicious PDF document, an attacker can execute 
arbitrary commands on the target system. The attack is possible 
because of a simple coding error—the absence of a check that 
makes sure that the size of the user-supplied data is no greater 
than the size of the destination buffer. In our experience, 
developers will associate this check with a failure to code 
defensively around the call to sprintf(). We classify this 
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coding error according to the attack it enables—Buffer Overflow. 
We choose Input Validation and Representation as the name of 
the kingdom Buffer Overflow phylum belongs to because the lack 
of proper input validation is the reason the attack is possible. 
 
The coding errors represented by our phyla can all be detected by 
static source code analysis tools. Source code analysis offers 
developers an opportunity to get quick feedback about the code 
that they write. We see great potential for educating developers 
about coding errors by having them use a source code analysis 
tool. 

4. THE TAXONOMY 
We now provide a summary of our taxonomy, which will also 
appear in McGraw’s new book [14]. We split the phyla into 
“seven-plus-one” high-level kingdoms that should make sense to 
a majority of developers. Seven of these kingdoms are dedicated 
to errors in source code, and one is related to configuration and 
environment issues. We present them in order of importance to 
software security: 

1. Input Validation and Representation 
2. API Abuse 
3. Security Features 
4. Time and State 
5. Errors  
6. Code Quality  
7. Encapsulation  
*.     Environment 

Brief descriptions of the kingdoms and phyla are provided below. 
Complete descriptions with source code examples are available 
on the internet at http://vulncat.fortifysoftware.com. 
 
Our taxonomy includes coding errors that occur in a variety of 
programming languages. The most important among them are C 
and C++, Java, and the .NET family including C# and ASP. Some 
of our phyla are language-specific because the types of errors 
they represent are applicable only to specific languages. One 
example is the Double Free phylum. It identifies incorrect usage 
of low-level memory routines. This phylum is specific to C and 
C++ because neither Java nor the managed portions of the  .NET 
languages expose low-level memory APIs. 
 
In addition to being language-specific, some of our phyla are 
framework-specific. For example, the Struts phyla apply only to 
the Struts framework and the J2EE phyla are only applicable in 
the context of the J2EE applications. Log Forging, on the other 
hand, is a more general phylum. 
 
Our phylum list is certainly incomplete, but it is adaptable to 
changes in trends and discoveries of new defects that will happen 
over time. We focus on finding and classifying security-related 
defects rather than more general quality or reliability issues. The 
Code Quality kingdom could potentially contain many more 
phyla, but we feel that the ones that we currently include are the 
ones most likely to affect software security. Finally, we 
concentrate on classifying errors that are most important to real-
world enterprise developers—we derive this information from the 
literature, our colleagues, and our customers. 

1. Input Validation and Representation 
Input validation and representation problems are caused by 
metacharacters, alternate encodings and numeric representations.  
Security problems result from trusting input. The issues include: 
Buffer Overflows, Cross-Site Scripting attacks, SQL Injection, 
and many others.  

• Buffer Overflow. Writing outside the bounds of allocated 
memory can corrupt data, crash the program, or cause the 
execution of an attack payload. 

• Command Injection. Executing commands from an 
untrusted source or in an untrusted environment can cause 
an application to execute malicious commands on behalf of 
an attacker. 

• Cross-Site Scripting. Sending unvalidated data to a Web 
browser can result in the browser executing malicious code 
(usually scripts). 

• Format String. Allowing an attacker to control a 
function’s format string may result in a buffer overflow. 

• HTTP Response Splitting. Writing unvalidated data into 
an HTTP header allows an attacker to specify the entirety 
of the HTTP response rendered by the browser. 

• Illegal Pointer Value. This function can return a pointer to 
memory outside of the buffer to be searched.  Subsequent 
operations on the pointer may have unintended 
consequences.  

• Integer Overflow. Not accounting for integer overflow can 
result in logic errors or buffer overflows. 

• Log Forging. Writing unvalidated user input into log files 
can allow an attacker to forge log entries or inject malicious 
content into logs. 

• Path Manipulation. Allowing user input to control paths 
used by the application may enable an attacker to access 
otherwise protected files.  

• Process Control. Executing commands or loading libraries 
from an untrusted source or in an untrusted environment 
can cause an application to execute malicious commands 
(and payloads) on behalf of an attacker. 

• Resource Injection. Allowing user input to control 
resource identifiers may enable an attacker to access or 
modify otherwise protected system resources. 

• Setting Manipulation. Allowing external control of system 
settings can disrupt service or cause an application to 
behave in unexpected ways. 

• SQL Injection. Constructing a dynamic SQL statement 
with user input may allow an attacker to modify the 
statement’s meaning or to execute arbitrary SQL 
commands. 

• String Termination Error. Relying on proper string 
termination may result in a buffer overflow. 

• Struts: Duplicate Validation Forms. Multiple validation 
forms with the same name indicate that validation logic is 
not up-to-date. 

• Struts: Erroneous validate() Method. The validator form 
defines a validate() method but fails to call 
super.validate(). 

• Struts: Form Bean Does Not Extend Validation Class. 
All Struts forms should extend a Validator class. 

• Struts: Form Field Without Validator. Every field in a 
form should be validated in the corresponding validation 
form. 
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• Struts: Plug-in Framework Not In Use. Use the Struts 
Validator to prevent vulnerabilities that result from 
unchecked input. 

• Struts: Unused Validation Form. An unused validation 
form indicates that validation logic is not up-to-date. 

• Struts: Unvalidated Action Form. Every Action Form 
must have a corresponding validation form. 

• Struts: Validator Turned Off. This Action Form mapping 
disables the form’s validate() method. 

• Struts: Validator Without Form Field. Validation fields 
that do not appear in forms they are associated with indicate 
that the validation logic is out of date. 

• Unsafe JNI. Improper use of the Java Native Interface 
(JNI) can render Java applications vulnerable to security 
bugs in other languages. 

• Unsafe Reflection. An attacker may be able to create 
unexpected control flow paths through the application, 
potentially bypassing security checks. 

• XML Validation. Failure to enable validation when 
parsing XML gives an attacker the opportunity to supply 
malicious input. 

2. API Abuse 
An API is a contract between a caller and a callee. The most 
common forms of API abuse are caused by the caller failing to 
honor its end of this contract. For example, if a program fails to 
call chdir() after calling chroot(), it violates the contract 
that specifies how to change the active root directory in a secure 
fashion. Another good example of library abuse is expecting the 
callee to return trustworthy DNS information to the caller. In this 
case, the caller abuses the callee API by making certain 
assumptions about its behavior (that the return value can be used 
for authentication purposes). One can also violate the caller-callee 
contract from the other side. For example, if a coder subclasses 
SecureRandom and returns a non-random value, the contract is 
violated. 

• Dangerous Function. Functions that cannot be used safely 
should never be used. 

• Directory Restriction. Improper use of the chroot() 
system call may allow attackers to escape a chroot jail. 

• Heap Inspection. Do not use realloc() to resize 
buffers that store sensitive information. 

• J2EE Bad Practices: getConnection(). The J2EE 
standard forbids the direct management of connections. 

• J2EE Bad Practices: Sockets. Socket-based 
communication in web applications is prone to error.  

• Often Misused: Authentication. Do not rely on the name 
the getlogin() family of functions returns because it is 
easy to spoof. 

• Often Misused: Exception Handling. A dangerous 
function can throw an exception, potentially causing the 
program to crash. 

• Often Misused: File System. Passing an inadequately-
sized output buffer to a path manipulation function can 
result in a buffer overflow. 

• Often Misused: Privilege Management. Failure to adhere 
to the principle of least privilege amplifies the risk posed by 
other vulnerabilities. 

• Often Misused: Strings. Functions that manipulate strings 
encourage buffer overflows. 

• Unchecked Return Value. Ignoring a method’s return 
value can cause the program to overlook unexpected states 
and conditions. 

3. Security Features 
Software security is not security software.  Here we're concerned 
with topics like authentication, access control, confidentiality, 
cryptography, and privilege management. 

• Insecure Randomness. Standard pseudo-random number 
generators cannot withstand cryptographic attacks. 

• Least Privilege Violation. The elevated privilege level 
required to perform operations such as chroot() should 
be dropped immediately after the operation is performed. 

• Missing Access Control. The program does not perform 
access control checks in a consistent manner across all 
potential execution paths. 

• Password Management. Storing a password in plaintext 
may result in a system compromise. 

• Password Management: Empty Password in Config 
File. Using an empty string as a password is insecure. 

• Password Management: Hard-Coded Password. Hard 
coded passwords may compromise system security in a way 
that cannot be easily remedied. 

• Password Management: Password in Config File. 
Storing a password in a configuration file may result in 
system compromise. 

• Password Management: Weak Cryptography. Obscuring 
a password with a trivial encoding does not protect the 
password. 

• Privacy Violation. Mishandling private information, such 
as customer passwords or social security numbers, can 
compromise user privacy and is often illegal. 

4. Time and State 
Distributed computation is about time and state. That is, in order 
for more than one component to communicate, state must be 
shared, and all that takes time.   
 
Most programmers anthropomorphize their work. They think 
about one thread of control carrying out the entire program in the 
same way they would if they had to do the job themselves.  
Modern computers, however, switch between tasks very quickly, 
and in multi-core, multi-CPU, or distributed systems, two events 
may take place at exactly the same time. Defects rush to fill the 
gap between the programmer's model of how a program executes 
and what happens in reality. These defects are related to 
unexpected interactions between threads, processes, time, and 
information. These interactions happen through shared state: 
semaphores, variables, the file system, and, basically, anything 
that can store information. 

• Deadlock. Inconsistent locking discipline can lead to 
deadlock.  

• Failure to Begin a New Session upon Authentication. 
Using the same session identifier across an authentication 
boundary allows an attacker to hijack authenticated 
sessions. 

• File Access Race Condition: TOCTOU. The window of 
time between when a file property is checked and when the 
file is used can be exploited to launch a privilege escalation 
attack.  
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• Insecure Temporary File. Creating and using 
insecure temporary files can leave application and system 
data vulnerable to attack.  

• J2EE Bad Practices: System.exit(). A Web 
application should not attempt to shut down its container. 

• J2EE Bad Practices: Threads. Thread management in a 
Web application is forbidden in some circumstances and is 
always highly error prone. 

• Signal Handling Race Conditions. Signal handlers may 
change shared state relied upon by other signal handlers or 
application code causing unexpected behavior.  

5. Errors 
Errors and error handling represent a class of API.  Errors related 
to error handling are so common that they deserve a special 
kingdom of their own.  As with API Abuse, there are two ways to 
introduce an error-related security vulnerability: the most 
common one is handling errors poorly (or not at all). The second 
is producing errors that either give out too much information (to 
possible attackers) or are difficult to handle. 

• Catch NullPointerException. Catching 
NullPointerException should not be used as an 
alternative to programmatic checks to prevent dereferencing 
a null pointer.   

• Empty Catch Block. Ignoring exceptions and other error 
conditions may allow an attacker to induce unexpected 
behavior unnoticed.   

• Overly-Broad Catch Block. Catching overly broad 
exceptions promotes complex error handling code that is 
more likely to contain security vulnerabilities.  

• Overly-Broad Throws Declaration. Throwing overly 
broad exceptions promotes complex error handling code 
that is more likely to contain security vulnerabilities.  

6. Code Quality 
Poor code quality leads to unpredictable behavior. From a user's 
perspective that often manifests itself as poor usability. For an 
attacker it provides an opportunity to stress the system in 
unexpected ways.  

• Double Free. Calling free() twice on the same memory 
address can lead to a buffer overflow. 

• Inconsistent Implementations. Functions with 
inconsistent implementations across operating systems and 
operating system versions cause portability problems. 

• Memory Leak. Memory is allocated but never freed 
leading to resource exhaustion. 

• Null Dereference. The program can potentially dereference 
a null pointer, thereby raising a 
NullPointerException. 

• Obsolete. The use of deprecated or obsolete functions may 
indicate neglected code.  

• Undefined Behavior. The behavior of this function is 
undefined unless its control parameter is set to a specific 
value. 

• Uninitialized Variable. The program can potentially use a 
variable before it has been initialized. 

• Unreleased Resource. The program can potentially fail to 
release a system resource. 

• Use After Free. Referencing memory after it has been 
freed can cause a program to crash. 

7. Encapsulation 
Encapsulation is about drawing strong boundaries. In a web 
browser that might mean ensuring that your mobile code cannot 
be abused by other mobile code. On the server it might mean 
differentiation between validated data and unvalidated data, 
between one user's data and another's, or between data users are 
allowed to see and data that they are not. 

• Comparing Classes by Name. Comparing classes by name 
can lead a program to treat two classes as the same when 
they actually differ.  

• Data Leaking Between Users. Data can "bleed" from one 
session to another through member variables of singleton 
objects, such as Servlets, and objects from a shared pool. 

• Leftover Debug Code. Debug code can create unintended 
entry points in an application. 

• Mobile Code: Object Hijack. Attackers can use 
Cloneable objects to create new instances of an object 
without calling its constructor.  

• Mobile Code: Use of Inner Class. Inner classes are 
translated into classes that are accessible at package scope 
and may expose code that the programmer intended to keep 
private to attackers.  

• Mobile Code: Non-Final Public Field. Non-final public 
variables can be manipulated by an attacker to inject 
malicious values.  

• Private Array-Typed Field Returned From a Public 
Method. The contents of a private array may be altered 
unexpectedly through a reference returned from a public 
method.  

• Public Data Assigned to Private Array-Typed Field. 
Assigning public data to a private array is equivalent giving 
public access to the array.  

• System Information Leak. Revealing system data or 
debugging information helps an adversary learn about the 
system and form an attack plan. 

• Trust Boundary Violation. Commingling trusted and 
untrusted data in the same data structure encourages 
programmers to mistakenly trust unvalidated data. 

*.     Environment 
This section includes everything that is outside of the source code 
but is still critical to the security of the product that is being 
created. Because the issues covered by this kingdom are not 
directly related to source code, we separated it from the rest of the 
kingdoms. 

• ASP .NET Misconfiguration: Creating Debug Binary. 
Debugging messages help attackers learn about the system 
and plan a form of attack. 

• ASP .NET Misconfiguration: Missing Custom Error 
Handling. An ASP .NET application must enable custom 
error pages in order to prevent attackers from mining 
information from the framework’s built-in responses. 

• ASP .NET Misconfiguration: Password in 
Configuration File. Do not hardwire passwords into your 
software. 

• Insecure Compiler Optimization. Improperly scrubbing 
sensitive data from memory can compromise security.  

• J2EE Misconfiguration: Insecure Transport. The 
application configuration should ensure that SSL is used for 
all access-controlled pages. 
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• J2EE Misconfiguration: Insufficient Session-ID Length. 
Session identifiers should be at least 128 bits long to 
prevent brute-force session guessing. 

• J2EE Misconfiguration: Missing Error Handling. A 
Web application must define a default error page for 404 
errors, 500 errors and to catch java.lang.Throwable 
exceptions to prevent attackers from mining information 
from the application container’s built-in error response. 

• J2EE Misconfiguration: Unsafe Bean Declaration. 
Entity beans should not be declared remote. 

• J2EE Misconfiguration: Weak Access Permissions. 
Permission to invoke EJB methods should not be granted to 
the ANYONE role. 

5. SEVEN PLUS OR MINUS TWO 
There are several other software security problem lists that have 
been recently developed and made available. The first at one 
month old, is called the 19 Deadly Sins of Software Security [11]. 
The second is the OWASP Top Ten Most Critical Web 
Application Security Vulnerabilities available on the web [17]. 
Both share one unfortunate property—an overabundance of 
complexity. People are good at keeping track of seven things 
(plus or minus two) [16]. We used this as a hard constraint and 
attempted to keep the number of kingdoms in our taxonomy down 
to seven (plus one).   
 
By discussing these lists with respect to the scheme we propose, 
we illustrate and emphasize the superiority of our taxonomy. The 
main limitation of both lists is that they mix specific types of 
errors and vulnerability classes, and talk about them at the same 
level of abstraction. The nineteen deadly sins include the Buffer 
Overflows and Failing to Protect Network Traffic categories at 
the same level, even though the first is a very specific coding 
error, while the second could be a class comprised of various 
kinds of errors. OWASP’s Top Ten includes Cross Site Scripting 
(XSS) Flaws and Insecure Configuration Management at the 
same level as well. 
 
Our classification scheme consists of two hierarchical levels: 
kingdoms and phyla. The kingdoms represent the classes of 
errors, while the phyla that comprise the kingdoms represent 
specific errors. We would like to point out that even though the 
structure of our classification scheme is different from the 
structure of the lists described above, the categories that comprise 
these lists can be easily mapped to our kingdoms. Here is the 
mapping for the nineteen sins: 
 

1. Input Validation and Representation 
Buffer Overflows 
Command Injection 
Cross-Site Scripting 
Format String Problems 
Integer Range Errors 
SQL Injection 

2. API Abuse 
Trusting Network Address Information 

3. Security Features 
Failing to Protect Network Traffic 
Failing to Store and Protect Data 
Failing to Use Cryptographically Strong Random 

Numbers 

Improper File Access 
Improper Use of SSL 
Use of Weak Password-Based Systems 
Unauthenticated Key Exchange 

4. Time and State 
Signal Race Conditions 
Use of “Magic” URLs and Hidden Forms 

5. Errors  
Failure to Handle Errors 

6. Code Quality  
Poor Usability 

7. Encapsulation  
Information Leakage 

*.     Environment 
 
Here is the mapping for the OWASP Top Ten: 
 

1. Input Validation and Representation 
Buffer Overflows 
Cross-Site Scripting (XSS) Flaws 
Injection Flaws 
Unvalidated Input 

2. API Abuse 
3. Security Features 

Broken Access Control 
Insecure Storage 

4. Time and State 
Broken Authentication and Session Management 

5. Errors  
Improper Error Handling 

6. Code Quality  
Denial of Service 

7. Encapsulation  
*.     Environment 

Insecure Configuration Management 

6. CONCLUSION 
We present a simple, intuitive taxonomy of common coding 
errors that affect security. We discuss the relationship between 
vulnerability phyla we define and corresponding attacks, and 
provide descriptions of each kingdom in the proposed taxonomy. 
 
We point out the important differences between the scheme we 
propose and those discussed in related work. The classification 
scheme we present is designed to organize security rules, and thus 
be of help to software developers who are concerned with writing 
secure code and being able to automate detection of security 
defects. These goals make our scheme simple, intuitive to a 
developer, practical rather than theoretical and comprehensive, 
amenable to automatic identification of errors with static analysis 
tools, as well as adaptable with respect to changes in trends that 
can happen over time. 
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ABSTRACT 
A taxonomy that uses twenty-two attributes to characterize C-
program overflows was used to construct 291 small C-program 
test cases that can be used to diagnostically determine the basic 
capabilities of static and dynamic analysis buffer overflow 
detection tools. Attributes in the taxonomy include the buffer 
location (e.g. stack, heap, data region, BSS, shared memory); 
scope difference between buffer allocation and access; index, 
pointer, and alias complexity when addressing buffer elements; 
complexity of the control flow and loop structure surrounding 
the overflow; type of container the buffer is within (e.g. 
structure, union, array); whether the overflow is caused by a 
signed/unsigned type error; the overflow magnitude and 
direction; and whether the overflow is discrete or continuous.  
As an example, the 291 test cases were used to measure the 
detection, false alarm, and confusion rates of five static analysis 
tools. They reveal specific strengths and limitations of tools and 
suggest directions for improvements. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering] Software/Program Verification, 
D.2.5 [Software Engineering] Testing and Debugging, K.4.4 
[Computers and Society] Electronic Commerce Security. 

General Terms 
Measurement, Performance, Security, Verification. 

Keywords 
Security, taxonomy, buffer overflow, static analysis, evaluation, 
exploit, test, detection, false alarm, source code. 

1. INTRODUCTION 
Buffer overflows are among the most important types of errors 
that occur in C code. They are of particular interest as they are 
potentially exploitable by malicious users, and have historically 
accounted for a significant percentage of the software 
vulnerabilities published each year [18, 20], such as in NIST’s 
ICAT Metabase [9], CERT advisories [1], Bugtraq [17], and 
other security forums. Buffer overflows have also been the basis 
for many damaging exploits, such as the Sapphire/Slammer [13] 

and Blaster [15] worms. 

A buffer overflow vulnerability occurs when data can be written 
outside the memory allocated for a buffer, either past the end or 
before the beginning.  Buffer overflows may occur on the stack, 
on the heap, in the data segment, or the BSS segment (the 
memory area a program uses for uninitialized global data), and 
may overwrite from one to many bytes of memory outside the 
buffer.  Even a one-byte overflow can be enough to allow an 
exploit [10].  Buffer overflows have been described at length in 
many papers, including [20], and many descriptions of 
exploiting buffer overflows can be found online. 

This paper focuses on developing a taxonomy of buffer 
overflows and using the taxonomy to create test cases that can 
be used to diagnostically evaluate the capabilities of static and 
dynamic buffer overflow detection tools. The first part of this 
paper describes the taxonomy and test cases that are available at 
http://www.ll.mit.edu/IST/corpora.html. The second part 
demonstrates how to use the test cases to evaluate five static 
analysis tools formerly evaluated by Zitser [20, 21]. While 
Zitser’s study evaluated the ability of ARCHER [19], BOON 
[18], Splint [6, 12], UNO [8], and PolySpace C Verifier [14] to 
detect fourteen known buffer overflows in open-source 
software, the current evaluation focuses on determining those 
type of overflows that each tool can detect and those that cause 
false alarms. 

2. BUFFER OVERFLOW TAXONOMY 
Using a comprehensive taxonomy makes it possible to develop 
test cases that cover a wide range of buffer overflows and make 
diagnostic tool assessments. The most comprehensive previous 
taxonomy contained thirteen attributes and was developed by 
Zitser [20].  This taxonomy was modified and expanded to 
address problems encountered with its application, while still 
attempting to keep it small and simple enough for practical 
application.  The new taxonomy consists of the twenty-two 
attributes listed in Table 1. 

Table 1. Buffer Overflow Taxonomy Attributes 

Attribute Number Attribute Name 
1 Write/Read 
2 Upper/Lower Bound 
3 Data Type 
4 Memory Location 
5 Scope 
6 Container 
7 Pointer 

© 2005 Association for Computing Machinery.  
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8 Index Complexity 
9 Address Complexity 
10 Length/Limit Complexity 
11 Alias of Buffer Address 
12 Alias of Buffer Index 
13 Local Control Flow 
14 Secondary Control Flow 
15 Loop Structure 
16 Loop Complexity 
17 Asynchrony 
18 Taint 
19 Runtime Environment Dependence 
20 Magnitude 
21 Continuous/Discrete 
22 Signed/Unsigned atch Mism

 

etails sible values for e
1], and are summarized below.  For each attribute, the 

detecting illegal writes is of more interest in preventing 

hile the term “buffer overflow” suggests an 

ide character, pointer, 

 

l, global, 

 array of structs, array of 

is possible to use a pointer 

-linear expression, 

, 

t overruns the 

 

D
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 on the pos ach attribute are available in 

possible values are listed in ascending order (i.e. the 0 value 
first). 

Write/Read: describes the type of memory access (write, read).  
While 
buffer overflow exploits, illegal reads could allow unauthorized 
access to information or could constitute one operation in a 
multi-step exploit. 

Upper/Lower Bound: describes which buffer bound is violated 
(upper, lower).  W
access beyond the upper bound of a buffer, one of the 
vulnerabilities  analyzed by Zitser [21] allowed access below a 
buffer’s lower bound (e.g. buf[-1]). 

Data Type: indicates the type of data stored in the buffer 
(character, integer, floating point, w
unsigned character, unsigned integer).  Although character 
buffers are often manipulated with unsafe string functions in C 
and some tools focus on detecting overflows of those buffers, 
buffers of all types may be overflowed and should be analyzed. 

Memory Location: indicates where the buffer resides (stack, 
heap, data region, BSS, shared memory).  Non-static variables
defined locally to a function are on the stack, while dynamically 
allocated buffers (e.g., those allocated by calling a malloc 
function) are on the heap.  The data region holds initialized 
global or static variables, while the BSS region contains 
uninitialized global or static variables.  Shared memory is 
typically allocated, mapped into and out of a program’s address 
space, and released via operating system specific functions.  
While a typical buffer overflow exploit may strive to overwrite 
a function return value on the stack, buffers in other locations 
have been exploited and should be considered as well. 

Scope: describes the difference between where the buffer is 
allocated and where it is overrun (same, inter-procedura
inter-file/inter-procedural, inter-file/global).  This is important 
because many tools perform local and not inter-procedural 
analyses, and many actual overflows are inter-procedural (e.g. 
[21]). The scope is local if the buffer is allocated and overrun 
within the same function. It is inter-procedural if the buffer is 
allocated in one function and overrun in another function within 
the same file.  Global scope indicates that the buffer is allocated 
as a global variable, and is overrun in a function within the same 
file.  Scope is inter-file/inter-procedural if the buffer is allocated 

in a function in one file, and overrun in a function in another 
file.  Inter-file/global scope describes a buffer that is allocated 
as a global in one file, and overrun in a function in another file.  
Any scope other than “same” may involve passing the buffer 
address as an argument to another function; in this case, the 
Alias of Buffer Address attribute must also be set accordingly.  
Note that the test suite used in this evaluation does not contain 
an example for “inter-file/global.”   

Container: indicates whether the buffer resides in some type of 
container (no, array, struct, union,
unions).  The ability of static analysis tools to detect overflows 
within containers (e.g., overrunning one array element into the 
next, or one structure field into the next) and beyond container 
boundaries (i.e., beyond the memory allocated for the container 
as a whole) may vary according to how the tools model these 
containers and their contents. 

Pointer: indicates whether the buffer access uses a pointer 
dereference (no, yes).  Note that it 
dereference with or without an array index (e.g. *pBuf or 
(*pBuf)[10]); the Index Complexity attribute must be set 
accordingly.  In order to know if the memory location referred 
to by a dereferenced pointer is within buffer bounds, a code 
analysis tool must keep track of what pointers point to; this 
points-to analysis is a significant challenge. 

Index Complexity: indicates the complexity of the array index 
(constant, variable, linear expression, non
function return value, array contents, N/A).  This attribute 
applies only to the user program, and is not used to describe 
how buffer accesses are performed inside C library functions.  

Address Complexity: describes the complexity of the address 
or pointer computation (constant, variable, linear expression
non-linear expression, function return value, array contents).  
Again, this attribute is used to describe the user program only, 
and is not applied to C library function internals.  

Length/Limit Complexity: indicates the complexity of the 
length or limit passed to a C library function tha
buffer (N/A, none, constant, variable, linear expression, non-
linear expression, function return value, array contents).  “N/A” 
is used when the test case does not call a C library function to 
overflow the buffer, whereas “none” applies when a C library 
function overflows the buffer, but the function does not take a 
length or limit parameter (e.g. strcpy).  The remaining 
attribute values apply to the use of C library functions that do 
take a length or limit parameter (e.g. strncpy).  Note that if a 
C library function overflows the buffer, the overflow is by 
definition inter-file/inter-procedural in scope, and involves at 
least one alias of the buffer address.  In this case, the Scope and 
Alias of Buffer Address attributes must be set accordingly.  Code 
analysis tools may need to provide their own wrappers for or 
models of C library functions in order to perform a complete 
analysis. This and the previous two attributes assess the ability 
of tools to analyze complex address and index computations. 

Alias of Buffer Address: indicates if the buffer is accessed 
directly or through one or two levels of aliasing (no, one, two). 
Assigning the original buffer address to a second variable and 
subsequently using the second variable to access the buffer 
constitutes one level of aliasing, as does passing the original 
buffer address to a second function.  Similarly, assigning the 
second variable to a third and accessing the buffer through the 
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Som ols perform path-sensitive analyses, and 
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dard for, standard do-

; i<11; i++)  

     i] = ‘A’; 
     ++; 

third variable would be classified as two levels of aliasing, as 
would passing the buffer address to a third function from the 
second.   

