
NIST Special Publication 500-265

Proceedings of Workshop on

Software Security Assurance Tools,
Techniques, and Metrics

Paul E. Black (workshop Chair)

Michael Kass (Co-chair)
Elizabeth Fong (editor)

Information Technology Laboratory

National Institute of Standards & Technology
Gaithersburg MD 20899

 February 2006

U.S. Department of Commerce
Carlos M. Gutierrez. Secretary

National Institute of Standards and Technology

William Jeffrey, Director

1

Disclaimer: Any commercial product mentioned is for information only; it does not
imply recommendation or endorsement by NIST nor does it imply that the products
mentioned are necessarily the best available for the purpose.

Software Security Assurance Tools, Techniques, and Metrics, SSATTM’05
ISBN # 1-59593-307-7/05/0011

2

Proceedings of Workshop on

Software Security Assurance Tools, Techniques, and
Metrics

Paul E. Black (workshop chair)

Michael Kass (co-chair)
Elizabeth Fong (editor)

Information Technology Laboratory
National Institute of Standards and Technology

Gaithersburg, MD 20899

ABSTRACT

This is the proceedings of a workshop held on November 7 and 8, 2005 in Long Beach,
California, USA, hosted by the Software Diagnostics and Conformance Testing Division,
Information Technology Laboratory, of the National Institute of Standards and
Technology. The workshop, “Software Security Assurance Tools, Techniques, and
Metrics,” is one of a series in the NIST Software Assurance Measurement and Tool
Evaluation (SAMATE) project, which is partially funded by DHS to help identify and
enhance software security assurance (SSA) tools. The goal of this workshop is to discuss
and refine the taxonomy of flaws and the taxonomy of functions, come to a consensus on
which SSA functions should first have specifications and standards tests developed,
gather SSA tools suppliers for “target practice” on reference datasets of code, and
identify gaps or research needs in SSA functions.

Keywords: Software assessment tools; software assurance; software metrics; software
security; target practice, reference dataset; vulnerability

 3

Foreword

The workshop on “Software Assurance Tools, Techniques, and Metrics” was held 7-8
November 2005 at the Long Beach, California, USA, co-located with the Automated
Software Engineering Conference 2005.

This workshop consisted of eleven paper presentations for the first day. The second day
morning consisted of “target practice” and the review of the nature of the reference
dataset.

The Program Committee consisted of the following:

Freeland Abbott Georgia Tech Paul Ammann George Mason U.
Elizabeth Fong NIST Michael Hicks U. of Maryland
Michael Koo NIST Richard Lippmann MIT
Robert A. Martin MITRE Corp. W. Bradley Martin NSA
Nachiappan Nagappan Microsoft Research Samuel Redwine James Madison U.
Ravi Sandhu George Mason U. Larry D. Wagoner NSA

These proceedings have five main parts:

• Summary
• Workshop Announcement
• Workshop Agenda
• Reference Dataset Target Practice, and
• Papers

We thank those who worked to organize this workshop, particularly Elizabeth Fong, who
handled much of the correspondence and Debra A. Brodbeck, who provided conference
support. We appreciate the program committee for their efforts in reviewing the papers.
We are grateful to NIST, especially the Software Diagnostics and Conformance Testing
Division, for providing the organizers' time. On behalf of the program committee and the
whole SAMATE team, thanks to everyone for taking their time and resources to join us.

Sincerely,

Dr. Paul E. Black

 4

Table of Contents

Summary …………………………………………………………………………………6

Workshop CALL FOR PAPERS …………………………………………………………7

Workshop Program ……………………………………………………………………….9

SAMATE Reference Dataset “Target Practice” ………………………………………...10

Where do Software Security Assurance Tools Add Value ……………………………...14
 David Jackson and David Cooper

Metrics that Matter ………………………………………………………………………22
 Brian Chess

The Case for Common Flaw Enumeration ……………………………………………...29
 Robert Martin, Steven Christey, and Joe Jarzombek

Seven Pernicious Kingdoms: A Taxonomy of Software Security Errors ………………36
 Katrina Tsipenyuk, Brian Chess, and Gary McGraw

A Taxonomy of Buffer Overflows for Evaluating Static and Dynamic Software Testing
Tools……………………………………………………………………………………..44
 Kendra Kratkiewicz and Richard Lippmann

ABM: A Prototype for Benchmarking Source Code Analyzers ………………………..52
 Tim Newsham and Brian Chess

A Benchmark Suite for Behavior-Based Security Mechanisms ………………………..60
 Dong Ye, Micha Moffie, and David Kaeli

Testing and Evaluation of Virus Detectors for Handheld Devices ……………………...67
 JoseAndre Morales, Peter J. Clarke, and Yi Deng

Eliminating Buffer Overflows Using the Compiler or a Standalone Tool …………...…75
 Thomas Plum and DavidM. Keaton

A Security Software Architecture Description Language ………………………………82
 Jie Ren and Richard N. Taylor

Prioritization of Threats Using the K/M Algebra ……………………………………….90
 Supreeth Vendataraman and Warren Harrison

 5

Summary

This is the proceeding of the workshop on Software Security Assurance Tools,
Techniques, and Metrics, held on November 7 and 8, 2005 at Long Beach, California,
USA, co-located with the Automated Software Engineering Conference 2005. It was
organized by the Software Diagnostics and Conformance Testing Division, Information
Technology Laboratory, National Institute of Standards and Technology (NIST). Forty-
two people attended, including people from government, universities, tool vendors and
service providers, and research companies.

The workshop is one of a series in the NIST Software Assurance Measurement and Tool
Evaluation (SAMATE) project, http://samate.nist.gov/ A previous workshop was on
Defining the State of the Art in Software Security Tools, held on August 10 and 11, 2005
at the NIST in Gaithersburg, MD, USA.

The call for papers resulted in eleven accepted papers, which were presented on the first
day of the workshop. The second day was devoted to the discussion of reference dataset
and target practice with three SSA tool vendors, and included an invited presentation
“Correctness by construction: The case for constructive static verification” by Rob
Chapman.

The material and papers for the workshop were distributed on USB drives to the
participants. The content of the USB drives was:

• Introduction,
• Workshop call of papers,
• Workshop agenda,
• Reference dataset target practice,
• Flaw taxonomies, and
• Accepted papers.

Here are summaries of the workshop conclusions:

• Today’s SSA tool does not add much value to real, large software products.
• How do we score (rate) the risk of a piece of code is still a challenging question.
• There is a need to harmonize the different taxonomy of vulnerabilities.
• Very substantive feedbacks were gathered on the shared reference dataset. See

write-up on SAMATE Reference Dataset “Target Practice” in this document.
• There were consensuses that the first SSA specification and standard tests will be

the source code scanner tools.

 6

http://samate.nist.gov/

Workshop CALL FOR PAPERS (SSATTM'05)

National Institute of Standards and Technology (NIST) workshop on
Software Security Assurance Tools, Techniques, and Metrics

7-8 November 2005
Co-located with ASE 2005, Long Beach, California, USA

Funded in part by the Department of Homeland Security (DHS), the National Institute of
Standards and Technology (NIST) started a long-term, ambitious project to improve software
security assurance tools. Security is the ability of a system to maintain the confidentiality,
integrity, and availability of information processed and stored by a computer. Software security
assurance tools are those that help software be more secure by building security into software or
determining how secure software is. Among the project's goals are:

(1) develop a taxonomy of software security flaws and vulnerabilities,
(2) develop a taxonomy of software security assurance (SSA) tool functions and techniques

which detect or prevent flaws, and
(3) develop testable specifications of SSA functions and explicit tests to evaluate how closely

tools implement the functions. The test materials include reference sets of buggy code.

These goals extend into all phases of the software life cycle from requirements capture through
design and implementation to operation and auditing.

The goal of the workshop is to convene researchers, developers, and government and industrial
users of SSA tools to

• discuss and refine the taxonomy of flaws and the taxonomy of functions, which are under
development,

• come to a consensus on which SSA functions should first have specifications and
standard tests developed,

• gather SSA tools suppliers for "target practice" on reference datasets of code, and
• identify gaps or research needs in SSA functions.

REFERENCE DATASET "TARGET PRACTICE"

Sets of code with known flaws and vulnerabilities, with corresponding correct versions, can be
references for tool testing to make research easier and to be a standard of evaluation. Working
with others, we will bring reference datasets of many types of code, like Java, C, binaries, and
bytecode. We welcome contributions of code you've used.

To help validate the reference datasets, we solicit proposals not exceeding 2 pages to participate
in SSA tool "target practice" on the datasets. Tools can range from university projects to
commercial products. Participation is intended to demonstrate the state of the art in finding
flaws, consequently the proposals should not be marketing write-ups, but should highlight
technical contributions: techniques used, precision achieved, classes of vulnerabilities detected,

 7

suggestions for extensions to and improvements of the reference datasets, etc. Participants are
expected to provide their own equipment.

TOPICS OF PAPERS:

SSATTM encourages contributions describing basic research, novel applications, and experience
relevant to SSA tools and their evaluation. Topics of particular interest are:

- Benchmarks or reference datasets for SSA tools
- Comparisons of tools
- ROI effectiveness of SSA functions
- Flaw catching effectiveness of SSA functions
- Evaluating SSA tools
- Gaps or research needs in SSA functions
- SSA tool metrics
- Software security assurance metrics
- Surveys of SSA tools
- Relation between flaws and the techniques that catch them
- Taxonomy of software security flaws and vulnerabilities
- Taxonomy of SSA functions or techniques

PAPER SUBMISSION:

Papers should not exceed 8 pages in the conference format
http://www.acm.org/sigs/pubs/proceed/template.html. Papers exceeding the length restriction
will not be reviewed. Papers will be reviewed by at least two program committee members. All
papers should clearly identify their novel contributions. All papers should be submitted
electronically in PDF format by 26 August 2005 to Elizabeth Fong efong@nist.gov.

PUBLICATION:

Accepted papers will be published in the workshop proceedings. The workshop proceedings,
along with a summary of discussions and the output of the reference dataset "target practice", will
be published as a NIST Special Publication.

CURRENT PROGRAM COMMITTEE:

Freeland Abbott Georgia Tech Paul Ammann George Mason U.
Paul E. Black NIST Elizabeth Fong NIST
Michael Kass NIST Michael Koo NIST
Richard Lippmann MIT Robert A. Martin M ITRE Corp.
W. Bradley Martin NSA Samuel Redwine James Madison U.
Larry D. Wagoner NSA

--
IMPORTANT DATES:

19 Aug: Paper and tool proposal submission deadline
19 Sep: Paper and proposal notification
15 Oct: Final camera-ready copy due
7-8 Nov: Workshop

 8

mailto:efong@nist.gov

Workshop Program

November 7, 2005
8:30 – 9:00 Welcome – Paul Black

9:00 – 10:30 Tools and Metrics – Session Chair: Elizabeth Fong

� Where do Software Security Assurance Tools Add Value – David
Jackson, David Cooper

� Metrics that Matter – Brian Chess
� The Case for Common Flaw Enumeration – Robert Martin, Steven

Christey, Joe Jarzombek

10:30 – 11:00 Break

11:00 – 12:30 Flaw Taxonomy and Benchmarks – Session Chair: Robert Martin

• Seven Pernicious Kingdoms: A Taxonomy of Software Security
Errors – Katrina Tsipenyuk, Brian Chess, Gary McGraw

• A Taxonomy of Buffer Overflows for Evaluating Static and
Dynamic Software Testing Tools – Kendra Kratkiewicz, Richard
Lippmann

• ABM – A Prototype for Benchmarking Source Code Analyzers –
Tim Newsham, Brian Chess

12:30 – 1:30 Lunch

1:30 – 4:00 New Techniques – Session Chair: Larry Wagoner

� A Benchmark Suite for Behavior-Based Security Mechanisms –
Dong Ye, Micha Moffie, David Kaeli

� Testing and Evaluation of Virus Detectors for Handheld Devices –
Jose A. Morales, Peter Clarke, Yi Deng

� Eliminating Buffer Overflows, Using the Compiler or a Standalone
Tool – Thomas Plum, David Keaton

� A Secure Software Architecture Description Language – Jie Ren,
Richard Taylor

� Prioritization of Threats Using the K/M Algebra – Supreeth
Vendataraman, Warren Harrison

November 8, 2005
9:00 – 11:30 Reference Dataset Target Practice – Michael Kass

11:30 – 1:00 lunch

1:00 – 2:30 Invited Presentation - Session Chair: Vadim Okun

• Correctness by Construction: The Case for Constructive Static Verification – Rod
Chapman

 9

SAMATE Reference Dataset “Target Practice”

 Michael Kass*

National Institute of Standards and Technology

Introduction

The SAMATE Reference Dataset (SRD) is a rapidly growing set of contributed test cases
for measuring software security assurance (SSA) tool capability against a functional
specification for that tool. This initial distribution is a compilation of C source code test
cases that will be used for evaluating the functional capability of C source code scanning
tools. Contributions from MIT Lincoln Lab and Fortify Software Inc. make up this initial
set. Additional contributions from Klocwork Inc. and Ounce Labs Inc. will be added
soon. We expect to expand the SRD to include other languages (e.g. C++, Java) as well
as to include test suites for other SSA tools (such as requirements and software design
documents).

MIT Contribution

Documentation for each test case is contained in the source files themselves. In the case
of the MIT contribution, the first line of each test case contains a classification code
describing the test case “signature” (in terms of code complexity). All MIT discrete test
cases are “buffer overflow” examples, with permutations of some of the 22 coding
variation factors to challenge a tool's ability to discover a buffer overflow or recognize a
patched version of the overflow. Also, MIT contributed 14 models (scaled-down
versions) of 3 real world applications (bind, sendmail, and wu-ftpd).

Fortify Software Test Case Contribution

 Fortify Software has contributed C code test cases, the majority of which are also buffer
overflow vulnerabilities. Additionally a number of race condition, command injection
and other vulnerabilities are also included in the test suite. Like the MIT test cases, the
Fortify test cases are “self documenting”, with keyword describing the type of software
flaw present in the code. Additionally, to provide a uniform way of classifying the
complexity of the test cases, the MIT classification code is placed at the top of each test
file.

* This paper is authored by an employee of the U.S. Government and is in the public domain.
SSATTM’05, 11/7-11/8/05, Long Beach, CA, USA ISBN 1-59593-307-7/05/11

 10

Klocwork Test Case Contribution

Klocwork Inc. has donated an initial contribution of C++ test cases, the majority of which
are memory management related (e.g. memory leak, bad frees, use after frees) They
intend to follow up with an additional donation of Java test cases.

Target Practice Test Suite

A subset of both the MIT (152 discrete test cases and 3 models) and Fortify (12) test
cases make up the “target practice” test suite. A representative group of well-understood
and documented tests are presented as a “starting point” to get initial feedback from tool
developers and users as to how useful the test suite is. Both a “bad” (flawed) and “good”
(patched) version exists for each test case.

Target Practice Test Suite Details

• 12 Fortify Test Cases – (stack overflow tests)

– 6 “BAD”
– 6 “OK”

• 152 MIT Discreet Test Cases – (inter-procedural, liaising, pointers, function-calls)
– 76 “BAD”
– 76 “OK”

• 6 MIT “Model” Test Cases – (global variable underflow, buffer overflow)
– 3 “BAD”
- 3 “OK”

Test Suite Execution

 It is expected that each participant will run their tool against the target practice test suite
before attending the workshop on Tuesday, so as to provide maximum time for
discussion of the merits/deficiencies in the test suite. Tests are provided in two separate
directories (MIT and Fortify). How a tool scans the test suite is at the discretion of the
tool implementer/user.

Test Suite Evaluation

After running their tool on the Target Practice test suite, participants will be asked to fill
out a questionnaire regarding usefulness of the test suite in the following areas:

o Validity of the tests
o Do test cases reflect real world examples?
o Test case coverage (What software flaws should we focus on initially?)
o Complexity (Were the tests challenging/enlightening for discovering a

tool's capability?)
o Sufficient metadata for describing test case flaws and code complexity

(e.g. MIT's metadata scheme - do we need more? If so what?)

 11

Confidentiality of Test Results

 At no time was a participant required to report anything about their tool's performance
against the Target Practice test suite.

Discussion topics included:

Test Case Validity

• Do target practice test cases reflect real world examples?
• What should be the ratio of “manufactured” vs. “real world” test cases
• Should we initially “set a bar” with the SRD to which all tool developers agree is

realistic?

FEEDBACK: Participants felt that discrete test cases provide a useful purpose in
“establishing a minimal bar” of capability for source code scanners tools. One participant
stated that some of the discreet test cases were “beyond the capability of tools today”.
Tools generally did well, with no “false positives” reported.

Test Case Coverage

• Where (what flaws) should we focus on initially?
• 95% of initial tests are “buffer overflow” examples for C code (where else should

be put our resources?
• Coverage based upon: commonality, danger, and capability of tools?
• Should coverage be the primary goal of the SRD?

FEEDBACK: Participants pointed out that virtually all test cases were of the “buffer
overflow variety, and that much more coverage of existing software flaws is necessary to
make the SRD useful. Some suggested focusing on “race conditions” as the next are of
developing tests. Others suggested creating test cases for “fringe areas” of research,
since this could have a great impact in moving tool technology forward.

 Test Case Variation

• Expressed in Taxonomy of Flaws vs. Test Case attributes? (e.g. buffer
overflow/buffer underflow)

• Should variation be a primary goal for the SRD?

 12

is truly effective. It was generally viewed that a large variety of examples of a particular
type of source code flaw will be necessary in order to truly measure a tool’s effectiveness
of discovering such a flaw.

Test Case Complexity

• What is the minimal metadata necessary to describe test case complexity ?
• In order to search/retrieve test cases with particular complexity and variation, a

common set of attributes is needed

FEEDBACK: It was generally agreed upon that some descriptors are necessary to permit
a SRD user to “find” the test cases that are relevant to them. Simply providing a “flaw
classification” will not provide the granularity necessary for someone to “cull” the tests
they need from potentially thousands of test cases. The MIT metadata used to classify
its buffer overflow test cases was used as an example. No consensus was reached on
exactly what general list of descriptors is necessary to tag any source code test case.

 13

Where Do Software Security Assurance Tools Add Value?
David Jackson

QinetiQ
WWA109 Malvern Technology Centre

Malvern, WR14 3PS, UK
[+44] (0)1684 896689

DMJackson@QinetiQ.com

David Cooper
CESG

Room A2h, Hubble Road,
Cheltenham, GL51 0EX, UK

[+44] (0)1242 221491 ext 39049

David.Cooper@cesg.gsi.gov.uk

ABSTRACT
In developing security information technology products, we are
presented with a wide choice of development and assurance
processes, and of tools and techniques to support those processes.
By considering a structured break-down of the goals of a
development, and building on the results of a survey of the
applicability of tools to certification, this paper proposes a
framework for assessing the value of tools – both security
specific and more general – to security assurance.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management–software quality
assurance (SQA); Software/Program Verification–Validation

General Terms
Management, Measurement, Security.

Keywords
Software Assurance; Common Criteria for Information Security
Evaluation

1. INTRODUCTION
Security is important in all aspects of life, and the increasing
pervasiveness and capability of information technology makes IT
infrastructure security increasingly so [1]. The continual and
increasing publicity given to failures of IT security demonstrate
the importance of developing and assuring systems to appropriate
levels of security.

In spite of this attention, security remains a difficult attribute to
assess and value [2]. Although the benefits of improved security
can be difficult to quantify, as technologists and managers we are
required to define and implement security measures which are
appropriate to the threat and to the application. In the area of
software security, these choices are further complicated by the
wide range of techniques and tools have been used or proposed.
Efforts are being made to categorize these tools and techniques,

and to measure the effectiveness with which they perform their
functions, but the variety of different approaches makes direct
comparisons difficult.

This paper is a preliminary attempt to identify the role of various
assurance activities and tools in the development of a software
product, and the potential benefits of employing them. We
believe that virtually all developments aimed at a non-trivial
distribution will require some degree of security assurance.

This paper is based on the authors’ experience in a number of
recent projects relating to software security assurance. Its
principle inputs are:

• A study carried out on behalf of the UK Government
CESG into the use of tools in support of Common
Criteria (CC) evaluation [4];

• The SafSec project, which is investigating cost-
effective safety and security certification approaches for
Integrated Modular Avionics (IMA) [5]; and

• Discussions around the NIST workshop on “Defining
the State of the Art in Software Assurance Tools” [6].

The work described here is the first attempt to combine the goal-
based approach proposed by SafSec with the survey results of the
other projects, and also takes into account the recent revision of
the Common Criteria [17]. As a result, it poses questions for
future research which are more wide-ranging than earlier studies.

2. BACKGROUND – THE ASSURANCE
PROBLEM
Various approaches are used by those responsible for developing,
deploying and maintaining IT equipment and systems.
Historically, most of the emphasis on information security came
from government and military applications. Information security
techniques developed which were appropriate for these highly-
regulated environments. These are typified by formal product
approval schemes such as that established by the Common
Criteria for Information Technology Security Evaluation [3]
(hereafter Common Criteria or CC). In purely commercial
applications, less rigorous division will typically exist between
development and security assessment, but effective security
processes will still generally contain elements of both [7]. In
order to examine where the benefits of particular technologies in
supporting security assurance lie, we will consider a general
model of product development, taken from [5].

© 2005 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an affiliate of the U.S.
Government. As such, the Government retains a nonexclusive, royalty-free
right to publish or reproduce this article, or to allow others to do so, for
Government purposes only.

SSATTM'05, 11/7-11/8/05, Long Beach, CA, USA.

© 2005 ACM 1-59593-307-7/05/11

14

2.1 Lifecycle of a Secure Product
Figure 1 High-level Goals of a Product Development

Define
requirements

Understand
risks

Specify
mitigations
requirements

Specify
functions

Specify
assurance

Build secure
product

Implement
requirements

Implementation
complete

Evidence
relevant

Compliance
demonstrated

Evidence
satisfactory

The security aspects of a development address a number of goals;
these goals do not necessarily represent particular activities, but
rather aspects of development which must be made, and
maintained, valid through the course of development and
deployment. A high-level view of a typical project is shown in
Figure 1, which is based on that adopted by the SafSec project
[5]. The notation is based on Kelly’s Goal Structuring Notation
(GSN) [8]. The key goals are grouped into those which derive
security specifications (understanding the risks, specifying
mitigations) and those which ensure the specifications are
implemented (completion and control of implementation,
generation and adequacy of assurance evidence).
Although the emphasis given to these goals will differ widely
between products according to the priorities of particular
industries and applications, at some level each of these areas
must be addressed by an adequately assured development.
Given a breakdown of the goals which a product development is
seeking to achieve, we can assess the value of project activities
by considering their contribution to meeting particular goals.
Ultimately, we might assess the relative merits of different
strategies by considering the relative economy (in terms of the
necessary supporting solutions) with which each supports the
goal. Obviously if the goals have been characterized purely in
terms of security, only security aspects of the development will
be illuminated by such an analysis.

2.2 Common Criteria Evaluation & Practical
Security
In regulated applications, these development goals are often
satisfied by adopting a formal certification scheme, of which the
Common Criteria are the most widely accepted. Certification
schemes generally involve additional time and expense in
meeting their requirements, and thus the value of such schemes
has been questioned. Areas in which the results of a certification
program may differ from expectations include:

• Measurement of results: Is the objective to minimize
vulnerabilities discovered or published, or to achieve a
level of confidence that no significant risks remain?

• The scope of assessment: some evaluations are carried
out under constraints which are too stringent to be
widely practicable.

• Development processes: development technologies are
continually evolving, and future developments may not
match the expectations of the certification scheme.

Our previous work [4] includes a study aimed at addressing some
of these issues and reviewing both assurance technologies and
the CC assurance criteria to identify potential improvements to
development and evaluation processes. The baseline for the work
described here is the current formal release of the common
criteria, version 2.2. The implications of the new draft of the CC,
version 3, are discussed in Section 4.4 below.

2.2.1 Current evaluation practice
Current evaluation practice is driven by the evaluation method
[9]. Many requirements are focused on a product’s
documentation, rather than any formal artifact. This
documentation – models of the design, or representations of the
implementation, for example – is typically largely manually
generated and intended for manual review. The CC evaluation
process also makes assumptions about the development process.
The information available is assumed to be consistent with a
waterfall-style development: security functions are identified at
the requirements level, and their presence and correct
implementation verified through successive levels of design
representation, culminating in their demonstration (by testing) in
the final product. In consequence, only a small proportion of the
evaluation effort is typically spent examining the product (code).
Focus on implementation of identified security functions also
poses pragmatic problems for evaluators: to make a sensible
judgment on security issues, a thorough understanding of the
product is necessary, but the targeted documentation provided to
trace the security functions will not necessarily help build this
understanding. Emphasis on the presence of specific security
measures is also seen as encouraging the de-scoping of valuable,
but difficult-to-assure, measures from the security targets which
are claimed. This could result in the accreditation of products
with increasingly unrealistic constraints on their operation, as
opposed to real improvements in security. These factors do not
encourage the types of assurance (e.g. scanning for potential
vulnerabilities, or automated checks for compliance with
implementation rules) that are amenable to automation (apart
from standard document automation functions such as searching
and indexing.). The product development process is, of course,
likely to make some use of tools, for example to manage and
organize source code, to generate and monitor tests, or to carry
out customized consistency or style checks. Typically, however,
such tools are used purely to benefit the development, not to
contribute to the formal security assurance process. Evaluation
may be facilitated by tools which contribute to the management
of development (such as tools for configuration management,
impact analysis, change control, or automated build and testing)
but to no greater extent than any other process is facilitated by
having good control of its inputs.

2.2.2 Desirable changes
The perceived weaknesses of current assurance regimes lead us
to try and identify desirable features of future assurance
approaches. Key attributes identified by a range of stakeholders
in the CC scheme included:

15

• Assurance should not introduce significant delay or
additional cost into product development.

• Emphasis should be placed on identifying
vulnerabilities in the product, rather than exploring
attributes of the documentation.

• Assurance requirements should not list specific
documents and checks, but allow flexibility to choose
development environments and life-cycles which reflect
current practices, and the goals to be addressed.

• Encouragement of broader good practice and
approaches that facilitate understanding and assurance
of the whole product, not simply a set of security
functions. Also promotion of security targets which are
broad enough to be practically applicable, rather than
restricted to facilitate accreditation.

• Provision of concrete advice on the application of
specific techniques, the use of tools in specific areas,
and the identification and elimination of particular
high-risk structures.

• Maintenance of the existing high standards for the
quality of assurance, eg by maintaining mutual
recognition and repeatability, and demanding
appropriate validation of tools.

However, it was emphasized that any changes should not
jeopardize the assurance of systems which are not covered by
available tools, or introduce unrealistic expectations of the
developers (e.g. by demanding manual resolution of many false
positive reports from tools).

3. CLASSIFICATION OF ASSURANCE
TOOLS AND TECHNOLOGIES
The tool survey carried out as part of the CC investigation
examined a broad range of technologies, on the grounds that
many tools might contribute to developing a secure system even
if they are not specifically security-related. The classification
used there is summarized here.

• Tools which aid human comprehension of software,
including

o Reverse-engineering to graphical
representations

o Enhanced code navigation
o Automatic documentation
o Presentation of multiple views

o Configuration management
o Integrated development environments

There are also tools targeted specifically at audit and
assessment, which typically include a number of the
above functions.

• Configuration management tools. Some form of
configuration management is essential, but in this
category we include related tools for controlling and
supporting development. Additional facilities offered
include:

o Comprehensive documentation management
(not just source code)

o Change management

o Version / variant management
o Traceability
o Build management

o Access control
o Integration with the development

environment

• Test support and dynamic analysis tools, covering not
only conventional testing, but also other assurance
activities based on execution of (a variant of) the
product. Examples include:

o Test execution frameworks
o Test case generation, both white-box (based

on the implementation) and black-box (based
on a separate specification of intended
behavior)

o Test coverage analysis
o Memory and execution profiling

• Subset conformance tools. Some forms of security risk
can be avoided by eliminating certain classes of
structure from allowable implementations, essentially
defining a subset of the implementation language.
These subsets can be standardized (as, for example, the
MISRA subset of C [10]) or company- or project-
specific.

• Detection of general implementation weaknesses.
Many means of exploiting vulnerabilities make use of
errors in software implementation, even if the errors
themselves do not constitute a direct vulnerability.
Detection and elimination of general programming
errors will improve the overall quality of a software
product and reduce the potential for security functions
to be bypassed or subverted.

• Run-time error detection. One specific class of software
weakness which can be difficult to identify by testing is
the occurrence of run-time exceptions such as overflow
and arithmetic errors. Several approaches have been
developed to identify where such errors may occur.

• Vulnerability detection. Of all the classes of flaws
which we may search for in a product, those which
present known vulnerabilities offers the most direct
benefit. A range of tools is available according to the
implementation technology and vulnerability classes of
concern. This area is the main focus of many other
surveys, including [11].

• Executable code analysis. Many of the attributes noted
above can be determined either at source code level or
by direct examination of object code or byte-code.
Source code tools have potential access to richer
information about the design intent that object-code
tools, but the latter have the advantage of applying

16

directly to the delivered product, and could, for
example, be applied to third-party or legacy
components.

• Program correctness tools. Although typically
applicable only to higher levels of assurance
requirement, and thus of limited general applicability,
some tools do exist which address the question of
program correctness in a broader sense. As many
security vulnerabilities are likely to lie outside the
intended behaviour of a program, these are able to
provide high levels of confidence in the security of a
product. Typically, however, they require additional
design and implementation effort, such as the
preparation of formal specifications or program
annotations.

Another recent proposal for a taxonomy of security assurance
tools [11] identified the following classes:

• External

o Network Scanners
o Web Application Scanners

o Web Services Network Scanners
o Dynamic Analysis Tools

• Internal

o Software Requirements Verification Tools
o Software Design/Modeling Verification Tools
o Source Code Scanning Tools, further divided

into identification of range and type errors,
calls to vulnerable library functions,
environmental problems synchronization and
timing errors, locking problems, protocol
errors, general logic errors and other flaws
(file cycling issues, access control
implementation, configuration violations)

o Byte Code Scanning Tools

o Binary Code Scanning Tools
o Database Scanning Tools

This breakdown provides more detail on security-specific tools,
and includes, in its external category, tools that, being most
useful after deployment, were not judged relevant to a product
assurance process for the purposes of our earlier study. It
provides less detail on tools which are not security specific.
Ongoing work to develop a more general taxonomy is taking
place as part of the NIST SAMATE project [6].

If tools are to be used in creating or assessing assurance
evidence, it is necessary for the tools themselves to be fit for the
purpose, in order to establish the requisite confidence in the
results they produce. The problem of tool qualification is not
unique to security, and has been addressed, for example, by the
aerospace safety community [12]. The benchmark for any tool
which replaces a life-cycle process is that its output should be at
least equivalent to the processes replaced; this means that if the
output of a tool is cross-checked independently by some other
activity, the requirements place on the tool itself may be relaxed.

Attributes which may be expected of a qualified tool include:

• Clear definition of the function performed and
requirements satisfied

• Accuracy

• Repeatability

• Completeness and lack of ambiguity of output

• Characterization of operating environment and
behavior under abnormal conditions

• Demonstration of requirements coverage, and analysis
of the degree of coverage achieved

• Evidence of previous evaluations, of previous
successful deployments, and of the pedigree of other
tools developed by the same process

• A traceable defect recording and corrective action
system

Ultimately, if the requirements on a class of tool can be
characterized with sufficient accuracy, we could expect to
develop certification criteria and independent testing schemes.

4. POTENTIAL BENEFITS
The CC classify security requirements into security functional
requirements (specifying particular security-related functions
which a system must provide) and assurance requirements
(specifying the measures to be taken to ensure correct
implementation of the functional requirements). Assurance
requirements are further subdivided into families:

• Configuration management (ACM)

• Delivery and operation (ADO)

• Development (ADV)

• Guidance documentation (AGD)

• Life cycle support (ALC)

• Tests (ATE)

• Vulnerability assessment (AVA)
Seven pre-defined packages of assurance requirements are
defined, representing increasing levels of assurance – the
Evaluation Assurance Levels (EAL) 1–7 where EAL 1 is the
least stringent, and EAL 7 the most.
Analysis of the capabilities of the various classes of software
development and assurance tools against the CC requirements
led us to consider three areas in which tools can facilitate the
development of an assured product, as follows.

o Tools employed in the development, but which support
or facilitate assurance,

o Tools of direct use in evaluating security, and

o Tools which support the implementation of security
functional requirements rather than providing evidence
that security assurance requirements have been met.

These areas are discussed in the following sub-sections.

17

One additional aspect of tool use became clear in the course of
the analysis: there are many areas in which tools which may not
necessarily assist in one-off assurance of a particular
development but contribute substantially to the effective
maintenance and re-use of assurance evidence. Such re-use is
important in many situations:

o In re-assurance of a modified or updated product,

o In assurance of a product in distinct, but related,
environments (eg across different platforms), and

o In developing composite systems that make use of
previous assurance evidence about their components.

Of particular importance in these cases is the need to be able to
identify where modifications have been made, and where
dependencies arise which may need to be re-considered in the
light of those changes. Our experience indicates that even given
such facilities, re-assuring a complex system can still be difficult
if an attempt is made to re-use parts of previous work in the
production of complete new assurance arguments; re-use is more
likely to be effective if complete assurance arguments are used as
a whole, forming a baseline against which later assurance is
documented as an assured set of changes.

4.1 Tools employed in development
Many tools used in development are useful in supporting
assurance, because many of the factors which facilitate assurance
also directly facilitate the development itself. Nevertheless, some
development tool functions are of greater relevance than others.
Areas of particular relevance are described below

4.1.1 Configuration Management (CC Assurance
Class ACM).
Tool support for change and build management provides both
developers and assessors with confidence that the product
delivered – and its supporting configuration information,
documentation, training material, etc – are derived from valid
sources and controlled appropriately. All serious product
developments will use some forms of configuration management
policy and tools; nevertheless, choice of appropriate tools can
greatly simplify assuring an appropriate level of configuration
management. Features of particular relevance include:
comprehensive coverage of all documents (not simply code);
access control; change control; traceability; and version
comparison/impact analysis to support re-use of assurance
evidence.

4.1.2 Life cycle support (CC Assurance Class ALC)
Confidence in the control of the development life-cycle is an
important component of assurance. While few tools control the
life-cycle directly, and lifecycle definition and control are general
project-management issues beyond the scope of this paper, a
number of aspects of assurance benefit from an appropriate
development tool environment. Configuration management tools
which provide formal release control, for example, may be used
to enforce compliance to particular life-cycle features.
Development security (Class ALC_DVS) may also be enhanced
by use of a CM system which enforces appropriate access
controls and audit mechanisms. The level of assurance required

of all tools used is also a life-cycle issue: maintenance of
satisfactory assurance may require keeping all tools under
configuration management, for example, and the use of
additional tools (such as subset-conformance checkers) to ensure
that other tools (such as compilers) are only employed within the
limits of their own assurance. Direct assurance of one tool, a
compiler for example, may also be established through the use of
another (a de-compiler or compiler validation suite). See
Section 3.

4.1.3 Development (CC Assurance Class ADV)
The CC approach to development concentrates on establishing
consistency between increasingly detailed levels of design
representation. Assurance of this consistency can be facilitated
by tools which maintain traceability between representations.
Integrated development environments using semi-formal
notations such as UML [13] can be used to support such a
lifecycle, the rigorous separation of functional specification,
high-level design, low-level design and implementation
representation which (the current version of) the CC requires is
not necessarily natural in such frameworks. See Section 4.4 for
further discussion. The task of demonstrating correspondence
between implementation and low-level design is facilitated by
many of the software quality tools identified in Section 3: subset
conformance, detection of run-time errors and software
weaknesses all support this goal, as do some forms of object code
verification.

4.1.4 Testing (CC Assurance Class ATE)
Some degree of test automation is likely to be used in any
substantial product development, and any mechanisms which
encourage the repeatable and controlled execution of tests will
provide a degree of assurance in the design process. Some
assurance benefits maybe expected from coverage analysis tools,
although measurement of the proportion of a design which is
exercised may not be a good prediction of the actual performance
of the tests in detecting security-related errors. Management
tools, such as configuration management and traceability tools,
will also be applicable to tests and the test process.

4.2 For evaluators
The areas in which tools are directly applicable to assurance are
perhaps more restricted than the general benefits of development
tools, but the specific value which could potentially be obtained
in some cases is nevertheless substantial. In the analysis, it
proved useful to consider areas in which evaluators seek
confidence, such as:

• Correct functionality is crucial, but in the majority of
cases restricted to an informal review

• Identification of specific risky constructs, including
error conditions, common vulnerabilities such as buffer
overflows, and issues regarding concurrency.

• Consistency between design representations, and across
interfaces between different elements.

• Sensitivities to platform and compiler attributes, which
may become weaknesses if external dependencies
change.

18

• General structure and behaviour of the program, as a
prerequisite for assessing other issues, and also to
illuminate information flow, for example.

Note that although these issues were examined from the
perspective of an evaluator or assessor, developers are likely to
use the same tools and techniques in order to reduce the risk that
issues may be discovered later in the product life cycle.

4.2.1 Assurance of correct development (CC
Assurance Class ADV)

The bulk of the information available to an assessor arises from
the development process – any evaluation will therefore expect to
make use of the tools discussed in the previous section. The
applicability of other tools will depend largely on the nature of
the information available: for medium and low-level assessment
(the vast majority of cases) much of this information will be
informal. In these cases, the key documentation (functional
specifications, high- and low-level designs) may be natural
language texts – there may be scope for the use of documentation
tools such as readability metrics and indexing tools, but little
true automation may be expected (NASA’s Automated
Requirement Measurement tool (ARM) is an interesting
extension to an important class of documents [14].) Where semi-
formal notations are used, mechanical consistency checks may be
implemented (often as part of an IDE) ,but acceptance of such
checks a assurance evidence is hampered by lack of commonly
agreed representations and semantics for such checks.

In contrast, source code is by its nature formal and suited to the
provision of mechanical support for the key assurance challenge
of accessing and comprehending large quantities of technical
information. Navigation and documentation aids (such as cross
referencing and indexing tools) are important supports to
assessment activities. Tools which provide some degree of
abstraction (such as generating a call-tree or dependence graph)
can be used to support comparison of the implementation with a
low-level design, and can assist in identifying security-enforcing
functions and their dependencies.

4.2.2 Assurance testing (CC Assurance Class ATE)
Assurance activities will typically include both an assessment of
testing carried out during development and an element of
independent testing. Both classes of activities will be facilitated
by tools as discussed in the previous section (Section 4.1). The
identification of specific vulnerabilities is also likely to involve
testing in addition to the activities discussed in the next section.

4.2.3 Vulnerability identification (CC Assurance
Class AVA)
The search for specific vulnerabilities is an essential element of
security assurance. This is an area in which a number of specific
vulnerability detection tools have been proposed (See Section 3)
and their use is obviously a potentially valuable source of
evidence, but the value of their results will be crucially
dependent on parameters which are not necessarily easy to
characterize, such as the proportion of identified problems which
are not, in fact vulnerabilities (false positives) and the proportion

of vulnerabilities which are present but not detected (false
negatives). Similar concerns also apply to tools which look for
general weaknesses which may be associated with breaches, such
as run-time errors. The characterization and qualification of these
tools is an important area of research (see also Section 3).

4.2.4 Manual assurance is essential
Although we have identified a number of areas in which tool
support may support the assurance activities, there are a number
of areas where no substitute to manual review and assessment is
practical. This is the case, for example, in areas where the key
attributes are the clarity and completeness of documentation,
such as prevention of accidental misuse and installation and
operational guidance generally. General purpose tools will also
have limited use in some technical analysis, such as
determination if the strength of security functions is appropriate.

4.3 Functional requirements
The discussion above has concentrated on assurance
requirements – constraints on how a product is constructed –
rather than the function it actually performs. In general, tools will
not be able to confirm functional correctness of a product,
although customised tool-supported analysis may be justifiable
for some specific projects. There are some specific areas,
however, where tool support can be valuable in assuring
functional correctness, including:

• Control and data flow analyses. The more sophisticated
program analysis tools can derive the flow of data and
control through a program. This can be valuable in
demonstrating the adequacy of various controls and
policies, such as ensuring that security functions are
invoked prior to any action which might compromise
security (mediation).

• Failure mode analysis. Tools which detect
vulnerabilities or general weaknesses in
implementation provide information about the possible
ways in which an implementation or function may fail.
This is necessary to establish the appropriateness of
measures which manage failures such as fault-tolerance
or fail-secure functionality.

• Protocol and algorithm correctness. Although full proof
of correctness of an implementation is not likely to be
practical for the vast majority of security products,
there are elements which, because of their extreme
criticality or wide deployment, may be subject to more
stringent constraints. In these cases, formal verification
with specialist tool support may be appropriate. Typical
applications might be security protocols or algorithms
used by fundamental network infrastructure. ([15],
[16], for example).

4.4 Evolution of the CC Evaluation Scheme
Our review identified a number of recommendations which we
felt should be considered for changes to the CC and the
evaluation methodology which advises how the criteria should be
applied. The key recommendations regarding the methodology
were:

19

• To require a search for known failure modes in the
chosen implementation language, and mechanical
enforcement of rules necessary to conform to well-
defined language subsets.

• To link the sizes chosen for sampling activities to
general software quality measures (allowing sample
size reduction to be argued for developments showing
demonstrably good quality).

• To encourage security targets to be defined according
to practical application rather than to simplify
evaluation.

Recommendations regarding the Common Criteria themselves
were addressed more cautiously, because of the need to maintain
consensus among all participants. The key suggestions were in
the following areas:

• Fault elimination: Strengthening the functional
specification of security functions to place greater
emphasis on interfaces, and on the assumptions which
the security functions make for correct behavior (e.g.
integrity of memory, restrictions on flow of control).
(Class ADV_FSP); inclusion in the development of
evidence for the robustness of separation between
security functions and other functions; and allowing
tool support for maintenance of design representations,
and relaxing requirements for strict refinement
between design representations (while maintaining the
necessary consistency).

• Fault discovery and removal: the requirement identified
above, to search for known failure modes and
insecurities, should ultimately be reflected in the CC.

• Failure tolerance. Designing systems to be tolerant of
faults and failures is a crucial element in other product
integrity domains, but is not emphasized in the CC. A
requirement should be added to require analysis of
possible failures and demonstrating that the design is
appropriately robust.

• General changes: In other communities, standards-
setting is moving towards a less prescriptive goal-
oriented approach. The CC could be made less
prescriptive, stating objectives of a successful
evaluation and criteria which the recorded evidence
must meet, but leaving open the means of meeting
these objectives. This would facilitate competitive
improvement of the evaluation process. To maintain
mutual recognition in the light of this change,
recognition should be based on establishing that
different approaches are consistent in their
effectiveness and findings, rather than that they
produce identical results.

Since the completion of the work reported in [4], a new draft
issue of the Common Criteria and the evaluation methodology
has been published [17]. The new draft addresses many of the
recommendations made here:

• Greater emphasis is placed on architectural integrity,
and on demonstrating that other functions do not
interfere with the security functions, although explicit
failure mode analysis is not required.

• More explicit requirements are placed on specification
of the interfaces of security functions.

• The development assurance family (ADV) has been
revised to simplify the constraints placed on design
documentation.

• The vulnerability analysis requirements include
requirements to search for known classes of
vulnerabilities.

The evaluation methodology remains too abstract to provide
concrete advice on the use of tools, although clearly tool support
will be advantageous for those activities which are required to be
methodical.

Although the new version does significantly introduce noticeable
simplification and significant re-structuring in many
requirements, the majority of key assurance activities remain the
same; the value and applicability of tool support will, therefore,
remain unchanged.

5. CONCLUSIONS & FUTURE WORK
This paper takes results from number of existing studies:

• a goal-based view of the objectives of a secure product
development [5],

• a review of the applicability of tools to security
assurance [4] and

• Emerging work on taxonomies of software security
tools [11],

and presents a summary which highlights where software tools
may be expected to add value to development programs.

5.1 Applicability of Tools
Our review identified a number of areas where existing security
evaluations could be supported by existing tools:

• Control of changes and configurations of products,
product variants and assurance evidence

• Identification of general weaknesses, violations of
coding standards and subsets, and potential run-time
errors

• Identification of known vulnerabilities
• Assisting in an assessors understanding of a potentially

large volume of potentially complex information
In the short term, use of tools in these areas appears most likely
to improve the value of assurance (in terms of reduction of
vulnerabilities discovered in service) rather than to decrease cost.
We believe that it may be possible to achieve savings, primarily
in the cost of developing the information required to support
assurance, if increased use of automated document management
and change control tools, and increased use of tools to enforce
coding standards and subsets, were combined with a shift in the
focus of development and evaluation processes.

20

Any successful deployment of tools will require that the tools
themselves are adequately assured.

5.2 Varieties of assurance
The security of a product depends on many factors, and
consequently can be improved and demonstrated by a range of
different measures. The benefits of different assurance measures
can be comprehended, and trade-off decisions facilitated, by
considering their contribution to a structured assurance
argument. Such an argument can provide a framework for
planning assurance activities and identifying the support which
tools can provide.

Some of the more important measures are specific to security
assurance, such as searching implementations for known
vulnerabilities, but we believe that systematic examination of the
goals of a secure development demonstrates that more general
assurance tools provide significant value in areas including
general software quality, robustness of architectures,
configuration management and change control. Our studies
further indicate that for benefits in cost as well as quality,
security assurance must be an integral element of the
development process, taken into consideration as key design
decisions are being made.

5.3 Future Work
Although the opportunity for tool-supported security assurance is
attractive, there are several questions which must be resolved if
security assurance tools are to be widely adopted:

• Classification of tools and techniques, and development
of common understandings of the value and function of
each class, is necessary both to justify the adoption of
tools, and to provide a basis for tool assurance. To
support cost-benefit analysis, the classification must
reflect benefits (eg risks reduced) rather than
functional behaviour.

• Practical tools must be usable: issues such as consistent
and informative output, reduction of false positive and
false negative results, and scalability to large code
bases are paramount.

• The qualitative discussion of assurance presented here
must be refined to give quantitative cost-benefit
arguments for tool adoption. A systematic approach to
assurance will be required to allow tradeoffs to be
made not only between the cost of assurance and the
cost of failure, but between mechanisms which may
each improve security in very different ways.

6. ACKNOWLEDGMENTS
The authors would like to acknowledge the support of CESG,
Praxis High Integrity Systems Ltd, and all the stakeholders
involved in the Common Criteria study [4]. Particular thanks are
due to Keith Banks for his contributions to [4], and to Phil Core
for his comments on drafts of this paper. The referees also
provided useful comments.

7. REFERENCES
[1] U.S. Department of Homeland Security, The National

Strategy to Secure Cyberspace, February 2003

[2] Anderson, R.J., Why Information Security is Hard – An
Economic Perspective, Proc. Annual Computer Security
Applications Conference, 2001

[3] Common Criteria for Information Technology Security
Evaluation, Version 2.2, January 2004 Available from
www.commoncriteriaportal.org

[4] Praxis Critical Systems Ltd, EAL4 Common Criteria
Evaluations Study, September 2004, available from
http://www.cesg.gov.uk/site/iacs/itsec/media/techniques_too
ls/eval4_study.pdf

[5] U.K Defence Procurement Agency and Praxis High Integrity
Systems Limited, SafSec Project, www.safsec.com

[6] U.S. National Institute of Standards and Technology,
SAMATE Project, http://samate.nist.gov

[7] Secure Software Inc., The CLASP Application Security
Process, 2005.

[8] Kelly, T.P., Arguing Safety – A Systematic Approach to
Safety Case Management, DPhil Thesis YCST99-05,
Department of Computer Science, University of York, UK,
1998

[9] Common Methodology for Information Technology Security
Evaluation, Version 2.2, January 2004

[10] Motor Industry Software Reliability Association, MISRA-
C:2004 - Guidelines for the use of the C language in critical
systems, ISBN 0 9524156 2 3, 2004

[11] U.S. National Institute of Standards and Technology,
SAMATE Project Tools Survey,
http://samate.nist.gov/index.php/Tools

[12] RTCA Inc, DO-178B, Software Considerations in Airborne
Systems and Equipment Certification, 1992

[13] Booch, G., Rumbaugh, J. and Jacobson, I., The Unified
Modeling Language User Guide Addison-Wesley 1998

[14] NASA, Automated Requirement Measurement (ARM),
http://satc.gsfc.nasa.gov/tools/arm/

[15] Lowe, G., An Attack on the Needham-Schroeder Public-Key
Authentication Protocol. Information Processing Letters 56,
3, 1995, 131-133.

[16] Reed, J.N., Jackson, D.M., Deinov, B., and Reed, G.M.,
Automated Formal Analysis of Networks: FDR models for
arbitrary topologies and flow-control mechanisms, Proc.
Joint European Conferences on Theory and Practice of
Software LNCS 1382, Springer 1998.

[17] Common Criteria for Information Technology Security
Evaluation, Draft Version 3.0, July 2005

21

Metrics That Matter:
Quantifying Software Security Risk

Brian Chess
Fortify Software

2300 Geng Road, Suite 102
Palo Alto, CA 94303

1-650-213-5600
brian@fortifysoftware.com

Abstract
Any endeavor worth pursuing is worth measuring, but software
security presents new measurement challenges: there are no
established formulas or procedures for quantifying the security
risk present in a program. This document details the importance
of measuring software security and discusses the less-than-
satisfying approaches that are prevalent today. A new set of
metrics is then proposed for ensuring an accurate and
comprehensive view of software projects ranging from legacy
systems to newly deployed web applications. Many of the new
metrics make use of source code analysis results.

1. Introduction: Why measure?
What would happen if your company cut its security budget in
half? What if the budget was doubled instead? In most
companies today, no one knows the answers to these questions.
Security remains more art than science, and nothing is more
indicative of this fact than the inability of security practitioners
to quantify the effects of their work.

Software security is no exception: nearly every major business-
critical application deployed today contains vulnerabilities—
buffer overflow and cross-site scripting are commonplace, and
so are many other, less well-known, types of vulnerabilities.
These problems can be exploited to cause considerable harm by
external hackers or malicious insiders. Security teams know that
these errors exist, but are, for the most part, ill equipped to
quantify the problem. Any proposed investment in improving
this situation is bound to bring up questions such as:

• Are the applications more secure today than
yesterday—or less secure?

• Does security training really make a difference?
• How will we know when our systems are secure?

(c)2005 Association for Computing Machinery. ACM acknowledges
that this contribution was authored or co-authored by an affiliate of the
U.S. Government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.

SSATTM'05, 11/7-11/8/05, Long Beach, CA, USA.
(c) 2005 ACM 1-59593-307-7/05/11

This paper examines the current state of practice for measuring
software security. It then suggests two new approaches to the
problem: quantifying the secure development lifecycle, and
focusing on the root cause of many vulnerabilities using metrics
built with source code analysis results.

2. The State of Practice: Three Flawed

Approaches to Measuring Security
1. Build then Break: Penetration Testing as a Metric
The de facto method that most organizations use for measuring
software security today can be summarized as “build then
break.” Developers create applications with only a minimum of
attention paid to security, and the applications are deployed. The
operations team then attempts to compensate for the problematic
software with perimeter security. When the team takes
inventory of all of the ways that data moves through and around
the perimeter defenses, it becomes clear that the perimeter
security is insufficient. At this point, the operations team may
bring in penetration testers to find the problems before hackers
or malicious insiders do. The penetration testers generally have
a fixed schedule for performing their work, and their goal is to
find a small number of serious problems to justify their
consulting fee. Once these problems are resolved, everyone is
happy. But there’s no reason to believe that the penetration test
revealed all of the problems with the application. In fact,
subsequent audits usually prove that it did not. There’s also
very little feedback to the developers, so penetration tests often
find the same types of problems over and over again.

2. Measure Software Security as Part of Software Quality
A naive approach to software security calls for treating security
as just another aspect of software quality. The problem is that
traditional quality assurance is aimed at verifying a set of
features against a specification. Software security, however,
requires much more than well-implemented security features.
The reality is that a typical process for achieving good results
with respect to traditional quality issues does not guarantee good
results with respect to security issues. In other words, you have
to focus specifically on security in order to improve it. Good
security is not a byproduct of good quality.

22

Figure 1: A quality-oriented approach to security leaves many opportunities for attackers.

Further complicating this approach, the majority of Quality
Assurance (QA) departments lack the requisite security
expertise to carry out adequate security tests. Finally, as Figure
1 illustrates, any approach to quality that is based on the
behavior of regular users will leave many untested opportunities
for attackers.
3. The Feel-Good Metric: If It Hasn’t been Hacked Yet, It’s

Probably Okay
Because security so often goes unquantified, the bottom-line
measure for security is often gut-feel. Human nature and the
nature of security are in conflict on this point: people and
organizations tend to gain comfort with the status quo over time,
but security may actually degrade as time passes. New types of
attacks and new applications for old types of attacks can harm a
program’s security—even as an organization becomes more and
more complacent because security “hasn’t been a problem yet!”

A similar fallacy holds that the security of a program can be
correlated to the breadth of its adoption. Interestingly, this line
of reasoning always seems to work in favor of the status quo.
For applications with a small user base, people assume that
attackers will not take an interest. For applications with a large
user base, people assume that any security issues will be flushed
out of the system shortly after release. In truth, security is no
more related to breadth of adoption than it is to longevity. The
BugTraq mailing list (where news of many new vulnerabilities
debuts) is filled with entries about small and obscure
applications. Furthermore, the long history of buffer overflows
in widely adopted programs as varied as SendMail and Internet
Explorer shows that neither age nor a large install base prevents
attackers from finding new exploits.

3. A Positive Trailing Indicator
There are encouraging signs that the longstanding neglect,
ignorance, or apathy shown to software security is beginning to
change. Microsoft has adopted the Trustworthy Computing
Security Development Lifecycle (SDL) process for the creating
software that needs to withstand malicious attack [4]. The
process adds a series of security-focused activities and
deliverables to each of the phases of Microsoft’s software
development process. These activities and deliverables include
risk analysis during software design, the application of source

code analysis tools during implementation, and code reviews
and security testing during a focused “security push.” Before
software subject to the SDL can be released, it must undergo a
final security review by a team independent from its
development group. When compared to software that has not
been subject to the SDL, software that has undergone the SDL
has experienced a significantly reduced rate of external
discovery of security vulnerabilities. Figure 2 shows the number
of security bulletins for Windows 2000 in its first 12 months
after release versus the number of security bulletins for
Windows Server 2003 in its first 12 months after release. The
number of issues has been reduced by more than 50%, even as
the size and complexity of the operating system has increased.

Figure 2. A measurable improvement in Microsoft OS
security: the number of security bulletins issued in the first
12 months following two major OS releases.

However, Figure 2 is an example of a trailing indicator. It only
demonstrates that security has been improved after the OS has
been released. It provides strong evidence that the SDL has a
beneficial effect on the security of the resulting operating
system, but if Microsoft only releases an operating system every
five or six years, it requires five or six years to know whether
there is a measurable improvement in software security from the
previous release. That is far too slow. Security must be
measured on an ongoing basis throughout the software

N
um

be
r o

f S
ec

ur
ity

 B
ul

le
tin

s

Traditional quality
assurance models user
behavior as a random
walk over the feature set.

Attackers will
move to the
corner cases.

23

development lifecycle, and for that we need leading indicators
for software security.

4. Software security metrics you can use

now
Having explained the measurement problem and how not to
solve it, we now turn to two practical methods for measuring
software security.

1. Quantify the Secure Development Lifecycle
Software security must be addressed as part of the software
development lifecycle [1,2]. There are practical steps that
development groups can take during each phase of the lifecycle
in order to improve the security of the resulting system. These
steps include:

• Evaluate the current state of software security and
create a plan for dealing with it throughout the
development life cycle.

• Specify the threats, identify both business and
technical risks, and plan countermeasures.

• Review the code for security vulnerabilities
introduced during development.

• Test code for vulnerabilities based on the threats and
risks identified earlier.

• Build a gate to prevent applications with
vulnerabilities from going into production. Require
signoff from key development and security personnel.

• Measure the success of the security plan so that the
process can be continually improved. Yes, your
measurement efforts should be measured!

• Educate stakeholders about security so they can
implement the security plan effectively.

Each of these steps can be measured. For example, if your
security plan includes educating developers, you can measure
what percentage of developers have received software security
training. 1

Of course, not all organizations will adopt all steps to the same
degree. By tracking and measuring the adoption of secure
development practices, you will have the data to draw
correlations within your organization. For example, you will
likely find that the up-front specification of threats and risks
correlates strongly to a faster and easier security signoff prior to
release.

2. Use Source Code Analysis to Measure Security
All software organizations, regardless of programming
language, development methodology, or product category, have
one thing in common: they all have source code. The source
code is a very direct embodiment of the system, and many
vulnerabilities manifest themselves in the source [3]. It follows
that the source code is the one key artifact to measure as part of
assessing software security. Of course, source code review is
useful for more than just metrics. The following sections
discuss some source code analysis fundamentals and then look
at how source code analysis results can provide the raw material
for powerful software security metrics.

1 It seems reasonable to assume that Microsoft also produces metrics
related to their SDL, but they have published very little on the topic.

5. Source Code Analysis
Source code analyzers process code looking for known types of
security defects. In an abstract sense, a source code analyzer
searches the code for patterns that represent potential
vulnerabilities and presents the code that matches these patterns
to a human auditor for review. The three key attributes for good
source code analysis are accuracy, precision, and robustness.

A source code analyzer should accurately identify vulnerabilities
that are of concern to the type of program being analyzed. For
example, web applications are typically at risk for SQL
injection, cross-site scripting, and access control problems,
among others. Further, the analysis results should indicate the
likely importance of each result.

The source code analyzer must also be precise, pointing to a
manageable number of issues without generating a large number
of false positives. Furthermore, if a program is analyzed today,
and subsequently re-analyzed tomorrow, it is likely that only a
small amount of code will have changed. The source code
analyzer must be able to give the same name to the same issue
today and tomorrow, allowing for the ability to track when
issues appear and disappear. This capability is critical for
extracting meaningful metrics from source code analysis results.

Finally, the source code analyzer must be robust: it must be able
to deal with large, complex bodies of code. Of course, not every
issue the source code analyzer identifies will be a true
vulnerability. Therefore, part of being robust is allowing human
auditors to evaluate and prioritize potential issues. A preferred
scenario has a human auditor classify the output from the
analyzer into 1) severe vulnerabilities that must be corrected
immediately, 2) bad practices, and 3) issues that are not relevant
to the organization. An even better application of source code
analysis allows developers to analyze their own code as they
write it, making source code analysis part of the daily process of
program development.

6. Security Metrics Based on Source Code

Analysis
The best metrics that can be derived from source code analysis
results are, to a certain extent, dependent upon the way in which
an organization applies source code analysis. We will consider
the following scenarios:

1. Developers use the source code analyzer on a regular
basis as part of their development work. They are
proactively coding with security in mind.

2. A software security team uses the source code
analyzer as part of a periodic code review process. A
large body of code has been created with little regard
for security. The organization plans to remediate this
code over time.

Of course, the first scenario is preferable, but most organizations
cannot achieve that overnight. For the near future, it is likely
that both scenarios will co-exist in most organizations.

Metrics for Secure Coding
After a development team adopts a source code analysis tool and
tunes it for the security policies that are important for their

24

project, they can use source code analysis results in aggregate
for trending and project comparison purposes. Figure 3 shows a
comparison between two projects, one red and one blue, where
the source code analysis results have been grouped by severity.
The graph suggests a plan of action: eliminate the critical issues
for the red project, then move on to the high-importance issues
for the blue project.

It can also be useful to look at the types of issues found broken
down by category. Figure 4 shows the results for the same two
projects in this fashion. Here, the differences between the red
and the blue project become pronounced: the blue project has a
significant number of buffer overflow issues. A strategy for
preventing buffer overflow is in order.

Figure 3: Source code analysis results broken down by severity for two projects.

Figure 4: Source code analysis issues organized by vulnerability type.

25

Source code analysis results can also be used to examine
vulnerability trends. Teams that are focused on security will
decrease the number of source code analysis findings over time
as they increasingly use the automation to mitigate security
problems. A sharp increase in the number of issues found is
likely to indicate a new security concern. Figure 5 shows the
number of issues found during each nightly build. Trend

indicators show how the project is evolving. In this case, the
spike in the number of issues found is a result of the
development group taking over a module from a group that has
not been focused on security. This code represents a risk that
will need mitigation throughout the remaining portion of the
development life cycle.