Alias of Buffer Index: indicates whether or not the index is 
aliased (n
results of a computation or function call, or if the index is a 
variable to which is directly assigned a constant value or the 
results of a computation or function call, then there is no 
aliasing of the index.  If, however, the index is a variable to 
which the value of a second variable is assigned, then there is 
one level of aliasing.  Adding a third variable assignment 
increases the level of aliasing to two.  If no index is used in the 
buffer access, then this attribute is not applicable. This and the 
previous attribute assess how well tools analyze the difficult 
problem of aliases. 

Local Control Flow: describes what kind of program control 
flow most immediat
if, switch, cond, goto/label, setjmp/longjmp, function pointer, 
recursion).  For the values “if”, “switch”, and “cond”, the buffer 
overflow is located within the conditional construct.  
“Goto/label” signifies that the overflow occurs at or after the 
target label of a goto statement.  Similarly, “setjmp/longjmp” 
means that the overflow is at or after a longjmp address.  Buffer 
overflows that occur within functions reached via function 
pointers are assigned the “function pointer” value, and those 
within recursive functions receive the value “recursion”.  The 
values “function pointer” and “recursion” necessarily imply a 
global or inter-procedural scope, and may involve an address 
alias.  The Scope and Alias of Buffer Address attributes should 
be set accordingly.   

Control flow involves either branching or jumping to another 
context within the program
analysis can determine whether or not the overflow is actually 
reachable.  A code analysis tool must be able to follow function 
pointers and have techniques for handling recursive functions in 
order to detect buffer overflows with the last two values for this 
attribute. 

Secondary Control Flow: has the same values as Local Control 
Flow, the difference being the location of the control flow 
construct.  Secondary Control Flow either precedes the overflow 
or contains nested, local control flow.  Some types of secon
control flow may occur without any local control flow, but some 
may not.  The Local Control Flow attribute should be set 
accordingly.   

The following example illustrates an if statement that pre
the overflow and affects
precedes the overflow, as opposed to directly containing the 
overflow, it is labeled as secondary, not local, control flow. 

int main(int argc, char *argv[]) 
{ 
  char buf[10]; 
int i = 10;   

 
  if (i > 10) 
 {  
    return 0; 
  } 
 

  BAD  */   /*
 buf 
 

  return 0; 
} 

 control flow that a
s classified.  In rs i

construct has no bearing on whether or not the subsequent 
overflow occurs, it is not considered to be secondary control 
flow, and this attribute would be assigned the value “none.”   

The following example illustrates nested control flow.  The 
inner if statement directly contains the overflow, and we 
assign the value “if” to the Local Control Flow attribute.  The 
outer if statement represents secondary control flow, and w
assign the value “if” to the Secondary Control Flow attribute a
well. 

int main(int argc, char *argv[]) 
{ 
  char buf[10]; 
  int i = 10; 
 
  if (sizeof buf 
  { 
    if (i <= 10) 
    { 

       /*  BAD  */
      buf[i] = 'A'
    } 
  } 
 

n 0;   retur
} 

e code analysis to

approximations in order to keep the problem tractable and the 
solution scalable.  This may mean throwing away some 
information, and thereby sacrificing precision, at points in the 
program where previous branches rejoin.  Test cases containing 
secondary control flow may highlight the capabilities or 
limitations of these varying techniques. 

Loop Structure: describes the type of loop construct within 
which the overflow occurs (none, stan
while, standard while, non-standard for, non-standard do-while, 
non-standard while).  A “standard” loop is one that has an 
initialization, a loop exit test, and an increment or decrement of 
a loop variable, all in typical format and locations.  A “non-
standard” loop deviates from the standard loop in one or more of 
these areas.  Examples of standard for, do-while, and 
while loops are shown below, along with one non-standard 
for loop example: 

Standard for loop:  
for (i=0
{ 

           buf[i] = ‘A’;  
} 

Standard do-while loop:  
0; i=

do  
{ 

f[    bu
    i
} while (i<11); 

Standard while loop: 
 i=0; 
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1)  

’; 

A non-sta  
 (i=0; i<11; )  

           buf[i++] = ‘A’;  

ondary control flow 
(such as additional if statements).  In these cases, the Secondary 

 have exit criteria that depend on 

e” is used to classify the “OK” or 

buffer directly 

y characterize complex 

erflow, shown 

while (i<1
{ 

         buf[i] = ‘A
  i++;     

} 

nda
for

rd for loop: 

{ 

} 
 

Non-standard loops may necessitate sec

Control Flow attribute should be set accordingly.  Any value 
other than “none” for this attribute requires that the Loop 
Complexity attribute be set to something other than “not 
applicable.”   

Loops may execute for a large number or even an infinite 
number of iterations, or may
runtime conditions; therefore, it may be impossible or 
impractical for static analysis tools to simulate or analyze loops 
to completion.  Different tools have different methods for 
handling loops; for example, some may attempt to simulate a 
loop for a fixed number of iterations, while others may employ 
heuristics to recognize and handle common loop constructs.  
The approach taken will likely affect a tool’s capabilities to 
detect overflows that occur within various loop structures. 

Loop Complexity: indicates how many loop components 
(initialization, test, increment) are more complex than the 
standard baseline of initializing to a constant, testing against a 
constant, and incrementing or decrementing by one (N/A, none, 
one, two, three).  Of interest here is whether or not the tools 
handle loops with varying complexity in general, rather than 
which particular loop components are handled or not. 

Asynchrony: indicates if the buffer overflow is potentially 
obfuscated by an asynchronous program construct (no, threads, 
forked process, signal handler).  The functions that may be used 
to realize these constructs are often operating system specific 
(e.g. on Linux, pthread functions; fork, wait, and exit; 
and signal).  A code analysis tool may need detailed, 
embedded knowledge of these constructs and the O/S-specific 
functions in order to properly detect overflows that occur only 
under these special circumstances. 

Taint: describes whether and how a buffer overflow may be 
influenced externally (no, argc/argv, environment variables, file 
read or stdin, socket, process environment).  “Taintable” buffer 
overflows that can be influenced by users external to a program 
are the most crucial to detect because they make it possible for 
attackers to create exploits.  The occurrence of a buffer 
overflow may depend on command line or stdin input from a 
user, the value of environment variables (e.g. getenv), file 
contents  (e.g. fgets, fread, or read), data received through 
a socket or service (e.g. recv), or properties of the process 
environment, such as the current working directory (e.g. 
getcwd).  As with asynchronous constructs, code analysis 
tools may require detailed modeling of O/S-specific functions to 
properly detect related overflows.  Note that the test suite used 
in this evaluation does not contain an example for “socket.” 

Runtime Environment Dependence: indicates whether or not 
the occurrence of the overrun depends on something determined 

at runtime (no, yes).  If the overrun is certain to occur on every 
execution of the program, it is not dependent on the runtime 
environment; otherwise, it is. Examples of overflows that 
depend on the runtime environment include tainted overflows 
just described and overflows that depend on the value of a 
random number generator. 

Magnitude: indicates the size of the overflow (none, 1 byte, 8 
bytes, 4096 bytes).  “Non
patched versions of programs that contain overflows.  One 
would expect static analysis tools to detect buffer overflows 
without regard to the size of the overflow, unless they contain 
an off-by-one error in their modeling of library functions.  The 
same is not true of dynamic analysis tools that use runtime 
instrumentation to detect memory violations; different methods 
may be sensitive to different sizes of overflows, which may or 
may not breach page boundaries, etc.  The various overflow 
sizes were chosen with dynamic tool evaluations in mind.  
Overflows of one byte test both the accuracy of static analysis 
modeling, and the sensitivity of dynamic instrumentation.  Eight 
and 4096 byte overflows are aimed more exclusively at dynamic 
tool testing, and are designed to cross word-aligned and page 
boundaries. One byte overflows are of interest because such 
overflows have enabled past exploits [10]. 

Continuous/Discrete: indicates whether the buffer overflow 
accesses another arbitrary location outside the 
(discrete) or accesses consecutive elements within the buffer 
before overflowing past the bounds (continuous).  Loop 
constructs are likely candidates for containing continuous 
overflows.  C library functions that overflow a buffer while 
copying memory or string contents into it demonstrate 
continuous overflows.  An overflow labeled as continuous 
should have the loop-related attributes or the Length 
Complexity attribute (indicating the complexity of the length or 
limit passed to a C library function) set accordingly.  Some 
dynamic tools rely on “canaries” at buffer boundaries to detect 
continuous overflows [5], and therefore may miss discrete 
overflows. 

Signed/Unsigned Mismatch: indicates if the buffer overflow is 
caused by using a signed or unsigned value where the opposite 
is expected (no, yes).  Typically, a signed value is used where 
an unsigned value is expected, and gets interpreted as a very 
large unsigned or positive value, causing an enormous buffer 
overflow. This error was responsible for two of the 
vulnerabilities analyzed by Zitser [21]. 

This taxonomy is specifically designed for developing simple 
diagnostic test cases. It may not full
buffer overflows that occur in real code, and specifically omits 
complex details related to the overflow context.  

For each attribute (except for Magnitude), the zero value is 
assigned to the simplest or “baseline” buffer ov
below: 

int main(int argc, char *argv[]) 
{ 
  char buf[10]; 
/*  BAD  */   

  buf[10] = 'A'; 
  return 0; 
} 
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Each test case includes a comment line as shown with the word 

 for each of the twenty-two attributes 

 
WRITE/READ  0 write 

 

CATI  

N  

PLEXI  stant 

W 
L  0 

 

NDEN  0 
verflow 

E  

While the Zitser test cases were program pairs consisting of a 

“BAD” or “OK.” This comment is placed on the line before the 
line where an overflow might occur and it indicates whether an 
overflow does occur. The buffer access in the baseline program 
is a write operation beyond the upper bound of a stack-based 
character buffer that is defined and overflowed within the same 
function.  The buffer does not lie within another container, is 
addressed directly, and is indexed with a constant.  No C library 
function is used to access the buffer, the overflow is not within 
any conditional or complicated control flows or asynchronous 
program constructs, and does not depend on the runtime 
environment.  The overflow writes to a discrete location one 
byte beyond the buffer boundary, and cannot be manipulated by 
an external user.  Finally, it does not involve a signed vs. 
unsigned type mismatch. 

Appending the value digits
forms a string that classifies a buffer overflow, which can be 
referred to during results analysis.  For example, the sample 
program shown above is classified as 
“0000000000000000000100.”  The single “1” in this string 
represents a “Magnitude” attribute indicating a one-byte 
overflow.  This classification information appears in comments 
at the top of each test case file, as shown in the example below: 

/* Taxonomy Classification: 0000000000000000000000 */ 
 
/*
 *  
 *  WHICH BOUND  0 upper 
 *  DATA TYPE  0 char 
 *  MEMORY LO ON 0 stack 
 *  SCOPE   0 same 
 *  CONTAI ER  0 no 
 *  POINTER   0 no 
 *  INDEX COM TY 0 con
 *  ADDRESS COMPLEXITY      0 constant 
 *  LENGTH COMPLEXITY         0 N/A 
 *  ADDRESS ALIAS             0 none 
 *  INDEX ALIAS               0 none 
 *  LOCAL CONTROL FLO 0 none 
 *  SECONDARY CONTROL F OW none 
 *  LOOP STRUCTURE            0 no 
 *  LOOP COMPLEXITY           0 N/A
 *  ASYNCHRONY                0 no 
 *  TAINT                       0 no 
 *  RUNTIME ENV. DEPE CE no 
 *  MAGNITUDE                 0 no o
 *  CONTINUOUS/DISCRET 0 discrete 
 *  SIGNEDNESS                0 no 
 */ 
 

bad program and a corresponding patched program, this 
evaluation uses program quadruplets.  The four versions of each 
test case correspond to the four possible values of the 
Magnitude attribute. One version represents a patched program 
(no overflow), while the remaining three indicate buffer 
overflows of one, eight, and 4096 bytes denoted as minimum, 
medium, and large overflows. 

3. TEST SUITE 
A full discussion of design considerations for creating test cases 
is provided in [11].  Goals included avoiding tool bias; 
providing samples that cover the taxonomy; measuring 
detections, false alarms, and confusions; naming and 
documenting test cases to facilitate automated scoring and 
encourage reuse; and maintaining consistency in programming 
style and use of programming idioms. 

Ideally, the test suite would have at least one instance of each 
possible buffer overflow that could be described by the 
taxonomy.  Unfortunately, the vast number of attribute 
combinations this requires makes this impractical.  Instead, a 
“basic” set of test cases was built by first choosing a simple, 
baseline example of a buffer overflow, and then varying its 
characteristics one at a time.  This strategy results in taxonomy 
coverage that is heavily weighted toward the baseline attribute 
values. Variations were added by automated code-generation 
software written in Perl that produces C code for the test cases 
to help insure consistency and make it easier to add test cases. 

Four versions of 291 different test cases were generated with no 
overflow and with minimum, medium, and large overflows.  
Each test case was compiled with gcc, the GNU C compiler [7], 
on Linux to verify that the programs compiled without warnings 
or errors (with the exception of one test case that produces an 
unavoidable warning).  Overflows were verified using CRED, a 
fine-grained bounds-checking extension to gcc that detects 
overflows at run time [16], or by verifying that the large 
overflow caused a segfault. A few problems with test cases that 
involved complex loop conditions were also corrected based on 
initial results produced by the PolySpace tool. 

4. EXAMPLE TEST CASE USAGE 
As an example of how to use these diagnostic test cases, each 
test case (291 quadruplets) was used one at a time with five 
static analysis tools (ARCHER, BOON, PolySpace, Splint, and 
UNO). Tool-specific Perl programs parsed the output and 
determined whether a buffer overflow was detected on the line 
immediately following the comment in each test case.  Details 
of the test procedures are provided in [11].  No annotations were 
added and no modifications were made to the source code for 
any tool. 

5. RESULTS AND ANALYSIS 
All five static analysis tools performed the same regardless of 
overflow size (this would not necessarily hold for dynamic 
analysis).  To simplify the discussion, results for the three 
magnitudes of overflows are thus reported as results for “bad” 
test cases as a whole. 
Table 2 shows overall performance metrics computed for each 
tool.  These metrics do not indicate performance expected in 
real code for detecting new vulnerabilities. They only indicate 
overall performance across all test cases and are preliminary to 
more diagnostic analysis with individual test cases. The 
detection rate indicates how well a tool detects the known buffer 
overflows in the bad programs, while the false alarm rate 
indicates how often a tool reports a buffer overflow in the 
patched programs.  The confusion rate indicates how well a tool 
can distinguish between the bad and patched programs.  When a 
tool reports a detection in both the patched and bad versions of a 
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test case, the tool has demonstrated “confusion.”  The formulas 
used to compute these three metrics are shown below: 

            # test cases where tool reports overflow  
                            in bad version 

detection rate =     ------------------------------------------------ 
                                    # test cases tool evaluated 
 

              # test cases where tool reports overflow  
                           in patched version 

false alarm rate =  ------------------------------------------------ 
                                    # of test cases tool evaluated 
 

             # test cases where tool reports overflow 
  in both bad and patched version    

confusion rate =   ------------------------------------------------- 
                             # test cases where tool reports overflow  
                                            in bad version 

As seen in Table 2, ARCHER and PolySpace both have 
detection rates exceeding 90%.  PolySpace’s detection rate is 
nearly perfect, missing only one out of the 291 possible 
detections.  PolySpace produced seven false alarms, whereas 
ARCHER produced none.  Splint and UNO each detected 
roughly half of the overflows. Splint, however, produced a 
substantial number of false alarms, while UNO produced none.  
Splint also exhibited a fairly high confusion rate. In over twenty 
percent of the cases where it properly detected an overflow, it 
also reported an error in the patched program.  PolySpace’s 
confusion rate was substantially lower, while the other three 
tools had no confusions.  BOON’s detection rate across the test 
suite was extremely low. 

Table 2. Overall Performance on Basic Test Suite (291 cases) 

Tool 
Detection 
Rate 

False Alarm 
Rate 

Confusion 
Rate 

ARCHER 90.7% 0.0% 0.0% 
BOON 0.7% 0.0% 0.0% 
PolySpace 99.7% 2.4% 2.4% 
Splint 56.4% 12.0% 21.3% 
UNO 51.9% 0.0% 0.0% 

 

 

It is important to note that it was not necessarily the design goal 
of each tool to detect every possible buffer overflow.  BOON, 
for example, focuses only on the misuse of string manipulation 
functions, and therefore is not expected to detect other 
overflows.  It is also important to realize that these performance 
rates are not necessarily predictive of how the tools would 
perform on buffer overflows in actual, released code.  The basic 
test suite used in this evaluation was designed for diagnostic 
purposes, and the taxonomy coverage exhibited is not 
representative of that which would be seen in real-world buffer 
overflows. 

Figure 1 presents a plot of detection rate vs. false alarm rate for 
each tool.  Each tool’s performance is plotted with a single data 
point representing detection and false alarm percentages.  The 
diagonal line represents the hypothetical performance of a 
random guesser that decides with equal probability if each 
commented buffer access in the test programs results in an 
overflow or not.  The difference between a tool’s detection rate 
and the random guesser’s is only statistically significant if it lies 

more than two standard deviations (roughly 6 percentage points 
when the detection rate is 50%) away from the random guesser 
line at the same false alarm rate.  In this evaluation, every tool 
except BOON performs significantly better than a random 
guesser. In Zitser’s evaluation [20], only PolySpace was 
significantly better.  This difference in performance reflects the 
simplicity of the diagnostic test cases. 
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Figure 1. False Alarm and Detection Rates per Tool 
Execution times for the five tools were measured as the total 
time to run each test case, including tool startup time, and are 
provided in Table 3.  PolySpace’s high detection rate comes at 
the cost of dramatically long execution times.  ARCHER 
demonstrated both the second highest detection rate and the 
second highest execution time.  Splint and UNO, with 
intermediate detection rates, had the two fastest execution times.  
BOON’s slightly longer execution time did not result in a higher 
detection rate. 

 
Table 3. Tool Execution Times 

Tool Total Time (secs) 

Average 
Time per Test 
Case (secs) 

ARCHER     288   0.247 
BOON      73   0.063 
PolySpace 200,820 (56 hrs) 172.526 
Splint      24   0.021 
UNO      27   0.023 
 

6. Detailed Tool Diagnostics 
The following paragraphs discuss each tool’s performance in 
detail, especially compared to the tools’ design goals. 

ARCHER is designed to be inter-procedural, path-sensitive, 
context-sensitive, and aware of pointer aliases.  It performs a 
fully-symbolic, bottom-up data flow analysis, while maintaining 
symbolic constraints between variables (handled by a linear 
constraint solver).  ARCHER checks array accesses, pointer 
dereferences, and function calls that take a pointer and size.  It is 
hard-coded to recognize and handle a small number of memory-
related functions, such as malloc [19]. 

ARCHER provided a 91% detection rate with no false alarms.  
Most of its twenty-seven missed detections are easily explained 
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by its limitations.  Twenty of these were inter-procedural and 
these include fourteen cases that call C library functions, 
including the relatively common memcpy().  The other inter-
procedural misses include cases involving shared memory, 
function pointers, recursion, and simple cases of passing a 
buffer address through one or two functions. Of the remaining 
seven misses, three involve function return values, two depend 
on array contents, and two involve function pointers and 
recursion. 

These diagnostic results may explain ARCHER’s poor 
performance in [20].  In this previous evaluation, that used 
model programs containing real code, ARCHER detected only 
one overflow.  Of the thirteen model programs for which 
ARCHER reported no overflows, twelve contained buffer 
overflows that would be classified according to this evaluation’s 
taxonomy as having inter-procedural scope, and nine of those 
involve calls to C library functions.  To perform well against a 
body of real code, C library functions and other inter-procedural 
buffer overflows need to be detected accurately. 

BOON’s analysis is flow-insensitive and context-insensitive for 
scalability and simplicity. It focuses exclusively on the misuse 
of string manipulation functions, and the authors intentionally 
sacrificed precision for scalability [18].   

In this evaluation, BOON detected only two out of fourteen 
string function overflows, with no false alarms.  The two 
detected overflows involve the use of strcpy() and fgets().  
BOON failed to detect the second case that calls strcpy(), all six 
cases that call strncpy(), the case that calls getcwd, and all four 
cases that call memcpy().  Despite the heavy use of C library 
string functions in [20], BOON achieved only two detections in 
that prior evaluation as well.  These results suggest that more 
complex analyses are required than provided in BOON to detect 
both real-world and simple buffer overflows. 

PolySpace is the only commercial tool included in this 
evaluation.  Although details of its methods and implementation 
are proprietary, its approach uses techniques described in 
several published works, including: symbolic analysis, or 
abstract interpretation [2]; escape analysis, for determining 
inter-procedural side effects [4]; and inter-procedural alias 
analysis for pointers [3].  

PolySpace missed only one detection in this evaluation, which 
was a case involving a signal handler.  PolySpace’s detection 
rate was not nearly as high in Zitser’s evaluation [20].  
Presumably, the additional complexity of real code led to 
approximations to keep the problem tractable, but at the expense 
of precision. PolySpace reported seven false alarms across the 
test cases and many false alarms in Zitser’s evaluation. In both 
evaluations, the majority of false alarms occurred for overflows 
involving calls to C library functions. 

Splint employs “lightweight” static analysis and heuristics that 
are practical, but neither sound nor complete.  Like many other 
tools, it trades off precision for scalability.  It implements 
limited flow-sensitive control flow, merging possible paths at 
branch points.  Splint uses heuristics to recognize loop idioms 
and determine loop bounds without resorting to more costly and 
accurate abstract evaluation.  An annotated C library is 
provided, but the tool relies on the user to properly annotate all 
other functions to support inter-procedural analysis.  Splint 
exhibited high false alarm rates in the developers’ own tests [6, 

12]. The basic test suite used in this evaluation was not 
annotated for Splint because it is unrealistic to expect 
annotations for most applications of static analysis tools.  

Splint exhibited the highest false alarm rate of any tool.  Many 
of the thirty-five false alarms are attributable to inter-procedural 
cases; cases involving increased complexity of the index, 
address, or length; and more complex containers and flow 
control constructs.  The vast majority, 120 out of 127, of missed 
detections are attributable to loops.  Detections were missed in 
all of the non-standard for() loop cases (both discrete and 
continuous), as well as in most of the other continuous loop 
cases.  The only continuous loop cases handled correctly are the 
standard for loops, and Splint produces false alarms on nearly 
all of those.  In addition, it misses the lower bound case, the 
“cond” case of local flow control, the taint case that calls 
getcwd, and all four of the signed/unsigned mismatch cases. 

While Splint’s detection rate was similar in this evaluation and 
the Zitser evaluation [20], its false alarm rate was much higher 
in the latter.  Again, this is presumably because code that is 
more complex results in more situations where precision is 
sacrificed in the interest of scalability, with the loss of precision 
leading to increased false alarms. Splint’s weakest area is loop 
handling.  Enhancing loop heuristics to more accurately 
recognize and handle non-standard for loops, as well as 
continuous loops of all varieties, would significantly improve 
performance. Reducing the false alarm rate is also important. 

UNO is an acronym for uninitialized variables, null-pointer 
dereferencing, and out-of-bounds array indexing, which are the 
three types of problems it is designed to address.  UNO is not 
inter-procedural with respect to out-of-bounds array indexing 
and does not model function pointers, function return values, or 
computed indices [8]. 
 
UNO produced no false alarms in the basic test suite, but did 
miss nearly half of the possible detections (140 out of 291), 
most of which would be expected based on the tool’s 
description.  This included every inter-procedural case, every 
container case, nearly every index complexity case, every 
address and length complexity case, every address alias case, 
the function and recursion cases, every signed/unsigned 
mismatch, nearly every continuous loop, and a small assortment 
of others.  It performed well on the various data types, index 
aliasing, and discrete loops. UNO exhibited a similar low 
detection rate in Zitser’s evaluation [20].   

7. CONCLUSIONS 
A new taxonomy was used to construct a corpus of 291 small C-
program test cases that can be used to evaluate static and 
dynamic analysis buffer overflow detection tools. This corpus is 
available at http://www.ll.mit.edu/IST/corpora.html. These test 
cases provide a benchmark to measure detection, false alarm, 
and confusion rates of tools, and can be used to find areas for 
tool enhancement.  Evaluations of five tools validated the utility 
of this corpus and provide diagnostic results that demonstrate 
the strengths and weaknesses of these tools. Some tools provide 
very good detection rates (e.g. ARCHER and PolySpace) while 
others fall short of their specified design goals, even for simple, 
uncomplicated source code. Diagnostic results provide specific 
suggestions to improve tool performance (e.g. for Splint, 
improve modeling of complex loop structures; for ARCHER, 
improve inter-procedural analysis).  They also demonstrate that 
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the false alarm and confusion rates of some tools (e.g. Splint) 
need to be reduced. 

The test cases we have developed can serve as a type of litmus 
test for tools. Good performance on test cases that fall within the 
design goals of a tool is a prerequisite for good performance on 
actual, complex code. Additional code complexity in actual 
code often exposes weaknesses of the tools that result in 
inaccuracies, but rarely improves tool performance. This is 
evident when comparing test case results obtained in this study 
to results obtained by Zitser [20] with more complex model 
programs.  

The test corpus could be improved by adding test cases to cover 
attribute values currently underrepresented, such as string 
functions.  
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ABSTRACT
We describe a prototype benchmark for source code ana-
lyzers. The prototype uses a combination of micro- and
macro-benchmarking to measure the vulnerabilities a tool
is capable of detecting and the degree to which it is able
to distinguish between safe code and vulnerable code. We
describe the design and implementation of our prototype,
then discuss the effect that the our experience with the pro-
totype has had on our future goals. Our prototype, along
with sample output from a number of source code analysis
tools, is available for download from
http://vulncat.fortifysoftware.com.

1. INTRODUCTION
Static source code analysis provides a mechanism for re-

ducing the amount of tedious work involved in inspecting a
program for security vulnerabilities. As source code analysis
grows in popularity, more potiential users of the technology
are faced with the need to evalute the pros and cons of an
increasing number of tools. A formal benchmark for com-
paring source code analyzers would provide several benefits:
A benchmark would help consumers choose the best tool for
their needs. It would pinpoint weaknesses in existing ana-
lyzers. It would quantify the strengths and weaknesses of
competing analysis techniques and allow engineers to make
measured tradeoffs. Benchmarking could also play a pivotal
role in directing future research and development efforts.

We recognized the need for good benchmarking data for
source code analyzers and resolved to create a benchmark.
We chose to begin by constructing a prototype to test out
and refine our ideas. Starting with a prototype allows us to
understand what problems we know how to solve and gives
us a platform to explore design decisions. An obvious goal
of this work is to provide a foundation for the construction
of a future benchmark.
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We call our prototype the Analyzer BenchMark or ABM
for short. The ABM benchmark is comprised of 91 micro-
benchmark test cases and a single macro-benchmark test
case. The purpose of each micro test case is to evaluate a
tool against a very specific scenerio in a controlled way. The
purpose of macro test cases is to capture properties of “real-
world” programs, like size and complexity, that are absent
from the micro test cases.

Our goal is to develop a framework that can be applied to
any programming language or platform, but for the purposes
of creating a prototype, all of the test cases target C-code
source code analyzers running under Unix and Win32. We
have applied the prototype to six different analyzers run-
ning in Redhat9 Linux and Windows XP. Our benchmark
focuses on measuring the analysis strength of source code
analyzers and does not concern itself with issues such as
memory or time efficiency. Applying the ABM benchmark
to source code analyzers results in quantifiable answers to
the questions “What kind of vulnerabilities does this an-
alyzer search for?” and “How effective is this analyzer at
finding these vulnerabilities?”.

Related work
We are not the first to attempt to measure the performance
of source code analyzers. In his thesis [6] and accompany-
ing article [7], Misha Zitser evaluates the performance of
several source code analyzers for detecting buffer overflows.
Zitser uses a test suite based on known vulnerabilities in
real-world code. Zitser’s test cases are derived from widely
used applications but not comprised of the actual applica-
tion code because many of the analyzers he measured were
not capable of ingesting the large amount of code contained
therein. Zitser’s test suite is now available from the MIT
Lincoln Laboratory in their publically available corpora [2].

Zitser describes the construction of “approximately 50
pairs” of small test cases. Each pair is made up of a small
program with a single instance of a buffer overflow and a sec-
ond matched program that is similar but does not contain
the defect. To construct his test cases, Zitser first created
a fairly detailed taxonomy of test case characteristics. He
then hand-constructed the test pairs and classified them us-
ing his taxonomy. Although he describes the construction
of his micro-benchmark test suite in detail, Zitser did not
publish any results obtained from using the suite.