Figure 5: Source code analysis results over time.

Figure 6: Vulnerability dwell as a function of priority.

Metrics for Legacy codebases
For large codebases where security has not historically been a
priority, the security challenge has a different flavor. In most
cases, it is not possible to instantaneously remodel the entire
codebase for security purposes. Instead, an audit team needs to
prioritize the problems and work to remove the worst ones. Of
course, new development will continue even as the triage takes
place.

Metrics for legacy codebases leverage the ability of the source
code analyzer to give the same issue the same name across
different builds. By following the same issue over time and
associating it with the feedback provided by a human auditor,

the source code analyzer can provide insight into the evolution
of the project.

For example, the source code analysis results can reveal the way
a development team responds to security vulnerabilities. After
an auditor identifies a vulnerability, how long on average does it
take for the developers to make a fix? This metric is named
“Vulnerability Dwell.” Figure 6 shows a project where the
developers fix critical vulnerabilities within two days and take
progressively longer to address less severe problems.

Because a legacy codebase often continues to evolve, auditors
will need to return to the same projects again and again over
time. But how often? Every month? Every six months? The

26

rate of auditing should keep pace with the rate of development,
or rather the rate at which potential security issues are
introduced into the code. By tracking individual issues over
time, the output from a source code analysis tool can show an
audit team how many unaudited issues a project contains.

Figure 7 presents a typical graph. At the point the project is first
audited, audit coverage goes to 100%. Then, as the code
evolves over time, the audit coverage decays until the project is
audited again.

Figure 7: Audit coverage over time.

Figure 8: Audit history.

27

Another view of this same data gives a more comprehensive
view of the project. An audit history shows the total number of
issues, number of issues reviewed, and number of vulnerabilities
identified as a function of time. This view takes into account
not just the work of the auditors, but the effect the developers
have on the project, too. Figure 8 shows an audit (shown in red)
conducted over several product builds. At the same time the
audit is taking place, the number of issues in the codebase
(shown in blue) is growing. As the auditors work, they report
vulnerabilities (shown in yellow). When the blue and red meet,
the auditors have looked at all of the issues. Development work
is not yet complete though, and soon the project once again
contains unaudited issues. As the developers respond to some of
the vulnerabilities identified by the audit team, the number of
issues begins to decrease and some of the identified
vulnerabilities are fixed. At the far right side of the graph, the
uptick in the red indicates that another audit is beginning.

7. Conclusion
While software security has been a universally recognized risk,
there has been an absence of established procedures for
quantifying the security risk present software. Only by
measuring can organizations conquer the software security
problem.

The first step in this journey is the adoption of security-focused
activities and deliverables throughout each phase of the software
development process. These activities and deliverables include
risk analysis during software design, code review during
development, and security-oriented testing that targets the risks
that are specific to the application at hand. By tracking and
measuring the security activities adopted into the development
process, an organization can begin to quantify their software
security risk.

The data produced by source code analysis tools can be
particularly useful for this purpose, giving insight into whether
or not code review is taking place and whether or not the results
of the review are being acted upon.

8. REFERENCES
[1] G. McGraw. Software Security: Building Security In.

Addison-Wesley, to appear in 2006.
[2] G. McGraw et al. Building Security In. IEEE Security and

Privacy Magazine, 2004-2005.
[3] C. E. Landwehr, A. R. Bull, J. P. McDermott, W. S. Choi.

A Taxonomy of Computer Program Security Flaws, with
Examples. ACM Computing Surveys, Vol. 26, No. 3,
September 1994, pp. 211-254.

[4] S. Lipner and M. Howard. The Trustworthy Computing
Security Development Lifecycle. In Proceedings of the
20th Annual Computer Security Applications Conference
(ACSAC'04), 2004, pp. 2-13.

28

The Case for Common Flaw Enumeration
Robert A. Martin
MITRE Corporation
202 Burlington Road
Bedford, MA 01730

1-781-271-3001
ramartin@mitre.org

Steven M. Christey
MITRE Corporation
202 Burlington Road
Bedford, MA 01730

1-781-271-3961
coley@mitre.org

Joe Jarzombek
National Cyber Security Division

Department of Homeland Security
Arlington, VA 22201

1-703-235-5126
joe.jarzombek@dhs.gov

ABSTRACT
Software acquirers want assurance that the software products they
are obtaining are reviewed for known types of security flaws. The
acquisition groups in large government and private organizations
are moving forward to use these types of reviews as part of future
contracts. The tools and services that can be used for this type of
review are fairly new at best. However, there are no
nomenclature, taxonomies, or standards to define the capabilities
and coverage of these tools and services. This makes it difficult
to comparatively decide which tool/service is best suited for a
particular job. A standard taxonomy of software security
vulnerabilities can serve as a unifying language of discourse and
measuring stick for tools and services. Leveraging the diverse
thinking on this topic from academia, the commercial sector, and
government, we can pull together the most valuable breadth and
depth of content and structure to serve as a unified standard. As a
starting point, we plan to leverage the wide acceptance and use of
the Common Vulnerabilities and Exposures (CVE) list of publicly
known software security flaws. In conjunction with industry and
academia, we propose to extend the coverage of the CVE concept
[1] into security-based code assessment tools and services. Our
objective is to help shape and mature this new code security
assessment industry and also dramatically accelerate the use and
utility of these capabilities for organizations in reviewing the
software systems they acquire or develop.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification

General Terms
Software, Security, Testing, Verification, Flaws, Faults.

Keywords
taxonomies, static analysis, security flaws, weaknesses,
idiosyncrasies, WIFF, Common Vulnerabilities and Exposures,
CVE, vulnerabilities, secure software, software security
assurance.

1. INTRODUCTION
More and more organizations want assurance that the software
products they acquire and develop are free of known types of
security flaws. High quality tools and services for finding security
flaws in code are new. The question of which tool/service is
appropriate/better for a particular job is hard to answer given the
lack of structure and definition in the code assessment industry.

There are several efforts currently ongoing to begin to resolve
some of these shortcomings including the Department of
Homeland Security (DHS) National Cyber Security Division
(NCSD) sponsored Software Assurance Metrics and Tool
Evaluation (SAMATE) project [2] being led by the National
Institute of Standards and Technology (NIST), and the
Department of Defense (DOD) sponsored Code Assessment
Methodology Project (CAMP) which is part of the Protection of
Vital Data (POVD) effort [3] being conducted by Concurrent
Technologies Corporation (CTC), among others. While these
efforts are well placed, timely in their objectives and will surely
yield high value in the end, they both would benefit from a
common description of the underlying security vulnerabilities in
software that they are targeted to resolve. Without such a common
taxonometric description, many of these efforts cannot move
forward in a meaningful fashion or be aligned and integrated with
each other to provide strategic value.

Past efforts at developing this kind of taxonomy have been limited
by a very narrow technical domain focus or have largely focused
on high-level theories, taxonomies, or schemes that do not reach
the level of detail or variety of security issues that are found in
today's products. As an alternate approach, under sponsorship of
DHS NCSD, MITRE investigated the possibility of leveraging the
CVE initiative’s experience in analyzing nearly 13,000 real-world
vulnerabilities reported and discussed by industry and academia.

As part of the creation of the CVE List, over the last five years
MITRE's CVE initiative, sponsored by DHS NCSD, has
developed a preliminary classification and categorization of
vulnerabilities, attacks, faults, and other concepts that can be used
to help define this arena. However, the current groupings used in
the development of CVE, while sufficient for that task, are too
rough to be used to identify and categorize the functionality
offered within the offerings of the code security assessment
industry. Additional fidelity and succinctness is needed to support
this type of usage and there needs to be additional details and
description for each of the different nodes and groupings such as
the effects, behaviors, and implementation details, etc.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

©2005 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an affiliate of the U.S.
Government. As such, the Government retains a nonexclusive, royalty-
free right to publish or reproduce this article, or to allow others to do
so, for Government purposes only. SSATTM’05, 11/7-11/8/05, Long
Beach, CA, USA. © 2005 ACM 1-59593-307-7/05/11

29

As part of MITRE's participation in the DHS-sponsored NIST
SAMATE project MITRE took a first cut at revising the internal
CVE category work for usage in the code assessment industry.
The resultant document, called the Preliminary List Of
Vulnerability Examples for Researchers (PLOVER) [4], is a
working document that lists over 1,400 diverse, real-world
examples of vulnerabilities, identified by their CVE name. The
vulnerabilities are organized within a detailed conceptual
framework that currently enumerates 290 individual types of
Weaknesses, Idiosyncrasies, Faults, Flaws (WIFFs), with a large
number of real-world vulnerability examples for each type of
WIFF. PLOVER represents the first cut of a truly bottom-up
effort to take real-world observed faults and flaws that do exist in
code, abstract them and group them into common classes
representing more general potential vulnerabilities that could exist
in code, and then finally to organize them in an appropriate
relative structure so as to make them accessible and useful to a
diverse set of audiences for a diverse set of purposes. The initial
details of this enumeration can be found at the end of this paper.

Working with the community under the NIST SAMATE project,
we are establishing acceptable definitions and descriptions of
these CWEs. When completed, this will serve as a mechanism for
describing code vulnerability assessment capabilities in terms of
their coverage of the different CWEs. If necessary, this will also
be scoped to specific languages, frameworks, platforms and
machine architectures. More work is required to group PLOVER
WIFFs into a taxonomy more useful for SAMATE.

2. OBJECTIVES
As discussed above, we are leveraging PLOVER as a starting
point for the creation of a formal enumeration of the set of
software security Weaknesses, Idiosyncrasies, Faults, Flaws
(WIFFs) to serve as a common language for describing software
security vulnerabilities, to serve as a standard measuring stick for
software security tools targeting these vulnerabilities, and to
provide a common glue for vulnerability identification, mitigation
and prevention efforts. When complete, this Common WIFF
Enumeration (CWE) will not only encompass a large portion of
the CVE List's 12,000 plus CVE names but it will also include
detail and breadth from a diverse set of other industry and
academic sources and examples. Once a comprehensively broad
set of CWEs has been identified and collected, we will again look
to these other sources and examples for approaches to organizing
this enumeration in order to provide more simplicity to various
potential users through taxonometric layering.

Working with the community under the DHS-sponsored NIST
SAMATE project we are proceeding to establish acceptable
definitions and descriptions of these CWEs to support finding
these types of software security flaws in code prior to fielding.
When completed this will be a mechanism for describing each of
the industry's software security flaw code assessment capabilities
in terms of their coverage of the different CWEs. If necessary,
this will also be scoped to specific languages, frameworks,
platforms and machine architectures.

Additionally, we are working with researchers and software
suppliers to determine what sort of metadata and resources (e.g.
code exemplars, patterns, code snippets, etc.) will be needed to
allow tools to be tailored or enhanced to identify CWEs in code.
This work will also align with and leverage the SAMATE
project’s various sub-efforts including its development of a corpus

of data to determine precision and recall statistics for verifying the
effectiveness of these types of code assessment tools with respect
to finding CWEs.

Beyond the creation of the vulnerability taxonomy for the stated
reasons, a further end goal of this effort will be to take the
findings and results of this work and roll them into the CVE
initiative as the foundation of a new type of compatibility that can
be directly used by organizations in their selection and evaluation
of tools and/or services for assessing their acquired software for
known types of flaws.

3. APPROACH
A main theme of this effort is to leverage the existing work on this
topic area [5]-[14] in light of the large number of diverse real-
world vulnerabilities in CVE. We will leverage as many sources
and examples as we can gain access to as well as collaborate with
key industry players who are currently tackling this subject. We
will work in conjunction with researchers at the NIST, The Open
Web Application Security Project (OWASP), Ounce Labs,
Cigital, Fortify Software, Cenzic, Microsoft, Klocwork, and
Secure Software, and other interested parties, to develop specific
and succinct definitions of the CWE list elements that adequately
describe and differentiate the various CWEs while capturing their
specific effects, behaviors, exploit mechanisms, and
implementation details. In addition, we will assign the
appropriate CWE to the CVE names so that each CWE group will
have a list of the CVE names that belong to that CWE category of
software security flaws. In constructing the CWE list, we will
strive for maximum comprehensive coverage across appropriate
conceptual, business and technical domains.

In our efforts to define organizational structure to the CWE list
elements, we will look not only to PLOVER, but also to leading
thoughts in this area including the McGraw/Fortify “Kingdoms”
taxonomy [15], Howard, LeBlanc & Viega’s 19 Deadly Sins [16],
Secure Software’s CLASP [17], among others. In defining the
organizational structure, we will strive for simplicity and
appropriateness of description for leveraging by various audiences
and for various purposes through the use of taxonometric layering.
We currently foresee using a three tiered approach, in which the
lowest level consists of the full CWE list (likely hundreds of
nodes) and that is applicable to tool vendors and detailed research
efforts. The middle tier would consist of descriptive affinity
groupings of CWEs (likely 25-50 nodes) that are useful to
software security and software development practitioners. The
top level would consist of high-level groupings of the middle tier
nodes (likely 5-10 nodes) to define strategic classes of
vulnerability and is useful for high level discourse among
software practitioners, business people, tool vendors, researchers,
etc.

Once an initial CWE list and organizational structure have been
defined, we will collaborate with our colleagues in the industry to
further refine the required attributes of CWE list elements into a
more formal schema defining the metadata structure necessary to
support the various uses of the taxonomy. This schema will also
be driven by a desire to align with and support the other
SAMATE and CAMP efforts such as software metrics, software
security tool metrics, the software security tool survey, the
methodology for validating software security tool claims, and the
reference datasets.

30

With a schema defined, an initial comprehensive list of CWEs
identified and defined and an organizational structure in place,
this set of content will be submitted to a much broader audience of
industry participants to discuss, review and revise. This cycle will
iterate until a general consensus can be reached on what will
become the first release of the specification (a defacto standard).

4. IMPACT AND TRANSITION
OPPORTUNITIES
The completion of this effort will yield consequences of three
types: direct impact and value, alignment with and support of
other existing efforts, and enabling of new follow-on efforts to
provide value that is not currently being pursued.

Following is a list of the direct impacts this effort will yield. Each
impact could be the topic of much deeper ongoing discussion.

1. Provide a common language of discourse for discussing,
finding and dealing with the causes of software security
vulnerabilities as they are manifested in code.

2. Allow software security tool vendors and service providers to
make clear and consistent claims of the security vulnerability
causes that they cover to their potential user communities in
terms of the CWEs that they look for in a particular code
language. Additionally, a new type of CVE Compatibility
will be developed to allow security tool and service providers
to publicly declare their capability's coverage of CWEs

3. Allow purchasers to compare, evaluate and select software
security tools and services that are most appropriate to their
needs including having some level of assurance of the level
of CWEs that a given tool would find. Software purchasers
would be able to compare coverage of tool and service
offerings against the list of CWEs and the programming
languages that are used in the software they are acquiring.

4. Enable the verification of coverage claims made by software
security tool vendors and service providers (this is supported
through CWE metadata and alignment with the SAMATE
reference dataset).

5. Enable government and industry to leverage this
standardization in the contractual terms and conditions.

Following is a list of alignment opportunities with existing efforts
that are provided by the results of this effort. Again, each of these
items could be the topic of much deeper ongoing discussion.

1. Mapping of CWEs to CVEs. This mapping will help bridge
the gap between the potential sources of vulnerabilities and
examples of their observed instances providing concrete
information for better understanding the CWEs and
providing some validation of the CWEs themselves.

2. Bidirectional alignment between the vulnerability taxonomy
and the SAMATE metrics effort.

3. The SAMATE software security tool/service capability
framework effort that is tasked with designing a framework
and schema to quantitatively and qualitatively describe the
capabilities of tools and services would be able to leverage
this vulnerability taxonomy as the core layer of the
framework. This framework effort is not an explicitly called

out item in the SAMATE charter but is implied as necessary
to meet the project’s other objectives.

4. The SAMATE software security tool and services survey
effort would be able to leverage this vulnerability taxonomy
as part of the capability framework to effectively and
unambiguously describe various tools and services in a
consistent apples-to-apples fashion.

5. There should be bidirectional alignment between this source
of vulnerability taxonomy and the SAMATE reference
dataset effort such that CWEs could reference supporting
reference dataset entries as code examples of that particular
CWE for explanatory purposes and reference dataset entries
could reference the associated CWEs that they are intended
to demonstrate for validation purposes. Further, by working
with industry, an appropriate method could be developed for
collecting, abstracting, and sharing code samples from the
code of the products that the CVE names are assigned to with
the goal of gathering these code samples from industry
researchers and academia so that they could be shared as part
of the reference dataset and aligned with the vulnerability
taxonomy. These samples would then be available as
tailoring and enhancement aides to the developers of code
assessment security tools. We could actively engage closed
source and open source development organizations that work
with the CVE initiative to assign CVE names to
vulnerabilities to identify an approach that would protect the
source of the samples while still allowing us to share them
with others. By using the CVE-based relationships with
these organizations, we should be able to create a high-
quality collection of samples while also improving the
accuracy of the security code assessment tools that are
available to the software development groups to use in
vetting their own product's code

6. The SAMATE software security tool/service assessment
framework effort that is tasked with designing a test and
validation framework to support the validation of tool/service
vendor claims by either the purchaser directly or through a
3rd party, would rely heavily on this sources of vulnerability
taxonomy as its basis of analysis. To support this, we would
work with researchers to define the mechanisms used to
exploit the various CWEs for the purposes of helping to
clarify the CWE groupings and as a possible verification
method for validating the effectiveness of the tools that
identify the presence of CWEs in code by exploring the use
of several testing approaches on the executable version of the
reviewed code. The effectiveness of these test approaches
could be explored with the goal of identifying a method or
methods that are effective and economical to apply to the
validation process

7. Bidirectional mapping between CWEs and Coding Rules,
such as those deployed as part of the DHS NCSD “Build
Security In” (BSI) website [18], used by tools and in manual
code inspections to identify vulnerabilities in software.

8. There should be bidirectional alignment between the
vulnerability taxonomy and the CAMP malware repository
effort similar to the alignment with the SAMATE reference
dataset described in #5 above.

31

Following is a list of new, unpursued follow-on opportunities for
creating added value to the software security industry.

1. Expansion of the Coding Rules Catalog on the DHS BSI
website to include full mapping against the CWEs for all
relevant technical domains.

2. Identification and definition of specific domains (language,
platform, functionality, etc.) and relevant protection profiles
based on coverage of CWEs. These domains and profiles
could provide a valuable tool to security testing strategy and
planning efforts.

With this fairly quick research and refinement effort, this work
should be able to help shape and mature this new code security
assessment industry, and dramatically accelerate the use and
utility of these capabilities for organizations and the software
systems they acquire, develop, and use.

5. Initial Weaknesses, Idiosyncrasies, Faults,
Flaws (WIFFs) Enumeration
The following section introduces the current content we have
derived through studying a large portion of the CVE list. The
listing below, which is comprised of 290 specific types of
weakness, idiosyncrasies, faults and flaws (WIFFs) is not
exhaustive and will certainly evolve.

Our purpose in coining the term “WIFFs” is avoid the use of
the term “vulnerability” for these items. The term “vulnerability”
is frequently used in the community to apply to other concepts
including bugs, attacks, threats, risks, and impact. Also, there are
widely varying opinions regarding what “risk level” must be
associated with a problem in order to call it a vulnerability, e.g. in
terms of denial-of-service attacks and minor information leaks.
Finally, not every instance of the items listed below, or those
collected in this overall effort, will need to be removed or
addressed in the applications they reside in. While they most
certainly need to be examined and evaluated for their potential
impact to the application, there will certainly be a large number of
these items that could be safely left as is, or dealt with by making
some minimal adjustments or compensations to keep them from
manifesting into exploitable vulnerabilities. If we went forward
using the term “vulnerability” for these items, there would be a
built-in bias and predisposition to remove and eliminate each and
every one of them, which would be a massive and unnecessary
waste of time and resources.

The items below have not been categorized except in the most
obvious and expeditious manner. With the incorporation of the
other contributions from academia and industry sources we will
most certainly reorganize these groupings as more examples and
specifics are added. With this caveat we provide the following
summary of the 28 main categories which contain the 290
individual types of WIFFs we have enumerated to-date.

1. Buffer overflows, format strings, etc. [BUFF] (10 types)

 These categories cover the increasingly diverse set of
WIFFs that are generally referred to as “buffer overflows.”
The specific types in this group are: Buffer Boundary
Violations (“buffer overflow”), Unbounded Transfer
(“classic overflow”), Boundary beginning violation (“buffer
underflow”), Out-of-bounds Read, Buffer over-read, Buffer
under-read, Array index overflow, Length Parameter

Inconsistency, Other length calculation error, Format string
vulnerability

2. Structure and Validity Problems [SVM] (10 types)

 These categories cover certain ways in which “well-
formed” data could be malformed. The specific types in this
group are: Missing Value Error, Missing Parameter Error,
Missing Element Error, Extra Value Error, Extra Parameter
Error, Undefined Parameter Error, Undefined Value Error,
Wrong Data Type, Incomplete Element, Inconsistent
Elements

3. Special Elements (Characters or Reserved Words) [SPEC]
(19 types)

 These categories cover the types of special elements
(special characters or reserved words) that become security-
relevant when transferring data between components. The
specific types in this group are: General Special Element
Problems, Parameter Delimiter, Value Delimiter, Record
Delimiter, Line Delimiter, Section Delimiter, Input
Terminator, Input Leader, Quoting Element, Escape, Meta,
or Control Character / Sequence, Comment Element, Macro
Symbol, Substitution Character, Variable Name Delimiter,
Wildcard or Matching Element, Whitespace, Grouping
Element / Paired Delimiter, Delimiter between Expressions
or Commands, Null Character / Null Byte

4. Common Special Element Manipulations [SPECM] (11
types)

 These categories include different ways in which special
elements could be introduced into input to software as it
operates. The specific types in this group are: Special
Element Injection, Equivalent Special Element Injection,
Leading Special Element, Multiple Leading Special
Elements, Trailing Special Element, Multiple Trailing
Special Elements, Internal Special Element, Multiple
Internal Special Element, Missing Special Element, Extra
Special Element, Inconsistent Special Elements

5. Technology-Specific Special Elements [SPECTS] (17
types)

 These categories cover special elements in commonly used
technologies and their associated formats. The specific
types in this group are: Cross-site scripting (XSS), Basic
XSS, XSS in error pages, Script in IMG tags, XSS using
Script in Attributes, XSS using Script Via Encoded URI
Schemes, Doubled character XSS manipulations, e.g.
“<<script”, Null Characters in Tags, Alternate XSS syntax,
OS Command Injection, Argument Injection or
Modification, SQL injection, LDAP injection, XML
injection (aka Blind Xpath injection), Custom Special
Character Injection, CRLF Injection, Improper Null
Character Termination

6. Pathname Traversal and Equivalence Errors [PATH] (47
types)

 These categories cover the use of file and directory names
to either “escape” out of an intended restricted directory, or
access restricted resources by using equivalent names. The
specific types in this group are: Path Traversal, Relative
Path Traversal, “/directory/../filename”, “../filedir”,

32

“/../filedir”, “directory/../../filename”, “..\filename” (“dot
dot backslash”), “\..\filename” (“leading dot dot
backslash”), “\directory\..\filename”,
“directory\..\..\filename”, “...” (triple dot), “....” (multiple
dot), “....//” (doubled dot dot slash), Absolute Path
Traversal, /absolute/pathname/here, “.../...//”,
\absolute\pathname\here (“backslash absolute path”),
“C:dirname” or C: (Windows volume or “drive letter”),
“\\UNC\share\name\” (Windows UNC share), Path
Equivalence, Trailing Dot - “filedir.”, Internal Dot -
“file.ordir”, Multiple Internal Dot - “file...dir”, Multiple
Trailing Dot - “filedir....”, Trailing Space - “filedir “,
Leading Space - “ filedir”, file[SPACE]name (internal
space), filedir/ (trailing slash, trailing /),
//multiple/leading/slash (“multiple leading slash”),
/multiple//internal/slash (“multiple internal slash”),
/multiple/trailing/slash// (“multiple trailing slash”),
\multiple\\internal\backslash, filedir\ (trailing backslash), /./
(single dot directory), filedir* (asterisk / wildcard),
dirname/fakechild/../realchild/filename, Windows 8.3
Filename, Link Following, UNIX symbolic link (symlink)
following, UNIX hard link, Windows Shortcut Following
(.LNK), Windows hard link, Virtual Files, Windows MS-
DOS device names, Windows ::DATA alternate data
stream, Apple “.DS_Store”, Apple HFS+ alternate data
stream

7. Channel and Path Errors [CP] (13 types)

 These categories cover the ways in which the use of
communication channels or execution paths could be
security-relevant. The specific types in this group are:
Channel Errors, Unprotected Primary Channel, Unprotected
Alternate Channel, Alternate Channel Race Condition,
Proxied Trusted Channel, Unprotected Windows Messaging
Channel (“Shatter”), Alternate Path Errors, Direct Request
aka “Forced Browsing”, Miscellaneous alternate path
errors, Untrusted Search Path, Mutable Search Path,
Uncontrolled Search Path Element, Unquoted Search Path
or Element

8. Cleansing, Canonicalization, and Comparison Errors [CCC]
(16 types)

 These categories cover various ways in which inputs are not
properly cleansed or canonicalized, leading to improper
actions on those inputs. The specific types in this group are:
Encoding Error, Alternate Encoding, Double Encoding,
Mixed Encoding, Unicode Encoding, URL Encoding (Hex
Encoding), Case Sensitivity (lowercase, uppercase, mixed
case), Early Validation Errors, Validate-Before-
Canonicalize, Validate-Before-Filter, Collapse of Data into
Unsafe Value, Permissive Whitelist, Incomplete Blacklist,
Regular Expression Error, Overly Restrictive Regular
Expression, Partial Comparison

9. Information Management Errors [INFO] (19 types)

 These categories involve the inadvertent or intentional
publication or omission of sensitive data, which is not
resultant from other types of WIFFs. The specific types in
this group are: Information Leak (information disclosure),
Discrepancy Information Leaks, Response discrepancy
infoleak, Behavioral Discrepancy Infoleak, Internal
behavioral inconsistency infoleak, External behavioral

inconsistency infoleak, Timing discrepancy infoleak,
Product-Generated Error Message Infoleak, Product-
External Error Message Infoleak, Cross-Boundary
Cleansing Infoleak, Intended information leak, Process
information infoleak to other processes, Infoleak Using
Debug Information, Sensitive Information Uncleared
Before Use, Sensitive memory uncleared by compiler
optimization, Information loss or omission, Truncation of
Security-relevant Information, Omission of Security-
relevant Information, Obscured Security-relevant
Information by Alternate Name

10. Race Conditions [RACE] (6 types)

 These categories cover various types of race conditions.
The specific types in this group are: Race condition
enabling link following, Signal handler race condition,
Time-of-check Time-of-use race condition, Context
Switching Race Condition, Alternate Channel Race
Condition, Other race conditions

11. Permissions, Privileges, and ACLs [PPA] (20 types)

 These categories include the improper use, assignment, or
management of permissions, privileges, and access control
lists. The specific types in this group are: Privilege /
sandbox errors, Incorrect Privilege Assignment, Unsafe
Privilege, Privilege Chaining, Privilege Management Error,
Privilege Context Switching Error, Privilege Dropping /
Lowering Errors, Insufficient privileges, Misc. privilege
issues, Permission errors, Insecure Default Permissions,
Insecure inherited permissions, Insecure preserved inherited
permissions, Insecure execution-assigned permissions, Fails
poorly due to insufficient permissions, Permission
preservation failure, Ownership errors, Unverified
Ownership, Access Control List (ACL) errors, User
management errors

12. Handler Errors [HAND] (4 types)

 These categories, which are not very mature, cover various
ways in which “handlers” are improperly applied to data.
The specific types in this group are: Handler errors, Missing
Handler, Dangerous handler not cleared/disabled during
sensitive, Raw Web Content Delivery, File Upload of
Dangerous Type

13. User Interface Errors [UI] (7 types)

 These categories cover WIFFs in a product's user interface
that lead to insecure conditions. The specific types in this
group are: Product UI does not warn user of unsafe actions,
Insufficient UI warning of dangerous operations, User
interface inconsistency, Unimplemented or unsupported
feature in UI, Obsolete feature in UI, The UI performs the
wrong action, Multiple Interpretations of UI Input, UI
Misrepresentation of Critical Information

33

14. Interaction Errors [INT] (7 types)

 These categories cover WIFFs that only occur as the result
of interactions or differences between multiple products that
are used in conjunction with each other. The specific types
in this group are: Multiple Interpretation Error (MIE), Extra
Unhandled Features, Behavioral Change, Expected
behavior violation, Unintended proxy/intermediary, HTTP
response splitting, HTTP Request Smuggling

15. Initialization and Cleanup Errors [INIT] (6 types)

 These categories cover incorrect initialization. The specific
types in this group are: Insecure default variable
initialization, External initialization of trusted variables or
values, Non-exit on Failed Initialization, Missing
Initialization, Incorrect initialization, Incomplete Cleanup.

16. Resource Management Errors [RES] (11 types)

 These categories cover ways in which a product does not
properly manage resources such as memory, CPU, network
bandwidth, or product-specific objects. The specific types
in this group are: Memory leak, Resource leaks, UNIX file
descriptor leak, Improper resource shutdown, Asymmetric
resource consumption (amplification), Network
Amplification, Algorithmic Complexity, Data
Amplification, Insufficient Resource Pool, Insufficient
Locking, Missing Lock Check

17. Numeric Errors [NUM] (6 types)

 These categories cover WIFFs that involve erroneous
manipulation of numbers. The specific types in this group
are: Off-by-one Error, Integer Signedness Error (aka
“signed integer” error), Integer overflow (wrap or
wraparound), Integer underflow (wrap or wraparound),
Numeric truncation error, Numeric Byte Ordering Error

18. Authentication Error [AUTHENT] (12 types)

 These categories cover WIFFs that cause authentication
mechanisms to fail. The specific types in this group are:
Authentication Bypass by Alternate Path/Channel,
Authentication bypass by alternate name, Authentication
bypass by spoofing, Authentication bypass by replay, Man-
in-the-middle (MITM), Authentication Bypass via
Assumed-Immutable Data, Authentication Logic Error,
Missing Critical Step in Authentication, Authentication
Bypass by Primary WIFF, No Authentication for Critical
Function, Multiple Failed Authentication Attempts not
Prevented, Miscellaneous Authentication Errors

19. Cryptographic errors [CRYPTO] (13 members)

 These categories cover problems in the design or
implementation of cryptographic algorithms and protocols,
or their misuse within other products. The specific types in
this group are: Plaintext Storage of Sensitive Information,
Plaintext Storage in File or on Disk, Plaintext Storage in
Registry, Plaintext Storage in Cookie, Plaintext Storage in
Memory, Plaintext Storage in GUI, Plaintext Storage in
Executable, Plaintext Transmission of Sensitive
Information, Key Management Errors, Missing Required
Cryptographic Step, Weak Encryption, Reversible One-
Way Hash, Miscellaneous Crypto Problems

20. Randomness and Predictability [RAND] (9 types)

 These categories cover WIFFs in security-relevant
processing that depends on sufficient randomness to be
effective. The specific types in this group are: Insufficient
Entropy, Small Space of Random Values, PRNG Seed
Error, Same Seed in PRNG, Predictable Seed in PRNG,
Small Seed Space in PRNG, Predictable from Observable
State, Predictable Exact Value from Previous Values,
Predictable Value Range from Previous Values

21. Code Evaluation and Injection [CODE] (4 types)

 These categories cover WIFFs in components that process
and evaluate data as if it is code. The specific types in this
group are: Direct Dynamic Code Evaluation, Direct Static
Code Injection, Server-Side Includes (SSI) Injection, PHP
File Inclusion

22. Error Conditions, Return Values, Status Codes [ERS] (4
types)

 These categories cover WIFFs that occur when a product
does not properly handle rare or erroneous operating
conditions. The specific types in this group are: Unchecked
Error Condition, Missing Error Status Code, Wrong Status
Code, Unexpected Status Code or Return Value

23. Insufficient Verification of Data [VER] (7 types)

 These categories cover WIFFs in which the source and
integrity of incoming data are not properly verified. The
specific types in this group are: Improperly Verified
Signature, Use of Less Trusted Source, Untrusted Data
Appended with Trusted Data, Improperly Trusted Reverse
DNS, Insufficient Type Distinction, Cross-Site Request
Forgery (CSRF), Other Insufficient Verification

24. Modification of Assumed-Immutable Data [MAID] (2
types)

 These categories cover WIFFs in which data that is
assumed to be immutable by a product, can be modified by
an attacker. The specific types in this group are: Web
Parameter Tampering, PHP External Variable Modification

25. Product-Embedded Malicious Code [MAL] (7 types)

 These categories cover WIFFs for intentionally malicious
code that has been introduced into a product sometime
during the software development lifecycle. The specific
types in this group are: Back Door, Back Door, Developer-
Introduced Back Door, Outsider-Introduced Back Door,
Hidden User-Triggered Functionality, Logic Bomb, Time
Bomb

26. Common Attack Mitigation Failures [ATTMIT] (3 types)

 These categories cover certain design problems that are
more frequently known by the attacks against them. The
specific types in this group are: Insufficient Replay
Protection, Susceptibility to Brute Force Attack,
Susceptibility to Spoofing

34

27. Containment errors (container errors) [CONT] (3 types)

 These categories cover WIFFs that involve the storage or
transfer of data outside of its logical boundaries. The
specific types in this group are: Sensitive Entity in
Accessible Container, Sensitive Data Under Web Root,
Sensitive Data Under FTP Root

28. Miscellaneous WIFFs [MISC] (7 types)

 These categories do not fit cleanly within any of the other
main categories. The specific types in this group are:
Double-Free Vulnerability, Incomplete Internal State
Distinction, Other Types of Truncation Errors, Signal
Errors, Improperly Implemented Security Check for
Standard, Misinterpretation Error, Business Rule Violations
or Logic Errors

6. ACKNOWLEDGMENTS
The work contained in this paper was funded by DHS NCSD.

7. REFERENCES
[1] “The Common Vulnerabilities and Exposures (CVE)

Initiative,” MITRE Corporation, (http://cve.mitre.org).

[2] “The Software Assurance Metrics and Tool Evaluation
(SAMATE) project,” National Institute of Science and
Technology (NIST), (http://samate.nist.gov).

[3] Code Assessment Methodology Project (CAMP), part of the
Protection of Vital Data (POVD) effort, Concurrent
Technologies Corporation, (http://www.ctc.com).

[4] “The Preliminary List Of Vulnerability Examples for
Researchers (PLOVER),” MITRE Corporation,
(http://cve.mitre.org/docs/plover/).

[5] Householder, A. D., Seacord, R. C., “A Structured Approach
to Classifying Security Vulnerabilities,” CMU/SEI-2005-
TN-003, January 2005.

[6] Leek, T., Lippmann, R., Zitser, M., “Testing Static Analysis
Tools Using Exploitable Buffer Overflows From Open

Source Code,” Foundations of Software Engineering
December, 2005 Newport Beach, CA.

[7] Waters, J. K., “Don’t Let Your Applications Get You
Down,” Application Development Trends, July 2005.

[8] Wang, C., Wang, H., “Taxonomy of Security Considerations
and Software Quality,” Communications of the ACM, June
2003, Vol. 46. No. 6.

[9] Plante, A., “Beefed up OWASP 2.0 introduced at BlackHat,”
SearchSecurity.com, 28 July, 2005.

[10] Viega, J., “Security, Problem Solved?,” QUEUE, June 2005.

[11] Ball, T., Das, M., DeLine, R., Fahndrich, M., Larus, J. R.,
Pincus, J., Rajamani, S. K., Venkatapathy, R., “Righting
Software,” IEEE Software, May/June 2004.

[12] Ranum, M. J., “SECURITY, The root of the problem,”
QUEUE, June 2004.

[13] Messier, M., Viega, J., “It’s not just about the buffer
overflow,” QUEUE, June 2004.

[14] Weber, S., Karger, P. A., Paradkar, A., “A Software Flaw
Taxonomy: Aiming Tools at Security,” ACM Software
Engineering for Secure Systems – Building Trustworthy
Applications (SESS’05) St. Louis, Missouri, USA., June
2004.

[15] McGraw, G., Chess, B., Tsipenyuk, K., “Seven Pernicious
Kingdoms: A Taxonomy of Software Security Errors”.
“NIST Workshop on Software Security Assurance Tools,
Techniques, and Metrics,” November, 2005 Long Beach,
CA.

[16] Howard, M., LeBlanc, D., and Viega, J., “19 Deadly Sins of
Software Security”. McGraw-Hill Osborne Media, July
2005.

[17] Viega, J., The CLASP Application Security Process, Secure
Software, Inc., http://www.securesoftware.com, 2005.

[18] Department of Homeland Security National Cyber Security
Division’s “Build Security In” (BSI) web site,
(http://buildsecurityin.us-cert.gov).

35

Seven Pernicious Kingdoms:
A Taxonomy of Software Security Errors

Katrina Tsipenyuk
Fortify Software

2300 Geng Road, Suite 102
Palo Alto, CA 94303

1-650-213-5600

katrina@fortifysoftware.com

Brian Chess
Fortify Software

2300 Geng Road, Suite 102
Palo Alto, CA 94303

1-650-213-5600

brian@fortifysoftware.com

Gary McGraw
Cigital

21351 Ridgetop Circle, Suite 400
Dulles, VA 20166
1-703-404-9293

gem@cigital.com

ABSTRACT
We want to help developers and security practitioners understand
common types of coding errors that lead to vulnerabilities. By
organizing these errors into a simple taxonomy, we can teach
developers to recognize categories of problems that lead to
vulnerabilities and identify existing errors as they build software.

The information contained in our taxonomy is most effectively
enforced via a tool. In fact, all of the errors included in our
taxonomy are amenable to automatic identification using static
source code analysis techniques.

We demonstrate why our taxonomy is not only simpler, but also
more comprehensive than other modern taxonomy proposals and
vulnerability lists. We provide an in-depth explanation and one or
more code-level examples for each of the errors on a companion
web site: http://vulncat.fortifysoftware.com.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection – access
controls, authentication, cryptographic controls, information flow
controls, invasive software. K.6.5 [Management of Computing
and Information Systems]: Security and Protection –
authentication, invasive software, unauthorized access.

General Terms
Security, standardization.

Keywords
Software security, security defects, taxonomy, static analysis
tools.

1. INTRODUCTION
We believe that software developers play a crucial role in
building secure computer systems. Because roughly half of all
security defects are introduced at the source code level [15],
coding errors (a.k.a. “bugs”) are a critical problem in software
security.

“(c) 2005 Association for Computing Machinery. ACM acknowledges
that this contribution was authored or co-authored by an affiliate of the
U.S. Government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.”
SSATTM'05, 11/7-11/8/05, Long Beach, CA, USA
(c) 2005 ACM 1-59593-307-7/05/11.

In defining this taxonomy of coding errors, our primary goal is to
organize sets of security rules that can be used to help software
developers understand the kinds of errors that have an impact on
security. We believe that one of the most effective ways to deliver
this information to developers is through the use of tools. Our
hope is that, by better understanding how systems fail, developers
will better analyze the systems they create, more readily identify
and address security problems when they see them, and generally
avoid repeating the same mistakes in the future.

When put to work in a tool, a set of security rules organized
according to this taxonomy is a powerful teaching mechanism.
Because developers today are by and large unaware of the myriad
ways they can introduce security problems into their work,
publication of a taxonomy like this should provide tangible
benefits to the software security community.

Defining a better classification scheme can also lead to better
tools: a better understanding of the problems will help researchers
and practitioners create better methods for ferreting them out.

We propose a simple, intuitive taxonomy, which we believe is the
best approach for our stated purpose of organizing sets of
software security rules that will teach software developers about
security. Our approach is an alternative to a highly specific list of
attack types and vulnerabilities offered by CVE (Common
Vulnerabilities and Exposures) [7], which lacks in the way of
categorization and is operational in nature. Our classification
scheme is amenable to automatic identification and can be used
with static analysis tools for detecting real-world security
vulnerabilities in software. Our approach is also an alternative to
a number of broad classification schemes that focus exclusively
on operating-system-related vulnerabilities [1,2,3,12,19]. We
discuss these taxonomies in Section 2.

Section 3 motivates our work and discusses the relationship
between coding errors and corresponding attacks. It also defines
terminology used throughout the rest of this paper. Section 4
describes the scheme we propose. We refer to a type of coding
error as a phylum and a related set of phyla as a kingdom. A
complete description of each phylum is available on this paper’s
companion web site [8]. Section 5 draws parallels between two
other vulnerability lists [11,17]. Section 6 concludes.

36

2. RELATED WORK
All scientific disciplines benefit from a method for organizing
their topic of study, and software security is no different. The
value of a classification scheme is indisputable: a taxonomy is
necessary in order to create a common vocabulary and an
understanding of the ways computer security fails. The problem
of defining a taxonomy has been of great interest since the mid-
1970s. Several classification schemes have been proposed since
then [4].

One of the first studies of computer security and privacy was the
RISOS (Research Into Secure Operating Systems) project [1].
RISOS proposed and described seven categories of operating
system security defects. The purpose of the project was to
understand security problems in existing operating systems,
including MULTICS, TENEX, TOPS-10, GECOS, OS/MVT,
SDS-940, and EXEC-8, and to determine ways to enhance the
security of these systems. The categories proposed in the RISOS
project include:

• Incomplete Parameter Validation
• Inconsistent Parameter Validation
• Implicit Sharing of Privileges / Confidential Data
• Asynchronous Validation / Inadequate Serialization
• Inadequate Identification / Authentication / Authorization
• Violable Prohibition / Limit
• Exploitable Logic Error

The study shows that there are a small number of fundamental
defects that recur in different contexts.

The objective of the Protection Analysis (PA) project [3] was to
enable anybody (with or without any knowledge about computer
security) to discover security errors in the system by using a
pattern-directed approach. The idea was to use formalized
patterns to search for corresponding errors. The PA project was
the first project to explore automation of security defects
detection. However, the procedure for reducing defects to abstract
patterns was not comprehensive, and the technique could not be
properly automated. The database of vulnerabilities collected in
the study was never published.

Landwehr, Bull, McDermott, and Choi [12] classify each
vulnerability from three perspectives: genesis (how the problem
entered the system), time (at which point in the production cycle
the problem entered the system), and location (where in the
system the problem is manifest). Defects by genesis were broken
down into intentional and inadvertent, where the intentional class
was further broken down into malicious and non-malicious.
Defects by time of introduction were broken down into
development, maintenance, and operation, where the
development class was further broken down into design, source
code, and object code. Defects by location were broken down into
software and hardware, where the software class was further
broken down into operating system, support, and application. A
very similar scheme was proposed by Weber, Karger, and
Paradkar [21]. However, their scheme classifies vulnerabilities
only according to genesis.

The advantage of this type of hierarchical classification is the
convenience of identifying strategies to remedy security
problems. For example, if most security issues are introduced
inadvertently, increasing resources devoted to code reviews

becomes an effective way of increasing security of the system.
The biggest disadvantage of this scheme is inability to classify
some existing vulnerabilities. For example, if it is not known how
the vulnerability entered the system, it cannot be classified by
genesis at all.

Another scheme relevant to our discussion is ODC (Orthogonal
Defect Classification) [19] proposed and widely used at IBM.
ODC categorizes defects according to error type (a low-level
programming mistake) and trigger event (environment
characteristics that caused a defect). Additionally, each defect is
characterized by severity and symptom. However, ODC focuses
on operating system quality issues rather than security issues.

The schemes discussed above have several limitations in
common. One of them is the breadth of the categories making
classification ambiguous. In some cases, one issue can be
classified in more than one category. The category names, while
useful to some groups of researchers, are too generic to be
quickly intuitive to a developer in the context of day-to-day work.
Additionally, these schemes focus mostly on operating system
security problems and do not classify the ones associated with
user-level software security. Furthermore, these taxonomies mix
implementation-level and design-level defects and are not
consistent about defining the categories with respect to the cause
or effect of the problem.

The work done by Landwehr, Bull, McDermott, and Choi was
later extended by Viega [20]. In addition to classifying
vulnerabilities according to genesis, time, and location, he also
classifies them by consequence (effects of the compromise
resulting from the error) and other miscellaneous information,
including platform, required resources, severity, likelihood of
exploit, avoidance and mitigation techniques, and related
problems. Each category is discussed in detail and provides
specific examples, including, in some cases code excerpts. This
“root-cause” database, as Viega calls it, strives to provide a
lexicon for the underlying problems that form the basis for the
many known security defects. As a result, not all of the issues in
this taxonomy are security problems. Furthermore, the “root-
cause” database allows the same problem to be classified
differently depending upon the interests of the person doing the
classification.

A good list of attack classes is provided by Cheswick, Bellovin,
and Rubin [5]. The list includes:

• Stealing Passwords
• Social Engineering
• Bugs and Back Doors
• Authentication Failures
• Protocol Failures
• Information Leakage
• Exponential Attacks—Viruses and Worms
• Denial-of-Service Attacks
• Botnets
• Active Attacks

A thorough description with examples is provided for each class.
These attack classes are applicable to a wide range of software,
including user-level enterprise software. This fact distinguishes
the list from other classification schemes. The classes are simple
and intuitive. However, this list defines attack classes rather than

37

categories of common coding errors that cause these attacks. A
similar, but a more thorough list of attack patterns is given by
Hoglund and McGraw [10]. Attack-based approaches are based
on knowing your enemy and assessing the possibility of similar
attack. They represent the black-hat side of the software security
equation. A taxonomy of coding errors is more positive in nature.
This kind of thing is most useful to the white-hat side of the
software security world. In the end, both kinds of approaches are
valid and necessary.

The classification scheme proposed by Aslam [2] is the only
precise scheme discussed here. In this scheme, each vulnerability
belongs to exactly one category. The decision procedure for
classifying an error consists of a set of questions for each
vulnerability category. Aslam’s system is well-defined and offers
a simple way for identifying defects by similarity. Another
contribution of Aslam’s taxonomy is that it draws on software
fault studies to develop its categories. However, it focuses
exclusively on implementation issues in the UNIX operating
system and offers categories that are still too broad for our
purpose.

The most recent classification scheme we are aware of is
PLOVER (Preliminary List of Vulnerability Examples for
Researchers) [6], which is a starting point for the creation of a
formal enumeration of WIFFs (Weaknesses, Idiosyncrasies,
Faults, Flaws) called CWE (Common WIFF Enumeration) [13].
Twenty-eight main categories that comprise almost three hundred
WIFFs put Christey’s and Martin’s classification scheme at the
other end of the ambiguity spectrum—the vulnerability categories
are much more specific than in any of the taxonomies discussed
above. Their bottom-up approach is complimentary to our efforts.
PLOVER and CWE are extensions of Christey’s earlier work in
assigning CVE (Common Vulnerabilities and Exposures) [7]
names to publicly known vulnerabilities. An attempt to draw
parallels between theoretical attacks and vulnerabilities known in
practice is an important contribution and a big step forward from
most of the earlier schemes.

3. MOTIVATION
Most existing classification schemes, as is evident, begin with a
theoretical and comprehensive approach to classifying security
defects. Most research to date has been focusing on making the
scheme deterministic and precise, striving for a one-to-one
mapping between a vulnerability and the category the
vulnerability belongs to. Another facet of the same goal has been
to make classification consistent for different levels of
abstraction: the same vulnerability should be classified into the
same category regardless of whether it is considered from a
design or implementation perspective.

Most of the proposed schemes focus on classifying operating-
systems-related security defects rather than the errors in software
security. Furthermore, categories that comprise many of the
existing taxonomies were meant to be both broad and rigorously
defined instead of intuitive and specific. Overall, most of the
schemes cannot easily be applied to organizing security rules
used by a software developer who wants to learn how to build
secure software.

To further our goal of educating software developers about
common errors, we forgo the breadth and complexity essential to
theoretical completeness in favor of practical language centered
on programming concepts that are approachable and meaningful
to developers.

Before we proceed, we need to define the terminology borrowed
from Biology which we use to talk about our classification
scheme throughout the rest of the paper.

Definition 1. By phylum we mean a specific type of coding error.
For example, Illegal Pointer Value is a phylum.

Definition 2. A kingdom is a collection of phyla that share a
common theme. For example, Input Validation and
Representation is a kingdom.

In defining our taxonomy, we value concrete and specific
problems that are a real concern to software security over abstract
and theoretical ones that either have not been seen in practice or
are a result of high-level unsafe specification decisions. We did
not make it a goal to create a theoretically complete classification
scheme. Instead, we offer a scheme that is open-ended and
amenable to future expansion. We expect the list of important
phyla to change over time. We expect the important kingdoms to
change too, though at a lesser rate. Any evolution will be
influenced by trends in languages, frameworks, and libraries;
discovery of new types of attacks; new problems and verticals
toward which software is being applied; the regulatory landscape,
and social norms.

We value simplicity over parallelism in order to create kingdoms
that are intuitive to software developers who are not security
experts. As opposed to most of the classification schemes
discussed in Section 2, our taxonomy focuses on code-level
security problems that occur in a range of software applications
rather than errors that are most applicable to specific kinds of
software, such as operating systems. For example, Buffer
Overflow and Command Injection [8] are a part of our taxonomy,
while analysis of keystrokes and timing attacks on SSH [18], as
well as other kinds of covert-channel-type attacks, are not
included. There is no reason to believe that the kingdoms we have
chosen would not work for operating systems or other types of
specialized software, however there are many more developers
working on business applications and desktop programs than on
operating systems.

To better understand the relationship between the phyla our
taxonomy offers, consider a recently found vulnerability in
Adobe Reader 5.0.x for Unix [9]. The vulnerability is present in a
function UnixAppOpenFilePerform() that copies user-
supplied data into a fixed-size stack buffer using a call to
sprintf(). If the size of the user-supplied data is greater than
the size of the buffer it is being copied into, important
information, including the stack pointer, is overwritten. By
supplying a malicious PDF document, an attacker can execute
arbitrary commands on the target system. The attack is possible
because of a simple coding error—the absence of a check that
makes sure that the size of the user-supplied data is no greater
than the size of the destination buffer. In our experience,
developers will associate this check with a failure to code
defensively around the call to sprintf(). We classify this

38

coding error according to the attack it enables—Buffer Overflow.
We choose Input Validation and Representation as the name of
the kingdom Buffer Overflow phylum belongs to because the lack
of proper input validation is the reason the attack is possible.

The coding errors represented by our phyla can all be detected by
static source code analysis tools. Source code analysis offers
developers an opportunity to get quick feedback about the code
that they write. We see great potential for educating developers
about coding errors by having them use a source code analysis
tool.

4. THE TAXONOMY
We now provide a summary of our taxonomy, which will also
appear in McGraw’s new book [14]. We split the phyla into
“seven-plus-one” high-level kingdoms that should make sense to
a majority of developers. Seven of these kingdoms are dedicated
to errors in source code, and one is related to configuration and
environment issues. We present them in order of importance to
software security:

1. Input Validation and Representation
2. API Abuse
3. Security Features
4. Time and State
5. Errors
6. Code Quality
7. Encapsulation
*. Environment

Brief descriptions of the kingdoms and phyla are provided below.
Complete descriptions with source code examples are available
on the internet at http://vulncat.fortifysoftware.com.

Our taxonomy includes coding errors that occur in a variety of
programming languages. The most important among them are C
and C++, Java, and the .NET family including C# and ASP. Some
of our phyla are language-specific because the types of errors
they represent are applicable only to specific languages. One
example is the Double Free phylum. It identifies incorrect usage
of low-level memory routines. This phylum is specific to C and
C++ because neither Java nor the managed portions of the .NET
languages expose low-level memory APIs.

In addition to being language-specific, some of our phyla are
framework-specific. For example, the Struts phyla apply only to
the Struts framework and the J2EE phyla are only applicable in
the context of the J2EE applications. Log Forging, on the other
hand, is a more general phylum.

Our phylum list is certainly incomplete, but it is adaptable to
changes in trends and discoveries of new defects that will happen
over time. We focus on finding and classifying security-related
defects rather than more general quality or reliability issues. The
Code Quality kingdom could potentially contain many more
phyla, but we feel that the ones that we currently include are the
ones most likely to affect software security. Finally, we
concentrate on classifying errors that are most important to real-
world enterprise developers—we derive this information from the
literature, our colleagues, and our customers.

1. Input Validation and Representation
Input validation and representation problems are caused by
metacharacters, alternate encodings and numeric representations.
Security problems result from trusting input. The issues include:
Buffer Overflows, Cross-Site Scripting attacks, SQL Injection,
and many others.

• Buffer Overflow. Writing outside the bounds of allocated
memory can corrupt data, crash the program, or cause the
execution of an attack payload.

• Command Injection. Executing commands from an
untrusted source or in an untrusted environment can cause
an application to execute malicious commands on behalf of
an attacker.

• Cross-Site Scripting. Sending unvalidated data to a Web
browser can result in the browser executing malicious code
(usually scripts).

• Format String. Allowing an attacker to control a
function’s format string may result in a buffer overflow.

• HTTP Response Splitting. Writing unvalidated data into
an HTTP header allows an attacker to specify the entirety
of the HTTP response rendered by the browser.

• Illegal Pointer Value. This function can return a pointer to
memory outside of the buffer to be searched. Subsequent
operations on the pointer may have unintended
consequences.

• Integer Overflow. Not accounting for integer overflow can
result in logic errors or buffer overflows.

• Log Forging. Writing unvalidated user input into log files
can allow an attacker to forge log entries or inject malicious
content into logs.

• Path Manipulation. Allowing user input to control paths
used by the application may enable an attacker to access
otherwise protected files.

• Process Control. Executing commands or loading libraries
from an untrusted source or in an untrusted environment
can cause an application to execute malicious commands
(and payloads) on behalf of an attacker.

• Resource Injection. Allowing user input to control
resource identifiers may enable an attacker to access or
modify otherwise protected system resources.

• Setting Manipulation. Allowing external control of system
settings can disrupt service or cause an application to
behave in unexpected ways.

• SQL Injection. Constructing a dynamic SQL statement
with user input may allow an attacker to modify the
statement’s meaning or to execute arbitrary SQL
commands.

• String Termination Error. Relying on proper string
termination may result in a buffer overflow.

• Struts: Duplicate Validation Forms. Multiple validation
forms with the same name indicate that validation logic is
not up-to-date.

• Struts: Erroneous validate() Method. The validator form
defines a validate() method but fails to call
super.validate().

• Struts: Form Bean Does Not Extend Validation Class.
All Struts forms should extend a Validator class.

• Struts: Form Field Without Validator. Every field in a
form should be validated in the corresponding validation
form.

39

• Struts: Plug-in Framework Not In Use. Use the Struts
Validator to prevent vulnerabilities that result from
unchecked input.

• Struts: Unused Validation Form. An unused validation
form indicates that validation logic is not up-to-date.

• Struts: Unvalidated Action Form. Every Action Form
must have a corresponding validation form.

• Struts: Validator Turned Off. This Action Form mapping
disables the form’s validate() method.

• Struts: Validator Without Form Field. Validation fields
that do not appear in forms they are associated with indicate
that the validation logic is out of date.

• Unsafe JNI. Improper use of the Java Native Interface
(JNI) can render Java applications vulnerable to security
bugs in other languages.

• Unsafe Reflection. An attacker may be able to create
unexpected control flow paths through the application,
potentially bypassing security checks.

• XML Validation. Failure to enable validation when
parsing XML gives an attacker the opportunity to supply
malicious input.

2. API Abuse
An API is a contract between a caller and a callee. The most
common forms of API abuse are caused by the caller failing to
honor its end of this contract. For example, if a program fails to
call chdir() after calling chroot(), it violates the contract
that specifies how to change the active root directory in a secure
fashion. Another good example of library abuse is expecting the
callee to return trustworthy DNS information to the caller. In this
case, the caller abuses the callee API by making certain
assumptions about its behavior (that the return value can be used
for authentication purposes). One can also violate the caller-callee
contract from the other side. For example, if a coder subclasses
SecureRandom and returns a non-random value, the contract is
violated.

• Dangerous Function. Functions that cannot be used safely
should never be used.

• Directory Restriction. Improper use of the chroot()
system call may allow attackers to escape a chroot jail.

• Heap Inspection. Do not use realloc() to resize
buffers that store sensitive information.

• J2EE Bad Practices: getConnection(). The J2EE
standard forbids the direct management of connections.

• J2EE Bad Practices: Sockets. Socket-based
communication in web applications is prone to error.

• Often Misused: Authentication. Do not rely on the name
the getlogin() family of functions returns because it is
easy to spoof.

• Often Misused: Exception Handling. A dangerous
function can throw an exception, potentially causing the
program to crash.

• Often Misused: File System. Passing an inadequately-
sized output buffer to a path manipulation function can
result in a buffer overflow.

• Often Misused: Privilege Management. Failure to adhere
to the principle of least privilege amplifies the risk posed by
other vulnerabilities.

• Often Misused: Strings. Functions that manipulate strings
encourage buffer overflows.

• Unchecked Return Value. Ignoring a method’s return
value can cause the program to overlook unexpected states
and conditions.

3. Security Features
Software security is not security software. Here we're concerned
with topics like authentication, access control, confidentiality,
cryptography, and privilege management.

• Insecure Randomness. Standard pseudo-random number
generators cannot withstand cryptographic attacks.

• Least Privilege Violation. The elevated privilege level
required to perform operations such as chroot() should
be dropped immediately after the operation is performed.

• Missing Access Control. The program does not perform
access control checks in a consistent manner across all
potential execution paths.

• Password Management. Storing a password in plaintext
may result in a system compromise.

• Password Management: Empty Password in Config
File. Using an empty string as a password is insecure.

• Password Management: Hard-Coded Password. Hard
coded passwords may compromise system security in a way
that cannot be easily remedied.

• Password Management: Password in Config File.
Storing a password in a configuration file may result in
system compromise.

• Password Management: Weak Cryptography. Obscuring
a password with a trivial encoding does not protect the
password.

• Privacy Violation. Mishandling private information, such
as customer passwords or social security numbers, can
compromise user privacy and is often illegal.

4. Time and State
Distributed computation is about time and state. That is, in order
for more than one component to communicate, state must be
shared, and all that takes time.

Most programmers anthropomorphize their work. They think
about one thread of control carrying out the entire program in the
same way they would if they had to do the job themselves.
Modern computers, however, switch between tasks very quickly,
and in multi-core, multi-CPU, or distributed systems, two events
may take place at exactly the same time. Defects rush to fill the
gap between the programmer's model of how a program executes
and what happens in reality. These defects are related to
unexpected interactions between threads, processes, time, and
information. These interactions happen through shared state:
semaphores, variables, the file system, and, basically, anything
that can store information.

• Deadlock. Inconsistent locking discipline can lead to
deadlock.

• Failure to Begin a New Session upon Authentication.
Using the same session identifier across an authentication
boundary allows an attacker to hijack authenticated
sessions.

• File Access Race Condition: TOCTOU. The window of
time between when a file property is checked and when the
file is used can be exploited to launch a privilege escalation
attack.

40

• Insecure Temporary File. Creating and using
insecure temporary files can leave application and system
data vulnerable to attack.

• J2EE Bad Practices: System.exit(). A Web
application should not attempt to shut down its container.

• J2EE Bad Practices: Threads. Thread management in a
Web application is forbidden in some circumstances and is
always highly error prone.

• Signal Handling Race Conditions. Signal handlers may
change shared state relied upon by other signal handlers or
application code causing unexpected behavior.

5. Errors
Errors and error handling represent a class of API. Errors related
to error handling are so common that they deserve a special
kingdom of their own. As with API Abuse, there are two ways to
introduce an error-related security vulnerability: the most
common one is handling errors poorly (or not at all). The second
is producing errors that either give out too much information (to
possible attackers) or are difficult to handle.

• Catch NullPointerException. Catching
NullPointerException should not be used as an
alternative to programmatic checks to prevent dereferencing
a null pointer.

• Empty Catch Block. Ignoring exceptions and other error
conditions may allow an attacker to induce unexpected
behavior unnoticed.

• Overly-Broad Catch Block. Catching overly broad
exceptions promotes complex error handling code that is
more likely to contain security vulnerabilities.

• Overly-Broad Throws Declaration. Throwing overly
broad exceptions promotes complex error handling code
that is more likely to contain security vulnerabilities.