Zitser’s micro-benchmark work was continued and extended
by Kendra Kratkiewicz. In her thesis [1] Kratkiewicz ex-
tends the taxonomy created by Zitser and uses her taxonomy
to guide the automatic generation of a micro-benchmark
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suite of 591 quadruplets. Each quadruplet consists of four
programs: one with no buffer overflow and three with succes-
sively larger buffer overflows. Kratkiewicz’s use of quadru-
plets allows the effect of the magnitude of a buffer overflow
to be analyzed. Her thesis describes the results of using this
benchmark to compare the performance of several analyzers
in detecting buffer overflows.

The SAMATE project at NIST [3] was created with the
objective of “identification, enhancement and development
of software assurance tools.” [3] Part of the project’s man-
date is to support tool evaluation and, towards this end, they
plan to create a system for benchmarking software analysis
tools. This work is still in the planning stages and we are
not aware of any results at this time.

Contributions
We believe our work makes several important contributions
to source code analyzer benchmarking. First, we are con-
structing a standard benchmark. Prior efforts focused on
constructing a benchmark for the author’s use in measur-
ing particular tools. We intend our benchmark to be used
by others including end-users and research and development
teams from academia and industry.

Second, we wish to benchmark a large number of ana-
lyzers. This goal forces us to pay attention to engineering
issues such as ease of retargetting. Our benchmark is care-
fully automated with a build environment that has small,
isolated analyzer-specific components. We use a normaliza-
tion mechanism to reduce the amount of analyzer-specific
code in our benchmarking process.

Third, we are interested in benchmarking all vulnerability
types and do not limit our focus to a single class of vulner-
abilities. This choice has resulted in a classification system
that is more flexible than those used previously.

Fourth, we are interested in benchmarking across a wide
set of platforms and languages.

Fifth, we see weakness in the grading mechanisms used
by Zitser and Krakiewicz, which expect that each test case
can have at most one reported vulnerability. Our bench-
mark uses a more sophisticated grading process that does
not make such an assumption.

Finally, we see value in both micro-benchmarking and
macro-benchmarking and use both to measure the perfor-
mance of source code analyzers.

With the remainder of this paper we discuss the com-
position of the ABM prototype benchmark, why we made
certain choices, and our plans for expanding from a proto-
type to a full benchmark proposal. Examples of benchmark
results are provided to clarify discussion, but, due to space
constraints, complete results are not given. We direct curi-
ous readers to http://vulncat.fortifysoftware.com for more
results.

2. DESIGN GOALS
If a benchmark is going to gain wide adoption, it must

meet a number of requirements:
First, the benchmark must be fair, objective and trans-

parent. A benchmark that is not fair and objective will
be rejected by the source code analysis community. Our
benchmark should generate transparent results that can be
independently reproduced, scrutinized and verified so that
matters of fairness can be publicly decided.

Second, the benchmark must be able to accomodate change.

The relevance of different vulnerabilities, platforms and lan-
guages will evolve over time. This evolution is driven both
by technical factors (such as the discovery of new types of
attacks) and social factors (such as increased emphasis on
privacy rights). The widespread adoption of source code
analysis tools is in its very infancy, virtually ensuring future
change. In order to be successful our benchmark must be
flexible and extensible. The framework should allow for the
introduction of new languages, platforms and metrics.

The benchmark must also be applicable to a wide range
of analysis techniques. Without good coverage of important
platforms or languages, people will look elsewhere in order
to find a becnhmark that is relevant to their needs and in-
trests. This means that, at a minimum, the benchmark must
support the most popular languages and operating environ-
ments.

The benchmark must generate an easy-to-understand score.
The majority of consumers of benchmark results will not be
experts in source code analysis, and they will look to the
benchmark for a simple way to compare competing tools.
Some will use the scores to make important purchasing de-
cisions. It is important that these scores be interpreted cor-
rectly and not be prone to marketing spin. In order to be
relevant, the scores must also be based on measurements
that are important in real-world programs.

Finally, the benchmark should generate a wealth of data
about each tool measured. The need for this information
is two-fold. First, the data will provide transparency by al-
lowing the results of the benchmark to be scrutinized and
independently verified. Second, the data will allow for de-
tailed analysis of the strengths and weaknesses of each tool.
Consumers will be able to use the data to focus on details
that are most relevant to them. This data will also be useful
in focusing future source code analysis research and devel-
opment efforts.

Beyond these requirements we have some pragmatic goals
for our benchmark. We would like the benchmark to be easy
to use. We wish to create a benchmark that is easy to re-
target for new source code analysis tools. To the greatest
extent possible we want to automate the application of the
benchmark, making it easy to carry out the benchmarking
process. We believe that automation has the additional ad-
vantage of increasing the objectivity of a benchmark. We
also want the benchmarking results to be easy to view, in-
terpret and consume.

3. THE BENCHMARK
We chose to begin our project by creating a prototype.

Our goal in starting with a prototype is to allow us to fig-
ure out what aspects of the design we actually understood
and provide a platform to experiment with the aspects that
we did not. For this purpose we chose to restrict the scope
of our project significantly, focussing on static analyzers for
Java and C code running under Linux and Windows XP. We
decided that we should build a modestly sized suite of micro-
benchmark test cases, with the understanding that the cov-
erage of the suite would suffer for it. We also chose to begin
with a single macro-benchmark test case. For maximum
flexibility, all of our micro test cases would be constructed
manually, and our macro test case would come from a widely
adopted open source program.

The decision to use both micro- and macro-benchmarking
was not an easy one. A macro-benchmark is made up of
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Attribute Parent Keywords

Platform General Port Unix Win32

Program size General Size0...Size9
Program complexity General Complex0...Complex9
Vulnerability class General BufferOverflow Api Taint Race

Overflow location BufferOverflow Stack Heap

Overflow API BufferOverflow AdHoc AdHocDecode AdHocCopy Read Gets Strcpy Sprintf Memcpy

Overflow cause BufferOverflow Unbounded NoNul IntOverflow BadBound

API type Api MemMgmt Chroot

MemMgmt type MemMgmt DoubleFree Leak

Taint type Taint Unsafe InfoLeak FormatString

Race type Race Filename

Table 1: Measured attributes, their dependencies and the set of keywords used to describe them.

Keyword Description

Port Portable across all platforms.
Unix Contains UNIX-specific code.
Win32 Contains Win32-specific code.
Size0...Size9 Description of the program size from small to large.
Complex0...Complex9 Description of the program complexity from simple to complex.
BufferOverflow Contains a buffer overflow vulnerability.
Api Contains a vulnerability caused by misusing an API.
Taint Contains a vulnerability caused by misuse of tainted data.
Race Contains a vulnerability cause by a race condition.
Stack The overflow occurs in a buffer located on the stack.
Heap The overflow occurs in a buffer located on the heap.
AdHoc The overflow is caused by an ad hoc buffer manipulation.
AdHocDecode The overflow is caused by an ad hoc buffer decode operation.
AdHocCopy The overflow is caused by an ad hoc copy operation.
Read The overflow is caused by use of the read() function.
Gets The overflow is caused by use of the gets() function or a similar related function.
Strcpy The overflow is caused by use of the strcpy() function or a similar related function.
Sprintf The overflow is caused by use of the sprintf() function or a similar related function.
Memcpy The overflow is caused by use of the memcpy() function or a similar related function.
Unbounded The overflow was caused because no bounds check was made.
NoNull The overflow was caused because a NUL character was expected but not found.
IntOverflow The overflow was caused because of an integer overflow or underflow when computing bounds.
BadBound The overflow was caused because an incorrect bounds check was performed.
MemMgmt A memory management API was misued.
Chroot The chroot() function was misued.
DoubleFree Allocated memory was freed multiple times.
Leak Allocated memory was never freed.
Unsafe Tainted data was passed to an unsafe function.
InfoLeak Sensitive data was revealed.
FormatString Tainted data was used as a format string to a function in the printf family of functions.
Filename A race was caused by accessing a file multiple times by its filename.

Table 2: Descriptions for each keyword.

larger test cases drawn from source code in use in “real-
world” applications. These test cases are large, compli-
cated, and provide several challenges to benchmark anal-
ysis. Macro-benchmark cases contain an entanglement of
many factors that are not easily seperated for independent
measure. A micro-benchmark is comprised of a set of small
synthetic test cases in which each test case can be carefully
designed to isolate characteristics. Tests can include control
subjects to increase the realiability of any measurements
made.

The precision of the micro-benchmark test cases comes at

a cost: it is “real-world” applications that interest program-
mers, not synthetic test cases. A micro-benchmark may fail
to capture some salient feature of important applications,
such as size or complex interactions between features. Even
when micro-benchmarks do provide useful results, their ac-
curacy may be called into question unless they can be val-
idated against data from important applications. For these
reasons we chose to create a blend of micro-benchmarks and
macro-benchmarks.

3.1 Test Case Attributes
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BAD case OK case Keywords

ahscpy1-bad.c ahscpy1-ok.c Port Size0 Complex0 BufferOverflow Stack AdHocCopy Unbounded

chroot1-bad.c chroot1-ok.c Unix Size0 Complex0 Api Chroot

fmt1-bad.c fmt1-ok.c Port Size0 Complex0 Taint FormatString

fmt2-bad.c fmt2-ok.c Unix Size0 Complex0 Taint FormatString

fmt3-bad.c fmt3-ok.c Unix Size0 Complex1 Taint FormatString

fmt4-ok.c Port Size0 Complex0 Taint FormatString

fmt5-ok.c Port Size0 Complex0 Taint FormatString

into1-bad.c Port Size0 Complex0 BufferOverflow Heap AdHoc IntOverflow

into2-bad.c into2-ok.c Port Size0 Complex0 BufferOverflow Heap AdHoc IntOverflow

mem1-bad.c mem1-ok.c Port Size0 Complex0 Api MemMgmt Leak

mem2-bad.c mem2-ok.c Port Size0 Complex1 Api MemMgmt Leak

race1-bad.c race1-ok.c Unix Size0 Complex0 Race Filename

race2-bad.c race2-ok.c Unix Size0 Complex0 Race Filename

snp1-bad.c snp1-ok.c Port Size0 Complex0 BufferOverflow Stack Sprintf BadBound

snp2-bad.c snp2-ok.c Port Size0 Complex0 BufferOverflow Stack Sprintf BadBound

tain1-bad.c tain1-ok.c Port Size0 Complex0 Taint Unsafe

tain2-bad.c tain2-ok.c Unix Size0 Complex0 Taint Unsafe

Table 3: A sampling of test cases and their attribute keywords.

To guide the creation of synthetic test cases we looked at
computer security vulnerabilities arising from programming
mistakes in C source code. We created a formal taxonomy
of vulnerability attributes covering a wider range of vulner-
ability types than covered in previous benchmarks. While
our taxonomy is not complete we believe it captures many of
the kinds of program attributes that are important to source
code analyzers. This taxonomy defines a problem space for
our test cases that we were able to use for both choosing
which test cases to create and to measure the coverage of
the resulting test suite. The taxonomy also proved useful in
automating the analysis of the results.

While creating our taxonomy, we observed that some pro-
gram attributes are only relevant to some types of vulner-
abilities. We support attributes in this irregular taxonomy
by using a heirarchical system of keywords. For each at-
tribute we enumerate a set of keywords that describe that
attribute. Each attribute also has a parent keyword upon
which it is dependent. When an attribute’s parent keyword
is present, exactly one of the keywords for that attribute
must be specified. At the top of this dependency heirarchy
is the keyword “General” which is always implicitly present.
The attributes we measure are shown in Table 1 and the
keywords used described in Table 2.

Each test case is described by a string of keywords for each
relevant attribute. For example, the string “Port Size0

Complex1 BufferOverflow Heap Gets Unbounded” describes
a small portable test case containing a buffer overflow on the
heap using the gets() function, which does not perform any
bounds checking.

This system of keywords is very flexible. Attributes that
are specific to features of a particular language or operat-
ing system can be introduced without interfering with other
unrelated attributes. Keywords and attributes can even be
used to describe non-technical details about a test case such
as the source of contributed material. Finally the system
of keywords is well-defined (although some of the keywords
currently in use are not). This simplifies the verification of
well-formed test case descriptions.

3.2 Test Suite

We used our taxonomy to guide our creation of ABM
micro-benchmark test cases. The intent is to have broad
coverage of combinations of attributes in our taxonomy. We
consciously chose to limit the number of test cases in our
prototype benchmark allowing the benchmark coverage to
suffer a little in order to focus on other details such as grad-
ing and analysis. We sketched out aproximately what types
of test cases we wanted to include and constructed the test
cases manually. Constructing a small number of test cases
allowed us to explore some alternate test case designs during
prototyping and allowed us to focus more quickly on other
areas of the benchmark design such as grading and analysis.

The benchmark test suite is composed of 91 C test cases
with a somewhat even coverage of attributes in our taxon-
omy. We are currently in the process of adding test cases
for Java. Table 3 lists a sampling of 31 of the 91 test cases
and their attributes. Whenever possible, test cases were con-
structed in matched pairs of OK and BAD test cases. Each BAD

test case has code with a vulnerability in it. Corresponding
OK cases are similar to BAD cases but do not share the vul-
nerability. OK cases are generally constructed by patching
BAD cases to remove the vunlerability while retaining func-
tionality. These OK cases share the same attribute keywords
even though they do not contain a vulnerability.

Kratkiewicz [1] used test case quadruplets rather than
pairs to measure the effects of buffer overflow magnitude.
We did not take this approach because the magnitude at-
tribute is specific to buffer overflow vulnerabilities. The ef-
fect of magnitude can still be measured by providing addi-
tional test case pairs that cover buffer overflows of varying
mangitude.

Each test case contains annotations specifying where a
bug may be present. Test cases with vulnerabilities are
tagged with a comment “/* BAD */” at any line that may
be considered to contribute to the vulnerability described by
the test case’s keywords. Those cases without vulnerabili-
ties are tagged with a comment “/* OK */” at any line that
could have contributed to the vulnerability if it had been
present.

Each test case is also annotated with information about
valid and invalid inputs. These annotations allow for au-
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1 /*

2 Description: Printf is called with a user supplied

format string.

3 Keywords: Port Size0 Complex0 Taint FormatString

4 ValidArg: "’NormalString\n’"

5 InvalidArg: "%s"*100

6 */

7

8 #include <stdio.h>

9

10 void

11 test(char *str)

12 {

13 printf(str); /* BAD */

14 }

15

16 int

17 main(int argc, char **argv)

18 {

19 char *userstr;

20

21 if(argc > 1) {

22 userstr = argv[1];

23 test(userstr);

24 }

25 return 0;

26 }

Figure 1: The test case fmt1-bad.c.

tomated testing of the resulting binaries. Some of the test
cases we constructed were dependent on implementation de-
tails, such as compiler layout and padding, and were not
vulnerable when using our compiler of choice. We felt these
test cases were still important and did not want to sim-
ply discard them. As a result, some of our test cases fail
automatic validation. It is also important to note that an
incorrect test case may still pass validation if the validation
inputs are not picked properly. Thus, we were able to use
automated testing as an aid in validating our test suite but
could not rely on it completely.

An example of a test case in the suite is shown in Figure 1.
Annotations in the comments at the head of the file give a
formal and informal description of the test case. They also
provide test strings for automated verification of the test
case. An annotation at line thirteen denotes the occurance
of a vulnerability.

For our macro-benchmark test case we chose the Apache
web server [4]. Our choice was influenced by several fac-
tors. Apache is well known, accepted, and mature. It is
freely available in source form and runs on a wide range
of platforms. Typical deployments of Apache require that
it be exposed to security threats from the entire internet.
Apache provides us with a relatively large and complex pro-
gram that is representative of the types of programs that
people would want to analyze with a source code analyzer.

3.3 Grading
To benchmark a tool with the ABM suite, we run the tool

being benchmarked against each test case in the suite and
gather the results for grading. The entire process is auto-
mated with a system of makefiles. The tool is invoked once

N: fmt1-bad

L: fmt1-bad.c 13 FormatString format printf If

format strings can be influenced by an

attacker, they can be exploited. Use a

constant for the format specification.

Figure 3: The normalized results of Flawfinder’s

analysis of fmt1-bad.c.

for each test case. The result of each analysis is normalized
into a standard format, and a grading program compares
the normalized tool output against the annotations in the
test case. Finally, the graded results are combined into a
benchmark result. This process is illustrated in Figure 2.

In order to benchmark a tool, the benchmark framework
must be able to invoke the analyzer, and there must be a
method for converting the results of the analysis into a stan-
dardized format. Most of the benchmark process is dictated
by makefile rules shared by all tools. Tool-specific rules are
contained in a separate makefile for each analyzer. Because
some test cases are platform specific, each analyzer-specific
makefile must specify which set of test cases to analyze.
They must also specify how to invoke the analyzer and what
file extension to use when saving the results. These tool-
specific makefiles are typically less than 40 lines long.

We use a normalized output format to avoid putting analyzer-
specific code in the grading process. The normalizer emits
a line for each vulnerability reported by the analyzer. Each
vulnerability is first mapped to the most specific matching
keyword in our taxonomy. In some cases a vulnerability
may be mapped to several keywords. The normalizer emits
a single line for each combination of keyword, file name,
and line number. To make it easier to verify that our nor-
malizer is behaving as expected, we include the analyzer’s
original description of each vulnerability in the normalized
output. The amount of code necessary to normalize an an-
alyzer’s output is highly dependent on the output format
of an analyzer. So far we have constructed normalizers for
six analyzers ranging in size from 59 to 137 lines of python
code.

Figure 3 shows an exerpt of the normalized results from
the Flawfinder [5] analyzer. The line starting with “N:” de-
scribes the test case source (fmt1-bad). The line starting
with “L:” describes an instance of a FormatString vulnera-
bility at line 13. The text following the FormatString key-
word on this line is not used and is provided to aid manual
review of the results. The remainder of the file contains
results for other test cases.

We use an automated system to grade the normalized
analysis results. Grading results manually would be tedious
and error-prone and would place an artificially low bound
on the practical size of our test suite. Manual grading would
likely be less objective or at least less transparent than an
automated process. Fortunately grading a test case’s anal-
ysis results is a straightforward process of matching up the
normalized results with the source code if the source code is
properly annotated.

To grade the normalized results, each reported vulnerabil-
ity is matched against the corresponding line in the anno-
tated test case. Any reported vulnerability which does not
appear as an attribute keyword for the test case is noted
and ignored. Likewise, vulnerabilities matching attribute
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Figure 2: The ABM benchmarking process. Test cases are analyzed by the source code analyzer to be

measured. The results are then normalized and graded before a report is generated. The invocation of the

source code analyzer and the normalization of its results are the only analyzer-specific steps in this process.

fmt1-bad

Printf is called with a user supplied format string.

Port Size0 Complex0 Taint FormatString

13 BAD FormatString *MATCH* format printf If format

strings can be influenced by an attacker, they can

be exploited. Use a constant for the format

specification.

Raw results:

PASS fmt1-bad Port Size0 Complex0 Taint FormatString

Figure 4: The graded results of Flawfinder’s analysis

of fmt1-bad.c.

keywords but at lines that are not annotated as BAD or OK

are noted and ignored. When a matching vulnerability oc-
curs on a line with a BAD or OK annotation, it is noted as
having matched. An analyzer is given a passing grade on
a test case if it matches any of the BAD lines and does not
match any of the OK lines. Upon completion, the grader
emits a list of passing and failing test cases and their asso-
ciated annotation keywords.

Notice that our grading process can ignore many reported
vulnerabilities. Each test case is constructed to measure the
analysis of a single type of vulnerability and the grader ig-
nores any information about other reported vulnerabilities.
Although it may appear that valuable information is dis-
carded, this is not necessarily the case. Discarded informa-
tion is not lost as long as there is another test case in the
suite to measure the behavior. We believe that this approach
of carefully focused measurment increases the reliability and
leads to better analysis.

Figure 4 shows an exerpt of the graded results from the
Flawfinder [5] analyzer. The group of lines at the top of the
figure describe the grading process, starting with the test
case name and the formal and informal descriptions of the
test case. Following the description is a line representing the
reported FormatString vulnerability at line 13. This line is
indicated as a match since the test case is a FormatString

test case. The Flawfinder tool passed this test case since
there was a match for a “BAD” line. Had it failed, failure
would be indicated in the output. These first lines are not
used directly but are provided to ease human review of the
grading process. The grader emits a table of graded results
at the end of its output with a line for each graded test case.
This is illustrated in the figure with a line that indicates that

Flawfinder passed the fmt1-bad case.
Grading the macro-benchmark test cases is even simpler

than grading micro-benchmark cases. As with the micro-
benchmark test cases, the results from the macro-benchmark
are first normalized. The benchmark cases were chosen in
part for their maturity and it is assumed that there are rel-
atively few vulnerabilities left in the code. For the purpose
of grading, we assume that all reported vulnerabilities are
false-positives. This assumption introduces error; there are
undoubtedly vulnerabilities in the macro-benchmark that
have not yet been identified or fixed. However, the macro-
benchmark provides good insight into the amount of output
that a tool is likely to produce for a real-world program.
Over time it is expected that a few bonafide vulnerabilities
will be discovered in macro-benchmark test cases. We in-
tend to maintain our current test cases and augment them
with annotations as this occurs.

3.4 Analysis
The analysis phase makes use of the graded benchmark re-

sults to generate a report of meaningful measurements about
an analyzer. The goal of the analysis is to measure the cov-
erage and strength of an analyzer. An analyzer’s coverage
is a measure of the relevance of an analyzer to a variety of
code defects. An analyzer with broad coverage is designed
to detect a broad range of vulnerabilities whereas an an-
alyzer with narrow coverage can only detect a small class
of vulnerabilities. An analyzer’s strength is a measure of
the quality of analysis over diverse and sometimes difficult
coding constructs. An analyzer with high strength can de-
tect vulnerabilities in both simple and complicated code.
Equally important, an analyzer with high strength is able
to differentiate between vulnerable and non-vulnerable in-
stances of similar code. An analyzer with low strength may
not be able to detect a vulnerability in complex code or may
incorrectly identify vulnerabilities where they do not exist.

In order to understand analysis of the results, it is nec-
essary to first understand the meaning of passed and failed
test cases. For “BAD” cases, a success indicates a “true pos-
itive” detection of a vulnerability while a failure indicates
a “false negative” or that the analyzer incorrectly indicated
that the vulnerability was not present. For “OK” cases, a
success indicates a “true negative” or that the analyzer cor-
rectly indicated that no vulnerability was present, while a
failure indicates a “false positive” detection of a vulnerabil-
ity.

The simplest measure of an analyzer is given by a tally
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BAD tests OK tests Total Discriminates

pass total perc pass total perc pass total perc pass total perc

All 26 48 54% 23 43 53% 49 91 54% 4 22 18%

Unsafe 2 2 100% 0 2 0% 2 4 50% 0 2 0%
InfoLeak 0 2 0% 0 0 - % 0 2 0% 0 0 - %
FormatString 3 3 100% 3 5 60% 6 8 75% 3 3 100%

fmt1 1 1 100% 1 1 100% 2 2 100% 1 1 100%
fmt2 1 1 100% 1 1 100% 2 2 100% 1 1 100%
fmt3 1 1 100% 1 1 100% 2 2 100% 1 1 100%
fmt4 0 0 - % 0 1 0% 0 1 0% 0 0 - %
fmt5 0 0 - % 0 1 0% 0 1 0% 0 0 - %

Table 4: Exerpts of benchmark results for the Flawfinder scanner.

of the passing test cases. This measure imparts a rough
measure of the analyzer but does not provide much insight
into the analyzer’s strengths or weaknesses. A slightly bet-
ter measure is derived by partitioning the test cases into
“OK” and “BAD” cases. This provides a measure of true pos-
itives and negatives, or, conversely, false positives and false
negatives. The number of true positives gives some indica-
tion of how well the analyzer does the job advertised while
the number of false positives gives a measure of how much
additional noise it produces.

By partitioning the test cases according to vulnerability
classes the coverage of an analyzer can easily be measured.
An analyzer is said to cover a vulnerability class if it can
report vulnerabilities in that class. If there are any true
positives in the class (ie. there is at least one “BAD” test case
that passed) then clearly the vulnerability class is covered.

Measuring an analyzer’s strength is a little more com-
plex. Some indication of an analyzer’s strength is given by
the number of false positives and false negatives that are
reported. We can gain further insight into an analyzer’s
performance by partitioning a set of test cases based on a
particular attribute. For example, by partitioning the set of
BufferOverflow test cases according to program size, the
effects of size on buffer overflow detection can be isolated.

One effect that is not easily isolated in this way is the
ability of an analyzer to discriminate between vulnerable
and non-vulnerable code. We introduce a new measure to
quantify this component of an analyzer’s strength. The dis-
crimination of an analyzer is a tally of how often an ana-
lyzer passed an “OK” test case when it also passed a match-
ing “BAD” test case. Together with the true negative and
true positive tallies, discrimination gives a good indication
of an analyzer’s strength. An analyzer that finds many in-
stances of a vulnerability but falsely reports the presence
of this vulnerability where it is not present will score well
when true-positives are measured but will not get a good
true-negative or discrimination score.

Besides isolating the effect of defect variations, analyzing
partitions based on keywords has an additional advantage
– it allows us to make level comparisons of diverse analyz-
ers. For example, the results of benchmarking an analyzer
that runs only on Win32 platforms cannot directly be com-
pared with the results from an analyzer that runs only in
UNIX. However, by isolating the portable test cases (those
described by the Port keyword) some amount of comparison
can be made.

The ABM analyzer generates a report by generating ta-

bles of successively more detailed partitions of the data set.
This process is straightforward because every test case is
described by a sequence of keywords. Subsets of test cases
are made by matching selected attribute keywords. These
subsets are then scored for tallies of passed test cases, true
positives, true negatives, and discrimination. Each tally is
reported as an absolute count and as a percentage.

Table 4 shows an exerpt of the analyzed results from
benchmarking the Flawfinder [5] source code analyzer. These
results can be viewed in their entirety at
http://vulncat.fortifysoftware.com. The line labelled “All”
shows the accumulated results for all the micro-benchmark
test cases. It shows that Flawfinder found 54% of the vul-
nerabilities, and properly did not report any vulnerabilities
for 53% of the non-vulnerable test cases. When it was able
to detect a vulnerability, it was able to discriminate it from
non-vulenerable code 18% of the time. The next three lines
show Flawfinder’s performance for three classes of Taint

vulnerabilities. Finally the last five lines show the indi-
vidual test case pairs used to measure FormatString vul-
nerabilities. The fmt1-bad.c test case presented earlier is
represented by the “BAD tests” column of the “fmt1” row.

Because of their nature, the macro-benchmark test cases
are not as easy to analyze and do not provide as much in-
formation. The only analysis we perform is a counting of
false-positives by attribute keyword. There is one subtlety
in this process: we accumulate attribute counts up to their
parent keywords. For example if there are five reported
FormatString vulnerabilities and two reported InfoLeak

vulnerabilities these counts are accumulated and reported
as seven Taint vulnerabilities. The reason for this accu-
mulation is to ease comparison of the results from different
analyzers: some analyzers may report vulnerabilities deeper
in the attribute taxonomy than other analyzers.

4. FUTURE WORK
We have built a prototype benchmark for source code an-

alyzers, but our work is not yet done. A primary goal of
this project has been to guide the development of our full
benchmark. While what we have implemented is important,
we consider what we have learned about what we must now
implement an equally important contribution of our work.

We are currently in the process of adding Java test cases to
the ABM suite. Although unexciting from a technical point
of view these new test cases are critical to our goal of provid-
ing a standard cross-platform benchmark. Details about the
Java test cases are available at http://vulncat.fortifysoftware.com.
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The most glaring deficiency of the current benchmark is its
coverage. This is partly due to our desire to keep the number
of test cases manageably small in our prototype. A next-
generation benchmark will require a micro-benchmark test
suite one or two orders of magnitude larger. A hand-written
test suite would clearly not be practical and we anticipate
generating test cases programatically as was done in [1].

A larger macro-benchmark test suite will also be needed.
The process of incorporating more macro-benchmarks is te-
dious but fairly straightforward.

Test case generation will be guided by a classification sys-
tem. Our initial taxonomy was successful but somewhat
simplistic. Its classification of complexity and size lacks for-
mal definition. The ABM test suite has particularly poor
coverage of large or complex programs. A formal classifica-
tion of size and complexity will give us a better foundation
for addressing this deficiency. To ensure consistent and un-
biased coverage of the taxonomy’s attribute space we intend
to formalize the process by which we pick test cases. The
process of constructing matched OK cases also suffers from a
lack of formal structure which we hope to address by aug-
menting the taxonomy with alternate patch strategies.

The taxonomies created and employed by Zitser [6] and
Kratkiewicz [1] to describe programs with buffer overflows
are considerably more detailed than ours. In the future we
plan to incorporate attributes from their work into our tax-
onomy and expand our taxonomy to cover details particular
to vulnerabilities other than buffer overflows.

The area of result analysis is ripe for future research. As
with any benchmark, we anticipate that the availability of
raw data will stimulate others to find new ways of extracting
important information. There are two areas that we would
like to pursue further in the future. Currently the result
analysis places equal importance on each test case. This
artificially weights the aggregated results according to the
number of test cases in each category. We hope to address
this by investigating weightings that more properly reflect
the importance of test case properties in real-world situa-
tions. We hope that comparisons with macro-benchmark
results will prove useful in this effort.

A second area of future interest is to provide better syn-
ergy between the micro- and macro-benchmarking compo-
nents. As currently implemented our micro-benchmark and
macro-benchmark cases are used to measure very different
things. The relation between their results is not clearly ap-
parent in the results. We hope that future analysis will allow
the two suites to complement each other and corroborate
each other’s results.

A subtle issue that has been glossed over earlier in this
paper is the handling of macro-benchmark results across
disparate platforms. Even though the test case we chose
compiles on a wide range of platforms, the source code used
in the build process is not identical for all platforms. The
build environment selects certain platform specific files ap-
propriate for the platform. Conditional compilation selects
certain segments of code within files that are used by all
platforms. This makes comparisons of results obtained on
different platforms troublesome. We are currently investi-
gating stronger analysis techniques to remedy this.

Beyond the technical, there is a lot of work remaining
in getting our benchmark adopted. We hope to work with
the community to get feedback on our methodologies and
address any early concerns. We plan to support the bench-

mark’s adoption by promoting its fair use and the dissemi-
nation of results. We plan to continue benchmarking more
analyzers, and we will make both the benchmark and re-
sults for a wide range of analzers available for download
from http://vulncat.fortifysoftware.com.
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ABSTRACT
This paper presents a benchmark suite for evaluating behavior-
based security mechanisms. Behavior-based mechanisms are
used to protect computer systems from intrusion and de-
tect malicious code embedded in legitimate applications.
They complement signature-based mechanisms (e.g., anti-
virus software) by tackling zero-day attacks whose signa-
tures have not been added yet to the signature database, as
well as polymorphous attacks that have no stable signatures.

In this work we present a benchmark suite of eight pro-
grams. All of these programs are legitimate applications,
but we have designed them to be infected by malicious soft-
ware. An evaluation framework is designed to infect, disin-
fect, build, and run the benchmark programs. This bench-
mark suite aims to help evaluate the effectiveness of various
behavior-based defense mechanisms during different devel-
opment stages, including prototyping, testing, and normal
operation. We use this benchmark suite to evaluate a simple
behavior-based security mechanism and report our findings.

1. INTRODUCTION

1.1 Behavior-based security mechanisms
Many host-based intrusion prevention systems [29, 34, 38]

employ behavior-based analysis to protect an application
running on a server from being hijacked. Most of these appli-
cations are known or highly suspected to horde security vul-
nerabilities, such as buffer overflows and format strings [21].
These systems use various methods to examine the actions
taken by a program by inspecting library API activity and
system calls. Actions that appear malicious, such as at-
tempting a buffer overflow or opening a network connection
in certain contexts, will trigger an alarm by the monitoring
agents.

Over the past few years, spyware has become a pervasive
problem [13, 16]. Many infections occur when spyware is
piggybacked on top of popular software packages. Saroiu et
al. [16] found that spyware is packaged with four of the ten
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most popular shareware and freeware software titles from
C|Net’s http://download.com/. Commercial security soft-
ware vendors [28, 35, 30, 37] have developed a number of
security products addressing this problem. All of these com-
panies have emphasized that they detect spyware by observ-
ing system behavior and detecting abnormal activity from
the norm.

Signature-based intrusion detection and anti-virus solu-
tions fail to expose this class of exploitation and do not
adapt well to even small changes in an exploit. A signa-
ture is a regular expression known a priori that matches
the instruction sequence of the exploitation or the network
packets presented in a specific attack [39]. Therefore, zero-
days attacks that have not had a signature extracted yet,
as well as polymorphous attacks, pose a great danger to
these signature-based mechanisms. Behavior-based mecha-
nisms aim to overcome these shortcomings and complement
signature-based mechanisms with more adaptive and proac-
tive protection. Instead of looking for fixed signatures in in-
struction sequences and network packet payloads, behavior-
based approaches focus on detecting patterns at a higher
level of abstraction. Ideally, the patterns are the inherent
behavior associated with malicious activities and distinct
from the normal behavior of legitimate programs. Evading
a behavior-based protection mechanism normally requires a
change in the logic of the malicious activity itself.

Gao et al. [6] investigated the design space of system-
call-based program tracking, which is the technology behind
many host-based anomaly detection and prevention systems.
A detailed system call trace can be recorded and character-
ized to better understand the typical behavior of the pro-
gram. By establishing a profile of normal behavior, an intru-
sion into the process will be detected when the system-call
behavior deviates from this normal profile.

Edjlali et al. [4] presented a history-based access-control
mechanism to mediate accesses to system resources from
mobile code. Their idea was to maintain a selective history
of the access requests made by individual programs and to
use this history to differentiate between safe and potentially
dangerous requests. Each program is categorized into one
of several groups, whereas each of these groups contains a
different profile of resource requests. The behavior of each
program during the entire execution is also constantly mon-
itored. The decision of whether to grant a resource request
that the program makes depends on both its preassigned
identity and its historical behavior during this execution, as
well as additional criteria, such as the location where the
program was loaded or the identity of its author/provider.
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1.2 Security metrics and measurement
As behavior-based mechanisms become more commonly

used, and the rules and analytics engine underlying these
mechanisms become more sophisticated, we need a method-
ology to evaluate these security mechanisms. The evaluation
could be (and, ideally should be) used both for testing these
mechanisms during code development, and for the validation
and product rankings.

Developing metrics to define security properties remains
an ongoing research topic [5]. A number of approaches have
been proposed to measure the value of a security product
or technology, and to assess the level of security attained by
the whole system [20, 32].

Kajava et al. [11] considered a range of criteria to qualify
and quantify the degree of security attained. They summa-
rized three major classes:

• Risk analysis is the process of estimating the possi-
bility of individual exploitations, their impact on the
system, and as well as the cost to mitigate the risk.
Risk analysis considers the trade-off between cost and
the level of protection, and is thought to be a good
basis for any security evaluation [3].

• Certification involves decomposing the system into dif-
ferent classes based on design characteristics and se-
curity mechanisms. Standards organizations and com-
mercial companies provide certification services to mea-
sure the level of confidence that can be assigned to the
security features offered by a product [41, 31], or the
degree of conformance of a security process to the es-
tablished guidelines (e.g., ITIL [14], CMM [10] and
COBIT [1]).

• Penetration testing provides statistics about the prob-
ability that an intrusion attack will be successful. For
example, the WAVES project [42] standardizes the
practice of penetration testing for Web applications.

There have also been efforts to employ multiple orthogonal
criteria to quantify the value of the perceived security en-
hancement, and the cost associated with the enhancement.
Gordon et al. [7] proposed a framework to use the concept
of insurance to manage the risk of doing business in the
Internet era. They also described how to evaluate and jus-
tify security-related investments. The criteria they used for
their security evaluation includes the three elements just dis-
cussed.

There still remains no widely accepted way to measure and
rank security properties. The difficulty of finding a common
ground for evaluating various security mechanisms suggests
that further work is needed before we can adopt an unified
evaluation methodology for different categories of security
mechanisms.

The goal of this paper is to describe a new benchmark-
ing methodology to evaluate behavior-based security mech-
anisms. We present a benchmark suite composed of eight
applications that are typically found in workstation/desktop
environments. These applications are infected with a vari-
ety of malicious codes, that in turn, represent a broad spec-
trum of exploits. We demonstrate the utility of our bench-
mark suite by applying it to a simple behavior-based security
mechanism. The rest of paper is organized as follows. We
discuss the rationale of our benchmarking methodology for

evaluating behavior-based security mechanisms in section 2.
We then describe the suite of benchmarks we have created
in section 3. In section 4, we use this benchmark suite to
evaluate a simple behavior-based security mechanism and
analyze the results. In section 5, we summarize the paper
and discuss future directions for our work.

2. A CASE FOR BENCHMARKING BEHAVIOR-
BASED SECURITY MECHANISMS

Benchmarking has been used widely in the field of com-
puter architecture and system software development to eval-
uate the performance of a particular design or implementa-
tion. The basic idea behind benchmarking is to create a
common ground of comparison for a certain category of tar-
gets. Normally a suite of applications is constructed to serve
as this common ground. These applications reflect typical
workloads running on a selected category of computer sys-
tems (e.g., servers) or a selected category of application soft-
ware (e.g., database). The value of different design mecha-
nisms is measured by obtaining performance metrics while
running the suite. Benchmarking promotes the practice of
quantitative analysis [8]. There have also been efforts to
use benchmarking to evaluate properties other than perfor-
mance, such as dependability [12].

One of the key challenges addressed by most security-
related mechanisms is that they need to address a moving
target. The activities and scenarios that may do harm to
the system are unpredictable, and tend to change their form.
It would seem that a benchmarking methodology might not
be a good choice for evaluating security mechanisms, since
there is no stable workload that can be used.

In spite of the differences between their various approaches,
all the behavior-based mechanisms make a common claim
that they can differentiate the behavior of the malicious code
from the normal behavior of the program. Malicious behav-
iors are limited to several general categories, such as resource
abuse, information tampering, and information leakage [16].
More and more of these attacks are being motivated to ob-
tain financial gains [17]. This indicates that the malicious
behavior that these mechanisms are trying to single out is
limited, and is relatively stable. For these cases, benchmark-
ing can be very useful. A benchmark suite that consists of
representative workloads infected with representative mali-
cious activities can provide a good test of behavior-based
security mechanisms.

Our benchmarking approach diverges from the penetra-
tion testing either performed by third-party auditors and
certification service providers [41, 31], or embodied in soft-
ware packages which are composed of a set of penetration
cases [42]. These differences include:

• The main purpose of penetration testing is to find se-
curity vulnerabilities in the targeted programs, while
the goal of our benchmarking technology is to find out
whether the analytics and rules behind behavior-based
mechanisms are sufficient.

• Penetration testing can be very implementation spe-
cific. Whenever a exploit of a newly discovered vul-
nerability appears, this new penetration scenario must
be added to the set of test cases. On the contrary, the
collection of malicious behavior included in our bench-
mark suite is much less dependent upon individual ex-
ploits. Unless the entire strategy behind an exploit is
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different from those included in the benchmark suite,
there is no need to update the benchmark suite with
every newly discovered exploit.

• Last, our benchmarking methodology is complemen-
tary to commonly used audit and certification services.
Designers and developers can benefit from our bench-
mark suite because it is more cost-effective and conve-
nient to use to test new ideas and prototype products
during the entire development cycle.

The anti-virus community has already tested the idea of
benchmarking. Basically they combine the signatures of all
the known (and some not widely known) exploits and see
how many of them different anti-virus products can find.
In a test performed by Virus Bulletin [40], 100% of their
signatures were detected by all the tested anti-virus soft-
ware. It should be apparent that it would be difficult to
produce a meaningful comparison here. A 100% detection
rate suggests that benchmarking may not be a good way to
evaluate detection accuracy (i.e., effectiveness) of anti-virus
technology.

Using our approach, we emphasize that it is behavior-
based mechanisms that we propose to evaluate using bench-
marking. Different types of security mechanisms may need
different methods to be properly evaluated.

3. THE SECSPEC BEHAVIORAL BENCH-
MARK SUITE

3.1 Components of the benchmark suite
We have developed a benchmark suite called SecSpec. The

benchmark programs included in the suite, as well as the
malicious code, are written in Java. The choice of language
should not limit the scope of applying the benchmarking
methodology, though the implementations of malicious be-
havior may need to be ported to another language and a
new set of benchmark programs may need to selected.

We target a typical workstation/desktop computing en-
vironment when choosing the component programs for the
benchmark suite. We include four types of applications and
consider two particular programs from type.

Browsers: Jbrowser [24] and JXWB [26] are two simple
and functional web browsers. They are simple because
they do not possess elaborate features such as client-
side plug-ins.

Editors: Jedit [33] and Jexit [25] are two full-blown editors.
The feature richness of these two applications pose
a great challenge to behavior-based security mecha-
nisms.

Instant Messengers: BIM [23] and SimpleAIM [27] are
two simple AOL instant messaging clients. SimpleAIM
is console-based and BIM is GUI-based. Instant Mes-
saging (IM) has become a serious application in both
enterprise and personal desktop environments, and is
also a favorite medium for spyware distribution [15].

Games: Computer games are a major channel for viruses to
infect both enterprise and home desktops. Even games
developed for mobile phones can be be infected with
viruses [2]. We include two simple games, Tetris [36]

and AntiChess [22], to cover this category of applica-
tions.

In our suite, we cover five categories of malicious code.
We arrive at this categorization based on the behaviors they
present. Each category of malicious behavior includes one
or more implementations. Table 1 lists our categorization of
these malicious behaviors.

We have placed the implementations of the malicious be-
havior inside a single source file for easy maintenance. Dif-
ferent types of malicious behavior are implemented in sep-
arate functions. The execution of a particular malicious
behavior is simply a call to the corresponding function(s).
Specially-formatted comments are placed in the source code
of the benchmark programs. These special comments are
placeholders for the invocation of malicious behavior. To
infect (or disinfect) the benchmark programs, we simply un-
comment (or comment) these placeholders.

Malicious behav-
ior type

Implementation(s)

1. Direct informa-
tion leakage

Read local file and email out.

2. Indirect
information
leakage

Copy local file to user’s webpage di-
rectory.
Copy local file to /tmp.
Change file permission bits.

3. Information
tampering

Update .hosts file in home directory.

4. Direct resource
abuse

Write a huge file to current direc-
tory.
Crash a process.

5. Indirect resource
abuse

Download remote code, put in the
system startup folder or update sys-
tem startup script.

Table 1: Categorization and implementation of ma-
licious behavior

3.2 Placement of malicious code inside bench-
mark programs

The location of malicious behavior inside a benchmark im-
pacts the accuracy of behavior-based security mechanisms.
When invoking malicious code at different locations, the ma-
licious behavior will appear in different contexts. If we place
the invocation of the malicious code such that it presents a
similar library API call or system call profile as in the orig-
inal application, the behavior-based mechanism will face a
bigger challenge to do its job well. Previous studies [18, 43,
6] have demonstrated the viability of the mimicry attacks
against host-based intrusion prevention systems. They en-
gineered the attack code to confuse the detection agent by
limiting the usage of library APIs and system calls to those
that are also used by the application.

This could lead to a practice of choosing the location of the
placeholders inside the benchmark program according to the
similarity between the malicious code and the context of the
benchmark program around the placeholders. However, we
have focused on capturing more general application behav-
ior instead of worrying about mimicing a specific low-level
library API and system call profile. Our goal is not to defeat
these security mechanisms, but instead, to evaluate their ef-
fectiveness. We want to measure the robustness of the logic

62



and rules sets underlying these mechanisms when encounter-
ing potentially confusing information. We call this practice
orthogonality-directed placement. The less orthogonal the
malicious behavior and the surrounding context of bench-
mark are relative to one another, the larger the challenge
that this benchmark suite poses to behavior-based mecha-
nisms.

Different placement schemes demand different levels of un-
derstanding of benchmark programs. The minimum level of
understanding is to make sure the insertion of placeholders
does not break the original code. We have experimented
with two placement schemes:

Random placement: Beyond the minimum requirement
of not breaking benchmark programs, our random place-
ment makes sure that the malicious code will appear
in at least two types of locations: at a location where
it will definitely appear on the execution path; and at
a location where it may or may not appear on the ex-
ecution path, depending on some particular run time
events. We position the placeholders in the startup or
termination section to emulate the first scenario and
in the user interface event handling section to emulate
the second scenario.

Orthogonality-directed placement: This requires us to
compute the degree of similarity of the program be-
havior and the malicious behavior. Our approach is to
classify both the benchmark programs and malicious
code to obtain four general categories of behavior: net-
work oriented, file system oriented, mixed or neither.
We then mix them together according to the extent of
overlap between behaviors in these four categories.

Among the four types of benchmark programs, we
classify IM clients as network-oriented, editors as file
system-oriented, browsers as mixed, and games as nei-
ther. Among the five types of malicious behaviors,
we classify indirect information leakage, information
tampering, and direct resource abuse as file system ori-
ented, direct information leakage and indirect resource
abuse as mixed.

Malicious behavior
Benchmark programs 1 2 3 4 5

Browsers
Jbrowser [24] ∆
JXWB [26] ∆

Editors
Jedit [33] ∆ ∆ ∆
Jext [25] ∆ ∆ ∆

IMs
BIM [23] ∆
SimpleAIM [27] ∆

Games
AntiChess [22] ∆ ∆ ∆ ∆ ∆
Tetris [36] ∆ ∆ ∆ ∆ ∆

Table 2: Placement of malicious code in applications

An example of an orthogonality-directed placement would
look like Table 2. Note that the numbering of the malicious
behavior corresponds to the numbering given in Table 1. All
of the placeholders are inserted manually.

3.3 User interface of the benchmark suite
The user interface to the benchmark suite is provided via

the Apache Ant build tool [19]. We provide four build tar-
gets for each benchmark program:

1. Infect: Insert malicious code into a benchmark pro-
gram by uncommenting the placeholders in the source
code.

2. Disinfect: Restore a benchmark program to the clean
version by commenting out these placeholders.

3. Jar: Build a single jar file of a benchmark program,
including all the class files, supporting files, as well
as the library package that implements the malicious
behavior.

4. Run: Run a benchmark program, generating the com-
mand line and running the benchmark program.

4. EXPERIMENTATION

4.1 A History-Based Access Control
To test our benchmark suite, we have implemented a history-

based access control mechanism based on the work done
in [4]. This is an example of a behavior-based security mech-
anism.

The basic idea of this mechanism is that a running pro-
gram is constantly categorized into a series of contexts ac-
cording to the resource requests it makes during execution.
Each context includes a number of Java permissions [9] which
could permit access to the guarded resource. This series of
contexts is the historical profile of the program and deter-
mines whether the future resource request should be granted
or rejected.

The relationship between different contexts are either co-
operative or non-cooperative. A policy file explicitly spec-
ifies the cooperative relationship. Permission to a new re-
source request can be granted only under one of the following
two scenarios:

• The program’s historical profile already includes a con-
text that contains this permission,

• The context that needs to be added to grant this per-
mission must be held in a cooperative relationship with
the program’s historical profile.

base

network file system

Figure 1: Contexts provided in a history-based ac-
cess control mechanism.

We have implemented a simple version of the history-
based access control. More sophisticated mechanisms can be
implemented in a similar way. However, this simple mech-
anism helps us to locate where the problem is when this it
succumbs to an exploit.

The mechanism we implemented has three contexts: base,
network, and file system, as shown in Figure 1. The base
context includes the most restrictive permissions, network
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and file system grant all network-related and all file system-
related permissions, respectively, which are thought of as
resources susceptible to attack.

When a resource access request is made, the base context
is searched first for permissions that could imply allowing
this access. Whenever a permission in the base context can
service the need, two things will happen: the base context
will be added to this program’s historical profile; and the
search process stops, even if permission in either the network
or the file system context may also allow this access.

Figure 2 shows an outline of the policy file for this simple
history-based access control mechanism. Note the priority of
the base context over the network and file system contexts
is indicated by the fact that the specification of the base

context precedes the other two in the policy file.

4.2 Evaluation
We carried out our experiment in two stages: (1) first pro-

filing clean benchmarks; (2) testing the security mechanism
against infected benchmarks.

During the profiling stage, a clean version of each bench-
mark is run once. We have modified the security manager
to intercept all resource requests. Permissions that are re-
quired to run a clean benchmark are granted and recorded.
We then create the policy file for the history-based access
control mechanism. We organize the gathered permissions
into the base context, and try to make some too permis-
sive permission more fine-grained, in order to minimize the
risk exposure of the base context. We make sure the clean
version of each benchmark can run without having to be
categorized into either a network or file system context.

During the testing stage, we run the infected version of
each benchmark. The security manager is loaded upon the
startup of the JVM and uses the policy file established from
the profiling stage to apply history-based access control.

Table 3 shows our experimental results. In this experi-
ment, we randomly placed the five types of malicious be-
havior inside each benchmark program.

Attack stopped
√

/missed× Malicious behavior
Benchmark programs 1 2 3 4 5

Browsers
Jbrowser [24] × × × × ×
JXWB [26] × × × × ×

Editors
Jedit [33] × × × × ×
Jext [25] × × × × ×

IMs
BIM [23]

√ √ √ √ √

SimpleAIM [27]
√ √ √ √ √

Games
AntiChess [22]

√
× × ×

√

Tetris [36]
√

× × ×
√

Table 3: Malicious behaviors inside the benchmark
suite stopped or missed by the history-based access
control. A

√
indicates the failure of this instance of

attack (being stopped); A × indicates the success of
this attack (being missed).

Before running this experiment, we anticipated that holes
in Java permission could cause trouble for our security mech-
anism. Also, we suspected that the permissions gathered in
the profiling stage are not fine-grained enough (i.e., we may
be too permissive). The analysis of our testing results con-
firmed our suspicions. In addition, we uncovered an instance
of sloppy coding practices in terms of security.

1. The permissions inside the contexts of this history-
based mechanism are not sufficiently fine-grained.

In the two games, the security mechanism stopped
all network-based attacks, yet failed to detect any file
system-based attacks. The problem is that the base
context cannot identify all of the file system access
requests during the testing stage. Therefore, the pro-
gram has to be categorized as file system context to
continue running. Once the file system context is added
into the historical profile of the program, any file system-
based attack can succeed in this program.

One possible remedy would be to add a fine-grained
file system permission into the file system context. An-
other choice would be to profile the program more ex-
tensively so that every possible file system access per-
mission required by the clean version of the program
could be added into the base context. However, this
second approach has two shortcomings: Complete cov-
erage during profiling is not always realistic; and we
may not be able to to profile every program before
deployment.

The two browsers are wide open to any attack. The
network-related and file system-related permissions in-
cluded in the base context are sufficient for all the at-
tacks to succeed.

Although we characterized editors as file system ori-
ented, the Jext program needs network access to pro-
vide the functionality of viewing a URL and editing the
file denoted by the URL. The execution of this func-
tionality during the profiling stage has already granted
some network access permissions to the base context.
As such, all network-based attacks in our benchmark
suite can also succeed.

2. The information provided by Java is insufficient. It
appears that the history-based access control mecha-
nism did a perfect job in protecting the two IM clients.
However the interpretation of the logging messages in-
dicates these two mixed attacks (i.e., direct informa-
tion leakage and indirect resource abuse) were stopped
only because of the portion that needs file system ac-
cess. The portions of these two attacks that have ac-
cess to the network were not stopped by the mecha-
nism.

This time we do not believe the problem lies in the
coarseness of the network access permissions. After all,
it is impossible to specify every possible instance of a
network connection. This suggests other information,
such as the producer of the destination address of a
network connection (binary or console input)) should
be collected and analyzed to detect potential malicious
behavior.

3. It may not be wise to count on other programs to
fully appreciate and correctly utilize the security ca-
pabilities of a high-level system like Java. Java pro-
vides a good interface to mediate access to various
resources: permission-based capabilities, as well as a
security manager mechanism that intercepts each re-
quest to a resource to check granted capabilities. New
security mechanisms such as this history-based access
control mechanism can be readily implemented in this
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};

context network

{

    permission java.net.SocketPermission "*", "connect,listen,accept,resolve";

};

CooperatingContexts

{

    permission java.io.FilePermission "<<ALL FILES>>", "read,write,execute,delete";

{

context file_system

    file_system

    base

};

CooperatingContexts
{
    network

    base

};

{

    permission java.net.SocketPermission "vanders.ece.neu.edu", "resolve";

    permission java.net.SocketPermission "localhost:*", "connect,listen, resolve";

    permission java.net.NetPermission "specifyStreamHandler", "";

    permission java.lang.reflect.ReflectPermission "*", "";

    permission java.lang.RuntimePermission "*", "";

    permission java.util.PropertyPermission "*", "read,write";

    permission java.awt.AWTPermission "*", "";

context base

    permission java.io.FilePermission "/home/student/dye/.jedit/−", "read,write,delete";

    permission java.util.logging.LoggingPermission "control", "";

....

};

Figure 2: Skeleton of the policy file for the history-based access control mechanism.

infrastructure. However, this mechanism can be ren-
dered powerless if the application is not well-formed.
For instance, a library function call inside Jedit simply
requests java.security.AllPermission upon program
startup. Once this permission is granted, our security
mechanism (based on Java permissions and Java se-
curity manager) cannot offer any help. This is the
real reason why our security mechanism cannot pro-
tect this program against any attack, even though the
case looks exactly the same as in the cases of the two
browsers and the Jext.

This suggests that when we have little confidence in
the code quality of an application, behavior-based se-
curity mechanisms may have to gather lower-level in-
formation to discern the behavior, even though a more
convenient higher-level infrastructure is available.

We should note that these problems all apply to a wider
range of security mechanisms. We expect to expose more de-
sign problems if similar benchmarking processes are applied
to more sophisticated mechanisms.

5. CONCLUSION AND FUTURE WORK

In this paper, we have presented a benchmarking method-
ology to evaluate the effectiveness of behavior-based security
mechanisms. We have developed a benchmark suite and de-
signed an evaluation framework. We exercised our suite by
applying it to a simple history-based access control mech-
anism. We discussed the findings of our experiment. The
experience and the results suggest that benchmarking is a
viable approach to evaluate the effectiveness of behavior-
based security mechanisms.

In the future, we plan to implement a set of benchmarks
using other mainstream languages such as C and C++. This
will allow us to evaluate some commercial behavior-based
security mechanisms. In the long term, we plan to explore
more sophisticated algorithms for malicious code placement.
We also plan to look into whether we can use binary instru-
mentation to insert malicious code in binary form directly
into an application.
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ABSTRACT  
The widespread use of personal digital assistants and smartphones 
should make securing these devices a high priority.  Yet little 
attention has been placed on protecting handheld devices against 
viruses.  Currently available antivirus software for handhelds is 
few in number.  At this stage, the opportunity exists for the 
evaluation and improvement of current solutions.  By pinpointing 
weaknesses in the current antivirus software, improvements can 
be made to properly protect these devices from a future tidal wave 
of viruses.  This research evaluates four currently available 
antivirus solutions for handheld devices.  A formal model of virus 
transformation that provides transformation traceability is 
presented.  Ten tests were administered; nine involved the 
modification of source code of a known virus for handheld 
devices.  The testing techniques used are well established in PC 
testing; thus the focus of this research is solely on handheld 
devices.  The test results produced high false negative rates for 
the antivirus software and an overall false negative rate of 42.5%.  
This high rate shows that current solutions poorly identify 
modified versions of a virus.  The virus is left undetected and 
capable of spreading, infecting and causing damage.   

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging; D.2.8 
[Software Engineering]: Metrics – performance measures; D.4.6 
[Operating Systems]: Security and Protection – Invasive 
Software 

General Terms 
Measurement, Performance, Reliability, Security, Verification. 