6. Code Quality
Poor code quality leads to unpredictable behavior. From a user's
perspective that often manifests itself as poor usability. For an
attacker it provides an opportunity to stress the system in
unexpected ways.

• Double Free. Calling free() twice on the same memory
address can lead to a buffer overflow.

• Inconsistent Implementations. Functions with
inconsistent implementations across operating systems and
operating system versions cause portability problems.

• Memory Leak. Memory is allocated but never freed
leading to resource exhaustion.

• Null Dereference. The program can potentially dereference
a null pointer, thereby raising a
NullPointerException.

• Obsolete. The use of deprecated or obsolete functions may
indicate neglected code.

• Undefined Behavior. The behavior of this function is
undefined unless its control parameter is set to a specific
value.

• Uninitialized Variable. The program can potentially use a
variable before it has been initialized.

• Unreleased Resource. The program can potentially fail to
release a system resource.

• Use After Free. Referencing memory after it has been
freed can cause a program to crash.

7. Encapsulation
Encapsulation is about drawing strong boundaries. In a web
browser that might mean ensuring that your mobile code cannot
be abused by other mobile code. On the server it might mean
differentiation between validated data and unvalidated data,
between one user's data and another's, or between data users are
allowed to see and data that they are not.

• Comparing Classes by Name. Comparing classes by name
can lead a program to treat two classes as the same when
they actually differ.

• Data Leaking Between Users. Data can "bleed" from one
session to another through member variables of singleton
objects, such as Servlets, and objects from a shared pool.

• Leftover Debug Code. Debug code can create unintended
entry points in an application.

• Mobile Code: Object Hijack. Attackers can use
Cloneable objects to create new instances of an object
without calling its constructor.

• Mobile Code: Use of Inner Class. Inner classes are
translated into classes that are accessible at package scope
and may expose code that the programmer intended to keep
private to attackers.

• Mobile Code: Non-Final Public Field. Non-final public
variables can be manipulated by an attacker to inject
malicious values.

• Private Array-Typed Field Returned From a Public
Method. The contents of a private array may be altered
unexpectedly through a reference returned from a public
method.

• Public Data Assigned to Private Array-Typed Field.
Assigning public data to a private array is equivalent giving
public access to the array.

• System Information Leak. Revealing system data or
debugging information helps an adversary learn about the
system and form an attack plan.

• Trust Boundary Violation. Commingling trusted and
untrusted data in the same data structure encourages
programmers to mistakenly trust unvalidated data.

*. Environment
This section includes everything that is outside of the source code
but is still critical to the security of the product that is being
created. Because the issues covered by this kingdom are not
directly related to source code, we separated it from the rest of the
kingdoms.

• ASP .NET Misconfiguration: Creating Debug Binary.
Debugging messages help attackers learn about the system
and plan a form of attack.

• ASP .NET Misconfiguration: Missing Custom Error
Handling. An ASP .NET application must enable custom
error pages in order to prevent attackers from mining
information from the framework’s built-in responses.

• ASP .NET Misconfiguration: Password in
Configuration File. Do not hardwire passwords into your
software.

• Insecure Compiler Optimization. Improperly scrubbing
sensitive data from memory can compromise security.

• J2EE Misconfiguration: Insecure Transport. The
application configuration should ensure that SSL is used for
all access-controlled pages.

41

• J2EE Misconfiguration: Insufficient Session-ID Length.
Session identifiers should be at least 128 bits long to
prevent brute-force session guessing.

• J2EE Misconfiguration: Missing Error Handling. A
Web application must define a default error page for 404
errors, 500 errors and to catch java.lang.Throwable
exceptions to prevent attackers from mining information
from the application container’s built-in error response.

• J2EE Misconfiguration: Unsafe Bean Declaration.
Entity beans should not be declared remote.

• J2EE Misconfiguration: Weak Access Permissions.
Permission to invoke EJB methods should not be granted to
the ANYONE role.

5. SEVEN PLUS OR MINUS TWO
There are several other software security problem lists that have
been recently developed and made available. The first at one
month old, is called the 19 Deadly Sins of Software Security [11].
The second is the OWASP Top Ten Most Critical Web
Application Security Vulnerabilities available on the web [17].
Both share one unfortunate property—an overabundance of
complexity. People are good at keeping track of seven things
(plus or minus two) [16]. We used this as a hard constraint and
attempted to keep the number of kingdoms in our taxonomy down
to seven (plus one).

By discussing these lists with respect to the scheme we propose,
we illustrate and emphasize the superiority of our taxonomy. The
main limitation of both lists is that they mix specific types of
errors and vulnerability classes, and talk about them at the same
level of abstraction. The nineteen deadly sins include the Buffer
Overflows and Failing to Protect Network Traffic categories at
the same level, even though the first is a very specific coding
error, while the second could be a class comprised of various
kinds of errors. OWASP’s Top Ten includes Cross Site Scripting
(XSS) Flaws and Insecure Configuration Management at the
same level as well.

Our classification scheme consists of two hierarchical levels:
kingdoms and phyla. The kingdoms represent the classes of
errors, while the phyla that comprise the kingdoms represent
specific errors. We would like to point out that even though the
structure of our classification scheme is different from the
structure of the lists described above, the categories that comprise
these lists can be easily mapped to our kingdoms. Here is the
mapping for the nineteen sins:

1. Input Validation and Representation
Buffer Overflows
Command Injection
Cross-Site Scripting
Format String Problems
Integer Range Errors
SQL Injection

2. API Abuse
Trusting Network Address Information

3. Security Features
Failing to Protect Network Traffic
Failing to Store and Protect Data
Failing to Use Cryptographically Strong Random

Numbers

Improper File Access
Improper Use of SSL
Use of Weak Password-Based Systems
Unauthenticated Key Exchange

4. Time and State
Signal Race Conditions
Use of “Magic” URLs and Hidden Forms

5. Errors
Failure to Handle Errors

6. Code Quality
Poor Usability

7. Encapsulation
Information Leakage

*. Environment

Here is the mapping for the OWASP Top Ten:

1. Input Validation and Representation
Buffer Overflows
Cross-Site Scripting (XSS) Flaws
Injection Flaws
Unvalidated Input

2. API Abuse
3. Security Features

Broken Access Control
Insecure Storage

4. Time and State
Broken Authentication and Session Management

5. Errors
Improper Error Handling

6. Code Quality
Denial of Service

7. Encapsulation
*. Environment

Insecure Configuration Management

6. CONCLUSION
We present a simple, intuitive taxonomy of common coding
errors that affect security. We discuss the relationship between
vulnerability phyla we define and corresponding attacks, and
provide descriptions of each kingdom in the proposed taxonomy.

We point out the important differences between the scheme we
propose and those discussed in related work. The classification
scheme we present is designed to organize security rules, and thus
be of help to software developers who are concerned with writing
secure code and being able to automate detection of security
defects. These goals make our scheme simple, intuitive to a
developer, practical rather than theoretical and comprehensive,
amenable to automatic identification of errors with static analysis
tools, as well as adaptable with respect to changes in trends that
can happen over time.

7. ACKNOWLEDGEMENTS
We would like to acknowledge the workshop reviewers for
providing valuable feedback on our approach. We are grateful to
Jacob West and Bob Martin for useful discussions of our work,
and we thank Andy Vaughan for last-minute proof-reading of the
paper.

42

8. REFERENCES
[1] R.P. Abbott, J. S. Chin, J.E. Donnelley, W.L. Konigsford, S.

Tokubo, and D.A. Webb. Security Analysis and
Enhancements of Computer Operating Systems. NBSIR 76-
1041, National Bureau of Standards, ICST, Washington,
D.C., 1976.

[2] T. Aslam. A Taxonomy of Security Faults in the Unix
Operating System. Master’s Thesis, Purdue University,
1995.

[3] R. Bisbey and D. Hollingworth. Protection Analysis Project
Final Report. ISI/RR-78-13, DTIC AD A056816,
USC/Information Sciences Institute, 1978.

[4] M. Bishop. Computer Security: Art and Science. Addison-
Wesley, December 2002.

[5] W. Cheswick, S. Bellovin, and A. Rubin. Firewalls and
Internet Security: Repelling the Wily Hacker, Second
Edition. Addison-Wesley, 2003.

[6] S. Christey. PLOVER—Preliminary List of Vulnerability
Examples for Researchers. Draft, August 2005.
http://cve.mitre.org/docs/plover/.

[7] CVE – Common Vulnerabilities and Exposures.
http://www.cve.mitre.org/.

[8] Fortify Descriptions. http://vulncat.fortifysoftware.com.
[9] Fortify Extra. Adobe Reader for Unix Remote Buffer

Overflow.
http://extra.fortifysoftware.com/archives/2005/07/adobe_rea
der_fo_1.html.

[10] G. Hoglund and G. McGraw. Exploiting Software: How to
Break Code. Addison-Wesley, February 2004.

[11] M. Howard, D. LeBlanc, and J. Viega. 19 Deadly Sins of
Software Security. McGraw-Hill Osborne Media, July 2005.

[12] C. E. Landwehr, A. R. Bull, J. P. McDermott, W. S. Choi. A
Taxonomy of Computer Program Security Flaws, with
Examples. ACM Computing Surveys, Vol. 26, No. 3,
September 1994, pp. 211-254.

[13] R. Martin, S. Christey, and J. Jarzombek. The Case for
Common Flaw Enumeration. NIST Workshop on Software
Security Assurance Tools, Techniques, and Metrics
(SSATTM) Proceedings, November 2005, Long Beach, CA.

[14] G. McGraw. Software Security: Building Security In.
Addison-Wesley, to appear in 2006.

[15] G. McGraw. From the Ground Up: The DIMACS Software
Security Workshop. IEEE Security & Privacy, Vol. 1, No.
2, March-April 2003, pp. 59-66.

[16] G. Miller. The Magic Number Seven, Plus or Minus Two:
Some Limits on our Capacity for Processing Information.
Psychological Review, Vol. 63, No. 2, 1956.

[17] OWASP Top Ten Most Critical Web Application Security
Vulnerabilities.
http://www.owasp.org/documentation/topten.html.

[18] D. Song, D. Wagner, and X. Tian. Timing Analysis of
Keystrokes and Timing Attacks on SSH. 10th USENIX
Security Symposium Proceedings, August 2001, pp. 337-
352.

[19] M. Sullivan and R. Chillarege. Software Defects and Their
Impact on System Availability – A Study of Field Failures in
Operating Systems. IEEE International Symposium on Fault
Tolerant Computing (FTCS) Proceedings, 1991, Montreal,
Canada.

[20] J. Viega.. The CLASP Application Security Process.
Volume 1.1 Training Manual.

[21] S. Weber, P. Karger, and A. Paradkar. A Software Flaw
Taxonomy: Aiming Tools at Security. Software Engineering
for Secure Systems – Building Trustworthy Applications
(SESS) Proceedings, 2005, St. Louis, MO.

43

A Taxonomy of Buffer Overflows for Evaluating
 Static and Dynamic Software Testing Tools*

Kendra Kratkiewicz
MIT Lincoln Laboratory

244 Wood Street
Lexington, MA 02420-9108

Phone: 781-981-2931
Email: KENDRA@LL.MIT.EDU

Richard Lippmann
MIT Lincoln Laboratory

244 Wood Street
Lexington, MA 02420-9108

Phone: 781-981-2711
Email: LIPPMANN@LL.MIT.EDU

ABSTRACT
A taxonomy that uses twenty-two attributes to characterize C-
program overflows was used to construct 291 small C-program
test cases that can be used to diagnostically determine the basic
capabilities of static and dynamic analysis buffer overflow
detection tools. Attributes in the taxonomy include the buffer
location (e.g. stack, heap, data region, BSS, shared memory);
scope difference between buffer allocation and access; index,
pointer, and alias complexity when addressing buffer elements;
complexity of the control flow and loop structure surrounding
the overflow; type of container the buffer is within (e.g.
structure, union, array); whether the overflow is caused by a
signed/unsigned type error; the overflow magnitude and
direction; and whether the overflow is discrete or continuous.
As an example, the 291 test cases were used to measure the
detection, false alarm, and confusion rates of five static analysis
tools. They reveal specific strengths and limitations of tools and
suggest directions for improvements.

Categories and Subject Descriptors
D.2.4 [Software Engineering] Software/Program Verification,
D.2.5 [Software Engineering] Testing and Debugging, K.4.4
[Computers and Society] Electronic Commerce Security.

General Terms
Measurement, Performance, Security, Verification.

Keywords
Security, taxonomy, buffer overflow, static analysis, evaluation,
exploit, test, detection, false alarm, source code.

1. INTRODUCTION
Buffer overflows are among the most important types of errors
that occur in C code. They are of particular interest as they are
potentially exploitable by malicious users, and have historically
accounted for a significant percentage of the software
vulnerabilities published each year [18, 20], such as in NIST’s
ICAT Metabase [9], CERT advisories [1], Bugtraq [17], and
other security forums. Buffer overflows have also been the basis
for many damaging exploits, such as the Sapphire/Slammer [13]

and Blaster [15] worms.

A buffer overflow vulnerability occurs when data can be written
outside the memory allocated for a buffer, either past the end or
before the beginning. Buffer overflows may occur on the stack,
on the heap, in the data segment, or the BSS segment (the
memory area a program uses for uninitialized global data), and
may overwrite from one to many bytes of memory outside the
buffer. Even a one-byte overflow can be enough to allow an
exploit [10]. Buffer overflows have been described at length in
many papers, including [20], and many descriptions of
exploiting buffer overflows can be found online.

This paper focuses on developing a taxonomy of buffer
overflows and using the taxonomy to create test cases that can
be used to diagnostically evaluate the capabilities of static and
dynamic buffer overflow detection tools. The first part of this
paper describes the taxonomy and test cases that are available at
http://www.ll.mit.edu/IST/corpora.html. The second part
demonstrates how to use the test cases to evaluate five static
analysis tools formerly evaluated by Zitser [20, 21]. While
Zitser’s study evaluated the ability of ARCHER [19], BOON
[18], Splint [6, 12], UNO [8], and PolySpace C Verifier [14] to
detect fourteen known buffer overflows in open-source
software, the current evaluation focuses on determining those
type of overflows that each tool can detect and those that cause
false alarms.

2. BUFFER OVERFLOW TAXONOMY
Using a comprehensive taxonomy makes it possible to develop
test cases that cover a wide range of buffer overflows and make
diagnostic tool assessments. The most comprehensive previous
taxonomy contained thirteen attributes and was developed by
Zitser [20]. This taxonomy was modified and expanded to
address problems encountered with its application, while still
attempting to keep it small and simple enough for practical
application. The new taxonomy consists of the twenty-two
attributes listed in Table 1.

Table 1. Buffer Overflow Taxonomy Attributes

Attribute Number Attribute Name
1 Write/Read
2 Upper/Lower Bound
3 Data Type
4 Memory Location
5 Scope
6 Container
7 Pointer

© 2005 Association for Computing Machinery.
ACM acknowledges that this contribution was authored or
co-authored by an affiliate of the U.S. Government. As such, the
Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government
purposes only.

SSATTM'05, 11/7-11/8/05, Long Beach, CA, USA.
© 2005 ACM 1-59593-307-7/05/11

*This work was sponsored by the Advanced Research and Development
Activity under Force Contract F19628-00-C-0002. Opinions, interpretations,
conclusions, and recommendations are those of the authors and are not
necessarily endorsed by the United States Government.

44

mailto:KENDRA@LL.MIT.EDU
http://www.ll.mit.edu/IST/corpora.html

8 Index Complexity
9 Address Complexity
10 Length/Limit Complexity
11 Alias of Buffer Address
12 Alias of Buffer Index
13 Local Control Flow
14 Secondary Control Flow
15 Loop Structure
16 Loop Complexity
17 Asynchrony
18 Taint
19 Runtime Environment Dependence
20 Magnitude
21 Continuous/Discrete
22 Signed/Unsigned atch Mism

etails sible values for e
1], and are summarized below. For each attribute, the

detecting illegal writes is of more interest in preventing

hile the term “buffer overflow” suggests an

ide character, pointer,

l, global,

 array of structs, array of

is possible to use a pointer

-linear expression,

,

t overruns the

D
[1

 on the pos ach attribute are available in

possible values are listed in ascending order (i.e. the 0 value
first).

Write/Read: describes the type of memory access (write, read).
While
buffer overflow exploits, illegal reads could allow unauthorized
access to information or could constitute one operation in a
multi-step exploit.

Upper/Lower Bound: describes which buffer bound is violated
(upper, lower). W
access beyond the upper bound of a buffer, one of the
vulnerabilities analyzed by Zitser [21] allowed access below a
buffer’s lower bound (e.g. buf[-1]).

Data Type: indicates the type of data stored in the buffer
(character, integer, floating point, w
unsigned character, unsigned integer). Although character
buffers are often manipulated with unsafe string functions in C
and some tools focus on detecting overflows of those buffers,
buffers of all types may be overflowed and should be analyzed.

Memory Location: indicates where the buffer resides (stack,
heap, data region, BSS, shared memory). Non-static variables
defined locally to a function are on the stack, while dynamically
allocated buffers (e.g., those allocated by calling a malloc
function) are on the heap. The data region holds initialized
global or static variables, while the BSS region contains
uninitialized global or static variables. Shared memory is
typically allocated, mapped into and out of a program’s address
space, and released via operating system specific functions.
While a typical buffer overflow exploit may strive to overwrite
a function return value on the stack, buffers in other locations
have been exploited and should be considered as well.

Scope: describes the difference between where the buffer is
allocated and where it is overrun (same, inter-procedura
inter-file/inter-procedural, inter-file/global). This is important
because many tools perform local and not inter-procedural
analyses, and many actual overflows are inter-procedural (e.g.
[21]). The scope is local if the buffer is allocated and overrun
within the same function. It is inter-procedural if the buffer is
allocated in one function and overrun in another function within
the same file. Global scope indicates that the buffer is allocated
as a global variable, and is overrun in a function within the same
file. Scope is inter-file/inter-procedural if the buffer is allocated

in a function in one file, and overrun in a function in another
file. Inter-file/global scope describes a buffer that is allocated
as a global in one file, and overrun in a function in another file.
Any scope other than “same” may involve passing the buffer
address as an argument to another function; in this case, the
Alias of Buffer Address attribute must also be set accordingly.
Note that the test suite used in this evaluation does not contain
an example for “inter-file/global.”

Container: indicates whether the buffer resides in some type of
container (no, array, struct, union,
unions). The ability of static analysis tools to detect overflows
within containers (e.g., overrunning one array element into the
next, or one structure field into the next) and beyond container
boundaries (i.e., beyond the memory allocated for the container
as a whole) may vary according to how the tools model these
containers and their contents.

Pointer: indicates whether the buffer access uses a pointer
dereference (no, yes). Note that it
dereference with or without an array index (e.g. *pBuf or
(*pBuf)[10]); the Index Complexity attribute must be set
accordingly. In order to know if the memory location referred
to by a dereferenced pointer is within buffer bounds, a code
analysis tool must keep track of what pointers point to; this
points-to analysis is a significant challenge.

Index Complexity: indicates the complexity of the array index
(constant, variable, linear expression, non
function return value, array contents, N/A). This attribute
applies only to the user program, and is not used to describe
how buffer accesses are performed inside C library functions.

Address Complexity: describes the complexity of the address
or pointer computation (constant, variable, linear expression
non-linear expression, function return value, array contents).
Again, this attribute is used to describe the user program only,
and is not applied to C library function internals.

Length/Limit Complexity: indicates the complexity of the
length or limit passed to a C library function tha
buffer (N/A, none, constant, variable, linear expression, non-
linear expression, function return value, array contents). “N/A”
is used when the test case does not call a C library function to
overflow the buffer, whereas “none” applies when a C library
function overflows the buffer, but the function does not take a
length or limit parameter (e.g. strcpy). The remaining
attribute values apply to the use of C library functions that do
take a length or limit parameter (e.g. strncpy). Note that if a
C library function overflows the buffer, the overflow is by
definition inter-file/inter-procedural in scope, and involves at
least one alias of the buffer address. In this case, the Scope and
Alias of Buffer Address attributes must be set accordingly. Code
analysis tools may need to provide their own wrappers for or
models of C library functions in order to perform a complete
analysis. This and the previous two attributes assess the ability
of tools to analyze complex address and index computations.

Alias of Buffer Address: indicates if the buffer is accessed
directly or through one or two levels of aliasing (no, one, two).
Assigning the original buffer address to a second variable and
subsequently using the second variable to access the buffer
constitutes one level of aliasing, as does passing the original
buffer address to a second function. Similarly, assigning the
second variable to a third and accessing the buffer through the

 45

o, one, two, N/A). If the index is a constant or the

ely surrounds or affects the overflow (none,

; hence, only path-sensitive code

dary

cedes
 whether or not it occurs. Because it

[i] = 'A';

Only ffects whether or not the overflow
occu other words, if a preceding control flow

e
s

<= 10)

;

Som ols perform path-sensitive analyses, and
some do not. Even those that do often must make simplifying

dard for, standard do-

; i<11; i++)

 i] = ‘A’;
 ++;

third variable would be classified as two levels of aliasing, as
would passing the buffer address to a third function from the
second.

Alias of Buffer Index: indicates whether or not the index is
aliased (n
results of a computation or function call, or if the index is a
variable to which is directly assigned a constant value or the
results of a computation or function call, then there is no
aliasing of the index. If, however, the index is a variable to
which the value of a second variable is assigned, then there is
one level of aliasing. Adding a third variable assignment
increases the level of aliasing to two. If no index is used in the
buffer access, then this attribute is not applicable. This and the
previous attribute assess how well tools analyze the difficult
problem of aliases.

Local Control Flow: describes what kind of program control
flow most immediat
if, switch, cond, goto/label, setjmp/longjmp, function pointer,
recursion). For the values “if”, “switch”, and “cond”, the buffer
overflow is located within the conditional construct.
“Goto/label” signifies that the overflow occurs at or after the
target label of a goto statement. Similarly, “setjmp/longjmp”
means that the overflow is at or after a longjmp address. Buffer
overflows that occur within functions reached via function
pointers are assigned the “function pointer” value, and those
within recursive functions receive the value “recursion”. The
values “function pointer” and “recursion” necessarily imply a
global or inter-procedural scope, and may involve an address
alias. The Scope and Alias of Buffer Address attributes should
be set accordingly.

Control flow involves either branching or jumping to another
context within the program
analysis can determine whether or not the overflow is actually
reachable. A code analysis tool must be able to follow function
pointers and have techniques for handling recursive functions in
order to detect buffer overflows with the last two values for this
attribute.

Secondary Control Flow: has the same values as Local Control
Flow, the difference being the location of the control flow
construct. Secondary Control Flow either precedes the overflow
or contains nested, local control flow. Some types of secon
control flow may occur without any local control flow, but some
may not. The Local Control Flow attribute should be set
accordingly.

The following example illustrates an if statement that pre
the overflow and affects
precedes the overflow, as opposed to directly containing the
overflow, it is labeled as secondary, not local, control flow.

int main(int argc, char *argv[])
{
 char buf[10];
int i = 10;

 if (i > 10)
 {
 return 0;
 }

 BAD */ /*
 buf

 return 0;
}

 control flow that a
s classified. In rs i

construct has no bearing on whether or not the subsequent
overflow occurs, it is not considered to be secondary control
flow, and this attribute would be assigned the value “none.”

The following example illustrates nested control flow. The
inner if statement directly contains the overflow, and we
assign the value “if” to the Local Control Flow attribute. The
outer if statement represents secondary control flow, and w
assign the value “if” to the Secondary Control Flow attribute a
well.

int main(int argc, char *argv[])
{
 char buf[10];
 int i = 10;

 if (sizeof buf
 {
 if (i <= 10)
 {

 /* BAD */
 buf[i] = 'A'
 }
 }

n 0; retur
}

e code analysis to

approximations in order to keep the problem tractable and the
solution scalable. This may mean throwing away some
information, and thereby sacrificing precision, at points in the
program where previous branches rejoin. Test cases containing
secondary control flow may highlight the capabilities or
limitations of these varying techniques.

Loop Structure: describes the type of loop construct within
which the overflow occurs (none, stan
while, standard while, non-standard for, non-standard do-while,
non-standard while). A “standard” loop is one that has an
initialization, a loop exit test, and an increment or decrement of
a loop variable, all in typical format and locations. A “non-
standard” loop deviates from the standard loop in one or more of
these areas. Examples of standard for, do-while, and
while loops are shown below, along with one non-standard
for loop example:

Standard for loop:
for (i=0
{

 buf[i] = ‘A’;
}

Standard do-while loop:
0; i=

do
{

f[bu
 i
} while (i<11);

Standard while loop:
 i=0;

46

1)

’;

A non-sta
 (i=0; i<11;)

 buf[i++] = ‘A’;

ondary control flow
(such as additional if statements). In these cases, the Secondary

 have exit criteria that depend on

e” is used to classify the “OK” or

buffer directly

y characterize complex

erflow, shown

while (i<1
{

 buf[i] = ‘A
 i++;

}

nda
for

rd for loop:

{

}

Non-standard loops may necessitate sec

Control Flow attribute should be set accordingly. Any value
other than “none” for this attribute requires that the Loop
Complexity attribute be set to something other than “not
applicable.”

Loops may execute for a large number or even an infinite
number of iterations, or may
runtime conditions; therefore, it may be impossible or
impractical for static analysis tools to simulate or analyze loops
to completion. Different tools have different methods for
handling loops; for example, some may attempt to simulate a
loop for a fixed number of iterations, while others may employ
heuristics to recognize and handle common loop constructs.
The approach taken will likely affect a tool’s capabilities to
detect overflows that occur within various loop structures.

Loop Complexity: indicates how many loop components
(initialization, test, increment) are more complex than the
standard baseline of initializing to a constant, testing against a
constant, and incrementing or decrementing by one (N/A, none,
one, two, three). Of interest here is whether or not the tools
handle loops with varying complexity in general, rather than
which particular loop components are handled or not.

Asynchrony: indicates if the buffer overflow is potentially
obfuscated by an asynchronous program construct (no, threads,
forked process, signal handler). The functions that may be used
to realize these constructs are often operating system specific
(e.g. on Linux, pthread functions; fork, wait, and exit;
and signal). A code analysis tool may need detailed,
embedded knowledge of these constructs and the O/S-specific
functions in order to properly detect overflows that occur only
under these special circumstances.

Taint: describes whether and how a buffer overflow may be
influenced externally (no, argc/argv, environment variables, file
read or stdin, socket, process environment). “Taintable” buffer
overflows that can be influenced by users external to a program
are the most crucial to detect because they make it possible for
attackers to create exploits. The occurrence of a buffer
overflow may depend on command line or stdin input from a
user, the value of environment variables (e.g. getenv), file
contents (e.g. fgets, fread, or read), data received through
a socket or service (e.g. recv), or properties of the process
environment, such as the current working directory (e.g.
getcwd). As with asynchronous constructs, code analysis
tools may require detailed modeling of O/S-specific functions to
properly detect related overflows. Note that the test suite used
in this evaluation does not contain an example for “socket.”

Runtime Environment Dependence: indicates whether or not
the occurrence of the overrun depends on something determined

at runtime (no, yes). If the overrun is certain to occur on every
execution of the program, it is not dependent on the runtime
environment; otherwise, it is. Examples of overflows that
depend on the runtime environment include tainted overflows
just described and overflows that depend on the value of a
random number generator.

Magnitude: indicates the size of the overflow (none, 1 byte, 8
bytes, 4096 bytes). “Non
patched versions of programs that contain overflows. One
would expect static analysis tools to detect buffer overflows
without regard to the size of the overflow, unless they contain
an off-by-one error in their modeling of library functions. The
same is not true of dynamic analysis tools that use runtime
instrumentation to detect memory violations; different methods
may be sensitive to different sizes of overflows, which may or
may not breach page boundaries, etc. The various overflow
sizes were chosen with dynamic tool evaluations in mind.
Overflows of one byte test both the accuracy of static analysis
modeling, and the sensitivity of dynamic instrumentation. Eight
and 4096 byte overflows are aimed more exclusively at dynamic
tool testing, and are designed to cross word-aligned and page
boundaries. One byte overflows are of interest because such
overflows have enabled past exploits [10].

Continuous/Discrete: indicates whether the buffer overflow
accesses another arbitrary location outside the
(discrete) or accesses consecutive elements within the buffer
before overflowing past the bounds (continuous). Loop
constructs are likely candidates for containing continuous
overflows. C library functions that overflow a buffer while
copying memory or string contents into it demonstrate
continuous overflows. An overflow labeled as continuous
should have the loop-related attributes or the Length
Complexity attribute (indicating the complexity of the length or
limit passed to a C library function) set accordingly. Some
dynamic tools rely on “canaries” at buffer boundaries to detect
continuous overflows [5], and therefore may miss discrete
overflows.

Signed/Unsigned Mismatch: indicates if the buffer overflow is
caused by using a signed or unsigned value where the opposite
is expected (no, yes). Typically, a signed value is used where
an unsigned value is expected, and gets interpreted as a very
large unsigned or positive value, causing an enormous buffer
overflow. This error was responsible for two of the
vulnerabilities analyzed by Zitser [21].

This taxonomy is specifically designed for developing simple
diagnostic test cases. It may not full
buffer overflows that occur in real code, and specifically omits
complex details related to the overflow context.

For each attribute (except for Magnitude), the zero value is
assigned to the simplest or “baseline” buffer ov
below:

int main(int argc, char *argv[])
{
 char buf[10];
/* BAD */

 buf[10] = 'A';
 return 0;
}

47

Each test case includes a comment line as shown with the word

 for each of the twenty-two attributes

WRITE/READ 0 write

CATI

N

PLEXI stant

W
L 0

NDEN 0
verflow

E

While the Zitser test cases were program pairs consisting of a

“BAD” or “OK.” This comment is placed on the line before the
line where an overflow might occur and it indicates whether an
overflow does occur. The buffer access in the baseline program
is a write operation beyond the upper bound of a stack-based
character buffer that is defined and overflowed within the same
function. The buffer does not lie within another container, is
addressed directly, and is indexed with a constant. No C library
function is used to access the buffer, the overflow is not within
any conditional or complicated control flows or asynchronous
program constructs, and does not depend on the runtime
environment. The overflow writes to a discrete location one
byte beyond the buffer boundary, and cannot be manipulated by
an external user. Finally, it does not involve a signed vs.
unsigned type mismatch.