Keywords 
Anti-virus, malware, black-box testing, virus, worm, handheld, 
pda, windows mobile, smartphones, windows ce 
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1. INTRODUCTION 
On June 14, 2004, the first computer virus infecting handheld 
devices was identified [25].  The first virus to infect handhelds* 
running Windows Mobile operating system was released July 17, 
2004 [21].  This was the beginning of a new era for the virus and 
antivirus community.  At the time there were little if any antivirus 
solutions available.  An overwhelming majority of users were 
vulnerable to any possible viral attack.  In a reactionary effort, 
security companies released antivirus solutions for the infected 
devices that only protected against these specific viruses.  Still 
today many handhelds do not have some form of antivirus 
software installed.   

This research evaluates current antivirus solutions for handhelds 
with the objective of identifying problems in their detection 
mechanisms.  To achieve this objective we introduce a formal 
model to represent virus transformations and use the model in the 
generation of test cases. This model provides detailed traceability 
of the transformations produced by a virus.  The transformed 
viruses can be precisely ordered by creation time and 
transformation type.  The approach taken was to create test cases 
that are modifications of an already identified virus and load them 
into the handheld running the antivirus software.  That is, we 
wanted to test the detection accuracy of the antivirus software 
against virus modifications.  Specifically, the tests were designed 
with the goal of producing false negatives, which occur when an 
infected object is not detected as infected, by the virus detectors.  
Testing virus detectors for production of false negatives has been 
extensively performed in PCs [1, 26] and is well documented.  
Therefore this research focuses only on testing handheld devices.  
A high false negative rate would reveal virus detection 
weaknesses in the software.  The test environment consisted of a 
Pocket PC running the Microsoft Windows Mobile operating 
system and the antivirus software.  The tested antivirus software 
is specifically designed for this platform and currently available 
to the public.   

To our knowledge, this research is the first to evaluate current 
antivirus solutions for the Windows Mobile Platform and for 
handheld devices in general.  The flaws and problems discovered 
by this research can help lay the foundation for future study and 
work in virus detection for handheld devices.  The results of this 
                                                                 
* Smartphones and personal digital assistants will be collectively 

referred to as handheld devices or handhelds throughout this 
paper. 
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work can be made public via vulnerability databases, such as the 
National Vulnerability Database [19].  This research also provides 
insight on the application of testing methodologies to a new 
platform in the emerging area of handheld devices.  Currently 
there is no standard set of test cases for virus detectors on this 
platform.  Testing related organizations like Eicar.com and av-
test.org also have not yet addressed this issue.  The test cases 
created here can be applied to the development of a standardized 
set of test cases for this platform and these devices. 

In the next section we overview the terminology used in the 
paper.  Section 3 describes related work on testing virus detectors. 
Section 4 describes a formal model for virus transformation and 
the test categories used to generate the test cases.  Section 5 
describes the tests we performed and Section 6 our results.  
Finally we conclude in Section 7. 

2. BACKGROUND 
1. Computer Viruses:  A computer virus is defined as a program 
that copies a possibly evolved version of itself [26].  Computer 
viruses have become very sophisticated in detection avoidance, 
fast spreading and causing damage.  A highly populated 
taxonomy of viruses exists with each classification having its own 
challenges for successful detection and removal [26].  Today 
viruses are regarded as a real global threat and viewed as a 
weapon usable by those bent on creating large scale interruption 
of everyday life [4, 10].  

2. Virus Detectors:  The problem of viral detection was studied 
by Cohen which showed that detecting a virus is not decidable 
[2].  Many detection algorithms have been presented [24], each 
with its advantages and disadvantages.  Virus detection can be 
classified as one of two forms: signature based and behavior 
based [26].  Signature based detectors work by searching through 
objects for a specific sequence of bytes that uniquely identify a 
specific version of a virus.  Behavior based detectors identify an 
object as being viral or not by scrutinizing the execution behavior 
of a program [23].  Behavior based detection is viewed by many 
including the authors as key to the future of virus detection [3, 15, 
17] because of its ability to detect unknown viruses. 

3. Handheld Devices:  A handheld device can be described as a 
pocket sized device with computing capabilities.   Two types of 
handheld devices are relevant to this paper:  the personal digital 
assistant, also called pda, and the smartphone.  A pda is used as a 
personal organizer that includes a contact list, calendar of events, 
voice recorder, notes, and more.  A smartphone can be viewed as 
a cellular phone integrated with a pda.  Both of these types of 
handhelds share some basic limitations such as:   limited screen 
size, variable battery life, small storage space, operating system 
installed with limited resources and reduced processing 
capabilities [8, 27].  These limitations may not allow for antivirus 
software to be as powerful as those found in desktop PC’s.  
Signature databases and detection functionalities are limited in 
size and scope.  This can possibly result in more viruses being 
able to easily spread and avoid detection in an environment with 
weak security.  Some handheld device security issues have been 
previously addressed in [5, 6, 7, 13, 29].   
4. Evolution of Virus Detectors:  The evolution of virus 
detectors has moved parallel with the release of viruses in a 
reactionary manner [12].  As new viruses with new techniques 

were identified, antivirus researchers rushed to include these new 
tactics in their software [18, 26].  This evolution has produced a 
learning curve, with virus authors and antivirus researchers as 
both teacher and student.  Antivirus companies need to develop 
security solutions for these devices that defend against the types 
of viruses seen in the past without having to go through the same 
learning curve for a second time. 

5. Software Testing:  In this paper we use a black-box approach 
to test the antivirus solutions for handheld devices.  Black-box 
testing is an approach that generates test data solely from the 
application’s specification [16]. Since the software under test is 
proprietary, we employ the end-user view of the software as our 
specification.  This specification is the detection of objects 
infected with a virus. There are several techniques used to 
generate test cases based on the specification of a software system 
[30].  Two of these techniques are input space partitioning, and 
random testing [30].  Partition testing uses domain analysis to 
partition the input-output behavior space into subdomains such 
that any two test points chosen in a subdomain generates the same 
output value [20].  Random testing involves the selection of test 
points in the input space based on some probability distribution 
over the input space [16].  To generate the input data for our test 
cases we used a combination of input space partitioning and 
random selection of test points.  Due to the limited access to the 
full specification of the antivirus software, we informally apply 
partition testing and random testing.  We intuitively apply these 
techniques using the results of previous studies in testing antivirus 
software. 

3. RELATED WORK 
This research is motivated by the work done by Christodorescu 
and Jha [1].  Their research proposed methods of testing malware 
detectors based on program obfuscation [26].  They used 
previously identified viruses to test the resilience of commercially 
available antivirus software for PCs.  Christodorescu and Jha 
address two questions in their work; (1) the resistance of malware 
detectors to obfuscations of known malware, (2) can a virus 
author identify the algorithm used in a malware detector based on 
obfuscations of the malware.  The approach they used to answer 
these questions involved: the generation of test cases using 
program obfuscation, the development of a signature extraction 
algorithm, and the application of their methodology to three 
commercial virus scanners.  The results of their work indicated 
that the commercial virus scanners available for PCs are not 
resilient to common obfuscation transformations.  We use a 
similar approach to test the virus detection ability for handheld 
devices.  Unlike the work by Christodorescu and Jha [1], we are 
limited by the number of viruses available for handheld devices.  
This limitation is based on the fact that virus authors have just 
only started to write viruses targeting handheld devices.  Our 
experiments use similar transformations on the source code of the 
malware to generate test cases.   
Marx [14] presents a comprehensive set of guidelines for testing 
anti-malware software in the “real world”.  Marx claims that 
many of the approaches used to test anti-malware software in 
research do not translate into appropriate testing strategies for 
small business and home office use.  He further states that the 
focus of testing for the real world should be to create tests that are 
as exact as possible.  That is, tests that focuses on on-demand, on-
access, disinfection and false positive testing of the anti-malware 
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software products.  Although his article is targeted for data 
security managers and professional testers, he outlines procedures 
that should be taken when performing anti-virus software testing 
in any environment.  The work done by Marx [14] was used as a 
reference guideline for this research.  Other relevant research on 
the subject of testing virus detectors can be found in [9, 11].     

4. TESTING AND EVALUATION  
In this section we present a formal model for the transformation 
of viruses and show how this model is used to generate the test 
cases for our study.  Descriptions of each of the five test 
categories are also given. 

4.1 Formal Model of Virus Transformation 
As previously stated, a virus is defined as a program that copies a 
possibly evolved version of itself [26].  A virus v є V where V is 
the set of all possible viruses, enters during its execution a 
transformation stage R where one or more possibly evolved 
copies of v written v’, are produced and copied to some location 
(see equation(1)).  Successful transformation occurs when v’ has 
preserved the original intended execution behavior XB of v (see 
equation (2)).  Thus we have the following: 

Ri (pj, v, s) ≡ pij (v, s) = v’               (1) 

Ri is the currently running transformation instance.  pij є P is the 
specific type of transformation where P = {T, H, B, L, C}, for 
example B means substitution (see section 4.2 for descriptions of 
these values).  i holds a value representing the number of 
transformations that have occurred, the current value of i is the ith 
transformation to have taken place.  j holds the value representing 
the number of times, jth occurrence, a specific transformation type 
p has occurred, if p = H and j = 3 that means that the 
transformation type H has been used in 3 transformations up to 
this point.  v is the virus to be transformed.  s is an element that 
provides p the details for a specific transformation.  For example 
if p = B then s may contain the line numbers to substitute and the 
new lines to use for substitution (see section 4.2 for details of s 
for each transformation type).  v’ is the transformed version of v.  
When Ri occurs, the operation is always independent from every 
other occurrence of R.  The virus v used as input by R is always 
the same; it is the virus currently executing that invokes R.  The 
output of R, written v’, is always a possible evolution of v. The 
number of v’s that is produced is equal to the value of i.  In each 
occurrence of R, the only input that may change is the 
information held in s.  Thus the output v’ of two occurrences of R 
may be the same if s was unchanged in both operations and the 
same transformation type p was used. 

If (XB(v’) = XB(v)) Then Ri (pj, v, s) = Success 

                  Else Ri (pj, v, s) = Failure   (2)      

v’ can equivalently be written as vijk where k is the symbol for the 
transformation type used in a specific transformation Ri.  k is 
added to differentiate the value of j for each transformation type 
p.  This is necessary to illustrate that there are multiple instances 
of j, one for each transformation type p that is used.  Each j has its 
own value representing the j number of times p has been used.  
Therefore, if j = 2 and k = C, we know that this is the second time 
compression is used.  Assume virus v has finished one execution 
of itself.  During this execution 5 transformations occurred.  The 
transformation types used were: 1 substitution of source code, 2 

compressions, 1 insertion of trash source code and 1 label 
renaming.  Using the notation above, we can formalize this as 
follows:   

R1 (B1, v, s) ≡ B11 (v, s) = v11B    

R2 (C1, v, s) ≡ C21 (v, s) = v21C          

R3 (C2, v, s) ≡ C32 (v, s) = v32C          

R4 (H1, v, s) ≡ H41 (v, s) = v41H          

R5 (L1, v, s) ≡ L51 (v, s) = v51L                

We can see from this notation that placing the outputs v’ in order 
of creation is simple.  The notation facilitates identifying each 
virus v’ by order of creation and input transformation type.  Note 
that virus v21C and v32C may have been transformed the same or 
differently from one another.  This is, as previously noted, 
dependent on the information held in s. 

A virus detector written D, is a software program meant to detect 
and remove viruses before infecting a computer system [26].  
When detection is complete only one of two outcomes can result.  
The detection was successful or there was a failure.  A successful 
detection implies the correct identification of a virus infected 
object Ov.  This implies that the object O is infected with a virus 
v. That is, the sequence of bits representing v is contained within 
the sequence of bits representing O.  Thus v becomes a 
subsequence of O.  The object could be a file, an address in 
memory, or some other information stored in a computer system.  
All objects O are assumed non-viral before detection starts.  We 
express this idea as follows: 

v is a subsequence of O iff O is infected with v            (3) 

if v is a subsequence of O then O transforms to Ov      (4) 

D(O) = Success implies v is a subsequence of O        (5) 

A failed detection produces one of two outcomes: a false positive, 
FP, or a false negative, FN.  A false positive occurs when a non 
viral object is detected as being viral.  A false negative occurs 
when a virus infected object is not detected as being viral.  A 
small amount of false positives is tolerable, but false negatives 
must be avoided always.  Therefore: 

D(O) = FP falsely implies v is a subsequence of O for some 
virus v                                                      (6) 

D(Ov) = FN D fails to recognize that v is a subsequence of O 
for a specific virus v                                                   (7) 

Note (7) assumes that the object is already infected with a virus 
thus justifying the use of the symbol Ov. 

4.2 Test Categories 
The test cases generated, using a non-strict approach to input 
space partitioning and random testing, can be classified in five 
categories.  These are transposition of source code, insertion of 
trash source code, substitution of source code, label renaming and 
compression of the virus executable. These categories were 
chosen due to the facilitation each one gives virus detectors to 
produce a false negative [1].  These categories are also 
characteristic of polymorphism [18, 26] and metamorphism [26], 
powerful techniques used by virus authors.  Test case 
implementations of each category are presented in section 5.2.   
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1. Transposition of Source Code:  Transposition is the 
rearrangement of statements in the source code.  This makes the 
virus look differently by reorganizing its physical appearance.  It 
still preserves the original intended execution behavior.    
Transposition can be done randomly or in specific areas.  The 
whole body of the source code or only pieces of it can be 
transposed as long as the original intended execution behavior is 
preserved.  Applying (1) we have:   

 Ri (Tj, v, s) ≡ Tij (v, s) = vijT                   (8) 

where p = T indicates transposition and s provides the line 
numbers of the source code to transpose.  Transposition can result 
in changing the area of source code that is used as the signature 
by virus detectors.   This is a result of a change in the byte 
sequence of the executable version of the virus.  The transposition 
can also result in an increase in the byte size of the virus 
executable.  This is due to the addition of commands that preserve 
the original intended execution behavior.  These changes make 
transposition of source code a possible cause of a virus detector 
producing a false negative.  

2. Insertion of Trash Source Code:  This category inserts new 
code into the original source code.  This new code consists of 
instructions that do nothing to change, alter or affect the intended 
behavior of the original source code.  It does, in some cases, 
change the byte size of the executable version of the virus. By 
changing the byte size of the executable, some virus detectors 
may produce a false negative more easily.  This occurs in the case 
where the detector uses the length of the entire virus as part of the 
detection process.  Thus a change in this length could result in the 
detector misreading the virus.  What the newly inserted code does 
is inconsequential as long as it does not change the original 
intended behavior of the source code.  Using rule (1) trash source 
code insertion is expressed as: 

 Ri (Hj, v, s) ≡ Hij (v, s) = vijH                                  (9) 

where p = H denotes trash insertion.  s holds the trash code to be 
inserted and source code locations of where to insert them. 
3. Substitution of Source Code:  The removal of lines of source 
code is replaced with different lines of code.  The lines of code 
used for replacement are not copied from other areas of the code 
body.  The replacement lines can be the same size as the original.  
They can also be deliberately shortened or lengthened.  This is 
done to manipulate the overall byte size of the virus executable.  
The lines that are to be replaced cannot be in an area that can 
disrupt the original intended execution behavior.  This implies 
that this process cannot be random.  Careful selection of lines to 
replace can assure preservation of execution behavior.  Applying 
(1) produces as follows: 

 Rj (Bj, v, s) ≡ Bij (v, s) = vijB                   (10) 

p = B specifies substitution and s details which lines to replace 
and the lines to replace them with.  A virus detector can produce a 
false negative under this category for one of two possible reasons.  
First, the substituted lines can change the source code used as a 
signature by the detector for a given virus.  Second, as discussed 
before, if the byte size is not preserved it could cause the detector 
to identify it as benign.  This occurs in cases where the length of 
the virus is used in detection. 

4. Label Renaming:  This category involves the substitution of 
label names in the source code for new names.  A label is 
synonymous with a procedure or function name in a high level 
language.  The label is a pointer to an address space where the 
instructions to be executed are located.  A label therefore points to 
a set of instructions that are always executed when the label is 
referenced.  The new labels can be kept the same byte size as the 
original one and also can be purposely changed to a different size.  
In addition, the corresponding calls to these labels must be 
updated to ensure original intended execution behavior.  The label 
names chosen for substitution should be those that reference 
blocks of instructions essential to the virus execution such as: 
finding a file to infect, opening a file for infection and infecting 
the file.  A virus detector can produce a false negative in this 
category only when a signature includes a label or a call to a label 
that has been modified.  If no labels are included in the virus 
signature and the length of the entire virus is not used for 
detection, the possibility of a false negative is greatly reduced.  
This category is expressed as follows from (1): 

 Ri (Lj, v, s) ≡ Lij (v, s) = vijL                (11) 

where p = L signifies label renaming and s holds a list of the label 
names to replace and the new names to replace them with. 

5. Compression of a Virus Executable:  This category is the 
compression of the original virus executable.  Compression is 
done by a commercial product or private software belonging to 
the virus author.  The original intended execution behavior is 
fully preserved.  When a virus transforms it can evolve into a new 
version of itself that is self compressed.  This new version makes 
no modifications to alter the execution as it is originally intended.  
Virus detectors can produce a false negative under this category 
by failing to match the virus signature.  The compression may 
create a new byte sequence in achieving an overall byte size 
reduction.  This in turn may cause the source code used for the 
virus signature to be completely modified and thus detection is 
almost impossible.  Virus compression can be simply expressed as 
follows: 

 Ri (Cj, v, s) ≡ Cij (v, s) = vijC                              (12) 

p = C represents compression and s holds the file name for the 
compressed version.    

5. TEST IMPLEMENTATION 
As of the writing of this paper there were only two known viruses 
for the Windows Mobile platform: WinCE.Duts.A and 
Backdoor.Brador.A [21, 22].  Of these two viruses we were only 
able to conduct testing with one of them, WinCE.Duts.A.  Though 
the source code for both of these is readily available to the public 
[21, 22], Duts is the only one whose available source code can be 
assembled and executed.  The Duts virus consists of 531 lines of 
source code.  This virus was created as a proof of concept code by 
virus author Ratter formerly of the virus writers group 29A.  It 
exposes some of the vulnerabilities already present in the 
Windows Mobile platform.  It is written in the ARM processor 
assembly language.    

5.1 Testing Environment 
Four commercially available antivirus products for handheld 
devices were tested:  Norton, Avast!, Kaspersky, and 
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Airscanner.com.  The handheld device used for testing was a 
Toshiba 2032SP Pocket PC running Windows Mobile 2002 
(version 3.0.11171, build 11178) with full phone functionality 
provided by Sprint PCS.  The central processing unit is the ARM 
processor SA1110.  The Operating System of the PC used was 
Windows XP service pack 2.  Before administering the test cases 
a control test was given.  The original virus was tested for 
detection to assure each antivirus product properly identified it.  
Each of the ten test cases were allowed to fully execute to assure 
that infection of the system was occurring.  Thus showing the 
original intended execution behavior of the virus had been 
preserved after modifications was made.   

5.2 Description of Test Cases 
The test cases were introduced to the handheld device via the 
synchronization functionality from a PC. The version used here 
was Microsoft ActiveSync version 3.7.1 build 4034.  The 
antivirus software performed a complete virus scan with every 
test.  Before testing commenced the antivirus software was 
checked for updates from the software company’s website 
including the latest virus signature database.  Due to the page 
limit of this paper we are unable to show the complete code 
listing for the test cases.  However, we show relevant segments of 
code for several test cases. 

1. Transposition of Source Code 
Test Case 1.1:  We took a set of blocks of source code and 
inserted labels to each of these blocks.  The area of the source 
code chosen for this is the area where the actual file infection 
takes place, thus assuring probable execution of the transposed 
source code.  Then with the use of branch statements each labeled 
block branched to the next block in the set thus preserving the 
original execution order.  As a final step, all the blocks were 
rearranged and taken out of its original physical order.  The 
following is an implementation of this starting at line 308 of the 
virus source code: 

 

Test Case 1.2:  This involved manipulation of values held in 
various registers at a given moment during the execution.  In 
assembly language, registers are used extensively to hold values 

and addresses.  The manipulation of these values was done via 
addition and/or subtraction of a value in a particular register.  
Moving the value to other registers was also used.   The result 
was an extended piece of source code that took a value, modified 
it via 2 to 5 instructions and finished by placing back the original 
value in the original register.  This transformation preserved the 
execution order of the virus and the intended values held in the 
registers at a given instant in execution.  The following is an 
implementation starting at line 80 of the virus source code: 

 

Original Source Code Modified Source Code 

 
mov   r0, r5 
mov   r1, r4 
mov   lr, pc 
ldr   pc, [r11, #-20] 
cmp   r0, #0 
bne  find_files_iterate 

mov       r0, r5 
mov       r1, r4 
add       r0, r0, #2 
add       r0, r0, #4 
add       r1, r1, #6 
sub       r0, r0, #6 
sub       r1, r1, #4 
sub       r1, r1, #2 
mov      r4, r1 
mov      r5, r0 
mov      lr, pc 
ldr         pc, [r11, #-20] 
cmp      r0, #0 
bne      find_files_iterate 

 

2. Insertion of Trash Source Code 
Test Case 2.1:  This involved a copy of an original single line of 
code.  The line was pasted back into the source code immediately 
following the original one.  This did not change the behavior 
because the line of source code chosen consists of the instruction 
DCB which defines a byte with a string value.  This insertion only 
increased the byte size of the file by the size of the line of code.   

Test Case 2.2:  In this test, the same instruction as in test case 2.1 
was inserted right after five lines of source code.  The five lines 
were not in successive order and deliberately chosen to cover the 
whole body of the source code.  Each chosen line represented an 
essential part of the execution sequence such as:  finding a file to 
infect and reading the stack pointer.  The insertion did not affect 
the intended execution of the code and increased the file’s byte 
size  by length of the insert line multiplied by five.   

DCB  " just looking " 

Inserted after each of the following lines 

Line 18  mov   r11, sp 
Line 64  ldr   pc, [r11, #-24] ; find first file 
Line 228  cmp   r0, #0 
Line 303  ldr   r6, [r4, #0x28] ; gimme entrypoint rva 
Line 361   mov   lr, pc 
 

 

 

 

Original Source Code Modified Source Code 

 

ldr  r8, [r0, #0xc] 
add  r3, r3, r8 

       str  r3, [r4, #0x28 

 
sub  r6, r6, r3 
sub  r6, r6, #8 
 
mov r10, r0 
ldr r0, [r10, #0x10] 
add r0, r0, r7 
ldr r1, [r4, #0x3c] 
bl  _align_ 
 
 

section19 
 ldr  r8, [r0, #0xc] 
 add  r3, r3, r8 
 str  r3, [r4, #0x28]  
       bl  section20 
 
 section21 
 mov r10, r0 
 ldr r0, [r10, #0x10] 
 add r0, r0, r7 
 ldr r1, [r4, #0x3c] 
 bl  _align_ 
       bl section22 
 
 section20 
 sub  r6, r6, r3 
 sub  r6, r6, #8 

              bl  section21 
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3. Substitution of Source Code 
Test Case 3.1:  Here we replaced line 514 of the virus source 
code: 

DCB "This is proof of concept code. Also, i wanted to make 
avers happy." 

With 

DCB  "This is foorp fo tpecnoc code. Also, i wanted to make 
avers happy." 

The substitution preserved the length of the original line while 
making a modification to a subsection of it.  This was done to 
make a modification that did not affect the byte size of the virus.  
This substitution did not affect the intended execution of the 
virus.  Finally, it is worth noting that the format of the two lines is 
indeed identical with respect to spaces and character alignments.   

Test Case 3.2:  This test is similar to test case 3.1.  We replaced 
the same line 514 of the virus source code with an almost 
identical one.  This new line also had a modification to a 
subsection of it.  The modification was not the same as that of the 
first test.  This modification made the length of the line smaller 
than the original and thus also decreased the overall byte size.  
Also the character and space alignment was not preserved.  The 
following is the performed line substitution: 

DCB  “This is proof of concept code. Also, i wanted to make 
avers happy." 

Changed to 

DCB  “This is poc code. Also, i wanted to make avers 
happy." 

Test Case 3.3:  Here we again substituted line 514 of the virus 
source code with a new one.  The new line of code was 
maximally modified while still preserving the ability to assemble 
the source code.  The line used for replacement was the same 
length as the original line but space and character alignment were 
purposely not preserved.  The following is the actual substitution: 

DCB  “This is proof of concept code. Also, i wanted to make 
avers happy." 

Changed to 

DCB  “dkfjvd dkfje dkfdsfg kd934,d kdick 3949rie jdkckdke 
345r dlie4 vhg" 

4. Label Renaming 
The labels that were used for substitution were purposely kept the 
same byte size and also made different sizes in the tests.  Also the 
corresponding calls or branches to these labels were also modified 
to ensure original execution behavior.  The label names chosen 
for substitution referenced blocks of instructions essential to the 
virus execution such as: finding a file to infect, opening a file for 
infection and infecting the file.  

Test Case 4.1:  This test was a simple reversal of four label 
names found throughout the source code.  The byte size was 
preserved.  Also character alignment was preserved.  Two of the 
labels, appearing in lines 79 and 397 of the virus source code 
were renamed as follows: 

 

 

Line Number Original Source 
Code 

Modified Source 
Code 

79 find_next_file next_file_find 

397 open_file file_open 

 

Test Case 4.2:  In this test, the label names were purposely made 
longer thus increasing the byte size.  In this test the character and 
space alignment were not preserved. Two of these labels, located 
at lines 79 and 482 of the virus source code were renamed as 
follows: 

Line 
Number 

Original 
Source Code Modified Source Code 

79 find_next_file next_file_to_find_for_use 

482 ask_user user_ask_question_to_continue 

 
5. Compression of a Virus Executable 
Test Case 5.1:  Compression of the virus executable was done by 
compressing the executable version of the original virus using 
commercially available software.  The software PocketRAR [28] 
was chosen for this task.  This choice was made based on the 
experience of using the software and there is a version available 
for Windows Mobile.  The compressed file was placed in the 
handheld device and opened to view its contents.  Then the virus 
scan was performed.  This was done to find out if the antivirus 
software would not only detect the virus in compressed form but 
also delete it or at a minimum keep it from executing. 

6. TEST RESULTS 
Table 1 shows results of applying the tests described above.  
Column 1 is the test categories.  Column 2 is the individual tests 
in the order described in Section 5.  Columns 3 through 6 contain 
the individual tests results for the antivirus software used in the 
test executions.  The last row shows the false negative rate of each 
of the software tested.  A value of 0 represents detection failure, 
thus the virus was not detected and deleted and was still capable 
of execution.  A value of 1 represents detection success and 
deletion of the infected file.   A value of 2 denotes successful 
detection but not deletion, this value was added for the special 
case of compression.  Clearly a value of 0 is a false negative.   

Norton had the highest false negative rate with Avast! having the 
lowest.  Not including scanning the original virus, a total number 
of 40 tests were performed.  Of these, 23 tests were successful 
detections, leaving 17 as failures.  This is an overall 42.5% false 
negative rate, very high and unacceptable.  In the test for 
compression of source code, a special note should be taken 
regarding the behavior of the virus.  The compression software 
apparently creates a temporary copy of the contents of a 
compressed file when the files are viewed.  The virus scan detects 
and deletes this temporary copy, however, the original virus file 
can still be executed from within the compressed file view.  Thus 
the compression software does not allow the antivirus to delete  

72



 

the contents of a compressed file.  We count this as a failure 
because the virus is still in the handheld device, even though it 
was detected, and can still be executed.  Table 2 shows false 
negative rates with  columns 1 and 2 similar to Table 1, Columns 
3 and 4 shows successful and failed detections, and Columns 5 
and 6 show false negative rates by individual test and test 
category.   

Compression had the highest false negative rate followed by 
transposition of source code and insertion of trash source code.  In 
the individual test results, the second test of trash insertion caused 
all the antivirus software to produced false negatives. Yet the first 
test only caused one false negative.  This shows the insertion of 
trash source code within actual lines of instruction code is enough 
to cause the detector to incorrectly identify the file as viral. The 
transposition test category, the first test caused the most false 
negatives.  The insertion of branch statements in the source code 
results in a different physical appearance while maintaining the 
same execution behavior proved to be very effective in avoiding 
detection.   

In the substitution of source code category the false negative 
produced in test two hints that a slight decrease in the byte size of  

 

the virus executable may cause the virus to go undetected.  In test 
three of the same category, we purposely made space and 
character alignments different than the original line of source 
code while keeping the byte size the same which caused some 
false negatives to occur.   

In the label renaming category preserving and purposely changing 
the byte size of the labels did not affect the virus detectors.  This 
implies that changing the byte size may have the affect of 
avoiding detection if the byte size reduction is done in certain 
areas of the source code.  Also one can infer that labels may not 
be used by the virus signatures.  When a byte size reduction 
causes a false negative, the modified area might be of critical 
importance to the detector deciding if the code is viral or not.  
During the test case creation, we were not aware if the signature 
used by a detector was modified.  Many of the successful 
detections could have occurred because the transformation did not 
affect the virus signature.  Overall, with a 42.5% false negative 
rate, there is clearly room for improvement.   

7. CONCLUSION  
We have presented a technique of testing handhelds based on a 
formal model of virus transformation.  The results show multiple 

Table 1 Virus scanner test results and false negative percentage by software 

  Norton Avast! Kaspersky Airscanner.com 

Original virus  1 1 1 1 

Transposition Test 1.1 0 1 0 0 

 Test 1.2 0 1 1 0 

Trash Insertion Test 2.1 0 1 1 1 

 Test 2.2 0 0 0 0 

Substitution Test 3.1 1 1 1 1 

 Test 3.2 0 1 1 1 

 Test 3.3 1 1 0 0 

Label Renaming Test 4.1 1 1 1 1 

 Test 4.2 1 1 1 1 

Compression Test 5.1 2 2 2 2 

False Negative %  60% 20% 40% 50% 

Table 2 False negative percentage by individual test and category 

  
Successful 
Detection 

Failed 
Detection 

Per Test 
False Negative % 

Test Category 
False Negative % 

Transposition Test 1.1 1 3 75% 62.50% 

 Test 1.2 2 2 50%  

Trash Insertion Test 2.1 3 1 25% 62.50% 

 Test 2.2 0 4 100%  

Substitution Test 3.1 4 0 0% 25% 

 Test 3.2 3 1 25%  

 Test 3.3 2 2 50%  

Label Renaming Test 4.1 4 0 0% 0% 

 Test 4.2 4 0 0%  

Compression Test 5.1 0 4 100% 100% 
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flaws in current virus detectors for handheld devices.  The tests 
led to high false negative rates for each antivirus product and an 
extremely high overall false negative rate of 42.5%.  These results 
suggest that current virus detectors are purely simple signature 
based detection.  The formal model shows how detailed 
traceability of the virus transformations can be done.  Future work 
includes the detailed study of false negative productions in any of 
the given tests.  Byte size changes, substitution and transposition 
of source code and compression require further study to improve 
virus detection under these conditions.  Currently we have a great 
archive of knowledge of viruses for PCs.  This information can be 
used to produce sophisticated virus scanners for handheld devices 
given their limitations.  Ideally, this will occur expeditiously and 
preemptively to help avoid infections of future viruses for 
handheld devices. 
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ABSTRACT 

We present a set of methods (“SSCC”, for “safe, secure C/C++”) 
to eliminate buffer overflows (including wild-pointer stores) in C 
and C++, using a mixture of compile-time, link-time, and run-
time tests, plus some design-time restrictions.  A prototype 
implementation indicates that run-time overhead is much smaller 
than previous methods. The SSCC methods do not require 
changes to existing data layouts or object-code representation. 

The SSCC methods are applicable to applications written for the 
ISO/IEC 9899:1999 (“C99”) standard [5] and the 14882:2003 
(C++) standard [6] (herein, the “Standards”), as well as most 
commercially-popular extensions to those standards, and the 
earlier ISO/IEC 9899:1990 (“C90”) standard (now essentially out-
of-print). 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification – 
assertion checkers, class invariants, reliability;                      
D.3.4 [Programming Languages]: Processors – code generation, 
compilers, optimization;  

General Terms 
Design, Economics, Reliability, Security, Standardization, 
Languages, Verification. 

Keywords 
Static analysis, dynamic analysis, buffer overflow, reliability, 
code generation, compilers, optimization. 

1. INTRODUCTION 
Buffer overflows (in C and in C++) are the underlying cause of 
many vulnerabilities, accounting for up to 50% of vulnerabilities 
reported by CERT/CC[1]. Completely preventing these 
weaknesses without sacrificing efficiency would contribute 
positively to every software security assurance (SSA) approach 
for C and C++.  According to Robert Seacord [11], “vulnerability 

reports continue to grow at an alarming rate ... To address the 
growing number of both vulnerabilities and incidents, it is 
increasingly apparent that the problem must be attacked at the 
source by working to prevent the introduction of software 
vulnerabilities during software development and ongoing 
maintenance.” 
Ruwase and Lam summarized the situation: “A considerable 
amount of work has been performed on mitigating the buffer 
overflow problem using either static analysis or dynamic 
analysis.”[10]  However, in SSCC we attack the buffer-overflow 
problem using static analysis for issues that can be resolved at 
compile-time (and link-time), plus some amount of dynamic 
analysis using highly-optimized code sequences, for issues that 
can only be resolved at run-time.  Furthermore, certain design-
time restrictions can help eliminate buffer overflows, as described 
later in this paper. 
Modern compilers for C and C++ already perform significant  
static analysis to understand program semantics for optimizations, 
especially on vector and super-scalar hardware.  Furthermore, in 
well-written programs the array-bounds information is already 
maintained in variables defined by the programmer.   SSCC 
provides a method for the compiler to track that bounds 
information and verify (at compile-time, link-time, or run-time) 
that fetch-and-store operations are proper. 
Whenever possible, we have adopted terminology and concepts 
that would be reasonably familiar to programmers and compiler 
implementers.  C and C++ are rife with concepts which are 
intuitive to the programmer but complicated to represent in 
abstract mathematical logic — and vice-versa.  The programmer 
who understands the concepts behind SSCC will be better 
prepared to achieve the full safety/security goals of SSCC while 
minimizing run-time overhead.  (We do use the mathematical 
notation for half-open interval [Lo,Toofar) in contrast to the 
closed interval [Lo,Hi].) 
The SSCC methods generate fatal diagnostic messages in any 
case where buffer overflow cannot be definitively prevented.  
However, the SSCC methods do not impose “style rules” or 
portability considerations upon the compilation.  Any particular 
tool can enhance the basic SSCC methods. 
SSCC also applies to the production of software for embedded 
systems, but there are slightly different design criteria in that 
arena.  This paper primarily addresses the application of the 
SSCC methods to hosted systems, such as applications written for 
Linux, or Windows, or the Mac OS. 
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2. BACKGROUND 
We use these definitions for some fundamental terms: 

Bound of an array – the number of elements in the array. 
Lo of an array – the address of the first element of the array. 
Hi of an array – the address of the last element of the array. 
Toofar of an array – the address of the “one-too-far” element of 
the array, the element just past the Hi element. 
Target-size (or Tsize) of an array – same as sizeof(array) 
Once a pointer is associated with an object, the same terms are 
defined for that pointer.  For an array object, the Tsize of a 
pointer into that object is the total number of bytes in the array 
that is accessed by the pointer; i.e. the bound of the array times 
the number of bytes in (or “sizeof”) each element. Furthermore, 
the same definitions are applied to pointers to non-array objects, 
consistent with the equivalence between a non-array and an array 
whose Bound is 1.  The terms Lo, Hi, and Toofar can also be 
applied to integer subscript values when the context allows. 
We use “variable” to designate named objects including sub-
objects declared with member names. We use “state of an object” 
exclusively to refer to run-time state, and “attribute of a variable” 
to designate the compile-time understanding of that state.  One 
simple example is the Nul attribute.  On the two flow-control arcs 
from “if (p!=0)”, p has the Nul attribute on the “false” outcome 
arc and the not-Nul (Nnul) attribute on the “true” outcome arc.  
Other attributes used in SSCC are as follows:  Indir (Indirectable), 
Ni (Not-indirectable), Qi (Maybe-indirectable, either Nul or 
Indirectable), Lo (at Lo limit value), Hi (at Hi limit value), Toofar 
(at Toofar limit value), Ntl (Not-too-low, greater-than-or-equal-to 
Lo), Nth (Not-too-high, less-than-Toofar), Nullt (Null-
terminated), and Unk (Unknown).  These attributes are not 
mutually-exclusive.  Besides the attributes of one variable, SSCC 
makes frequent use of relationships between variables, as follows.  

Table 1. Relationships between variables 

int n IS_BOUND_OF(p) n provides the Bound of p 

int n IS_LENGTH_OF(p) n provides Length of p (number of 
elements before  null-terminator)  

int n IS_TSIZE_OF((p,q)) n provides Tsize of p and of q 

char *p IS_HI_OF (a) p provides the Hi of a 

char *p IS_LO_OF(a) p provides the Lo of a 

char *p 
IS_TOOFAR_OF(a) 

p provides the Toofar of a 

The notation above permits representation in the opposite order, 
with the obvious meaning:  
Table 2. Relationships between variables, opposite order 

char *p BOUND_IS(n) n provides the Bound of p. 

char *p LENGTH_IS(n) n provides the Length of p 

char *p TSIZE_IS(n) n provides the Tsize of p 

char a[] LO_IS(p) p provides the Lo of a 

char a[] HI_IS(p) p provides the Hi of a 

char a[] LO_IS(p) 
TOOFAR_IS(q) 

p provides the Lo of a,  and               
q provides the Toofar of a 

Several of these attributes can be defined using other attributes; 
e.g. the Bound of an array is equal to the Toofar minus the Lo.  
(For pointers, C/C++ arithmetic divides difference by sizeof.) 
A function’s returned value is an unnamed object whose attributes 
and relationships are often important: 

Table 3. Attributes and relationships involving returned value 

int n IS_BOUND_OF(return) n provides the Bound of the 
function’s returned pointer 

int n IS_LENGTH_OF(return) n provides the Length of the 
function’s returned pointer 

int n IS_TSIZE_OF(return) n provides the Tsize of the 
function’s returned pointer 

char *p IS_HI_OF(return) p provides the Hi of the 
function’s returned pointer 

char * QI(return) f() { function f returns a Maybe-
Indirectable return value 

These tables suggest a representation suitable for notation in 
source code, but any equivalent representation will do.   
Many details of the attributes and relationships used in the SSCC 
methods will be obvious from the Standards; here we will focus 
upon some details that might not be obvious.  The attributes and 
relationships are used to express pre-conditions and post-
conditions of operators and functions.  Whereas some systems of 
static analysis require manual annotation of pre- and post-
conditions, the SSCC methods are targeted at millions of lines of 
existing code and therefore rely only on pre- and post-conditions 
inferred automatically by the compiler. To emphasize the 
distinction, we designate these pre-conditions as “Requirements” 
and these post-conditions as “Guarantees”.   
We illustrate the basic definitions with this code snippet: 
  char a[] = "xyz"; 
  char *p = a; 

The Lo of p is the address &a[0] (or equivalently, the index 0), 
the Hi of p is &a[3] (or the index 3), and the Tsize of p is 4.  
The compiler keeps track of a relationship between the pointer p 
and the array to which it points.  The relationship continues 
through any pointer arithmetic (including increment or 
decrement) operations on p, but is discontinued when an address 
of a new object is stored into p. 

3. COMPILE-TIME VERIFICATION 
For a simple example of compile-time verification, consider the 
following. 
  struct spec_fd_t {int m;/*…*/} spec_fd[3]; 
  for (i = 0; i < 3; i++) {  
    int limit = spec_fd[i].m; /*…*/ 
  } 

The Bound of spec_fd is 3, the Hi is 2, and the Toofar is 3.  
The number of iterations is less than or equal to the Bound;  since 
the subscript variable i starts at the Lo value, the subscript 
remains suitable for spec_fd throughout the loop.  The SSCC 
methods rely upon recognition by the compiler of certain common 
loop constucts such as this one. 
If a loop manipulates a pointer passed as a parameter, the bound is 
not provided by the declaration. The compiler can infer the 
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bounds Requirement of a pointer parameter from a loop involving 
subscript or pointer arithmetic.  If the loop performs fetch-or-store 
up to and including the n-th element then n is the Hi; if the loop 
stops just before fetch-or-store on the n-th element then n is the 
Toofar; and similarly for a limiting address (pointer) value.  Here 
is a simple example: 
  void f(char *q, int n) { 
    p = q;  
    for (int i=0; i<n; i++) { 
      *p = ‘\n’;  
    } /* … */ 

As written, the compiler infers from this loop that &q[n] (or just 
n) is the Toofar of p (and q), because the n-th element is not 
accessed.  But if we add another line  
  *p = ‘\0’; 

after the loop-end, the compiler infers that n is the Hi.  (To be 
more precise, the Requirement is that n is “suitable” for the Hi, 
i.e., that the “real” Hi of the actual object is greater than or equal 
to the argument passed to this function.  In order to create a 
simple notation in keeping with the intuition of programmers and 
implementers, we use the same terms, like “Hi”, to define a 
“greater-than-or-equal-to” semantics for Requirements, and an 
“exactly-equal” semantics for the Guarantee provided by a 
defining declaration.) 
A similar rule infers the Nullt (null-terminated) attribute from a 
loop that searches for a null character; here is a simple example: 
  while (*p++ != ‘\0’)  
    ; 

Note that in these examples, the specified attribute is both a 
Requirement (pre-condition) and a Guarantee (post-condition).  
This is usually adequately clear from the context, but a notation 
for “Pre” and “Post” can be employed when needed.  Also note 
that the attributes and relationships stated for a returned value are 
always Guarantees and not Requirements (obviously). 
SSCC does not require whole-program analysis.  Along with each 
source file (and/or each object file, including object files in 
libraries) there is a tabulation known as the bounds-data file, 
specifying Requirements and Guarantees for each function.  For 
example, the bounds data file for memset specifies something 
like this: 
  memset(p, v, n IS_TSIZE_OF(p) ) 

Having seen this Requirement on the arguments to memset,  the 
compiler can verify that the following invocation clearly meets 
the Requirement, because the sizeof operator produces the 
required Tsize: 
  memset(&spec_fd[i], 0, sizeof(spec_fd[i])) 

Let’s change the example, to pass an integer unknown to the 
compiler: 
  memset(&spec_fd[i], 0, some_fn() ) 

The SSCC methods are unable to verify this at compile-time.  In a 
later section we describe the methods for run-time verification. 
Here we define the Requirements for the basic pointer and array 
operations in SSCC.  The notation “p[0]” will designate an array 
or pointer-into-array or pointer-to-non-array being accessed by 
any equivalent form of indirection, including “*p” and “p-
>member” and “(*p).member”.  The notation “p[i]” will 

designate an array or pointer-into-array being accessed by any 
form of indexed indirection, including “*(p+i)” and “*p++” and 
“*++p” and the corresponding forms using minus instead of plus.  
The notation “p+i” will designate any form of pointer arithmetic, 
including “p++” and “++p” and the corresponding forms using 
minus instead of plus.   

• Fetch or store indirect via p[0]   
Requires: p Indir (p is Indirectable) 

• Fetch or store indirect via p[i]   
Requires: p+i lies within [Lo,Hi],  
i.e., lies within [Lo,Toofar) 

• Calculate p+i  
Requires: p+i lies within [Lo,Toofar] 

The asymmetry between the Requirements for p[i] and p+i is 
required by the Standards (see 6.5.6 Additive operators, 
paragraphs 8 and 9, in [5]); the Toofar value is a valid result for 
pointer arithmetic, but it cannot be used for fetch or store. 

4. LINK-TIME VERIFICATION 
After compilation of all source files in the application, the SSCC 
linker verifies the compatibility of called functions with the 
calling context, and of uses of external objects with their defining 
instances, checking all Requirements against all Guarantees.   In 
C and C++, the defining instance of each array will provide 
definite bounds for the array; moreover, the bounds are constants.  
Therefore, any Requirements on bounds of external array objects 
can be verified at link-time. 
The discussion of the Requirements for the memset function 
illustrates the possibility that a bounds-data file may provide 
Requirements at the time the calling context is compiled.  
However, two C or C++ source files can each provide calls to a  
function in the other file, so no scheme of ordering of compilation 
can guarantee a simple ordering.  By requiring a complete 
traversal of the bounds-data files at link-time, we eliminate 
ordering-dependencies and verify that the bounds-data files reflect 
the latest compilation of the corresponding source files. 
SSCC specifies “type-compatible linkage for C programs”.  This 
is slightly different from an already-standardized feature of C++ 
known as “type-safe linkage”, which provides checking between 
calling functions and called functions to verify that arguments and 
parameters have (exactly) the same types. 
“Type-compatible linkage” is a less restrictive linkage rule which 
imposes only the C rules of “compatible types” having the “same 
alignment and representation”.  The difference is largely a matter 
of portability.  If int and long have the same alignment and 
representation on a particular platform, and function f takes one 
int parameter, and one object file invokes f with a long argument, 
then type-safe linkage will report a mismatch of types, but type-
compatible linkage will accept the linkage on this particular 
platform.  But on a different platform on which int and long have 
different alignment or representation, then both forms of linkage 
will complain.   
There are several reasons why type-compatible linkage is required 
for the SSCC methods.  First, standard C still permits the “old-
style” function definition and declaration, in which no type 
information is available for compile-time checking; type-
compatible linkage ensures that values are passed correctly for 
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this platform.  Second, function prototypes might differ between 
the called and calling contexts, whether by “versioning” changes 
over time, or by programmer carelessness.  Third, C provides the 
“varargs” calling convention, which is discussed later. 
The use of type-compatible linkage is one of several options on an 
SSCC platform for C.  Another option is to require the exact 
match, as required by the type-safe linkage of C++ (creating a 
restrictive subset of C).  Either linkage is adequate for the 
requirements of SSCC for C. 
Note that in C++ the type-safe linkage rules are also employed to 
provide function overloading, which is not a feature of C (under 
either linkage rule). 
The type-compatible (or the type-safe) linkage might (or might 
not) be implemented using name-mangling, a scheme by which a 
sequence of types is converted by the compiler into a short 
character string.  (For a detailed example of name-mangling, see 
[13].) 
For purposes of traceability and verification, the bounds-data file 
incorporates checksums for the associated source and object files, 
to provide a definitive connection between the linked application 
and the various constituent components. 

5. RUN-TIME VERIFICATION 
We do not claim that the SSCC compile-time and link-time 
verification will find all buffer overflows.  There will be cases 
where the compiler has identified the relevant bounds data but 
cannot verify the values at compile time, requiring run-time 
verification. 
It is well known that run-time verification can be much more 
efficient than slavishly performing a test at every reference.  
Loop-limit values need to be tested only once, before starting the 
loop.  Optimizations of the code-hoisting variety can perform 
verification earlier.  Further optimizations are known; for 
example, see Gupta [4]. 
Although the general subscript or pointer test implies two bounds, 
lower and upper, in almost every case the attributes of the pointer 
or subscript indicate monotonic progress in one direction.  
Therefore in almost every case the pattern of assembler code 
introduced into the run-time code sequence is one comparison 
instruction followed by a conditional branch.  Furthermore, the 
conditional branch is almost never taken.  Most modern platforms 
provide methods either in the hardware itself or in the compiler 
software whereby the optimization choices will avoid slowdowns 
for the almost-never-taken branch. 
SSCC provides “Keep On Running” modes for embedded (or 
unattended) systems (including semantics known as “saturation”, 
“modwrap”, and “zerobound”).  For the purposes of the present 
Workshop, however, we propose that run-time bounds-check 
failures must produce either a breakpoint that causes interruption 
of the running program and an opportunity to debug interactively, 
or an immediate invocation of the standard abort() function.  
(This choice between two behaviors is called an “abort constraint 
handler”, described in more detail below.) 
We created a prototype of the SSCC methods in order to estimate 
the execution penalty for the run-time tests.  Our tools were able 
to compile, link, and execute seven of the SPEC benchmarks [12]: 
164.gzip, 176.gcc, 181.mcf, 197.parser, 256.bzip2, and 300.twolf.  
Simple static analysis identified declarations and loops that 

provided bounds, as well as fetch-or-store expressions that 
required bounds.  We instrumented the SPEC benchmark 
programs to count each execution of a fetch-or-store expression 
that was not categorized as “compile-time”. We hand-estimated 
the percentage of the counted expressions that should have been 
recognized as compile-time by a full SSCC implementation, and 
the percentage of tests which could be eliminated by the various 
optimization methods described above. The detailed raw data and 
calculated results from all the tests are provided on the SSCC 
website [9].   The average estimated run-time overhead was less 
than 2%, which is significantly better performance than results 
from other comparable technologies.  (For one comparison 
example, Ruwase and Lam [10] report that by confining their 
method only to strings, a run-time overhead less than 26% was 
achieved in most of their samples.) 
The SSCC method provides special semantics for “varargs” 
functions, i.e. functions that accept a varying number of 
arguments.  The C and C++ standards define certain functions 
which accept a varying number of arguments of heterogeneous 
types, such as printf.  The printf format string specifies 
which argument types are expected.  If at run-time the actual 
arguments do not agree with the expected types, undefined 
behavior results.  This is a real vulnerability which has been 
exploited by hackers, just as buffer overflows have been. 
Furthermore, this vulnerability can be used to create subsequent 
buffer overflows.  In an SSCC implementation we require two 
alternative forms of varargs library functions: one which provides 
no run-time checking of argument types, and one which does 
provide checking.  If the compiler can see that the format-string 
argument is a constant character string, then at compile-time the 
compiler can determine whether the actual arguments match the 
expected types.  If successful, the compiler invokes the (faster) 
alternative without run-time checking.  If the compile-time match 
fails, the compiler can issue a fatal diagnostic so the programmer 
can fix the problem. 
But in some cases it cannot be determined at compile-time 
whether a varargs function’s actual arguments match the expected 
types.  In this situation, the SSCC compiler will add an extra 
character string argument after the named arguments.  The string 
contains the type-compatible name-mangled list of the types of 
the actual arguments passed in this function call.  Then the called 
function must also be compiled by the SSCC compiler, which 
performs a little extra work in the called function as each 
argument is extracted by the va_arg macro from the header 
<stdarg.h>.  If the type argument is a scalar type which 
produces a one-byte encoding in the mangled name string (e.g. 
double, which produces the single character ‘d’ in a typical 
name-mangling), then an invocation such as  
  p = va_arg(ap, double); 

produces a translated invocation such as 
  p = _va_arg1(ap, double, ‘d’); 

The enhanced _va_arg1 macro tests that the next byte in the 
argument mangled-name string is the character ‘d’, 
incrementing the pointer after the test.  (This is typically a 
reasonably fast operation on most hardware: a test and a post-
increment.)  If the argument has a type which produces a 
multiple-byte encoding in the mangled name string (e.g. pointer-
to-int, which produces the string “Pi” in a typical name-
mangling), then an invocation such as  
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  p = va_arg(ap, int*); 

produces a translated invocation such as 
  p = _va_arg2(ap, double, ‘P’, ‘i’); 

The _va_arg2 macro tests that the next two bytes in the 
argument mangled-name string are the characters “Pi”, 
incrementing the pointer after the test.  (Further macros handle 
more types with longer mangled names.  In addition, C has some 
special rules about varargs type-compatibility.) 
The rules for creating the expected-type character, or string of 
characters, for variable-argument functions permit more matches 
than the strict type-safe rules of C++.  The intent, as described for 
type-compatible linkage, is to accept C and C++ programs which 
work reliably in today’s environment, even if some portability 
problem might be lurking (to be diagnosed if and when the 
program is compiled on another platform or compiled with further 
portability-checking options). 
If the varargs argument mangled-name characters fail these type-
matching rules, an abort constraint handler is invoked (interactive 
debugger breakpoint, or abort).   

6. NEW LIBRARY FOR C 
The C standards committee is currently working on one piece of 
the security puzzle: WDTR 24731, a Technical Report for a new 
C library [7].  Among other features, the new library provides 
new APIs which permit, or encourage, the programmer to provide 
bounds information for all array arguments.  Furthermore, arrays-
of-characters created by these APIs are always null-terminated. 
These functions validate their arguments and the bounds 
requirements for the arrays they produce; these requirements are 
known as the “runtime-constraints”.  If a requirement is violated, 
the function invokes a “constraint handler”.  The behavior we 
described above as the “abort constraint handler” is the default 
behavior in Microsoft’s Visual Studio 2005 which provides a 
complete implementation of the WDTR 24731 library [8]. 
The new library provides a new typedef for specifying the sizes of 
arrays, called rsize_t, and an associated maximum value 
named RSIZE_MAX.  It is recommended that, for 
implementations targeting machines with large address spaces, 
RSIZE_MAX be defined as the smaller of the size of the largest 
object supported or (SIZE_MAX >> 1), even if this limit is 
smaller than the size of some legitimate, but very large, objects.  
This way, if a negative number is (incorrectly) given as the size of 
an array, after the (wraparound) conversion to an unsigned 
number, it will be recognized as a violation of a runtime-
constraint.  Before the introduction of RSIZE_MAX, this sort of 
bug could cause the over-writing of large areas of memory. 
The old APIs returned success-or-fail information in an 
inconsistent variety of conventions that mingled successful 
returned information with indications of failure.  The new APIs 
consistently return an indicator of “success-or-what-kind-of-
failure” using an integer type named errno_t.  

Consider the strcpy_s function, which accepts the address 
where the copied characters will be stored, plus an integer 
specifying the size of that array. 
  errno_t strcpy_s(char * restrict s1,  
    rsize_t s1max,  
    const char * restrict s2); 

By the explicit provision of bounds information for the target 
string, this API provides the opportunity to diagnose errors that 
could have caused buffer overflows with the old strcpy API. 

7. EXTENDING TO ALL PROGRAMS 
To this point, we have described methods by which SSCC ensures 
proper fetch-and-store accesses using only the variables defined 
by the programmer.  These methods will in some cases require a 
fatal diagnostic for situations in which the compiler and linker 
cannot determine whether a fetch or store introduces undefined 
behavior.  Examples include unusually complex instances of 
aliased pointers, buffers created by malloc, and interprocedural 
dependencies.  The recent article by Ruwase and Lam [10] has 
shown another method which can be applied to these most-
difficult cases.  In this alternative, unverifiable fetch-or-store 
operations can be checked by requiring that all potential fetched-
or-stored objects be entered into run-time tables (i.e. “dynamic 
tables”). 
By this method, hastily-written programs (“one-off jobs”) can be 
compiled and executed with certainty that, whatever flaws they 
might contain, they will not execute buffer overflows. In addition, 
some large legacy applications (“dusty decks”), or portions 
thereof, might not be worth top-to-bottom remediation to prevent 
buffer overflows.  Adding dynamic tables to the SSCC methods 
permits a choice based upon cost-benefit considerations. 

8. COMMERCIAL IMPLEMENTATION 
In order for methods like SSCC to make a significant difference 
in the reliability of the software infrastructure, we must get the 
methods into the tools that working programmers are using to 
build their applications.  We suggest that there are two different 
avenues to adoption; we refer to them as “remediation tools” and 
“compiler tools”. 
Remediation tools are intended to provide assistance when a 
group has made the decision to spend resources on improving 
some body of source code (typically hundreds of thousands, or 
millions, of lines of code).  Such decisions are typically prompted 
by corporate IT management, software QA, corporate standards, 
etc.  There are several commercial software-quality tools which 
serve this marketplace, including offerings from PolySpace, 
Coverity, Fortify Software, Secure Software, Klocwork, and 
others.  All of these products provide some assistance with 
preventing buffer overflows, but to our knowledge none of them 
provide certification that all buffer overflows are detected and 
prevented (which is the essential feature of the SSCC methods).  
However, these products do much more than check for buffer 
overflows; they detect bugs, catch other security problems, and 
enforce corporate coding standards, etc.  One or more of the 
quality-tools producers could add the SSCC methods to their 
remediation tools to provide assistance to projects attempting to 
revise their source code to definitively eliminate buffer overflows. 
Remediation tools can also perform a one-time conversion from 
the old C library to the new library [7].  For each (“non-
deprecated”) function defined in the new library (such as 
strcpy_s), there is a corresponding function that lacks some 
indication of the bounds data of the target (such as strcpy); call 
that the “corresponding deprecated function”.  The set of all the 
corresponding deprecated functions constitutes the “deprecated 
functions”.  For each invocation of a deprecated function in the 
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program being compiled, the bounds-data Requirements are well-
known from the Standards.  If the remediation tool employing the 
SSCC method is unable to determine a corresponding bounds-data 
Guarantee, then a fatal diagnostic is issued and an expert needs to 
study the problem.  Otherwise, the source code invocation is re-
written by the remediation tool to an invocation of the 
corresponding non-deprecated function, in which the bounds-data 
Guarantee is explicitly passed as an argument.  If the source-code 
context tests the returned value from the deprecated function, then 
the remediation tool rewrites the success-or-fail test into a test 
against the “errno_t” returned value from the corresponding 
non-deprecated function. 