Appending the value digits
forms a string that classifies a buffer overflow, which can be
referred to during results analysis. For example, the sample
program shown above is classified as
“0000000000000000000100.” The single “1” in this string
represents a “Magnitude” attribute indicating a one-byte
overflow. This classification information appears in comments
at the top of each test case file, as shown in the example below:

/* Taxonomy Classification: 0000000000000000000000 */

/*
 *
 * WHICH BOUND 0 upper
 * DATA TYPE 0 char
 * MEMORY LO ON 0 stack
 * SCOPE 0 same
 * CONTAI ER 0 no
 * POINTER 0 no
 * INDEX COM TY 0 con
 * ADDRESS COMPLEXITY 0 constant
 * LENGTH COMPLEXITY 0 N/A
 * ADDRESS ALIAS 0 none
 * INDEX ALIAS 0 none
 * LOCAL CONTROL FLO 0 none
 * SECONDARY CONTROL F OW none
 * LOOP STRUCTURE 0 no
 * LOOP COMPLEXITY 0 N/A
 * ASYNCHRONY 0 no
 * TAINT 0 no
 * RUNTIME ENV. DEPE CE no
 * MAGNITUDE 0 no o
 * CONTINUOUS/DISCRET 0 discrete
 * SIGNEDNESS 0 no
 */

bad program and a corresponding patched program, this
evaluation uses program quadruplets. The four versions of each
test case correspond to the four possible values of the
Magnitude attribute. One version represents a patched program
(no overflow), while the remaining three indicate buffer
overflows of one, eight, and 4096 bytes denoted as minimum,
medium, and large overflows.

3. TEST SUITE
A full discussion of design considerations for creating test cases
is provided in [11]. Goals included avoiding tool bias;
providing samples that cover the taxonomy; measuring
detections, false alarms, and confusions; naming and
documenting test cases to facilitate automated scoring and
encourage reuse; and maintaining consistency in programming
style and use of programming idioms.

Ideally, the test suite would have at least one instance of each
possible buffer overflow that could be described by the
taxonomy. Unfortunately, the vast number of attribute
combinations this requires makes this impractical. Instead, a
“basic” set of test cases was built by first choosing a simple,
baseline example of a buffer overflow, and then varying its
characteristics one at a time. This strategy results in taxonomy
coverage that is heavily weighted toward the baseline attribute
values. Variations were added by automated code-generation
software written in Perl that produces C code for the test cases
to help insure consistency and make it easier to add test cases.

Four versions of 291 different test cases were generated with no
overflow and with minimum, medium, and large overflows.
Each test case was compiled with gcc, the GNU C compiler [7],
on Linux to verify that the programs compiled without warnings
or errors (with the exception of one test case that produces an
unavoidable warning). Overflows were verified using CRED, a
fine-grained bounds-checking extension to gcc that detects
overflows at run time [16], or by verifying that the large
overflow caused a segfault. A few problems with test cases that
involved complex loop conditions were also corrected based on
initial results produced by the PolySpace tool.

4. EXAMPLE TEST CASE USAGE
As an example of how to use these diagnostic test cases, each
test case (291 quadruplets) was used one at a time with five
static analysis tools (ARCHER, BOON, PolySpace, Splint, and
UNO). Tool-specific Perl programs parsed the output and
determined whether a buffer overflow was detected on the line
immediately following the comment in each test case. Details
of the test procedures are provided in [11]. No annotations were
added and no modifications were made to the source code for
any tool.

5. RESULTS AND ANALYSIS
All five static analysis tools performed the same regardless of
overflow size (this would not necessarily hold for dynamic
analysis). To simplify the discussion, results for the three
magnitudes of overflows are thus reported as results for “bad”
test cases as a whole.
Table 2 shows overall performance metrics computed for each
tool. These metrics do not indicate performance expected in
real code for detecting new vulnerabilities. They only indicate
overall performance across all test cases and are preliminary to
more diagnostic analysis with individual test cases. The
detection rate indicates how well a tool detects the known buffer
overflows in the bad programs, while the false alarm rate
indicates how often a tool reports a buffer overflow in the
patched programs. The confusion rate indicates how well a tool
can distinguish between the bad and patched programs. When a
tool reports a detection in both the patched and bad versions of a

48

test case, the tool has demonstrated “confusion.” The formulas
used to compute these three metrics are shown below:

 # test cases where tool reports overflow
 in bad version

detection rate = --
 # test cases tool evaluated

 # test cases where tool reports overflow
 in patched version

false alarm rate = --
 # of test cases tool evaluated

 # test cases where tool reports overflow
 in both bad and patched version

confusion rate = ---
 # test cases where tool reports overflow
 in bad version

As seen in Table 2, ARCHER and PolySpace both have
detection rates exceeding 90%. PolySpace’s detection rate is
nearly perfect, missing only one out of the 291 possible
detections. PolySpace produced seven false alarms, whereas
ARCHER produced none. Splint and UNO each detected
roughly half of the overflows. Splint, however, produced a
substantial number of false alarms, while UNO produced none.
Splint also exhibited a fairly high confusion rate. In over twenty
percent of the cases where it properly detected an overflow, it
also reported an error in the patched program. PolySpace’s
confusion rate was substantially lower, while the other three
tools had no confusions. BOON’s detection rate across the test
suite was extremely low.

Table 2. Overall Performance on Basic Test Suite (291 cases)

Tool
Detection
Rate

False Alarm
Rate

Confusion
Rate

ARCHER 90.7% 0.0% 0.0%
BOON 0.7% 0.0% 0.0%
PolySpace 99.7% 2.4% 2.4%
Splint 56.4% 12.0% 21.3%
UNO 51.9% 0.0% 0.0%

It is important to note that it was not necessarily the design goal
of each tool to detect every possible buffer overflow. BOON,
for example, focuses only on the misuse of string manipulation
functions, and therefore is not expected to detect other
overflows. It is also important to realize that these performance
rates are not necessarily predictive of how the tools would
perform on buffer overflows in actual, released code. The basic
test suite used in this evaluation was designed for diagnostic
purposes, and the taxonomy coverage exhibited is not
representative of that which would be seen in real-world buffer
overflows.

Figure 1 presents a plot of detection rate vs. false alarm rate for
each tool. Each tool’s performance is plotted with a single data
point representing detection and false alarm percentages. The
diagonal line represents the hypothetical performance of a
random guesser that decides with equal probability if each
commented buffer access in the test programs results in an
overflow or not. The difference between a tool’s detection rate
and the random guesser’s is only statistically significant if it lies

more than two standard deviations (roughly 6 percentage points
when the detection rate is 50%) away from the random guesser
line at the same false alarm rate. In this evaluation, every tool
except BOON performs significantly better than a random
guesser. In Zitser’s evaluation [20], only PolySpace was
significantly better. This difference in performance reflects the
simplicity of the diagnostic test cases.

Archer

Boon

PolySpace

Splint
Uno

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

False Alarm Rate (%)

De
te

ct
io

n
Ra

te
 (%

)

Figure 1. False Alarm and Detection Rates per Tool
Execution times for the five tools were measured as the total
time to run each test case, including tool startup time, and are
provided in Table 3. PolySpace’s high detection rate comes at
the cost of dramatically long execution times. ARCHER
demonstrated both the second highest detection rate and the
second highest execution time. Splint and UNO, with
intermediate detection rates, had the two fastest execution times.
BOON’s slightly longer execution time did not result in a higher
detection rate.

Table 3. Tool Execution Times

Tool Total Time (secs)

Average
Time per Test
Case (secs)

ARCHER 288 0.247
BOON 73 0.063
PolySpace 200,820 (56 hrs) 172.526
Splint 24 0.021
UNO 27 0.023

6. Detailed Tool Diagnostics
The following paragraphs discuss each tool’s performance in
detail, especially compared to the tools’ design goals.

ARCHER is designed to be inter-procedural, path-sensitive,
context-sensitive, and aware of pointer aliases. It performs a
fully-symbolic, bottom-up data flow analysis, while maintaining
symbolic constraints between variables (handled by a linear
constraint solver). ARCHER checks array accesses, pointer
dereferences, and function calls that take a pointer and size. It is
hard-coded to recognize and handle a small number of memory-
related functions, such as malloc [19].

ARCHER provided a 91% detection rate with no false alarms.
Most of its twenty-seven missed detections are easily explained

49

by its limitations. Twenty of these were inter-procedural and
these include fourteen cases that call C library functions,
including the relatively common memcpy(). The other inter-
procedural misses include cases involving shared memory,
function pointers, recursion, and simple cases of passing a
buffer address through one or two functions. Of the remaining
seven misses, three involve function return values, two depend
on array contents, and two involve function pointers and
recursion.

These diagnostic results may explain ARCHER’s poor
performance in [20]. In this previous evaluation, that used
model programs containing real code, ARCHER detected only
one overflow. Of the thirteen model programs for which
ARCHER reported no overflows, twelve contained buffer
overflows that would be classified according to this evaluation’s
taxonomy as having inter-procedural scope, and nine of those
involve calls to C library functions. To perform well against a
body of real code, C library functions and other inter-procedural
buffer overflows need to be detected accurately.

BOON’s analysis is flow-insensitive and context-insensitive for
scalability and simplicity. It focuses exclusively on the misuse
of string manipulation functions, and the authors intentionally
sacrificed precision for scalability [18].

In this evaluation, BOON detected only two out of fourteen
string function overflows, with no false alarms. The two
detected overflows involve the use of strcpy() and fgets().
BOON failed to detect the second case that calls strcpy(), all six
cases that call strncpy(), the case that calls getcwd, and all four
cases that call memcpy(). Despite the heavy use of C library
string functions in [20], BOON achieved only two detections in
that prior evaluation as well. These results suggest that more
complex analyses are required than provided in BOON to detect
both real-world and simple buffer overflows.

PolySpace is the only commercial tool included in this
evaluation. Although details of its methods and implementation
are proprietary, its approach uses techniques described in
several published works, including: symbolic analysis, or
abstract interpretation [2]; escape analysis, for determining
inter-procedural side effects [4]; and inter-procedural alias
analysis for pointers [3].

PolySpace missed only one detection in this evaluation, which
was a case involving a signal handler. PolySpace’s detection
rate was not nearly as high in Zitser’s evaluation [20].
Presumably, the additional complexity of real code led to
approximations to keep the problem tractable, but at the expense
of precision. PolySpace reported seven false alarms across the
test cases and many false alarms in Zitser’s evaluation. In both
evaluations, the majority of false alarms occurred for overflows
involving calls to C library functions.

Splint employs “lightweight” static analysis and heuristics that
are practical, but neither sound nor complete. Like many other
tools, it trades off precision for scalability. It implements
limited flow-sensitive control flow, merging possible paths at
branch points. Splint uses heuristics to recognize loop idioms
and determine loop bounds without resorting to more costly and
accurate abstract evaluation. An annotated C library is
provided, but the tool relies on the user to properly annotate all
other functions to support inter-procedural analysis. Splint
exhibited high false alarm rates in the developers’ own tests [6,

12]. The basic test suite used in this evaluation was not
annotated for Splint because it is unrealistic to expect
annotations for most applications of static analysis tools.

Splint exhibited the highest false alarm rate of any tool. Many
of the thirty-five false alarms are attributable to inter-procedural
cases; cases involving increased complexity of the index,
address, or length; and more complex containers and flow
control constructs. The vast majority, 120 out of 127, of missed
detections are attributable to loops. Detections were missed in
all of the non-standard for() loop cases (both discrete and
continuous), as well as in most of the other continuous loop
cases. The only continuous loop cases handled correctly are the
standard for loops, and Splint produces false alarms on nearly
all of those. In addition, it misses the lower bound case, the
“cond” case of local flow control, the taint case that calls
getcwd, and all four of the signed/unsigned mismatch cases.

While Splint’s detection rate was similar in this evaluation and
the Zitser evaluation [20], its false alarm rate was much higher
in the latter. Again, this is presumably because code that is
more complex results in more situations where precision is
sacrificed in the interest of scalability, with the loss of precision
leading to increased false alarms. Splint’s weakest area is loop
handling. Enhancing loop heuristics to more accurately
recognize and handle non-standard for loops, as well as
continuous loops of all varieties, would significantly improve
performance. Reducing the false alarm rate is also important.

UNO is an acronym for uninitialized variables, null-pointer
dereferencing, and out-of-bounds array indexing, which are the
three types of problems it is designed to address. UNO is not
inter-procedural with respect to out-of-bounds array indexing
and does not model function pointers, function return values, or
computed indices [8].

UNO produced no false alarms in the basic test suite, but did
miss nearly half of the possible detections (140 out of 291),
most of which would be expected based on the tool’s
description. This included every inter-procedural case, every
container case, nearly every index complexity case, every
address and length complexity case, every address alias case,
the function and recursion cases, every signed/unsigned
mismatch, nearly every continuous loop, and a small assortment
of others. It performed well on the various data types, index
aliasing, and discrete loops. UNO exhibited a similar low
detection rate in Zitser’s evaluation [20].

7. CONCLUSIONS
A new taxonomy was used to construct a corpus of 291 small C-
program test cases that can be used to evaluate static and
dynamic analysis buffer overflow detection tools. This corpus is
available at http://www.ll.mit.edu/IST/corpora.html. These test
cases provide a benchmark to measure detection, false alarm,
and confusion rates of tools, and can be used to find areas for
tool enhancement. Evaluations of five tools validated the utility
of this corpus and provide diagnostic results that demonstrate
the strengths and weaknesses of these tools. Some tools provide
very good detection rates (e.g. ARCHER and PolySpace) while
others fall short of their specified design goals, even for simple,
uncomplicated source code. Diagnostic results provide specific
suggestions to improve tool performance (e.g. for Splint,
improve modeling of complex loop structures; for ARCHER,
improve inter-procedural analysis). They also demonstrate that

50

http://www.ll.mit.edu/IST/corpora.html

the false alarm and confusion rates of some tools (e.g. Splint)
need to be reduced.

The test cases we have developed can serve as a type of litmus
test for tools. Good performance on test cases that fall within the
design goals of a tool is a prerequisite for good performance on
actual, complex code. Additional code complexity in actual
code often exposes weaknesses of the tools that result in
inaccuracies, but rarely improves tool performance. This is
evident when comparing test case results obtained in this study
to results obtained by Zitser [20] with more complex model
programs.

The test corpus could be improved by adding test cases to cover
attribute values currently underrepresented, such as string
functions.

8. ACKNOWLEDGMENTS
We would like to thank Rob Cunningham and Tim Leek for
discussions, and Tim for help with getting tools installed and
running. We also thank David Evans for his help with Splint,
David Wagner for answering questions about BOON, Yichen
Xie and Dawson Engler for their help with ARCHER, and Chris
Hote and Vince Hopson for answering questions about C-
Verifier and providing a temporary license.

9. REFERENCES
[1] CERT (2004). CERT Coordination Center Advisories,

http://www.cert.org/advisories/, Carnegie Mellon
University, Software Engineering Institute, Pittsburgh, PA

[2] Cousot, P. and Cousot, R. (1976). Static determination of
dynamic properties of programs, Proceedings of the 2nd
International Symposium on Programming, Paris, France,
106--130

[3] Deutsch, A. (1994). Interprocedural may-alias analysis for
pointers: beyond k-limiting, Proceedings of the ACM
SIGPLAN'94 Conference on Programming Language
Design and Implementation, Orlando, Florida, 230--241

[4] Deutsch, A. (1997). On the complexity of escape analysis,
Proceedings of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
Paris, France, 358--371

[5] Etoh, H. (2004). GCC extension for protecting applications
from stack smashing attacks,
http://www.trl.ibm.com/projects/security/ssp/

[6] Evans, D. and Larochelle, D. (2002). Improving security
using extensible lightweight static analysis, IEEE Software,
19 (1), 42--51

[7] GCC Home Page (2004). Free Software Foundation,
Boston, MA, http://gcc.gnu.org/

[8] Holzmann, G. (2002). UNO: Static source code checking
for user-defined properties, Bell Labs Technical Report,
Bell Laboratories, Murray Hill, NJ, 27 pages

[9] ICAT (2004). The ICAT Metabase,
http://icat.nist.gov/icat.cfm, National Institute of Standards
and Technology, Computer Security Division,
Gaithersburg, MD

[10] klog (1999). The frame pointer overwrite, Phrack
Magazine, 9 (55), http://www.tegatai.com/~jbl/overflow-
papers/P55-08

[11] Kratkiewicz, K. (2005). Evaluating Static Analysis Tools
for Detecting Buffer Overflows in C Code, Master’s
Thesis, Harvard University, Cambridge, MA, 285 pages,
http://www.ll.mit.edu/IST/pubs/KratkiewiczThesis.pdf

[12] Larochelle, D. and Evans, D. (2001). Statically detecting
likely buffer overflow vulnerabilities, Proceedings of the
10th USENIX Security Symposium, Washington, DC, 177--
190

[13] Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford,
S., and Weaver, N. (2003). The Spread of the
Sapphire/Slammer Worm,
http://www.caida.org/outreach/papers/2003/sapphire/sapphi
re.html

[14] PolySpace Technologies (2003). PolySpace C Developer
Edition, http://www.polyspace.com/datasheets/c_psde.htm,
Paris, France

[15] PSS Security Response Team (2003). PSS Security
Response Team Alert - New Worm: W32.Blaster.worm,
http://www.microsoft.com/technet/treeview/default.asp?url
=/technet/security/alerts/msblaster.asp, Microsoft
Corporation, Redmond, WA

[16] Ruwase, O. and Lam, M. (2004). A practical dynamic
buffer overflow detector, Proceedings of the 11th Annual
Network and Distributed System Security Symposium, San
Diego, CA, 159--169

[17] Security Focus (2004). The Bugtraq mailing list,
http://www.securityfocus.com/archive/1, SecurityFocus,
Semantec Corporation, Cupertino, CA

[18] Wagner, D., Foster, J.S., Brewer, E.A., and Aiken, A.
(2000). A first step towards automated detection of buffer
overrun vulnerabilities, Proceedings of the Network and
Distributed System Security Symposium, San Diego, CA, 3-
-17

[19] Xie, Y., Chou, A., and Engler, D. (2003). ARCHER: Using
symbolic, path-sensitive analysis to detect memory access
errors, Proceedings of the 9th European Software
Engineering Conference/10th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
Helsinki, Finland, 327--336

[20] Zitser, M. (2003). Securing Software: An Evaluation of
Static Source Code Analyzers, Master’s Thesis,
Massachusetts Institute of Technology, Cambridge, MA,
130 pages

[21] Zitser, M., Lippmann, R., and Leek, T. (2004).
Testing static analysis tools using exploitable buffer
overflows from open-source code, Proceedings of the
12th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, Newport
Beach, CA, 97--106

51

http://www.cert.org/advisories/
http://www.trl.ibm.com/projects/security/ssp/
http://gcc.gnu.org/
http://icat.nist.gov/icat.cfm
http://www.tegatai.com/~jbl/overflow-papers/P55-08
http://www.tegatai.com/~jbl/overflow-papers/P55-08
http://www.ll.mit.edu/IST/pubs/KratkiewiczThesis.pdf
http://www.caida.org/outreach/papers/2003/sapphire/sapphire.html
http://www.caida.org/outreach/papers/2003/sapphire/sapphire.html
http://www.polyspace.com/datasheets/c_psde.htm
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/alerts/msblaster.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/alerts/msblaster.asp
http://www.securityfocus.com/archive/1

ABM: A Prototype for Benchmarking
Source Code Analyzers

Tim Newsham
∗

Waipahu, Hawaii USA

newsham@lava.net

Brian Chess
Fortify Software

Palo Alto, California USA

brian@fortifysoftware.com

ABSTRACT
We describe a prototype benchmark for source code ana-
lyzers. The prototype uses a combination of micro- and
macro-benchmarking to measure the vulnerabilities a tool
is capable of detecting and the degree to which it is able
to distinguish between safe code and vulnerable code. We
describe the design and implementation of our prototype,
then discuss the effect that the our experience with the pro-
totype has had on our future goals. Our prototype, along
with sample output from a number of source code analysis
tools, is available for download from
http://vulncat.fortifysoftware.com.

1. INTRODUCTION
Static source code analysis provides a mechanism for re-

ducing the amount of tedious work involved in inspecting a
program for security vulnerabilities. As source code analysis
grows in popularity, more potiential users of the technology
are faced with the need to evalute the pros and cons of an
increasing number of tools. A formal benchmark for com-
paring source code analyzers would provide several benefits:
A benchmark would help consumers choose the best tool for
their needs. It would pinpoint weaknesses in existing ana-
lyzers. It would quantify the strengths and weaknesses of
competing analysis techniques and allow engineers to make
measured tradeoffs. Benchmarking could also play a pivotal
role in directing future research and development efforts.

We recognized the need for good benchmarking data for
source code analyzers and resolved to create a benchmark.
We chose to begin by constructing a prototype to test out
and refine our ideas. Starting with a prototype allows us to
understand what problems we know how to solve and gives
us a platform to explore design decisions. An obvious goal
of this work is to provide a foundation for the construction
of a future benchmark.

∗Under contract with Fortify Software.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.c©2005 Association for Computing Machinery.
ACM acknowledges that this contribution was authored or co-authored by
an affiliate of the U.S. Government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.
SSATTM 11/7-11/8/05, Long Beach, CA, USA.
Copyright 2005 ACM 1-59593-307-7/05/11 ...$5.00.

We call our prototype the Analyzer BenchMark or ABM
for short. The ABM benchmark is comprised of 91 micro-
benchmark test cases and a single macro-benchmark test
case. The purpose of each micro test case is to evaluate a
tool against a very specific scenerio in a controlled way. The
purpose of macro test cases is to capture properties of “real-
world” programs, like size and complexity, that are absent
from the micro test cases.

Our goal is to develop a framework that can be applied to
any programming language or platform, but for the purposes
of creating a prototype, all of the test cases target C-code
source code analyzers running under Unix and Win32. We
have applied the prototype to six different analyzers run-
ning in Redhat9 Linux and Windows XP. Our benchmark
focuses on measuring the analysis strength of source code
analyzers and does not concern itself with issues such as
memory or time efficiency. Applying the ABM benchmark
to source code analyzers results in quantifiable answers to
the questions “What kind of vulnerabilities does this an-
alyzer search for?” and “How effective is this analyzer at
finding these vulnerabilities?”.

Related work
We are not the first to attempt to measure the performance
of source code analyzers. In his thesis [6] and accompany-
ing article [7], Misha Zitser evaluates the performance of
several source code analyzers for detecting buffer overflows.
Zitser uses a test suite based on known vulnerabilities in
real-world code. Zitser’s test cases are derived from widely
used applications but not comprised of the actual applica-
tion code because many of the analyzers he measured were
not capable of ingesting the large amount of code contained
therein. Zitser’s test suite is now available from the MIT
Lincoln Laboratory in their publically available corpora [2].

Zitser describes the construction of “approximately 50
pairs” of small test cases. Each pair is made up of a small
program with a single instance of a buffer overflow and a sec-
ond matched program that is similar but does not contain
the defect. To construct his test cases, Zitser first created
a fairly detailed taxonomy of test case characteristics. He
then hand-constructed the test pairs and classified them us-
ing his taxonomy. Although he describes the construction
of his micro-benchmark test suite in detail, Zitser did not
publish any results obtained from using the suite.

Zitser’s micro-benchmark work was continued and extended
by Kendra Kratkiewicz. In her thesis [1] Kratkiewicz ex-
tends the taxonomy created by Zitser and uses her taxonomy
to guide the automatic generation of a micro-benchmark

52

suite of 591 quadruplets. Each quadruplet consists of four
programs: one with no buffer overflow and three with succes-
sively larger buffer overflows. Kratkiewicz’s use of quadru-
plets allows the effect of the magnitude of a buffer overflow
to be analyzed. Her thesis describes the results of using this
benchmark to compare the performance of several analyzers
in detecting buffer overflows.

The SAMATE project at NIST [3] was created with the
objective of “identification, enhancement and development
of software assurance tools.” [3] Part of the project’s man-
date is to support tool evaluation and, towards this end, they
plan to create a system for benchmarking software analysis
tools. This work is still in the planning stages and we are
not aware of any results at this time.

Contributions
We believe our work makes several important contributions
to source code analyzer benchmarking. First, we are con-
structing a standard benchmark. Prior efforts focused on
constructing a benchmark for the author’s use in measur-
ing particular tools. We intend our benchmark to be used
by others including end-users and research and development
teams from academia and industry.

Second, we wish to benchmark a large number of ana-
lyzers. This goal forces us to pay attention to engineering
issues such as ease of retargetting. Our benchmark is care-
fully automated with a build environment that has small,
isolated analyzer-specific components. We use a normaliza-
tion mechanism to reduce the amount of analyzer-specific
code in our benchmarking process.

Third, we are interested in benchmarking all vulnerability
types and do not limit our focus to a single class of vulner-
abilities. This choice has resulted in a classification system
that is more flexible than those used previously.

Fourth, we are interested in benchmarking across a wide
set of platforms and languages.

Fifth, we see weakness in the grading mechanisms used
by Zitser and Krakiewicz, which expect that each test case
can have at most one reported vulnerability. Our bench-
mark uses a more sophisticated grading process that does
not make such an assumption.

Finally, we see value in both micro-benchmarking and
macro-benchmarking and use both to measure the perfor-
mance of source code analyzers.

With the remainder of this paper we discuss the com-
position of the ABM prototype benchmark, why we made
certain choices, and our plans for expanding from a proto-
type to a full benchmark proposal. Examples of benchmark
results are provided to clarify discussion, but, due to space
constraints, complete results are not given. We direct curi-
ous readers to http://vulncat.fortifysoftware.com for more
results.

2. DESIGN GOALS
If a benchmark is going to gain wide adoption, it must

meet a number of requirements:
First, the benchmark must be fair, objective and trans-

parent. A benchmark that is not fair and objective will
be rejected by the source code analysis community. Our
benchmark should generate transparent results that can be
independently reproduced, scrutinized and verified so that
matters of fairness can be publicly decided.

Second, the benchmark must be able to accomodate change.

The relevance of different vulnerabilities, platforms and lan-
guages will evolve over time. This evolution is driven both
by technical factors (such as the discovery of new types of
attacks) and social factors (such as increased emphasis on
privacy rights). The widespread adoption of source code
analysis tools is in its very infancy, virtually ensuring future
change. In order to be successful our benchmark must be
flexible and extensible. The framework should allow for the
introduction of new languages, platforms and metrics.

The benchmark must also be applicable to a wide range
of analysis techniques. Without good coverage of important
platforms or languages, people will look elsewhere in order
to find a becnhmark that is relevant to their needs and in-
trests. This means that, at a minimum, the benchmark must
support the most popular languages and operating environ-
ments.

The benchmark must generate an easy-to-understand score.
The majority of consumers of benchmark results will not be
experts in source code analysis, and they will look to the
benchmark for a simple way to compare competing tools.
Some will use the scores to make important purchasing de-
cisions. It is important that these scores be interpreted cor-
rectly and not be prone to marketing spin. In order to be
relevant, the scores must also be based on measurements
that are important in real-world programs.

Finally, the benchmark should generate a wealth of data
about each tool measured. The need for this information
is two-fold. First, the data will provide transparency by al-
lowing the results of the benchmark to be scrutinized and
independently verified. Second, the data will allow for de-
tailed analysis of the strengths and weaknesses of each tool.
Consumers will be able to use the data to focus on details
that are most relevant to them. This data will also be useful
in focusing future source code analysis research and devel-
opment efforts.

Beyond these requirements we have some pragmatic goals
for our benchmark. We would like the benchmark to be easy
to use. We wish to create a benchmark that is easy to re-
target for new source code analysis tools. To the greatest
extent possible we want to automate the application of the
benchmark, making it easy to carry out the benchmarking
process. We believe that automation has the additional ad-
vantage of increasing the objectivity of a benchmark. We
also want the benchmarking results to be easy to view, in-
terpret and consume.

3. THE BENCHMARK
We chose to begin our project by creating a prototype.

Our goal in starting with a prototype is to allow us to fig-
ure out what aspects of the design we actually understood
and provide a platform to experiment with the aspects that
we did not. For this purpose we chose to restrict the scope
of our project significantly, focussing on static analyzers for
Java and C code running under Linux and Windows XP. We
decided that we should build a modestly sized suite of micro-
benchmark test cases, with the understanding that the cov-
erage of the suite would suffer for it. We also chose to begin
with a single macro-benchmark test case. For maximum
flexibility, all of our micro test cases would be constructed
manually, and our macro test case would come from a widely
adopted open source program.

The decision to use both micro- and macro-benchmarking
was not an easy one. A macro-benchmark is made up of

53

Attribute Parent Keywords

Platform General Port Unix Win32

Program size General Size0...Size9
Program complexity General Complex0...Complex9
Vulnerability class General BufferOverflow Api Taint Race

Overflow location BufferOverflow Stack Heap

Overflow API BufferOverflow AdHoc AdHocDecode AdHocCopy Read Gets Strcpy Sprintf Memcpy

Overflow cause BufferOverflow Unbounded NoNul IntOverflow BadBound

API type Api MemMgmt Chroot

MemMgmt type MemMgmt DoubleFree Leak

Taint type Taint Unsafe InfoLeak FormatString

Race type Race Filename

Table 1: Measured attributes, their dependencies and the set of keywords used to describe them.

Keyword Description

Port Portable across all platforms.
Unix Contains UNIX-specific code.
Win32 Contains Win32-specific code.
Size0...Size9 Description of the program size from small to large.
Complex0...Complex9 Description of the program complexity from simple to complex.
BufferOverflow Contains a buffer overflow vulnerability.
Api Contains a vulnerability caused by misusing an API.
Taint Contains a vulnerability caused by misuse of tainted data.
Race Contains a vulnerability cause by a race condition.
Stack The overflow occurs in a buffer located on the stack.
Heap The overflow occurs in a buffer located on the heap.
AdHoc The overflow is caused by an ad hoc buffer manipulation.
AdHocDecode The overflow is caused by an ad hoc buffer decode operation.
AdHocCopy The overflow is caused by an ad hoc copy operation.
Read The overflow is caused by use of the read() function.
Gets The overflow is caused by use of the gets() function or a similar related function.
Strcpy The overflow is caused by use of the strcpy() function or a similar related function.
Sprintf The overflow is caused by use of the sprintf() function or a similar related function.
Memcpy The overflow is caused by use of the memcpy() function or a similar related function.
Unbounded The overflow was caused because no bounds check was made.
NoNull The overflow was caused because a NUL character was expected but not found.
IntOverflow The overflow was caused because of an integer overflow or underflow when computing bounds.
BadBound The overflow was caused because an incorrect bounds check was performed.
MemMgmt A memory management API was misued.
Chroot The chroot() function was misued.
DoubleFree Allocated memory was freed multiple times.
Leak Allocated memory was never freed.
Unsafe Tainted data was passed to an unsafe function.
InfoLeak Sensitive data was revealed.
FormatString Tainted data was used as a format string to a function in the printf family of functions.
Filename A race was caused by accessing a file multiple times by its filename.

Table 2: Descriptions for each keyword.

larger test cases drawn from source code in use in “real-
world” applications. These test cases are large, compli-
cated, and provide several challenges to benchmark anal-
ysis. Macro-benchmark cases contain an entanglement of
many factors that are not easily seperated for independent
measure. A micro-benchmark is comprised of a set of small
synthetic test cases in which each test case can be carefully
designed to isolate characteristics. Tests can include control
subjects to increase the realiability of any measurements
made.

The precision of the micro-benchmark test cases comes at

a cost: it is “real-world” applications that interest program-
mers, not synthetic test cases. A micro-benchmark may fail
to capture some salient feature of important applications,
such as size or complex interactions between features. Even
when micro-benchmarks do provide useful results, their ac-
curacy may be called into question unless they can be val-
idated against data from important applications. For these
reasons we chose to create a blend of micro-benchmarks and
macro-benchmarks.

3.1 Test Case Attributes

54

BAD case OK case Keywords

ahscpy1-bad.c ahscpy1-ok.c Port Size0 Complex0 BufferOverflow Stack AdHocCopy Unbounded

chroot1-bad.c chroot1-ok.c Unix Size0 Complex0 Api Chroot

fmt1-bad.c fmt1-ok.c Port Size0 Complex0 Taint FormatString

fmt2-bad.c fmt2-ok.c Unix Size0 Complex0 Taint FormatString

fmt3-bad.c fmt3-ok.c Unix Size0 Complex1 Taint FormatString

fmt4-ok.c Port Size0 Complex0 Taint FormatString

fmt5-ok.c Port Size0 Complex0 Taint FormatString

into1-bad.c Port Size0 Complex0 BufferOverflow Heap AdHoc IntOverflow

into2-bad.c into2-ok.c Port Size0 Complex0 BufferOverflow Heap AdHoc IntOverflow

mem1-bad.c mem1-ok.c Port Size0 Complex0 Api MemMgmt Leak

mem2-bad.c mem2-ok.c Port Size0 Complex1 Api MemMgmt Leak

race1-bad.c race1-ok.c Unix Size0 Complex0 Race Filename

race2-bad.c race2-ok.c Unix Size0 Complex0 Race Filename

snp1-bad.c snp1-ok.c Port Size0 Complex0 BufferOverflow Stack Sprintf BadBound

snp2-bad.c snp2-ok.c Port Size0 Complex0 BufferOverflow Stack Sprintf BadBound

tain1-bad.c tain1-ok.c Port Size0 Complex0 Taint Unsafe

tain2-bad.c tain2-ok.c Unix Size0 Complex0 Taint Unsafe

Table 3: A sampling of test cases and their attribute keywords.

To guide the creation of synthetic test cases we looked at
computer security vulnerabilities arising from programming
mistakes in C source code. We created a formal taxonomy
of vulnerability attributes covering a wider range of vulner-
ability types than covered in previous benchmarks. While
our taxonomy is not complete we believe it captures many of
the kinds of program attributes that are important to source
code analyzers. This taxonomy defines a problem space for
our test cases that we were able to use for both choosing
which test cases to create and to measure the coverage of
the resulting test suite. The taxonomy also proved useful in
automating the analysis of the results.

While creating our taxonomy, we observed that some pro-
gram attributes are only relevant to some types of vulner-
abilities. We support attributes in this irregular taxonomy
by using a heirarchical system of keywords. For each at-
tribute we enumerate a set of keywords that describe that
attribute. Each attribute also has a parent keyword upon
which it is dependent. When an attribute’s parent keyword
is present, exactly one of the keywords for that attribute
must be specified. At the top of this dependency heirarchy
is the keyword “General” which is always implicitly present.
The attributes we measure are shown in Table 1 and the
keywords used described in Table 2.

Each test case is described by a string of keywords for each
relevant attribute. For example, the string “Port Size0

Complex1 BufferOverflow Heap Gets Unbounded” describes
a small portable test case containing a buffer overflow on the
heap using the gets() function, which does not perform any
bounds checking.

This system of keywords is very flexible. Attributes that
are specific to features of a particular language or operat-
ing system can be introduced without interfering with other
unrelated attributes. Keywords and attributes can even be
used to describe non-technical details about a test case such
as the source of contributed material. Finally the system
of keywords is well-defined (although some of the keywords
currently in use are not). This simplifies the verification of
well-formed test case descriptions.

3.2 Test Suite

We used our taxonomy to guide our creation of ABM
micro-benchmark test cases. The intent is to have broad
coverage of combinations of attributes in our taxonomy. We
consciously chose to limit the number of test cases in our
prototype benchmark allowing the benchmark coverage to
suffer a little in order to focus on other details such as grad-
ing and analysis. We sketched out aproximately what types
of test cases we wanted to include and constructed the test
cases manually. Constructing a small number of test cases
allowed us to explore some alternate test case designs during
prototyping and allowed us to focus more quickly on other
areas of the benchmark design such as grading and analysis.

The benchmark test suite is composed of 91 C test cases
with a somewhat even coverage of attributes in our taxon-
omy. We are currently in the process of adding test cases
for Java. Table 3 lists a sampling of 31 of the 91 test cases
and their attributes. Whenever possible, test cases were con-
structed in matched pairs of OK and BAD test cases. Each BAD

test case has code with a vulnerability in it. Corresponding
OK cases are similar to BAD cases but do not share the vul-
nerability. OK cases are generally constructed by patching
BAD cases to remove the vunlerability while retaining func-
tionality. These OK cases share the same attribute keywords
even though they do not contain a vulnerability.

Kratkiewicz [1] used test case quadruplets rather than
pairs to measure the effects of buffer overflow magnitude.
We did not take this approach because the magnitude at-
tribute is specific to buffer overflow vulnerabilities. The ef-
fect of magnitude can still be measured by providing addi-
tional test case pairs that cover buffer overflows of varying
mangitude.

Each test case contains annotations specifying where a
bug may be present. Test cases with vulnerabilities are
tagged with a comment “/* BAD */” at any line that may
be considered to contribute to the vulnerability described by
the test case’s keywords. Those cases without vulnerabili-
ties are tagged with a comment “/* OK */” at any line that
could have contributed to the vulnerability if it had been
present.

Each test case is also annotated with information about
valid and invalid inputs. These annotations allow for au-

55

1 /*

2 Description: Printf is called with a user supplied

format string.

3 Keywords: Port Size0 Complex0 Taint FormatString

4 ValidArg: "’NormalString\n’"

5 InvalidArg: "%s"*100

6 */

7

8 #include <stdio.h>

9

10 void

11 test(char *str)

12 {

13 printf(str); /* BAD */

14 }

15

16 int

17 main(int argc, char **argv)

18 {

19 char *userstr;

20

21 if(argc > 1) {

22 userstr = argv[1];

23 test(userstr);

24 }

25 return 0;

26 }

Figure 1: The test case fmt1-bad.c.

tomated testing of the resulting binaries. Some of the test
cases we constructed were dependent on implementation de-
tails, such as compiler layout and padding, and were not
vulnerable when using our compiler of choice. We felt these
test cases were still important and did not want to sim-
ply discard them. As a result, some of our test cases fail
automatic validation. It is also important to note that an
incorrect test case may still pass validation if the validation
inputs are not picked properly. Thus, we were able to use
automated testing as an aid in validating our test suite but
could not rely on it completely.

An example of a test case in the suite is shown in Figure 1.
Annotations in the comments at the head of the file give a
formal and informal description of the test case. They also
provide test strings for automated verification of the test
case. An annotation at line thirteen denotes the occurance
of a vulnerability.

For our macro-benchmark test case we chose the Apache
web server [4]. Our choice was influenced by several fac-
tors. Apache is well known, accepted, and mature. It is
freely available in source form and runs on a wide range
of platforms. Typical deployments of Apache require that
it be exposed to security threats from the entire internet.
Apache provides us with a relatively large and complex pro-
gram that is representative of the types of programs that
people would want to analyze with a source code analyzer.

3.3 Grading
To benchmark a tool with the ABM suite, we run the tool

being benchmarked against each test case in the suite and
gather the results for grading. The entire process is auto-
mated with a system of makefiles. The tool is invoked once

N: fmt1-bad

L: fmt1-bad.c 13 FormatString format printf If

format strings can be influenced by an

attacker, they can be exploited. Use a

constant for the format specification.

Figure 3: The normalized results of Flawfinder’s

analysis of fmt1-bad.c.

for each test case. The result of each analysis is normalized
into a standard format, and a grading program compares
the normalized tool output against the annotations in the
test case. Finally, the graded results are combined into a
benchmark result. This process is illustrated in Figure 2.

In order to benchmark a tool, the benchmark framework
must be able to invoke the analyzer, and there must be a
method for converting the results of the analysis into a stan-
dardized format. Most of the benchmark process is dictated
by makefile rules shared by all tools. Tool-specific rules are
contained in a separate makefile for each analyzer. Because
some test cases are platform specific, each analyzer-specific
makefile must specify which set of test cases to analyze.
They must also specify how to invoke the analyzer and what
file extension to use when saving the results. These tool-
specific makefiles are typically less than 40 lines long.

We use a normalized output format to avoid putting analyzer-
specific code in the grading process. The normalizer emits
a line for each vulnerability reported by the analyzer. Each
vulnerability is first mapped to the most specific matching
keyword in our taxonomy. In some cases a vulnerability
may be mapped to several keywords. The normalizer emits
a single line for each combination of keyword, file name,
and line number. To make it easier to verify that our nor-
malizer is behaving as expected, we include the analyzer’s
original description of each vulnerability in the normalized
output. The amount of code necessary to normalize an an-
alyzer’s output is highly dependent on the output format
of an analyzer. So far we have constructed normalizers for
six analyzers ranging in size from 59 to 137 lines of python
code.

Figure 3 shows an exerpt of the normalized results from
the Flawfinder [5] analyzer. The line starting with “N:” de-
scribes the test case source (fmt1-bad). The line starting
with “L:” describes an instance of a FormatString vulnera-
bility at line 13. The text following the FormatString key-
word on this line is not used and is provided to aid manual
review of the results. The remainder of the file contains
results for other test cases.

We use an automated system to grade the normalized
analysis results. Grading results manually would be tedious
and error-prone and would place an artificially low bound
on the practical size of our test suite. Manual grading would
likely be less objective or at least less transparent than an
automated process. Fortunately grading a test case’s anal-
ysis results is a straightforward process of matching up the
normalized results with the source code if the source code is
properly annotated.

To grade the normalized results, each reported vulnerabil-
ity is matched against the corresponding line in the anno-
tated test case. Any reported vulnerability which does not
appear as an attribute keyword for the test case is noted
and ignored. Likewise, vulnerabilities matching attribute

56

Analyzer Specific

.c

Cases
Test

Source

Analyzer
Code

A

B

C

Grader

Report

Gets Confused 10%
Noisy 80%
Finds Bugs 20%

Report

Result
AnalyzerNormalizer

ϕλωθξψ

ABC

Figure 2: The ABM benchmarking process. Test cases are analyzed by the source code analyzer to be

measured. The results are then normalized and graded before a report is generated. The invocation of the

source code analyzer and the normalization of its results are the only analyzer-specific steps in this process.

fmt1-bad

Printf is called with a user supplied format string.

Port Size0 Complex0 Taint FormatString

13 BAD FormatString *MATCH* format printf If format

strings can be influenced by an attacker, they can

be exploited. Use a constant for the format

specification.

Raw results:

PASS fmt1-bad Port Size0 Complex0 Taint FormatString

Figure 4: The graded results of Flawfinder’s analysis

of fmt1-bad.c.

keywords but at lines that are not annotated as BAD or OK

are noted and ignored. When a matching vulnerability oc-
curs on a line with a BAD or OK annotation, it is noted as
having matched. An analyzer is given a passing grade on
a test case if it matches any of the BAD lines and does not
match any of the OK lines. Upon completion, the grader
emits a list of passing and failing test cases and their asso-
ciated annotation keywords.

Notice that our grading process can ignore many reported
vulnerabilities. Each test case is constructed to measure the
analysis of a single type of vulnerability and the grader ig-
nores any information about other reported vulnerabilities.
Although it may appear that valuable information is dis-
carded, this is not necessarily the case. Discarded informa-
tion is not lost as long as there is another test case in the
suite to measure the behavior. We believe that this approach
of carefully focused measurment increases the reliability and
leads to better analysis.

Figure 4 shows an exerpt of the graded results from the
Flawfinder [5] analyzer. The group of lines at the top of the
figure describe the grading process, starting with the test
case name and the formal and informal descriptions of the
test case. Following the description is a line representing the
reported FormatString vulnerability at line 13. This line is
indicated as a match since the test case is a FormatString

test case. The Flawfinder tool passed this test case since
there was a match for a “BAD” line. Had it failed, failure
would be indicated in the output. These first lines are not
used directly but are provided to ease human review of the
grading process. The grader emits a table of graded results
at the end of its output with a line for each graded test case.
This is illustrated in the figure with a line that indicates that

Flawfinder passed the fmt1-bad case.
Grading the macro-benchmark test cases is even simpler

than grading micro-benchmark cases. As with the micro-
benchmark test cases, the results from the macro-benchmark
are first normalized. The benchmark cases were chosen in
part for their maturity and it is assumed that there are rel-
atively few vulnerabilities left in the code. For the purpose
of grading, we assume that all reported vulnerabilities are
false-positives. This assumption introduces error; there are
undoubtedly vulnerabilities in the macro-benchmark that
have not yet been identified or fixed. However, the macro-
benchmark provides good insight into the amount of output
that a tool is likely to produce for a real-world program.
Over time it is expected that a few bonafide vulnerabilities
will be discovered in macro-benchmark test cases. We in-
tend to maintain our current test cases and augment them
with annotations as this occurs.

3.4 Analysis
The analysis phase makes use of the graded benchmark re-

sults to generate a report of meaningful measurements about
an analyzer. The goal of the analysis is to measure the cov-
erage and strength of an analyzer. An analyzer’s coverage
is a measure of the relevance of an analyzer to a variety of
code defects. An analyzer with broad coverage is designed
to detect a broad range of vulnerabilities whereas an an-
alyzer with narrow coverage can only detect a small class
of vulnerabilities. An analyzer’s strength is a measure of
the quality of analysis over diverse and sometimes difficult
coding constructs. An analyzer with high strength can de-
tect vulnerabilities in both simple and complicated code.
Equally important, an analyzer with high strength is able
to differentiate between vulnerable and non-vulnerable in-
stances of similar code. An analyzer with low strength may
not be able to detect a vulnerability in complex code or may
incorrectly identify vulnerabilities where they do not exist.

In order to understand analysis of the results, it is nec-
essary to first understand the meaning of passed and failed
test cases. For “BAD” cases, a success indicates a “true pos-
itive” detection of a vulnerability while a failure indicates
a “false negative” or that the analyzer incorrectly indicated
that the vulnerability was not present. For “OK” cases, a
success indicates a “true negative” or that the analyzer cor-
rectly indicated that no vulnerability was present, while a
failure indicates a “false positive” detection of a vulnerabil-
ity.

The simplest measure of an analyzer is given by a tally

57

BAD tests OK tests Total Discriminates

pass total perc pass total perc pass total perc pass total perc

All 26 48 54% 23 43 53% 49 91 54% 4 22 18%

Unsafe 2 2 100% 0 2 0% 2 4 50% 0 2 0%
InfoLeak 0 2 0% 0 0 - % 0 2 0% 0 0 - %
FormatString 3 3 100% 3 5 60% 6 8 75% 3 3 100%

fmt1 1 1 100% 1 1 100% 2 2 100% 1 1 100%
fmt2 1 1 100% 1 1 100% 2 2 100% 1 1 100%
fmt3 1 1 100% 1 1 100% 2 2 100% 1 1 100%
fmt4 0 0 - % 0 1 0% 0 1 0% 0 0 - %
fmt5 0 0 - % 0 1 0% 0 1 0% 0 0 - %

Table 4: Exerpts of benchmark results for the Flawfinder scanner.

of the passing test cases. This measure imparts a rough
measure of the analyzer but does not provide much insight
into the analyzer’s strengths or weaknesses. A slightly bet-
ter measure is derived by partitioning the test cases into
“OK” and “BAD” cases. This provides a measure of true pos-
itives and negatives, or, conversely, false positives and false
negatives. The number of true positives gives some indica-
tion of how well the analyzer does the job advertised while
the number of false positives gives a measure of how much
additional noise it produces.

By partitioning the test cases according to vulnerability
classes the coverage of an analyzer can easily be measured.
An analyzer is said to cover a vulnerability class if it can
report vulnerabilities in that class. If there are any true
positives in the class (ie. there is at least one “BAD” test case
that passed) then clearly the vulnerability class is covered.

Measuring an analyzer’s strength is a little more com-
plex. Some indication of an analyzer’s strength is given by
the number of false positives and false negatives that are
reported. We can gain further insight into an analyzer’s
performance by partitioning a set of test cases based on a
particular attribute. For example, by partitioning the set of
BufferOverflow test cases according to program size, the
effects of size on buffer overflow detection can be isolated.

One effect that is not easily isolated in this way is the
ability of an analyzer to discriminate between vulnerable
and non-vulnerable code. We introduce a new measure to
quantify this component of an analyzer’s strength. The dis-
crimination of an analyzer is a tally of how often an ana-
lyzer passed an “OK” test case when it also passed a match-
ing “BAD” test case. Together with the true negative and
true positive tallies, discrimination gives a good indication
of an analyzer’s strength. An analyzer that finds many in-
stances of a vulnerability but falsely reports the presence
of this vulnerability where it is not present will score well
when true-positives are measured but will not get a good
true-negative or discrimination score.

Besides isolating the effect of defect variations, analyzing
partitions based on keywords has an additional advantage
– it allows us to make level comparisons of diverse analyz-
ers. For example, the results of benchmarking an analyzer
that runs only on Win32 platforms cannot directly be com-
pared with the results from an analyzer that runs only in
UNIX. However, by isolating the portable test cases (those
described by the Port keyword) some amount of comparison
can be made.

The ABM analyzer generates a report by generating ta-

bles of successively more detailed partitions of the data set.
This process is straightforward because every test case is
described by a sequence of keywords. Subsets of test cases
are made by matching selected attribute keywords. These
subsets are then scored for tallies of passed test cases, true
positives, true negatives, and discrimination. Each tally is
reported as an absolute count and as a percentage.

Table 4 shows an exerpt of the analyzed results from
benchmarking the Flawfinder [5] source code analyzer. These
results can be viewed in their entirety at
http://vulncat.fortifysoftware.com. The line labelled “All”
shows the accumulated results for all the micro-benchmark
test cases. It shows that Flawfinder found 54% of the vul-
nerabilities, and properly did not report any vulnerabilities
for 53% of the non-vulnerable test cases. When it was able
to detect a vulnerability, it was able to discriminate it from
non-vulenerable code 18% of the time. The next three lines
show Flawfinder’s performance for three classes of Taint

vulnerabilities. Finally the last five lines show the indi-
vidual test case pairs used to measure FormatString vul-
nerabilities. The fmt1-bad.c test case presented earlier is
represented by the “BAD tests” column of the “fmt1” row.

Because of their nature, the macro-benchmark test cases
are not as easy to analyze and do not provide as much in-
formation. The only analysis we perform is a counting of
false-positives by attribute keyword. There is one subtlety
in this process: we accumulate attribute counts up to their
parent keywords. For example if there are five reported
FormatString vulnerabilities and two reported InfoLeak

vulnerabilities these counts are accumulated and reported
as seven Taint vulnerabilities. The reason for this accu-
mulation is to ease comparison of the results from different
analyzers: some analyzers may report vulnerabilities deeper
in the attribute taxonomy than other analyzers.

4. FUTURE WORK
We have built a prototype benchmark for source code an-

alyzers, but our work is not yet done. A primary goal of
this project has been to guide the development of our full
benchmark. While what we have implemented is important,
we consider what we have learned about what we must now
implement an equally important contribution of our work.

We are currently in the process of adding Java test cases to
the ABM suite. Although unexciting from a technical point
of view these new test cases are critical to our goal of provid-
ing a standard cross-platform benchmark. Details about the
Java test cases are available at http://vulncat.fortifysoftware.com.

58

The most glaring deficiency of the current benchmark is its
coverage. This is partly due to our desire to keep the number
of test cases manageably small in our prototype. A next-
generation benchmark will require a micro-benchmark test
suite one or two orders of magnitude larger. A hand-written
test suite would clearly not be practical and we anticipate
generating test cases programatically as was done in [1].

A larger macro-benchmark test suite will also be needed.
The process of incorporating more macro-benchmarks is te-
dious but fairly straightforward.

Test case generation will be guided by a classification sys-
tem. Our initial taxonomy was successful but somewhat
simplistic. Its classification of complexity and size lacks for-
mal definition. The ABM test suite has particularly poor
coverage of large or complex programs. A formal classifica-
tion of size and complexity will give us a better foundation
for addressing this deficiency. To ensure consistent and un-
biased coverage of the taxonomy’s attribute space we intend
to formalize the process by which we pick test cases. The
process of constructing matched OK cases also suffers from a
lack of formal structure which we hope to address by aug-
menting the taxonomy with alternate patch strategies.

The taxonomies created and employed by Zitser [6] and
Kratkiewicz [1] to describe programs with buffer overflows
are considerably more detailed than ours. In the future we
plan to incorporate attributes from their work into our tax-
onomy and expand our taxonomy to cover details particular
to vulnerabilities other than buffer overflows.

The area of result analysis is ripe for future research. As
with any benchmark, we anticipate that the availability of
raw data will stimulate others to find new ways of extracting
important information. There are two areas that we would
like to pursue further in the future. Currently the result
analysis places equal importance on each test case. This
artificially weights the aggregated results according to the
number of test cases in each category. We hope to address
this by investigating weightings that more properly reflect
the importance of test case properties in real-world situa-
tions. We hope that comparisons with macro-benchmark
results will prove useful in this effort.

A second area of future interest is to provide better syn-
ergy between the micro- and macro-benchmarking compo-
nents. As currently implemented our micro-benchmark and
macro-benchmark cases are used to measure very different
things. The relation between their results is not clearly ap-
parent in the results. We hope that future analysis will allow
the two suites to complement each other and corroborate
each other’s results.

A subtle issue that has been glossed over earlier in this
paper is the handling of macro-benchmark results across
disparate platforms. Even though the test case we chose
compiles on a wide range of platforms, the source code used
in the build process is not identical for all platforms. The
build environment selects certain platform specific files ap-
propriate for the platform. Conditional compilation selects
certain segments of code within files that are used by all
platforms. This makes comparisons of results obtained on
different platforms troublesome. We are currently investi-
gating stronger analysis techniques to remedy this.

Beyond the technical, there is a lot of work remaining
in getting our benchmark adopted. We hope to work with
the community to get feedback on our methodologies and
address any early concerns. We plan to support the bench-

mark’s adoption by promoting its fair use and the dissemi-
nation of results. We plan to continue benchmarking more
analyzers, and we will make both the benchmark and re-
sults for a wide range of analzers available for download
from http://vulncat.fortifysoftware.com.

5. REFERENCES
[1] K. Kratkiewicz. Evaluating static analysis tools for

detecting buffer overflows in c code. Master’s thesis,
Harvard University, March 2005.

[2] MIT. Corpora.
http://www.ll.mit.edu/IST/corpora.html, August 2005.

[3] NIST. Samate (nist software assurance metrics and tool
evaluation). http://samate.nist.gov/, August 2005.

[4] The Apache Software Foundation. The apache http
server project. http://httpd.apache.org/, August 2005.

[5] D. A. Wheeler. Flawfinder.
http://www.dwheeler.com/flawfinder/, August 2005.

[6] M. Zitser. Securing software: An evaluation of static
source code analyzers. Master’s thesis, Massachusetts
Institute of Technology, August 2003.

[7] M. Zitser, R. Lippmann, and T. Leek. Testing static
analysis tools using exploitable buffer overflows from
open source code. In SIGSOFT ’04/FSE-12:
Proceedings of the 12th ACM SIGSOFT twelfth
international symposium on Foundations of software
engineering, pages 97–106, New York, NY, USA, 2004.
ACM Press.

59

A Benchmark Suite for Behavior-Based Security
Mechanisms

Dong Ye, Micha Moffie and David Kaeli
Computer Architecture Research Laboratory
Northeastern University, Boston, MA 02115

{dye,mmoffie,kaeli}@ece.neu.edu

ABSTRACT
This paper presents a benchmark suite for evaluating behavior-
based security mechanisms. Behavior-based mechanisms are
used to protect computer systems from intrusion and de-
tect malicious code embedded in legitimate applications.
They complement signature-based mechanisms (e.g., anti-
virus software) by tackling zero-day attacks whose signa-
tures have not been added yet to the signature database, as
well as polymorphous attacks that have no stable signatures.

In this work we present a benchmark suite of eight pro-
grams. All of these programs are legitimate applications,
but we have designed them to be infected by malicious soft-
ware. An evaluation framework is designed to infect, disin-
fect, build, and run the benchmark programs. This bench-
mark suite aims to help evaluate the effectiveness of various
behavior-based defense mechanisms during different devel-
opment stages, including prototyping, testing, and normal
operation. We use this benchmark suite to evaluate a simple
behavior-based security mechanism and report our findings.

1. INTRODUCTION

1.1 Behavior-based security mechanisms
Many host-based intrusion prevention systems [29, 34, 38]

employ behavior-based analysis to protect an application
running on a server from being hijacked. Most of these appli-
cations are known or highly suspected to horde security vul-
nerabilities, such as buffer overflows and format strings [21].
These systems use various methods to examine the actions
taken by a program by inspecting library API activity and
system calls. Actions that appear malicious, such as at-
tempting a buffer overflow or opening a network connection
in certain contexts, will trigger an alarm by the monitoring
agents.

Over the past few years, spyware has become a pervasive
problem [13, 16]. Many infections occur when spyware is
piggybacked on top of popular software packages. Saroiu et
al. [16] found that spyware is packaged with four of the ten

Copyright 2005 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an affiliate of
the U.S. Government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
SSATTM ’0511/7-11/8/05, Long Beach, CA, USA.
Copyright 2005 ACM 1-59593-307-7/05/11.

most popular shareware and freeware software titles from
C|Net’s http://download.com/. Commercial security soft-
ware vendors [28, 35, 30, 37] have developed a number of
security products addressing this problem. All of these com-
panies have emphasized that they detect spyware by observ-
ing system behavior and detecting abnormal activity from
the norm.

Signature-based intrusion detection and anti-virus solu-
tions fail to expose this class of exploitation and do not
adapt well to even small changes in an exploit. A signa-
ture is a regular expression known a priori that matches
the instruction sequence of the exploitation or the network
packets presented in a specific attack [39]. Therefore, zero-
days attacks that have not had a signature extracted yet,
as well as polymorphous attacks, pose a great danger to
these signature-based mechanisms. Behavior-based mecha-
nisms aim to overcome these shortcomings and complement
signature-based mechanisms with more adaptive and proac-
tive protection. Instead of looking for fixed signatures in in-
struction sequences and network packet payloads, behavior-
based approaches focus on detecting patterns at a higher
level of abstraction. Ideally, the patterns are the inherent
behavior associated with malicious activities and distinct
from the normal behavior of legitimate programs. Evading
a behavior-based protection mechanism normally requires a
change in the logic of the malicious activity itself.

Gao et al. [6] investigated the design space of system-
call-based program tracking, which is the technology behind
many host-based anomaly detection and prevention systems.
A detailed system call trace can be recorded and character-
ized to better understand the typical behavior of the pro-
gram. By establishing a profile of normal behavior, an intru-
sion into the process will be detected when the system-call
behavior deviates from this normal profile.

Edjlali et al. [4] presented a history-based access-control
mechanism to mediate accesses to system resources from
mobile code. Their idea was to maintain a selective history
of the access requests made by individual programs and to
use this history to differentiate between safe and potentially
dangerous requests. Each program is categorized into one
of several groups, whereas each of these groups contains a
different profile of resource requests. The behavior of each
program during the entire execution is also constantly mon-
itored. The decision of whether to grant a resource request
that the program makes depends on both its preassigned
identity and its historical behavior during this execution, as
well as additional criteria, such as the location where the
program was loaded or the identity of its author/provider.

60

1.2 Security metrics and measurement
As behavior-based mechanisms become more commonly

used, and the rules and analytics engine underlying these
mechanisms become more sophisticated, we need a method-
ology to evaluate these security mechanisms. The evaluation
could be (and, ideally should be) used both for testing these
mechanisms during code development, and for the validation
and product rankings.

Developing metrics to define security properties remains
an ongoing research topic [5]. A number of approaches have
been proposed to measure the value of a security product
or technology, and to assess the level of security attained by
the whole system [20, 32].

Kajava et al. [11] considered a range of criteria to qualify
and quantify the degree of security attained. They summa-
rized three major classes:

• Risk analysis is the process of estimating the possi-
bility of individual exploitations, their impact on the
system, and as well as the cost to mitigate the risk.
Risk analysis considers the trade-off between cost and
the level of protection, and is thought to be a good
basis for any security evaluation [3].

• Certification involves decomposing the system into dif-
ferent classes based on design characteristics and se-
curity mechanisms. Standards organizations and com-
mercial companies provide certification services to mea-
sure the level of confidence that can be assigned to the
security features offered by a product [41, 31], or the
degree of conformance of a security process to the es-
tablished guidelines (e.g., ITIL [14], CMM [10] and
COBIT [1]).

• Penetration testing provides statistics about the prob-
ability that an intrusion attack will be successful. For
example, the WAVES project [42] standardizes the
practice of penetration testing for Web applications.