These various forms of large-scale remediation should be of 
interest to the large consultancies that provide skilled talent to 
clients worldwide, such as Accenture, Bearing Point, IBM 
Business Consulting, McCabe, Watchfire, and EDS. 

Compiler producers constitute a segment of the software 
production supply chain, one that is quite different from the 
quality-tools producers.  Each hardware company typically 
maintains some number of compiler groups, as do several of the 
large software producers.   There are several specialized compiler 
producers.  In addition, there is a significant community of 
individuals and companies that support the open-source Gnu 
Compiler Collection (gcc).  Adding these various groups together, 
we estimate that there are well over 100 compiler vendors.  In 
order to encourage adoption of the SSCC methods into working 
compilers, we propose a general-purpose “SScfront” tool, to take 
the output from the C/C++ preprocessor, perform the SSCC 
methods (including reading from and writing to the SSCC 
bounds-data files), and produce a transformed C source code to be 
compiled by the platform-dependent compiler.  Along with the 
SScfront component, an SSCC “pre-linker” would also be 
required, to read and process the full collection of bounds-data 
files from all components of the application being compiled and 
linked.  If or when the SSCC methods become popular in the 
marketplace, compiler producers can doubtless produce more 
efficient and better integrated “all-in-one” solutions, just as the 
initial “cfront” implementation of C++ was replaced by integrated 
compiler solutions over a period of years. 
A third market segment contains the component producers, which 
provide specialized components to the compiler producers and 
quality tools producers; see Figure 1 below. 

 
Figure 1. Software Production Supply Chain 

In general, component producers don’t want to make products that 
would compete with their customers.  A successful adoption 
strategy for eliminating buffer overflows will need to take account 
of the unique position of each market segment. 
At some point, the compiler or quality tool implementing the 
SSCC methods will be prepared to certify that the application is 
free from buffer overflows.  Because of the significant costs that 
buffer overflows have imposed upon the market, certified absence 
of buffer overflows should provide significant economic value in 
several market segments. 

After demonstrating utility in the marketplace, the SSCC methods 
should be standardized, with permissions adequate for 
incorporation into open-source as well as proprietary products.  
We suggest, however, that too many technologies have been 
introduced with an emphasis upon market share and insufficient 
attention paid to requirements of security.  We maintain sufficient 
IPR protection for the SSCC methods to permit taking effective 
action against “spoofers” that would weaken the expectations of 
producers, users, and the public. 
 
 
 

9. CONCLUSIONS 
 
We itemize the novel features of the SSCC methods: 

• Combine static-analysis methods with dynamic-analysis 
methods, to create a hybrid solution; 

• Define an extensive (non-orthogonal) set of attributes and 
relationships that match the concepts intuitively used by 
programmers in constructing professional programs, and 
define their role in preventing buffer overflows; 

• Automatically infer the Requirements on the interface of 
each callable function; 

• Supplement the compilation and linking mechanism by 
producing and using bounds-data files which record 
Requirements and Guarantees for the defined and undefined 
symbols in one or more corresponding object files, as well as 
checksum information; 

• Verify C linkage using type-compatible linkage; 

• Verify type-compatible behavior of varargs functions, using 
a name-mangled string at run-time; 

• Provide automated remediation of each input source file into 
a source file which invokes non-deprecated functions in the 
new C library. 

The details involved in SSCC are extensive, but all work together 
to achieve properties which can be stated simply:  Bounds 
information is kept in parallel with the source and object code, 
and in particular kept in parallel with each callable function’s 
interface.  When a fetch or a store is performed, available bounds 
information is used at compile time, link time, or run time, to 
determine the validity of the fetch-or-store operation. 
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ABSTRACT 
Security is becoming a more and more important concern for 
software architecture and software components. Previous 
modeling approaches provide insufficient support for an in-
depth treatment of security. This paper argues for a more 
comprehensive treatment of an important security aspect, access 
control, at the architecture level. Our approach models security 
subject, resource, privilege, safeguard, and policy of 
architectural constituents. The modeling language, Secure 
xADL, is based on our existing modular and extensible 
architecture description language. Our modeling is centered 
around software connectors that provides a suitable vehicle to 
model, capture, and enforce access control. Combined with 
security contracts of components, connectors facilitate 
describing the security characteristics of software architecture, 
generating enabling infrastructure, and monitoring run-time 
conformance. This paper presents the design of the language 
and initial results of applying this approach. This research 
contributes to deeper and more comprehensive modeling of 
architectural security, and facilitates detecting architectural 
vulnerabilities and assuring correct access control at an early 
design stage.  

Categories and Subject Descriptors 
D.2.2 [Design Tools and Techniques]: Modules and interfaces. 

General Terms 
Design, Security, Access Control, Languages, Secure xADL 

Keywords 
Software architecture, secure software connector, security, 
architectural access control 

1. INTRODUCTION 
Consider the example of spam emails. With more and more 

proliferation of such emails (arguably now there is more spam 
traffic than normal traffic), effectively handling them is 
becoming a prominent security problem. Conceptually there are 
several measures that can be taken to mitigate the issue. The 
most radical route requires changing the email protocols, which 

was invented a quarter century ago for a friendly, trustworthy, 
and benign environment. Before such new protocols can be 
developed and widely deployed, the more realistic solution lies 
in “hardening” the existing facilities. If the administrators of the 
email servers take the responsibility, they can drop mails from 
known spammers, or delay mails from unknown senders, which 
will deter spammers that do not resend their spam. Such 
administrative changes, however, might have adversary effects 
on normal email operations, since they could possibly change 
the otherwise normal latency of emails. The users could also 
adopt their own countermeasures. If their incoming mail servers 
support spam control features, the users can configure the mail 
servers and let them either drop the spasm or filter them to 
special folders. Depending on how accurate the spam filters can 
be, completely dropping the spam might not be the best choice 
since the user will not be aware of the existence of possible 
misclassifications. If the users’ email clients support spam 
filters, which is the case for almost all modern clients, then the 
users can adopt a client-only solution, relying on the client 
filters to be properly trained for filtering spam emails, and 
reviewing such emails for possible misclassifications. If the user 
adopts both a server-filtering solution and a client-filtering 
solution, then the user should be cautious about how these two 
mechanisms interoperate with each other, since the 
configuration results of one solution cannot be easily transferred 
to another solution. This spam filtering example illustrates how 
many components a modern security problem can touch and 
how challenging it might be for the different defensive 
mechanisms to cooperate and provide the desired functionalities 
securely.   

With rapidly advancing hardware technologies and 
ubiquitous use of computerized applications, modern software is 
facing challenges that it has not seen before. More and more 
software is built from existing components. These components 
may come from different sources. This complicates analysis and 
composition, even if a dominant decomposition mechanism is 
available. Additionally more and more software is running in a 
networked environment. These network connections open 
possibilities for malicious attacks that were not possible in the 
past. These situations raise new challenges on how we develop 
secure software.  

Traditional security research has been focusing on how to 
provide assurance on confidentiality, integrity, and availability. 
However, with the exception of mobile code protection 
mechanisms, the focus of past research is not how to develop 
secure software that is made of components from different 
sources. Previous research provides necessary infrastructures, 
but a higher level perspective on how to utilize them to describe 
and enforce security, especially for componentized software, 
has not received sufficient attention from research communities 
so far.  

(c) 2005 Association for Computing Machinery. ACM acknowledges 
that this contribution was authored or co-authored by an affiliate of the 
U.S. Government.  As such, the Government retains a nonexclusive, 
royalty-free right to publish or reproduce this article, or to allow others 
to do so, for Government purposes only. 
SSATTM'05, 11/7-11/8/05, Long Beach, CA, USA. 
(c) 2005 ACM 1-59593-307-7/05/11 
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Take a popular web server, Microsoft Internet Information 
Server (IIS), as an example. The web server was first introduced 
in 1995. It has gone through several version changes during the 
following years, reaching Version 5.1 in 2001. Along this 
course, it was the source of several vulnerabilities, some of 
which were high profile and have caused serious damages [2]. A 
major architectural change was introduced in 2003 for its 
Version 6.0. This version is much safer than previous versions, 
due to these architectural changes [32]. No major security 
technologies were introduced with this version. Only existing 
technologies were rearchitected for better security. This 
rearchitecting effort suggests that more disciplined approaches 
to utilize existing technologies can significantly improve the 
security of a complex, componentized, and networked software 
system. 

Component-based software engineering and software 
architecture provide the necessary higher-level perspective. 
Security is an emergent property, so it is insufficient for a 
component to be secure. For the whole system to be secure, all 
relevant components must collaborate to ensure the security of 
the system. An architecture model guides the comprehensive 
development of security. Such high-level modeling enables 
designers to locate potential vulnerabilities and install 
appropriate countermeasures. It facilitates checking that security 
is not compromised by individual components and enables 
secure interactions between components. An architecture model 
also allows selecting the most secure alternatives based on 
existing components and supports continuous refinement for 
further development. 

Facing the new challenges of security for networked 
componentized software and given the base provided by 
existing software architecture research, we propose a software 
architecture description language that focuses on access control. 
The language enables a comprehensive treatment of security at 
the architecture level, striving for assurance on correct access 
control among architectural constituents. 

Section 2 of this paper surveys related work. Section 3 
outlines our approach, introducing the base architecture 
description language and the modeling extensions necessary for 
security development. Section 4 gives an example of applying 
the approach to a coalition application. Section 5 summarizes 
initial results of our research and outlines future work.  

2. RELATED WORK 
Since our work is focused on semantically rich secure 

connectors, this section first surveys existing research on 
connector-based software architectures. It also surveys security 
modeling based on other design notations, such as UML.  

2.1. Architectural Connectors 
Architecture Description Languages (ADLs) provide the 

foundation for architectural description and reasoning [18]. 
Most existing ADLs support descriptions of structural issues, 
such as components, connectors, and configurations. Several 
ADLs also support descriptions of behaviors [1, 17]. The 
description of behaviors is either centered around components, 
extending the standard “providing” and “requiring” interfaces, 

or is attached to connectors, if the language supports connectors 
as first class citizens [1]. These formalisms enable reasoning 
about behaviors, such as avoidance and detection of deadlock. 
Some early efforts have been invested on modeling and 
checking security-related behaviors, such as access control [21], 
encryption, and decryption [3]. 

Among the numerous ADLs proposed, some do not support 
connectors as first class citizens [6, 17]. Interactions between 
components are modeled through component specifications in 
these modeling formalisms. This choice is in accordance with 
component-based software engineering, where every entity is a 
component and interactions between components are captured in 
component interfaces. A component has a “provided” interface 
that lists the functionality this component provides. It also has a 
“required” interface that enumerates the functionalities it needs 
in providing its functionality. Interactions between components 
are modeled by matching a component’s “required” interface to 
other components’ “provided” interfaces.  

Embedding interaction semantics within components has 
its appeal for component-based software engineering, where 
components are the central units for assembly and deployment. 
However, such a lack of first class connectors does not give the 
important communication issue the status it deserves. This lack 
blurs and complicates component descriptions, which makes 
components less reusable in contexts that require different 
interaction paradigms [5]. It also hinders capturing design 
rationales and reusing implementations of communication 
mechanisms, which is made possible by standalone connectors 
[7]. We believe a first class connector that explicitly captures 
communication mechanisms provides a necessary design 
abstraction.  

Several efforts are focused on understanding and 
developing connectors in the context of ADLs. A taxonomy of 
connectors is proposed in [19], where connectors are classified 
by services (communication, coordination, conversion, 
facilitation) and types (procedure call, event, data access, 
linkage, stream, arbitrator, adaptor, and distributor). Techniques 
to transform an existing connector to a new connector [27] and 
to compose high-order connectors from existing connectors [16] 
are also proposed. 

However, these efforts are not completely satisfactory. 
They suffer from the fact that they are general techniques. All of 
them aim at providing general constructs and techniques to suit 
a wide array of software systems, which leave them ignoring 
specific needs that arise from different application properties. 
For example, both the connector transformation technique [27] 
and the connector composition technique [16] have been applied 
to design secure applications, but the treatment of security does 
not address the more comprehensive security requirements as 
understood by security practitioners. Those requirements have 
richer semantics. These semantics raise challenges, because the 
general techniques must handle them in a semantically 
compatible way instead of just decomposing the challenges into 
semantically neutral “assembly languages.” These semantics 
also provide opportunities, because they supply new contexts 
and information that can be leveraged. Such extra constraints 
are especially beneficial to the application of formal techniques, 
because these additional conditions could reduce the possible 
state space and lower the decidability and computational cost.  
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It is our position that a deeper treatment of security in the 
connector technology is needed for a comprehensive solution to 
the important software security problem. Such a treatment 
should handle and leverage the richer semantics provided by 
specific security properties, such as various encryption, 
authentication, and authorization schemes, instead of equating 
these security features with opaque abstract functions.  

2.2. UML-based Security Modeling 
UML is a standard design modeling language. There have 

been several UML-based approaches for modeling security.  
UMLsec [11] and SecureUML [15] are two UML profiles for 
developing secure software They use standard UML extension 
mechanisms (constraints, tagged values, and stereotypes) to 
describe security properties.   

Aspect-Oriented Modeling [23] models access control as 
an aspect. The modeling technique uses template UML static 
and collaboration diagrams to describe the aspect. The template 
is instantiated when the security aspect is combined with the 
primary functional model. This process is similar to the weaving 
process of aspect-oriented programming. The work described in 
[12] uses concern diagram as a vehicle to support general 
architectural aspects. It collects relevant UML modeling 
elements into UML package diagrams. 

3. SECURE xADL 
This section details the elements of the security modeling 

approach we are taking. We first give an overview of our 
existing architectural description language, and then we outline 
the new modeling capabilities we propose to help assuring 
correct architectural access control. 

3.1. Overview of xADL 
We extend our existing Architecture Description Language 

(ADL), xADL 2.0 [4], to support new modeling concepts that 
are necessary for architectural access control. xADL is an XML-
based extensible ADL. It has a set of core features, and it 
supports modular extensions. 

The core features of xADL support modeling both the 
design-time and run-time architecture of software systems. The 
most basic concepts of architectural modeling are components 
and connectors. Components are loci of computation, and 
connectors are loci of communication. xADL adopt these two 
concepts, and extend them into design-time types and run-time 
instances. Namely, in the design time, each component or 
connector has a corresponding type, a componentType or a 
connectorType. At run-time, each component or connector is 
instantiated into one or more instances, componentInstances or 
connectorInstances. This run-time instance/design-time 
structure/design-time type relationship is very similar to the 
corresponding relationship between the run-time objects, the 
program objects, and the program class hierarchy.  

Each component type or connector type can define its 
signatures. The signatures define what components and 
connectors provide and require. The signatures become 
interfaces for individual components. Note that xADL itself 

does not define the semantics of such signatures and interfaces. 
It only provides the most basic syntactic support to designate the 
locations of such semantics.   

xADL also supports sub-architecture. A component type or 
a connector type can have an internal sub architecture that 
describes how the component type or the connector type can be 
refined and implemented, with a set of components and 
connectors that exist at a lower abstraction level. xADL allows 
specifying the mapping between the signatures of the outer type 
and the signatures of the inner types. This enables composing 
more complex components or connectors from more basic ones.  

xADL has been designed to be extensible. It provides an 
infrastructure to introduce new modeling concepts, and has been 
extended successfully to model software configuration 
management and provide a mapping facility that links 
component types and connector types to their implementations.  

3.2. Modeling Architectural Security 
xADL has provided an extensible foundation for modeling 

architectural concerns. We extend it to model software security, 
focusing on architectural access control. We adopt the same 
modular and extensible approach utilized by the base xADL 
language, starting from a set of core security concepts and 
enabling future extensions. These extensions will eventually be 
subject to the extent that is made possible by both theoretical 
expressiveness and practical applicability.  

3.2.1. Access Control 
Our approach supports multiple security models that are 

being widely used in practice. Our first efforts are directed at the 
classic access control models [13], which is the dominant 
security enforcement mechanism.  

In the classic access control model [13], a system contains 
a set of subjects that has permissions and a set of objects (also 
called resources) on which these permissions can be exercised. 
An access matrix specifies what permission a subject has on a 
particular object. The rows of the matrix correspond to the 
subjects, the columns correspond to the objects, and each cell 
lists the allowed permissions that the subject has over the object. 
The access matrix can be implemented directly, resulting in an 
authorization table. More commonly, it is implemented as an 
access control list (ACL), where the matrix is stored by column, 
and each object has one column that specifies permissions each 
subject possesses over the object. A less common 
implementation is a capability system, where the access matrix 
is stored by rows, and each subject has a row that specifies the 
permissions (capabilities) that the subject has over all objects.    

Other models, such as the more recent role-based access 
control model [26] and the trust management model [33], can be 
viewed as extensions to this basic access control model. The 
role-based model introduces the concept of roles as an 
indirection to organize the permissions assignments to subjects. 
Instead of assigning permissions directly to subjects, the 
permissions are assigned to roles. Such roles can be organized 
into hierarchies, so a more senior role can possess additional 
permissions in addition to the permissions it inherits from a 
junior role. Each subject can selectively take multiple roles 
when executing software, thus acquiring the related permissions. 
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The trust management model provides a decentralized approach 
to manage subjects and delegate permissions. Since it is difficult 
to set up a centrally managed repository of subjects in a 
decentralized environment, trust management models use the 
attributes of subjects to identify them, and each local subject can 
check these attributes based on the information that is present at 
the local subject. Because the subjects are independent of each 
other, they can delegate permissions between them. Several 
efforts have been made to provide a more unified view of these 
models [25, 29]. For example, the role-based trust-management 
framework [14] views the trust management relationship as the 
containment relationship between independently defined roles. 
Such a unified view provides the theoretical foundation for our 
architectural treatment of access control models. 

3.2.2. Subject, Resource, Privilege, Safeguard, 
Policy  

Inspired by such a unified view, we introduce the following 
core concepts that are necessary to model access control at the 
architecture level: subject, principal, resource, privilege, 
safeguard, and policy. We extend the base xADL language with 
these concepts to get a new language, Secure xADL. To the best 
of our knowledge, this is the first effort to model these security 
concepts directly in an architectural description language. 

A subject is the user on whose behalf software executes. 
Subject is a key concept in security, but it is missing from 
traditional software architectures. Traditional software 
architecture generally assumes that a) all of its components and 
connectors execute under the same subject, b) this subject can 
be determined at design time, c) it will not change during 
runtime, either advertently or intentionally, and d) even if there 
is a change, it has no impact on the software architecture. As a 
result, there is no modeling facility to capture allowed subjects 
of architectural components and connectors. Also, the allowed 
subjects cannot be checked against actual subjects at execution 
time to enforce security conformance. We extend the basic 
component and connector constructs with the subject for which 
they perform, thus enabling architectural design and analysis 
based on different security subjects defined by software 
architects. 

A subject can take multiple principals. Essentially, 
principals encapsulate the credentials a subject possess to 
acquire permissions. In the classic access control model, the 
principal is synonymous with subject, directly designating the 
identity of the subject. In the role-based access control model, a 
principal can be a role that the subject takes. And since a subject 
can assume multiple roles, it can possess several principals. In 
the trust management model, a principal can be the public key 
credentials that a subject possesses. Principals provide 
indirection and abstraction necessary for more advanced access 
control models. 

A resource is an entity whose access should be protected. 
For example, a read-only file should not be modified, the 
password database can only be changed by administrators, and a 
privileged port can only be opened by the root user. 
Traditionally such resources are passive, and they are accessed 
by active software components operating for different subjects. 
In a software architecture model, resources can also be active. 
That is, the software components and connectors themselves are 

resources whose access should be protected. Such an active 
view is lacking in traditional architectural modeling. We feel 
that explicitly enabling this view can give architects more 
analysis and design powers to improve assurance.  

Permissions describes a possible operation on an object. 
Another important security feature that is missing from 
traditional ADLs is privilege, which describe what permissions 
a component possess depending on the executing subjects. 
Current modeling approaches take a maximum privilege route, 
where a component’s interfaces list all privileges that a 
component possibly needs. This is a source for privilege 
escalation vulnerabilities, where a less privileged component is 
given more privileges than what it should be properly granted. A 
more disciplined modeling of privileges is thus needed to avoid 
such vulnerabilities. We model two types of privileges, 
corresponding to the two types of resources. The first type 
handles passive resources, such as which subject has read/write 
access to which files. This has been extensively studied in 
traditional resource access control literatures. The second type 
handles active resources. These privileges include 
architecturally important privileges, such as instantiation and 
destruction of architectural constituents, connection of 
components with connectors, execution, and reading and writing 
of architecturally critical information. Little attention has been 
paid to these privileges, and the limited treatment neglects the 
creation and destruction of  software components and 
connectors [31].  

A corresponding notion is safeguard, which are 
permissions that are required to access the interfaces of the 
protected components and connectors. A safeguard attached to a 
component or a connector specifies what privileges other 
components and connectors should possess before they can 
access the protected component or connector.  

A policy ties all above mentioned concepts together. It 
specifies what privileges a subject should have to access 
resources protected by safeguards. It is the foundation for 
making access control decisions. There have been numerous 
studies on security policies [8, 20, 30]. Since our focus is on a 
more practical and extensible modeling of software security at 
the architectural level, our priorities in modeling policy are not 
theoretical foundations, expressive power, or computational 
complexity. Instead, we focus on the applicability of such policy 
modeling.  

Towards this goal, we feel the eXtensible Access Control 
Markup Language (XACML) [22] can serve as the basis for our 
architectural security policy modeling. The language is based on 
XML, which makes it a natural fit for our own XML-based 
ADL. The language is extensible. Currently it has a core that 
specifies the classic access control model, and a profile for role-
based access control. A profile for trust management is also in 
development. This modular approach makes the language 
evolvable, just like our own xADL modular approach. The 
extensibility allows us to adopt it without loss of future 
expressiveness. Finally, the language has been equipped with a 
formal semantics [9]. While this semantics is an add-on artifact 
of the language, it does illustrate the possibility to analyze the 
language more formally, and opens possibilities for applying 
relevant theoretical results about expressiveness, safety, and 
computational complexity to the language. 
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3.2.3. Contexts of Architectural Access Control 
In traditional access control, context has been used to 

designate factors involved in decision making that are not part 
of the subject-operation-object tuple. The most prominent 
example is time, which has been extensively used to express 
temporal access control constraints [10].  

Likewise, from an architectural modeling viewpoint, when 
components and connectors are making security decisions, the 
decisions might be based on entities other than the decision 
maker and the protected resource. We use context to designate 
those relationships involved in architectural access control. 
More specifically, the context can include 1) the nearby 
components and connectors of the component and the 
connector, 2) the explicitly modeled sub-architecture that 
contains the component and the connector, 3) the type of the 
component and the connector, and 4) the global architecture. 
Modeling the security context makes the architectural security 
implications more explicit, and any architectural changes that 
impact security become more apparent.  

Such context should be integrated in the policy modeling. 
XACML provides the concept of policy combination, which 
combines several policies into an integrated policy set. Different 
policy combination algorithms, such as permit-override and 
deny-override, are provided as part of the standard, and we 
extend them with structure-override and type-override, which 
gives the structure and the type final authority on granting 
permissions. The XACML framework, combined with our 
explicit modeling of architectural context, supplies necessary 
flexibility in modeling architecture security.  

3.2.4. Components: supply security contract 
A security contract specifies permissions an architectural 

constituent possesses to access other constituents and the 
permissions other constituents should possess to access the 
constituent. A contract is expressed through the privileges and 
safeguards of an architectural constituent.  

For component types, the above modeling constructs are 
modeled as extensions to the base xADL types. The extended 
security modeling constructs describe the subject the component 
type acts for, the principals this component type can take, and 
the privileges the component type possesses.  

The base xADL component type supplies interface 
signatures, which describe the basic functionality of components 
of this type. These signatures comprise of the active resources 
that should be protected. Thus, each interface signature is 
augmented with safeguards that specify the necessary privileges 
an accessing component should possess before the interfaces can 
be accessed. 

3.2.5. Connectors: regulate and enforce contract 
Connectors play a key role in our approach. They regulate 

and enforce the security contract specified by components.  

Connectors can decide what subjects the connected 
components are executing for. For example, in a normal SSL 
connector, the server authenticates itself to the client, thus the 
client knows the executing subject of the server. A stronger SSL 
connector can also require client authentication, thus both the 

server component and the client component know the executing 
subjects of each other.  

Connectors also regulate whether components have 
sufficient privileges to communicate through the connectors. 
For example, a connector can use the privileges information of 
connected components to decide whether a component 
executing under a certain subject can deliver a request to the 
serving component. This regulation is subject to the policy 
specification of the connector. A detailed example is given in 
Section 4. 

Connectors also have potentials to provide secure 
interaction between insecure components. Since many 
components in component-based software engineering can only 
be used “as is” and many of them do not have corresponding 
security descriptions, a connector is a suitable place to assure 
appropriate security. A connector decides what communications 
are secure and thus allowed, what communications are 
dangerous and thus rejected, and what communications are 
potentially insecure thus require close monitoring.  

Using connectors to regulate and enforce a security 
contract and leveraging advanced connector capabilities will 
facilitate supporting multiple security models [28]. These 
advanced connector capabilities include the reflective 
architectural derivation of connectors from component 
specifications, composing connectors from existing connectors 
[24], and replacing one connector with another connector.  

3.2.6. Syntax of Secure xADL 
Figure 1 depicts the core syntax of Secure xADL. The 

xADL ConnectorType is extended to a SecureConnectorType 
that has various descriptions for subject, principals, privileges, 
and policy. The policy is written in the XACML language. 
Similar extensions are made to other xADL constructs such as 
component types, structures, and instances.  

<complexType name=”SecurityPropertyType">
  <sequence> 
    <element name="subject" 
           type="Subject"/> 
    <element name="principal" 
           type="Principals"/> 
    <element name="privilege" 
           type="Privileges"/> 
    <element ref="xacml:PolicySet"/> 
  </sequence> 
<complexType> 
<complexType name="SecureConnectorType"> 
  <complexContent> 
    <extension base="ConnectorType"> 
      <sequence> 
        <element mame="security" 
           type="SecurityPropertyType"/> 
      <sequence> 
    <extension> 
  <complexContent> 
</complexType> 
<!-- similar constructs for component, 
structure, and instance --> 

Figure 1, Secure xADL schema 
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4. A CASE STUDY: COALITION 
Architectural modeling is instrumental for architects to 

design architecture and evaluate different alternatives for 
possibly competing goals. With the modeling capability 
introduced by Secure xADL and the regulation power enabled 
by secure connectors, architects are better equipped for such 
design and analysis on security.  

In this section, we illustrate the use of the secure software 
architecture description language with a coalition application. 
We present two architectures, each has its own software and 
security characteristics. We also describe how to specify related 
architectural policies.  

The coalition application allows two parties to share data 
with each other. However, these two parties do not necessarily 
fully trust each other, thus the data shared should be subjective 
to the control of each party. The software architecture is written 
in the C2 architecture style. In this style, the components send 
and receive requests and notifications at their top and bottom 
interfaces, and the connectors forward messages (requests and 
notifications) between their top interfaces and bottom interfaces. 
The two parties participating in this application are US and 
France.  

4.1. The Original Architecture 

 

Figure 2, Original Coalition 

Figure 2 illustrates the original coalition architecture, using 
our Archipelago architecture editor [4]. In this architecture, US 
and France each has its own process. US is on the left side, and 
France is on the right.  The squares are components. The regular 
rectangles are connectors. The US Radar Filter Connector sends 
all notifications downward. The US to US Filter Component 
forwards all such notifications to the US Filter and Command & 
Control Connector. However, US does not want France to 
receive all the notifications. Thus it employs a US to French 
Filter Component to filter out sensitive messages, and send 
those safe messages through US Distributed Fred Connector, 

which connects to the French Local Fred Connector to deliver 
those safe messages. (A Fred connector broadcast messages to 
all Fred connectors in the same connectors group.) The France 
side essentially has the same architecture, using a French to US 
Filter Component to filter out sensitive messages and send out 
safe messages.  

The advantage of this architecture is that it maintains a 
clear trust boundary between US and France. Since only the US 
to French Filter and the French to US Filter come across trust 
boundaries, they should be the focus of further security 
inspection. This architecture does have several shortcomings. 
First, it is rather complex, This architecture uses 4 Fred 
connectors (US Local, US Distributed, French Local, and 
French Distirbuted) and 2 components (US to French Filter, 
French to US Filter) to implement secure data routing such that 
sensitive data only goes to appropriate receivers. Second, it 
lacks conceptual integrity. It essentially uses filter components 
to perform data routing, which is a job more suitable for 
connectors. Third, it lacks reusability, since each filter 
component has its own internal logic, and they must be 
implemented separately.  

4.2. An Alternative Architecture with a Secure 
Connector 

 

Figure 3, Coalition with a Secure Connector 

An alternative architecture uses two secure connectors, a 
US to France Connector and a France to US Connector. Both 
are based on the same connector type. The US to France Secure 
Connector connects to both the US Filter and Command & 
Control Connector and the French Filter and Command & 
Control Connector. When it receives data from the US Radar 
Filter Connector, it always route it to the US Filter and 
Command & Control Connector. And if it detects that it is also 
connected to the French Filter and Command & Control 
Connector, and the data is releasable to the French side, then it 
also routes messages to the French Filter and Command & 
Control Connector. The France to US Secure Connector adopts 
the same logic. This architecture simplifies the complexity and 
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promotes understanding and reuse. Only two secure connectors 
are used. These connectors perform a single task of secure 
message routing, and they can be used in other cases by 
adopting a different policy. A shortcoming of this architecture is 
that the secure connectors can see all traffic, thus they are 
obvious targets for penetration, and their breach leads to secret 
leak. An architect should balance all such tradeoffs.  

4.3. The Architectural Policies 
Our approach bases the architectural access control 

decisions on security policies of architectural constituents. 
Different architectural constituents can execute different 
policies. For example, an individual constituent can execute its 
own local policy, while the architecture might adopt a global 
policy. There are also different types of policies about 
instantiating, connecting, and messaging to assure proper 
architectural access control.  

<connector id="UStoFranceConnector"> 
 <security type="SecurityPropertyType"> 
  <subject>US</subject> 
   <Policy RuleCombiningAlgId= 
             "permit-overrides"> 
    <Rule Effect="Permit"> 
     <Target> 
      <Subject> 
       <AttributeValue> 
        USToFranceConnector 
        <SubjectAttributeDesignator  
         AttributeId="subject-id"/> 
      <Resource> 
        <AttributeValue>RouteMessage 
        <ResourceAttributeDesignator 
         AttributeId="resource-id"/> 
      <Action> 
        <AttributeValue>RouteMessage 
        <ActionAttributeDesignator  
         AttributeId="action-id"/> 
     <Condition  
       FunctionId="string-equal"> 
      <AttributeValue>Aircraft Carrier 
      <Apply> 
       <AttributeSelector 
        RequestContextPath =  
         "//context:ResourceContent/ 
         security:routeMessage/ 
         messages:namedProperty 
         [messages:name='type']/ 
         messages:value/text()"/> 
      </Apply> 
     <Rule RuleId="DenyEverythingElse"  
       Effect="Deny"/> 

Figure 4, Message Routing Policy 

Figure 4 specifies part of the local message routing policy 
of the US to France Secure connector. The policy is written in 
Secure xADL, which adopts XACML as its policy sub-
language. (The XML syntax is greatly abbreviated, and 
indentation is used to signify the markup structure.) The 
connector executes as the US subject, because it is executing in 
the US side of the coalition application. The policy has two 
rules. The last rule denies every request, and the first rule 
permitss one request. With the permit-overrides rule combining 

algorithm, this policy essentially allows the explicitly permitted 
operation and denies all other operations. Such a secure-by-
default policy follows the best security practice.  

The rule applies when a US subject (the subject for which 
the connector acts) requests a RouteMessage action on a 
RouteMessage resource. The resource is of active resource, 
which is the capability of routing messages from one interface 
of a connector to another. The condition of the rule uses the 
XPath language to specify a content-based routing policy. It 
permits routing a message whose “type” value is “Aircraft 
carrier”. What is not shown in Figure 4 is the destination of the 
message, which only applies to messages directed to France.  

5. CONCLUSION 
Component-based software operating in a modern 

networked environment presents new challenges that have not 
been fully addressed by traditional security research. Recent 
advancement on software architecture shed light on high-level 
structure and communication issues, but has paid insufficient 
attention to security.  

We argue that architectural access control is necessary to 
advance existing knowledge and meet the new challenges. We 
extend component specifications with core security concepts: 
subject, principal, resource, privilege, safeguard, and policy. 
Component compositions are handled by connectors, which 
regulate the desired access control property. We propose a 
secure architecture description language, based on our xADL 
language. This language can describe the security properties of 
software architecture, specify intended access control policy, 
and facilitate security design and analysis at the architecture 
level. We illustrate our approach through an application sharing 
data among coalition forces, demonstrating how architectural 
access control can be described and enforced.  

The contributions of this research lie in that 1) we address 
the security problem from an architectural viewpoint. Our use of 
an architecture model can guide the design and analysis of 
secure software systems and help security assurance from an 
early development stage; 2) we provide a secure software 
architecture description language for describing architectural 
access control, arguably the most important aspect of security; 
3) the language enables specifying security contracts of 
components and connectors, laying the foundations for secure 
composition and operation. 

This research is still on-going work. Our future work 
includes 1) exploring the formal semantics of the language and 
developing an algorithm that can check whether an architecture 
meets the access control policies specified in various 
architectural constituents; 2) developing a set of tools (visual 
editing and implementation generation) to support developing 
with the architectural security modeling; 3) implementing the 
necessary run-time support for executing and monitoring the 
security policies. These development activities will extend our 
existing development environment, ArchStudio [4].   
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ABSTRACT 
We present in this paper a new methodology for 

prioritizing threats rated with ordinal scale values 

while preserving the meaning of ordinal values and 

respecting the rules that govern ordinal scales. Our 

approach is quite novel because we present a formal 

algebraic system called the k/m algebra to derive the 

equivalence classes into which threats will be placed 

and define an operation called k/m dominance which 

orders the equivalence classes. The operations of our 

algebra always respect the rules that govern ordinal 

scales and preserve the meaning of ordinal values. We 

also describe and present the results from a 

preliminary case study where we applied our k/m 

algebra to prioritize threats ranked using data from an 

existing threat modeling system. 

 

Categories and Subject Descriptors 
 D.2.8 [Software Engineering] Metrics – for threat 

modeling in computer security D.4.6 [Security and 

Protection]  

 

General Terms 
Security, Measurement 

 

Keywords 
Information assurance, Security metrics, threat 

modeling, threat prioritization. 

 

1. INTRODUCTION 
In today’s information age, the need for information 

assurance has never been greater. With every passing 

day in the twenty first century, issues of computer 

security are taking on great importance in all forms of 

software development. 
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In the past, issues of development and meeting 

deadlines often were given priority over security 

issues, and computer security itself was viewed as a 

“bolt-on”, something that could be added to a software 

system outside of development if security issues 

became visible.  

 

Whenever such issues arose, the usual solution was to 

add fixes or patches to existing systems.  The problem 

with such fixes is that they result in an expensive 

patchwork that does not seamlessly integrate with the 

existing system. Present day perspectives on software 

development have gradually begun to view security as 

an integral component of software, and many experts 

have stressed the importance of integrating security 

features into software applications from the very 

beginning of the software development lifecycle [1, 2, 

7, 12]. 

 

Unlike traditional software bugs, security 

vulnerabilities are exploited by thinking adversaries. 

In order to thwart such adversaries, many 

organizations have begun to model threats from an 

attacker’s point of view during the design phase and 

prioritize them using various risk analysis techniques 

[7, 9, 11]. This process is generally called threat 

modeling and includes methodologies like CERT’s 

OCTAVE[1] and Microsoft’s STRIDE/DREAD 

methodology [7, 11]. Threat modeling is now viewed 

as an integral part of information assurance design in 

software. 

 

Threat modeling involves categorizing threats using a 

scheme such as Microsoft’s STRIDE [7], and 

assessing each threat’s relative risk using a technique 

such as Microsoft’s DREAD. This allows mitigation 

efforts to be prioritized using a given threat’s overall 

risk in relation to the overall risk of other threats the 

system may face. 

 

A threat’s level of overall risk is based on multiple 

attributes such as the threat’s severity, its likelihood of 

occurring, etc.  Each of these attributes is rated on a 

relative scale such as “High”, Medium” or “Low”, or 

more often, a relative numeric scale such as “1”, “2” 

or “3”. Customarily, the overall risk is determined by 

performing some sort of mathematical transformation 

on the attribute values such as a sum, product or mean. 

The result of the transformation is used to assign a 
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given threat to an equivalence class representing one 

or more combination of attribute values. A given 

threat’s relative mitigation priority is based on the 

relative ordering of the equivalence class to which it is 

assigned. 

 

The problem with such approaches is that 

mathematical transformations such as addition and 

multiplication are impermissible on ordinal values, 

such as those commonly used to assess individual 

threat attributes [4, 5, 6]. This raises serious issues 

involving the propriety of current techniques for 

assigning threats to equivalence classes. 

 

The motivation behind this paper is to explore a 

solution to the problem of assigning threats to ordinal 

equivalence classes in such a way that we preserve the 

meaning of the individual threat attribute ratings and 

also obey the rules that govern ordinal values. 

 

We have developed a new algebraic system in order to 

facilitate the combination of various ordinal threat 

attribute values. We propose this system as a potential 

general solution to the threat prioritization problem. 

This paper presents our algebraic system and the 

results of a preliminary case study that we undertook 

to validate our algebra.  

 

All operations in our algebra strictly obey the rules of 

the ordinal scale. In order to determine the validity of 

our approach, we applied our algebra to threats ranked 

with Microsoft’s DREAD threat ranking system [7]. 

We discovered that our prioritization produced a 

significantly different ordering than the one produced 

by DREAD. This is a very promising and exciting 

result and gives us the motivation to conduct further 

research on validating the k/m algebra by applying it 

to other prioritization schemes. As of this writing, we 

are not aware of any other threat prioritization system 

that works on threats rated using an ordinal scale 

while preserving the meaning of the rankings and 

respecting the rules that govern the ordinal scale.  

 

The rest of the paper is organized as follows. Section 2 

presents a brief description of the ordinal scale from 

measurement theory. Section 3 describes our k/m 

algebra and the operations allowed, Section 4 

describes a preliminary case study we undertook of 

applying the k/m algebra to threats ranked with 

DREAD and the results, and section 5 describes future 

work. 

 

2. THE ORDINAL SCALE 
This section provides a brief description of ordinal 

scales as defined by Stevens in 1946 and described by 

Finkelstein in 1984 [5].  

 

There are four basic measurement scales in 

measurement theory, the nominal scale, the ordinal 

scale, the interval scale, and the ratio scale. Each of 

these scales are used for different purposes and each 

have different permissible mathematical 

transformations or relations that may be applied to 

them [4, 5, 6].  

 

The ordinal scale as defined by Stevens is used to rank 

data with respect to some attribute [4, 5, 6]. Ordinal 

scales are used for ranking entities based on whether 

they have “more” or “less” of the attribute in question 

than another entity.  There is no notion of “unit 

distance” between objects in an ordinal scale [6]. Thus 

we cannot say that “the distance between 4 and 8 is 

the same as the distance between 8 and 12” as we can 

in interval and ratio scales which are necessary for 

transformations such as sums and products.  

Consequently, relationships such as “3 units more” or 

“2 units less” are meaningless without a unit distance, 

and thus are also confined to interval and ratio scales. 

 

The only permissible relationships on ordinal scales 

are equality (Vulnerabilities a and b have the same 

criticality) and the “is more than” and “is less than” 

relations [5]. For example, “Vulnerability a is more 

critical than vulnerability b”. 

 

Because of the lack of a unit distance, medians are 

meaningful on an ordinal scale but not means [4]. If 

vulnerability a has a rating of 8 and vulnerability b has 

rating of 4 on an ordinal scale, it is meaningful to say 

that “Vulnerability a is more critical than vulnerability 

b” but it is not meaningful to say something like 

“Vulnerability a is twice as critical as vulnerability b” 

or “The average vulnerability of a and b is 6.”  

 

Most threat and risk prioritization schemes that we 

have seen such as DREAD [7] and  Failure Mode and 

Effects Analysis (FMEA) [10] use ordinal values to 

rate a threat or failure mode’s attributes. In order to 

derive the overall risk, the attributes of a failure mode 

or threat are subjected to impermissible mathematical 

transformations like means and sums (DREAD) or 

products (FMEA). This breaks the rules that govern 

ordinal scales, and when looked at strictly from the 

viewpoint of ordinal scales, renders the result quite 

meaningless. 

 

Researchers like Kmenta [8], and Bowles [3] have 

pointed out these mathematical problems with respect 

to FMEA and have recommended ways to solve this 

problem by using pareto ranking procedures [3], or 

probability and expected cost [8]. Fenton [4] notes that 

some of the most basic rules and observations 

governing measurement scales have been ignored in 

many software measurement studies. 

 

We have developed a new formal method for the 

treatment of this problem. We call our system the k/m 

algebra and all the operations of our algebra obey the 

rules of the ordinal scale. This approach is novel 

because we are not aware of any other methodology 

that is used to summarize threats with multiple 

ordinally rated attributes while preserving the meaning 

of ordinal ranks and also respecting the rules that 

govern the ordinal scales.  
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3. THE K/M ALGEBRA 
This section introduces our new algebra (from now on 

called the k/m algebra) and defines the objects and 

operations allowed by this system. For the purposes of 

this paper we have viewed this algebra as acting on 

threats and have defined it accordingly. However, the 

system is general enough that it can be used for 

combining any group of entities rated with ordinal 

attributes without any modifications. 

 

3.1 Overview 
The k/m algebraic system facilitates ordering n threats 

with m attributes each of which are assigned one of k 

ordinal values. All k/m operations respect the rules 

that govern ordinal scales as defined by Stevens in 

1946. [5].  

 

The k/m algebra defines the equivalence classes into 

which a specific threat can be placed. In the k/m 

algebra, the equivalence classes are called k/m objects. 

The  ordering of these equivalence classes is 

determined by the generic k/m algebra operation 

called the k/m dominance operation.  The following 

subsections define the equivalence classes in the k/m 

algebra, constructing the equivalence classes, and the 

k/m dominance operation.  

 

Assumption: For ease of discussion, it has been 

assumed that an threat’s  m attributes associated with 

one of k ordinal values are represented as a m-tuple T 

= (r1 ,.. ,rm) . 

 

3.2 The k/m object 
A k/m object O is an equivalence class denoted as a  

collection of k numbers o1...ok ,the sum of which 

equals m. The value of each oi in a k/m object is the 

frequency of occurrence of i in every T that is a 

member of this equivalence class. The following 

example illustrates a k/m object. 

 

Note: In this example and all the others that follow, it 

has been assumed that entities have four attributes (m 

= 4) and there are three ordinal ratings 1 – 3 (k = 3). 

 

Example: Let R be a m-tuple representing a mulit-

attribute entity (i.e., a threat) as follows : T = (1, 2, 3, 

3). The equivalence class into which we place T can 

be determined as follows. 

 

In this case k = 3 and m = 4. Hence the k/m object 

will be comprised of 3 numbers  o1...o3 , whose sum 

equal 4. From T, we observe that there are two 3’s, 

one 2, and one 1. To construct a k/m object for T, we 

place the frequency of occurrence of 3 into o1 , the 

frequency of  occurrence of 2 into o2 and the 

frequency of occurrence of 1 into o3.  Thus, the k/m 

object representing T’s equivalence class is 211. 

 

3.3 The k/m dominance operation 
 

Notation: >k/m (xa, xb) 

 

Definition:  The k/m dominance operation is defined 

by the following rule. xa and xb are k/m objects 

 

  
                          

 

Example: 

 

a. Let xa = 211 and xb = 013. From the 

definition of k/m dominance, xa k/m 

dominates xb. Thus, >k/m (211, 013) ⇒ true. 

b. Let xa = 211 and xb = 310. From the 

definition of k/m dominance, xb k/m 

dominates xa. Thus, >k/m (211, 310) 

⇒ false. 

 

The k/m dominance operation is used for ordering the 

equivalence classes which are k/m objects. 

 

 

3.4 Equivalence classes and 

prioritization 
Threats are placed into different equivalence classes 

based on their attributes’ ordinal ratings. Placing 

threats into equivalence classes avoids the problem of 

partially ordered sets during prioritization which 

forces us into ad hoc “equivalent but different” 

orderings that can result in inconsistent prioritization. 

By placing threats into equivalence classes such as 

k/m objects or classes with names like “High”, 

“Medium”, and “Low”, we ensure that we have a total 

ordering of the threats via these equivalence classes or 

categories since the equivalence classes are ordered 

and not the threats within those equivalence classes.  If 

threats T1 and T2  are determined to be equally 

dangerous, then they are both placed into the same 

equivalence class.  

 

No two equivalence classes have the same priority, 

and the k/m dominance operation in section 3.2 is the 

axiom that defines the strict ordering of equivalence 

classes. The concept of ordering equivalence classes is 

certainly not new. Mostly the equivalent classes are 

implicit. Let us look at some common cases beginning 

with Microsoft’s DREAD ordering system [7]. The 

initial DREAD system proposed used a 10 point 

ranking (see section 4.1), and the average of the ranks 

of each threat’s attributes was computed and used as 

the overall risk value. Many threats can have the same 

overall risk value. Thus each such value is an 

equivalence class. Since the minimum ranking is 1 and 

the maximum ranking 10, the overall risk can range 

from 1 through 10. Assuming an accuracy of one 

decimal place, there can be 91 equivalence classes {1, 

1.1, 1.2, …, 9.9, 10}. Determining the ordering of 

these equivalence classes is trivial. This is an example 
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of a system of implicit equivalent classes.  A later 

version of DREAD [9] using a 3 point scale 

recommends adding the values of each threat’s 

attributes, and placing threats into categories called 

“High”, “Medium”, and “Low” based on their values. 

In this case, the equivalence classes are quite explicit. 

Again, ordering the equivalence classes is trivial. 

 

In our system, the equivalence classes are k/m objects 

and each k/m object is derived based on the frequency 

of occurrence of ordinal rankings in threat data. If k = 

3, and m = 4 then we can have the following 

equivalence classes from the rules of k/m object 

construction,  {310, 202, 220, 121, 211, 004, 013, 301, 

400, 130, 022, 031, 103, 112}. The ordering of these 

equivalence classes is determined by the k/m 

dominance operation. 

 

We have thus presented a system in which we do not 

have to resort to impermissible mathematical 

transformations like addition and multiplication to 

derive the equivalence classes into which threats can 

then be placed, and have also presented a scheme for 

ordering these equivalence classes. 

 

4. CASE STUDY – DREAD 
This section describes a case study that we undertook 

in order to explore the ramifications of our k/m 

algebra by applying it to  existing threat prioritization 

methodologies. We chose Microsoft’s DREAD 

methodology for ranking and prioritizing threats as 

our target methodology.  

 

We first provide an overview of DREAD and then 

describe the process of applying the k/m algebra to the 

threats. We discovered that the ordering of threats 

obtained by using the k/m algebra was significantly 

different from the ordering obtained by using 

DREAD’s ordering mechanism which makes us 

believe that further research is needed into the k/m 

algebra rankings and an empirical study needs to be 

undertaken in order to determine if the ordering given 

by the k/m algebra is better than the ordering given by 

current methodologies. 

 

4.1 DREAD – an overview 
The following brief discussion is derived from 

“Writing Secure Code” by Howard and LeBlanc [7]. 

DREAD is a risk calculating mechanism used by 

Microsoft as part of their threat modeling process. 

DREAD operates hand in hand with the STRIDE 

mechanism which categorizes threats. DREAD is an 

acronym each letter of which stands for a threat 

attribute. Each of the attributes are ranked using one of 

10 criticality ratings with 1 being the lowest rating and 

10 being the highest (catastrophic) rating. The 

attributes are 

 

Damage Potential  - How much damage will 

be done  if the threat is exploited by an 

attacker ? 

 
Reproducibility - How easy is it for an 

attacker to exploit the threat? 

 
Exploitability    - How much skill does an 

attacker need to have in order to exploit this   

threat?  

 
Affected Users   - How many users will be 

affected if this threat is exploited and an 

attack were mounted? 

 
Discoverability  - How easy is it for an 

attacker to discover this threat in order to 

mount an attack?  

 

Once all of the threat’s attributes have been ranked, 

the mean of the five attribute ratings are taken and this 

value is the perceived overall risk or equivalence class 

of the threat. Once this process is done for all 

identified threats, the threats are sorted by the overall 

risk value in descending order for priority 

determination. The astute reader will have observed 

that the DREAD ratings are ordinal in nature, and 

applying the mean operation on ordinal values breaks 

the rules that govern ordinal values.  

 

Swiderski and Snyder [11] recommend that the 

DREAD ratings be on a narrower range (1-3) so that 

each rating can have a simpler definition. Meier and 

others [9] use a 1-3 rating for DREAD and perform 

addition on the ordinal values instead of taking the 

mean. Each threat in this scheme is handled as 

follows. The threat’s attribute ranks are added up to 

give each threat an overall value ranging from 5 – 15. 

Threats are then grouped into three equivalence 

classes or categories called “High” (12-15), “Medium” 

(8 – 11), and “Low” (5 – 7). This scheme once again 

breaks the rules of the ordinal scale since the 

impermissible addition transformation is used.  

 

We present two examples using our k/m algebra, one 

using the 10 point DREAD ranking system and the 

other using the 3 point DREAD ranking system. Table 

1 shows 6 threats each of which have been assigned 

DREAD ratings using the 10 point system. The threats 

in table 1 are taken from [7]. In order to derive the 1-3 

ratings to use in the second study, we assumed the 

mapping shown in table 2. Table 3 shows the same 

threats assigned DREAD ratings using the 3 point 

system by using the mapping in table 2. 

 

Using the 10 point DREAD system, the threats are 

prioritized as {[T1], [T2], [T4], [T3], [T6], [T5]}, and 

using the 3 point DREAD system, the threats are 

prioritized as {[T1, T2, T3, T4], [T5, T6]}. 
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Table 1: DREAD data ranked using the 10 point   

scale 

 

Threat 

ID 

D R E A D Overall 

Risk 

T1 8 10 7 10 10 9 

T2 7 7 7 10 10 8.2 

T3 6 6 7 9 10 7.6 

T4 10 5 5 10 10 8 

T5 10 2 2 1 10 5 

T6 10 2 2 8 10 6.4 

 

Table 2: Mapping from a 10 point scale to a 3 point 

scale 

 

DREAD 10 point scale DREAD 3 point scale 

1 - 3 1 

4 - 7 2 

8 – 10 3 
 

 

 

Table 3: DREAD data ranked using the 3 point  

scale 

 

Threat 

ID 

D R E A D Sum Overall 

rating 

T1 3 3 2 3 3 14 High 

T2 2 2 2 3 3 12 High 

T3 2 2 2 3 3 12 High 

T4 3 2 2 3 3 13 High 

T5 3 1 1 1 3 9 Medium 

T6 3 1 1 3 3 11 Medium 

 

 

 

4.2 Applying the k/m algebra to 

threats ranked using DREAD 
The first step in applying the k/m algebra to the threats 

in table 1 and table 3 is to assign an equivalence class 

or k/m object to each threat. For the data in table 1, m 

= 5 and k = 10.  For the data in table 3, m = 5 and k = 

3. We assume that we are given the threat data as 5-

tuples. For example the data for threat T1 from table 1 

would be represented  as  T1= (8,10,7,10,10). From 

section 3.2, the corresponding k/m object for T1 would 

be 3111000000. Table 4 shows all the threats from 

table 1 mapped into k/m objects, and table 5 shows all 

the threats from table 3 mapped into k/m objects. 

 

We now apply the k/m dominance operation from 

section 3.3 to the k/m objects in tables 4 and 5 in order 

to get the two prioritization orders for the equivalence 

classes. 

 

 

Table 4: Mapping threats attributes to k/m objects 

using a 10 point scale 
 

Threat Data k/m object 

T1=(8, 10, 7, 10, 10) 3 0 1 1 0 0 0 0 0 0 

T2=(7, 7, 7, 10, 10) 2 0 0 3 0 0 0 0 0 0 

T3=(6, 6, 7, 9, 10) 1 1 0 1 2 0 0 0 0 0 

T4=(10, 5, 5, 10, 10) 3 0 0 0 0 2 0 0 0 0 

T5=(10, 2, 2, 1, 10) 2 0 0 0 0 0 0 0 2 1 

T6=(10, 2, 2, 8, 10) 2 0 1 0 0 0 0 0 2 0 
 

 

 

Table 5: Mapping threat attributes to k/m objects 

using a 3 point scale 
 

 

 

 

 

 

 

 

 

 

 

The prioritization order for the threats in table 4 is 

{[T1], [T4], [T2], [T6], [T5], [T3]}, and the prioritization 

order for the threats in table 5 is {[T1], [T4], [T6], [T2, 

T3], [T5]}.  

 

Observe that in both examples, the k/m dominance 

operation produced significantly different 

prioritization orders when compared to the 

prioritization orders produced by the corresponding  

DREAD systems. We feel that this result is 

significant. 

 

The fact that our k/m algebra, using scale-permissible 

transformations resulted in a different prioritization 

order of threats than techniques using scale-

impermissible transformations is a very interesting 

result.  One explanation, of course, is that our 

prioritization is indeed incorrect, and using scale-

permissible transformations is counterproductive (of 

course, this begs the question as to which of the 10-

point or 3-point DREAD prioritizations is the correct 

one). However, an alternate explanation is that our 

prioritization is superior to both the 10-point and 3-

point DREAD prioritizations, and by using scale-

permissible transformations, we have not added to any 

information that was in the original analysis. 

  

Further research is needed to validate our approach. 

As a result of this finding, we have decided to 

undertake further research in order to find out the 

significance in difference in the orderings produced. 

Our ultimate goal is to be able to determine with 

certainty the answer to the question “Does our k/m 

algebra produce a better prioritization of threats when 

compared to existing methodologies?” 

Threat Data k/m object 

T1=(3, 3, 2, 3, 3) 4 1 0 

T2=(2, 2, 2, 3, 3) 2 3 0 

T3=(2, 2, 2, 3, 3) 2 3 0 

T4=(3, 2, 2, 3, 3) 3 2 0 

T5=(3, 1, 1, 1, 3) 2 0 3 

T6=(3, 1, 1, 3, 3) 3 0 2 
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5.  FUTURE WORK 
In order to further validate our k/m algebra and 

achieve our goal as stated in the previous section, we 

intend to apply our algebra to large datasets of 

DREAD data and also to other security risk analysis 

techniques and determine empirically whether our 

ranking scheme is better at prioritizing threats than 

existing methodologies. 

 

Since our ordering scheme works on any entity with 

multiple ordinally rated attributes, we are also 

considering extending our research and experimenting 

with our algebra on standard techniques like Failure 

Modes and Effects Analysis (FMEA) which also use 

ordinally rated attributes for failure modes [10] and 

comparing the results. In order to prioritize large 

datasets of threats quickly, we are also developing a 

software environment that will facilitate threat model 

analysis and automatically perform the prioritization. 

 

6. CONCLUSION 
We described a new methodology, the k/m algebra for 

prioritizing threats during threat modeling of software 

applications. We showed that our k/m algebra 

performed the prioritization of threats while fully 

respecting the rules that govern ordinal values unlike 

existing methodologies. We also presented 

experimental evidence that the prioritization order 

produced by our algebra was significantly different 

from the order that was produced by an existing 

methodology. This result is very promising and 

exciting since we have arrived at a different threat 

prioritization ordering by using our k/m algebra 

without having to resort to impermissible 

mathematical transformations on ordinal data.  
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