There have also been efforts to employ multiple orthogonal
criteria to quantify the value of the perceived security en-
hancement, and the cost associated with the enhancement.
Gordon et al. [7] proposed a framework to use the concept
of insurance to manage the risk of doing business in the
Internet era. They also described how to evaluate and jus-
tify security-related investments. The criteria they used for
their security evaluation includes the three elements just dis-
cussed.

There still remains no widely accepted way to measure and
rank security properties. The difficulty of finding a common
ground for evaluating various security mechanisms suggests
that further work is needed before we can adopt an unified
evaluation methodology for different categories of security
mechanisms.

The goal of this paper is to describe a new benchmark-
ing methodology to evaluate behavior-based security mech-
anisms. We present a benchmark suite composed of eight
applications that are typically found in workstation/desktop
environments. These applications are infected with a vari-
ety of malicious codes, that in turn, represent a broad spec-
trum of exploits. We demonstrate the utility of our bench-
mark suite by applying it to a simple behavior-based security
mechanism. The rest of paper is organized as follows. We
discuss the rationale of our benchmarking methodology for

evaluating behavior-based security mechanisms in section 2.
We then describe the suite of benchmarks we have created
in section 3. In section 4, we use this benchmark suite to
evaluate a simple behavior-based security mechanism and
analyze the results. In section 5, we summarize the paper
and discuss future directions for our work.

2. A CASE FOR BENCHMARKING BEHAVIOR-
BASED SECURITY MECHANISMS

Benchmarking has been used widely in the field of com-
puter architecture and system software development to eval-
uate the performance of a particular design or implementa-
tion. The basic idea behind benchmarking is to create a
common ground of comparison for a certain category of tar-
gets. Normally a suite of applications is constructed to serve
as this common ground. These applications reflect typical
workloads running on a selected category of computer sys-
tems (e.g., servers) or a selected category of application soft-
ware (e.g., database). The value of different design mecha-
nisms is measured by obtaining performance metrics while
running the suite. Benchmarking promotes the practice of
quantitative analysis [8]. There have also been efforts to
use benchmarking to evaluate properties other than perfor-
mance, such as dependability [12].

One of the key challenges addressed by most security-
related mechanisms is that they need to address a moving
target. The activities and scenarios that may do harm to
the system are unpredictable, and tend to change their form.
It would seem that a benchmarking methodology might not
be a good choice for evaluating security mechanisms, since
there is no stable workload that can be used.

In spite of the differences between their various approaches,
all the behavior-based mechanisms make a common claim
that they can differentiate the behavior of the malicious code
from the normal behavior of the program. Malicious behav-
iors are limited to several general categories, such as resource
abuse, information tampering, and information leakage [16].
More and more of these attacks are being motivated to ob-
tain financial gains [17]. This indicates that the malicious
behavior that these mechanisms are trying to single out is
limited, and is relatively stable. For these cases, benchmark-
ing can be very useful. A benchmark suite that consists of
representative workloads infected with representative mali-
cious activities can provide a good test of behavior-based
security mechanisms.

Our benchmarking approach diverges from the penetra-
tion testing either performed by third-party auditors and
certification service providers [41, 31], or embodied in soft-
ware packages which are composed of a set of penetration
cases [42]. These differences include:

• The main purpose of penetration testing is to find se-
curity vulnerabilities in the targeted programs, while
the goal of our benchmarking technology is to find out
whether the analytics and rules behind behavior-based
mechanisms are sufficient.

• Penetration testing can be very implementation spe-
cific. Whenever a exploit of a newly discovered vul-
nerability appears, this new penetration scenario must
be added to the set of test cases. On the contrary, the
collection of malicious behavior included in our bench-
mark suite is much less dependent upon individual ex-
ploits. Unless the entire strategy behind an exploit is

61

different from those included in the benchmark suite,
there is no need to update the benchmark suite with
every newly discovered exploit.

• Last, our benchmarking methodology is complemen-
tary to commonly used audit and certification services.
Designers and developers can benefit from our bench-
mark suite because it is more cost-effective and conve-
nient to use to test new ideas and prototype products
during the entire development cycle.

The anti-virus community has already tested the idea of
benchmarking. Basically they combine the signatures of all
the known (and some not widely known) exploits and see
how many of them different anti-virus products can find.
In a test performed by Virus Bulletin [40], 100% of their
signatures were detected by all the tested anti-virus soft-
ware. It should be apparent that it would be difficult to
produce a meaningful comparison here. A 100% detection
rate suggests that benchmarking may not be a good way to
evaluate detection accuracy (i.e., effectiveness) of anti-virus
technology.

Using our approach, we emphasize that it is behavior-
based mechanisms that we propose to evaluate using bench-
marking. Different types of security mechanisms may need
different methods to be properly evaluated.

3. THE SECSPEC BEHAVIORAL BENCH-
MARK SUITE

3.1 Components of the benchmark suite
We have developed a benchmark suite called SecSpec. The

benchmark programs included in the suite, as well as the
malicious code, are written in Java. The choice of language
should not limit the scope of applying the benchmarking
methodology, though the implementations of malicious be-
havior may need to be ported to another language and a
new set of benchmark programs may need to selected.

We target a typical workstation/desktop computing en-
vironment when choosing the component programs for the
benchmark suite. We include four types of applications and
consider two particular programs from type.

Browsers: Jbrowser [24] and JXWB [26] are two simple
and functional web browsers. They are simple because
they do not possess elaborate features such as client-
side plug-ins.

Editors: Jedit [33] and Jexit [25] are two full-blown editors.
The feature richness of these two applications pose
a great challenge to behavior-based security mecha-
nisms.

Instant Messengers: BIM [23] and SimpleAIM [27] are
two simple AOL instant messaging clients. SimpleAIM
is console-based and BIM is GUI-based. Instant Mes-
saging (IM) has become a serious application in both
enterprise and personal desktop environments, and is
also a favorite medium for spyware distribution [15].

Games: Computer games are a major channel for viruses to
infect both enterprise and home desktops. Even games
developed for mobile phones can be be infected with
viruses [2]. We include two simple games, Tetris [36]

and AntiChess [22], to cover this category of applica-
tions.

In our suite, we cover five categories of malicious code.
We arrive at this categorization based on the behaviors they
present. Each category of malicious behavior includes one
or more implementations. Table 1 lists our categorization of
these malicious behaviors.

We have placed the implementations of the malicious be-
havior inside a single source file for easy maintenance. Dif-
ferent types of malicious behavior are implemented in sep-
arate functions. The execution of a particular malicious
behavior is simply a call to the corresponding function(s).
Specially-formatted comments are placed in the source code
of the benchmark programs. These special comments are
placeholders for the invocation of malicious behavior. To
infect (or disinfect) the benchmark programs, we simply un-
comment (or comment) these placeholders.

Malicious behav-
ior type

Implementation(s)

1. Direct informa-
tion leakage

Read local file and email out.

2. Indirect
information
leakage

Copy local file to user’s webpage di-
rectory.
Copy local file to /tmp.
Change file permission bits.

3. Information
tampering

Update .hosts file in home directory.

4. Direct resource
abuse

Write a huge file to current direc-
tory.
Crash a process.

5. Indirect resource
abuse

Download remote code, put in the
system startup folder or update sys-
tem startup script.

Table 1: Categorization and implementation of ma-
licious behavior

3.2 Placement of malicious code inside bench-
mark programs

The location of malicious behavior inside a benchmark im-
pacts the accuracy of behavior-based security mechanisms.
When invoking malicious code at different locations, the ma-
licious behavior will appear in different contexts. If we place
the invocation of the malicious code such that it presents a
similar library API call or system call profile as in the orig-
inal application, the behavior-based mechanism will face a
bigger challenge to do its job well. Previous studies [18, 43,
6] have demonstrated the viability of the mimicry attacks
against host-based intrusion prevention systems. They en-
gineered the attack code to confuse the detection agent by
limiting the usage of library APIs and system calls to those
that are also used by the application.

This could lead to a practice of choosing the location of the
placeholders inside the benchmark program according to the
similarity between the malicious code and the context of the
benchmark program around the placeholders. However, we
have focused on capturing more general application behav-
ior instead of worrying about mimicing a specific low-level
library API and system call profile. Our goal is not to defeat
these security mechanisms, but instead, to evaluate their ef-
fectiveness. We want to measure the robustness of the logic

62

and rules sets underlying these mechanisms when encounter-
ing potentially confusing information. We call this practice
orthogonality-directed placement. The less orthogonal the
malicious behavior and the surrounding context of bench-
mark are relative to one another, the larger the challenge
that this benchmark suite poses to behavior-based mecha-
nisms.

Different placement schemes demand different levels of un-
derstanding of benchmark programs. The minimum level of
understanding is to make sure the insertion of placeholders
does not break the original code. We have experimented
with two placement schemes:

Random placement: Beyond the minimum requirement
of not breaking benchmark programs, our random place-
ment makes sure that the malicious code will appear
in at least two types of locations: at a location where
it will definitely appear on the execution path; and at
a location where it may or may not appear on the ex-
ecution path, depending on some particular run time
events. We position the placeholders in the startup or
termination section to emulate the first scenario and
in the user interface event handling section to emulate
the second scenario.

Orthogonality-directed placement: This requires us to
compute the degree of similarity of the program be-
havior and the malicious behavior. Our approach is to
classify both the benchmark programs and malicious
code to obtain four general categories of behavior: net-
work oriented, file system oriented, mixed or neither.
We then mix them together according to the extent of
overlap between behaviors in these four categories.

Among the four types of benchmark programs, we
classify IM clients as network-oriented, editors as file
system-oriented, browsers as mixed, and games as nei-
ther. Among the five types of malicious behaviors,
we classify indirect information leakage, information
tampering, and direct resource abuse as file system ori-
ented, direct information leakage and indirect resource
abuse as mixed.

Malicious behavior
Benchmark programs 1 2 3 4 5

Browsers
Jbrowser [24] ∆
JXWB [26] ∆

Editors
Jedit [33] ∆ ∆ ∆
Jext [25] ∆ ∆ ∆

IMs
BIM [23] ∆
SimpleAIM [27] ∆

Games
AntiChess [22] ∆ ∆ ∆ ∆ ∆
Tetris [36] ∆ ∆ ∆ ∆ ∆

Table 2: Placement of malicious code in applications

An example of an orthogonality-directed placement would
look like Table 2. Note that the numbering of the malicious
behavior corresponds to the numbering given in Table 1. All
of the placeholders are inserted manually.

3.3 User interface of the benchmark suite
The user interface to the benchmark suite is provided via

the Apache Ant build tool [19]. We provide four build tar-
gets for each benchmark program:

1. Infect: Insert malicious code into a benchmark pro-
gram by uncommenting the placeholders in the source
code.

2. Disinfect: Restore a benchmark program to the clean
version by commenting out these placeholders.

3. Jar: Build a single jar file of a benchmark program,
including all the class files, supporting files, as well
as the library package that implements the malicious
behavior.

4. Run: Run a benchmark program, generating the com-
mand line and running the benchmark program.

4. EXPERIMENTATION

4.1 A History-Based Access Control
To test our benchmark suite, we have implemented a history-

based access control mechanism based on the work done
in [4]. This is an example of a behavior-based security mech-
anism.

The basic idea of this mechanism is that a running pro-
gram is constantly categorized into a series of contexts ac-
cording to the resource requests it makes during execution.
Each context includes a number of Java permissions [9] which
could permit access to the guarded resource. This series of
contexts is the historical profile of the program and deter-
mines whether the future resource request should be granted
or rejected.

The relationship between different contexts are either co-
operative or non-cooperative. A policy file explicitly spec-
ifies the cooperative relationship. Permission to a new re-
source request can be granted only under one of the following
two scenarios:

• The program’s historical profile already includes a con-
text that contains this permission,

• The context that needs to be added to grant this per-
mission must be held in a cooperative relationship with
the program’s historical profile.

base

network file system

Figure 1: Contexts provided in a history-based ac-
cess control mechanism.

We have implemented a simple version of the history-
based access control. More sophisticated mechanisms can be
implemented in a similar way. However, this simple mech-
anism helps us to locate where the problem is when this it
succumbs to an exploit.

The mechanism we implemented has three contexts: base,
network, and file system, as shown in Figure 1. The base
context includes the most restrictive permissions, network

63

and file system grant all network-related and all file system-
related permissions, respectively, which are thought of as
resources susceptible to attack.

When a resource access request is made, the base context
is searched first for permissions that could imply allowing
this access. Whenever a permission in the base context can
service the need, two things will happen: the base context
will be added to this program’s historical profile; and the
search process stops, even if permission in either the network
or the file system context may also allow this access.

Figure 2 shows an outline of the policy file for this simple
history-based access control mechanism. Note the priority of
the base context over the network and file system contexts
is indicated by the fact that the specification of the base

context precedes the other two in the policy file.

4.2 Evaluation
We carried out our experiment in two stages: (1) first pro-

filing clean benchmarks; (2) testing the security mechanism
against infected benchmarks.

During the profiling stage, a clean version of each bench-
mark is run once. We have modified the security manager
to intercept all resource requests. Permissions that are re-
quired to run a clean benchmark are granted and recorded.
We then create the policy file for the history-based access
control mechanism. We organize the gathered permissions
into the base context, and try to make some too permis-
sive permission more fine-grained, in order to minimize the
risk exposure of the base context. We make sure the clean
version of each benchmark can run without having to be
categorized into either a network or file system context.

During the testing stage, we run the infected version of
each benchmark. The security manager is loaded upon the
startup of the JVM and uses the policy file established from
the profiling stage to apply history-based access control.

Table 3 shows our experimental results. In this experi-
ment, we randomly placed the five types of malicious be-
havior inside each benchmark program.

Attack stopped
√

/missed× Malicious behavior
Benchmark programs 1 2 3 4 5

Browsers
Jbrowser [24] × × × × ×
JXWB [26] × × × × ×

Editors
Jedit [33] × × × × ×
Jext [25] × × × × ×

IMs
BIM [23]

√ √ √ √ √

SimpleAIM [27]
√ √ √ √ √

Games
AntiChess [22]

√
× × ×

√

Tetris [36]
√

× × ×
√

Table 3: Malicious behaviors inside the benchmark
suite stopped or missed by the history-based access
control. A

√
indicates the failure of this instance of

attack (being stopped); A × indicates the success of
this attack (being missed).

Before running this experiment, we anticipated that holes
in Java permission could cause trouble for our security mech-
anism. Also, we suspected that the permissions gathered in
the profiling stage are not fine-grained enough (i.e., we may
be too permissive). The analysis of our testing results con-
firmed our suspicions. In addition, we uncovered an instance
of sloppy coding practices in terms of security.

1. The permissions inside the contexts of this history-
based mechanism are not sufficiently fine-grained.

In the two games, the security mechanism stopped
all network-based attacks, yet failed to detect any file
system-based attacks. The problem is that the base
context cannot identify all of the file system access
requests during the testing stage. Therefore, the pro-
gram has to be categorized as file system context to
continue running. Once the file system context is added
into the historical profile of the program, any file system-
based attack can succeed in this program.

One possible remedy would be to add a fine-grained
file system permission into the file system context. An-
other choice would be to profile the program more ex-
tensively so that every possible file system access per-
mission required by the clean version of the program
could be added into the base context. However, this
second approach has two shortcomings: Complete cov-
erage during profiling is not always realistic; and we
may not be able to to profile every program before
deployment.

The two browsers are wide open to any attack. The
network-related and file system-related permissions in-
cluded in the base context are sufficient for all the at-
tacks to succeed.

Although we characterized editors as file system ori-
ented, the Jext program needs network access to pro-
vide the functionality of viewing a URL and editing the
file denoted by the URL. The execution of this func-
tionality during the profiling stage has already granted
some network access permissions to the base context.
As such, all network-based attacks in our benchmark
suite can also succeed.

2. The information provided by Java is insufficient. It
appears that the history-based access control mecha-
nism did a perfect job in protecting the two IM clients.
However the interpretation of the logging messages in-
dicates these two mixed attacks (i.e., direct informa-
tion leakage and indirect resource abuse) were stopped
only because of the portion that needs file system ac-
cess. The portions of these two attacks that have ac-
cess to the network were not stopped by the mecha-
nism.

This time we do not believe the problem lies in the
coarseness of the network access permissions. After all,
it is impossible to specify every possible instance of a
network connection. This suggests other information,
such as the producer of the destination address of a
network connection (binary or console input)) should
be collected and analyzed to detect potential malicious
behavior.

3. It may not be wise to count on other programs to
fully appreciate and correctly utilize the security ca-
pabilities of a high-level system like Java. Java pro-
vides a good interface to mediate access to various
resources: permission-based capabilities, as well as a
security manager mechanism that intercepts each re-
quest to a resource to check granted capabilities. New
security mechanisms such as this history-based access
control mechanism can be readily implemented in this

64

};

context network

{

 permission java.net.SocketPermission "*", "connect,listen,accept,resolve";

};

CooperatingContexts

{

 permission java.io.FilePermission "<<ALL FILES>>", "read,write,execute,delete";

{

context file_system

 file_system

 base

};

CooperatingContexts
{
 network

 base

};

{

 permission java.net.SocketPermission "vanders.ece.neu.edu", "resolve";

 permission java.net.SocketPermission "localhost:*", "connect,listen, resolve";

 permission java.net.NetPermission "specifyStreamHandler", "";

 permission java.lang.reflect.ReflectPermission "*", "";

 permission java.lang.RuntimePermission "*", "";

 permission java.util.PropertyPermission "*", "read,write";

 permission java.awt.AWTPermission "*", "";

context base

 permission java.io.FilePermission "/home/student/dye/.jedit/−", "read,write,delete";

 permission java.util.logging.LoggingPermission "control", "";

....

};

Figure 2: Skeleton of the policy file for the history-based access control mechanism.

infrastructure. However, this mechanism can be ren-
dered powerless if the application is not well-formed.
For instance, a library function call inside Jedit simply
requests java.security.AllPermission upon program
startup. Once this permission is granted, our security
mechanism (based on Java permissions and Java se-
curity manager) cannot offer any help. This is the
real reason why our security mechanism cannot pro-
tect this program against any attack, even though the
case looks exactly the same as in the cases of the two
browsers and the Jext.

This suggests that when we have little confidence in
the code quality of an application, behavior-based se-
curity mechanisms may have to gather lower-level in-
formation to discern the behavior, even though a more
convenient higher-level infrastructure is available.

We should note that these problems all apply to a wider
range of security mechanisms. We expect to expose more de-
sign problems if similar benchmarking processes are applied
to more sophisticated mechanisms.

5. CONCLUSION AND FUTURE WORK

In this paper, we have presented a benchmarking method-
ology to evaluate the effectiveness of behavior-based security
mechanisms. We have developed a benchmark suite and de-
signed an evaluation framework. We exercised our suite by
applying it to a simple history-based access control mech-
anism. We discussed the findings of our experiment. The
experience and the results suggest that benchmarking is a
viable approach to evaluate the effectiveness of behavior-
based security mechanisms.

In the future, we plan to implement a set of benchmarks
using other mainstream languages such as C and C++. This
will allow us to evaluate some commercial behavior-based
security mechanisms. In the long term, we plan to explore
more sophisticated algorithms for malicious code placement.
We also plan to look into whether we can use binary instru-
mentation to insert malicious code in binary form directly
into an application.

6. REFERENCES
[1] Information Systems Audit and Control Association.

Control Objectives for Information and Related
Technology (COBIT).

[2] BBC. Game Virus Bites Mobile Phones. http:

65

//news.bbc.co.uk/1/hi/technology/3554514.stm.

[3] Jeff Crume. Inside Internet Security: What Hackers
Don’t Want You to Know, chapter 4, pages 38–50.
Addison-Wesley, 2000.

[4] Guy Edjlali, Anurag Acharya, and Vipin Chaudhary.
History-based Access Control for Mobile Code. In
Proceedings of the 5th Conference on Computer &
Communications Security, pages 103–118, 1998.

[5] Marshall D. Abrams et al. Position Papers. In
Proceedings of the 1st Workshop on
Information-Security-System Rating and Ranking,
pages 35–40, 2001.

[6] Debin Gao, Michael K. Reiter, and Dawn Song. On
Gray-Box Program Tracking for Anomaly Detection.
In Proceedings of the 13th USENIX Security
Symposium, pages 103–118, 2004.

[7] Lawrence A. Gordon, Martin P. Loeb, and Tashfeen
Sahail. A Framework for Using Insurance for
Cyber-Risk Management. Communications of the
ACM, 46(3), March 2003.

[8] John L. Hennessy and David A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann, 2002.

[9] Permissins in the JavaTM 2 SDK. http:
//java.sun.com/j2se/1.4.2/docs/guide/security/.

[10] Information Technology—Systems Security
Engineering—Capability Maturity Model
(SSE-CMM). ISO/IEC 21827.

[11] Jorma Kajava and Reijo Savola. Towards Better
Information Security Management by Understanding
Security Metrics and Measuring Processes. In
Proceedings of the European University Information
Systems (EUNIS) Conference, Manchester, U.K.,
2005.

[12] Philip Koopman and Henrique Madeira. Papers. In
Proceedings of Workshop on Dependability
Benchmarking, 2002.

[13] David Moll. Testimony on Spyware in Congress.
http://commerce.senate.gov/hearings/testimony.

cfm?id=1496&wit_id=4255.

[14] U.K. Office of Government Commerce. IT
Infrastructure Library (ITIL).

[15] Paul F. Roberts. Instant Messaging: A New Front in
the Malware War. http://www.eweek.com/article2/
0,1759,1818611,00.asp.

[16] Stefan Saroiu, Steven D. Gibble, and Henry M. Levey.
Measurement and Analysis of Spyware in a University
Environment. In Proceedings of the 1st ACM/USENIX
Symposium on Networked Systems Design and
Implementation (NSDI), pages 29–31, San Francisco,
CA, USA, 2004.

[17] Bruce Schneier. Attack Trends: 2004 and 2005. ACM
Queue, Special Issue on Security: A War Without
End, 3(5), June 2005.

[18] Kymie M. C. Tan, John McHugh, and Kevin S.
Killourhy. Hiding Intrusions: From the Abnormal to
the Normal and Beyond. In IH ’02: Revised Papers
from the 5th International Workshop on Information
Hiding, pages 1–17, London, UK, 2003.
Springer-Verlag.

[19] Apache Ant. http://ant.apache.org/.

[20] Common Criteria Evaluation & Validation

Scheme (CCEVS).
http://niap.nist.gov/cc-scheme. National
Institute of Standards and Technology.

[21] National Vulnerability Database.
http://nvd.nist.gov/.

[22] AntiChess.
http://sourceforge.net/projects/antichess/.

[23] BIM. http://sourceforge.net/projects/bim-im/.

[24] Jbrowser.
http://sourceforge.net/projects/jbrowser/.

[25] Jext. http://sourceforge.net/projects/jext/.

[26] JXWB. http://sourceforge.net/projects/jxwb/.

[27] SimpleAIM.
http://sourceforge.net/projects/simpleaim/.

[28] WebSense. http://ww2.websense.com/.

[29] Cisco Security Agent 4.5. http://www.cisco.com/.

[30] NOD32. http://www.eset.com/.

[31] ICSA Labs. http://www.icsalabs.com/.

[32] Information Technology Security Evaluation
Criteria (ITSEC). http://www.itsec.gov.uk/.
Commission for the European Communities.

[33] Jedit. http://www.jedit.org/.

[34] McAfee Entercept 5.1.
http://www.networkassociates.com/.

[35] PC Tools. http://www.pctools.com/.

[36] Tetris. http://www.percederberg.net/home/java/
tetris/tetris.html.

[37] QRadar. http://www.q1labs.com/.

[38] Sana Security Primary Response 3.0.
http://www.sanasecurity.com/.

[39] Snort. http://www.snort.com/.

[40] Virus Bulletin. http://www.virusbtn.com/.

[41] Checkmark. http://www.westcoastlabs.org/.

[42] WAVES (Web Application Vulnerability and
Error Scanner). http://www.openwaves.net/.

[43] David Wagner and Paolo Soto. Mimicry Attacks on
Host-Based Intrusion Detection Systems. In CCS ’02:
Proceedings of the 9th ACM Conference on Computer
and Communications Security, pages 255–264, New
York, NY, USA, 2002. ACM Press.

66

Testing and Evaluation of Virus Detectors for
Handheld Devices

Jose Andre Morales, Peter J. Clarke, Yi Deng
School of Computing and Information Sciences

Florida International University
Miami, Fl 33199

{ jmora009, clarkep, deng } @cis.fiu.edu

ABSTRACT
The widespread use of personal digital assistants and smartphones
should make securing these devices a high priority. Yet little
attention has been placed on protecting handheld devices against
viruses. Currently available antivirus software for handhelds is
few in number. At this stage, the opportunity exists for the
evaluation and improvement of current solutions. By pinpointing
weaknesses in the current antivirus software, improvements can
be made to properly protect these devices from a future tidal wave
of viruses. This research evaluates four currently available
antivirus solutions for handheld devices. A formal model of virus
transformation that provides transformation traceability is
presented. Ten tests were administered; nine involved the
modification of source code of a known virus for handheld
devices. The testing techniques used are well established in PC
testing; thus the focus of this research is solely on handheld
devices. The test results produced high false negative rates for
the antivirus software and an overall false negative rate of 42.5%.
This high rate shows that current solutions poorly identify
modified versions of a virus. The virus is left undetected and
capable of spreading, infecting and causing damage.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging; D.2.8
[Software Engineering]: Metrics – performance measures; D.4.6
[Operating Systems]: Security and Protection – Invasive
Software

General Terms
Measurement, Performance, Reliability, Security, Verification.

Keywords
Anti-virus, malware, black-box testing, virus, worm, handheld,
pda, windows mobile, smartphones, windows ce

 (c)2005 Association for Computing Machinery. ACM acknowledges that
 this contribution was authored or co-authored by an affiliate of the U.S.
 Government. As such, the Government retains a nonexclusive, royalty-
 free right to publish or reproduce this article, or to allow others to do so,
 for Government purposes only.
 SSATTM'05, 11/7-11/8/05, Long Beach, CA, USA.
 (c) 2005 ACM 1-59593-307-7/05/11

1. INTRODUCTION
On June 14, 2004, the first computer virus infecting handheld
devices was identified [25]. The first virus to infect handhelds*
running Windows Mobile operating system was released July 17,
2004 [21]. This was the beginning of a new era for the virus and
antivirus community. At the time there were little if any antivirus
solutions available. An overwhelming majority of users were
vulnerable to any possible viral attack. In a reactionary effort,
security companies released antivirus solutions for the infected
devices that only protected against these specific viruses. Still
today many handhelds do not have some form of antivirus
software installed.

This research evaluates current antivirus solutions for handhelds
with the objective of identifying problems in their detection
mechanisms. To achieve this objective we introduce a formal
model to represent virus transformations and use the model in the
generation of test cases. This model provides detailed traceability
of the transformations produced by a virus. The transformed
viruses can be precisely ordered by creation time and
transformation type. The approach taken was to create test cases
that are modifications of an already identified virus and load them
into the handheld running the antivirus software. That is, we
wanted to test the detection accuracy of the antivirus software
against virus modifications. Specifically, the tests were designed
with the goal of producing false negatives, which occur when an
infected object is not detected as infected, by the virus detectors.
Testing virus detectors for production of false negatives has been
extensively performed in PCs [1, 26] and is well documented.
Therefore this research focuses only on testing handheld devices.
A high false negative rate would reveal virus detection
weaknesses in the software. The test environment consisted of a
Pocket PC running the Microsoft Windows Mobile operating
system and the antivirus software. The tested antivirus software
is specifically designed for this platform and currently available
to the public.

To our knowledge, this research is the first to evaluate current
antivirus solutions for the Windows Mobile Platform and for
handheld devices in general. The flaws and problems discovered
by this research can help lay the foundation for future study and
work in virus detection for handheld devices. The results of this

* Smartphones and personal digital assistants will be collectively

referred to as handheld devices or handhelds throughout this
paper.

67

work can be made public via vulnerability databases, such as the
National Vulnerability Database [19]. This research also provides
insight on the application of testing methodologies to a new
platform in the emerging area of handheld devices. Currently
there is no standard set of test cases for virus detectors on this
platform. Testing related organizations like Eicar.com and av-
test.org also have not yet addressed this issue. The test cases
created here can be applied to the development of a standardized
set of test cases for this platform and these devices.

In the next section we overview the terminology used in the
paper. Section 3 describes related work on testing virus detectors.
Section 4 describes a formal model for virus transformation and
the test categories used to generate the test cases. Section 5
describes the tests we performed and Section 6 our results.
Finally we conclude in Section 7.

2. BACKGROUND
1. Computer Viruses: A computer virus is defined as a program
that copies a possibly evolved version of itself [26]. Computer
viruses have become very sophisticated in detection avoidance,
fast spreading and causing damage. A highly populated
taxonomy of viruses exists with each classification having its own
challenges for successful detection and removal [26]. Today
viruses are regarded as a real global threat and viewed as a
weapon usable by those bent on creating large scale interruption
of everyday life [4, 10].

2. Virus Detectors: The problem of viral detection was studied
by Cohen which showed that detecting a virus is not decidable
[2]. Many detection algorithms have been presented [24], each
with its advantages and disadvantages. Virus detection can be
classified as one of two forms: signature based and behavior
based [26]. Signature based detectors work by searching through
objects for a specific sequence of bytes that uniquely identify a
specific version of a virus. Behavior based detectors identify an
object as being viral or not by scrutinizing the execution behavior
of a program [23]. Behavior based detection is viewed by many
including the authors as key to the future of virus detection [3, 15,
17] because of its ability to detect unknown viruses.

3. Handheld Devices: A handheld device can be described as a
pocket sized device with computing capabilities. Two types of
handheld devices are relevant to this paper: the personal digital
assistant, also called pda, and the smartphone. A pda is used as a
personal organizer that includes a contact list, calendar of events,
voice recorder, notes, and more. A smartphone can be viewed as
a cellular phone integrated with a pda. Both of these types of
handhelds share some basic limitations such as: limited screen
size, variable battery life, small storage space, operating system
installed with limited resources and reduced processing
capabilities [8, 27]. These limitations may not allow for antivirus
software to be as powerful as those found in desktop PC’s.
Signature databases and detection functionalities are limited in
size and scope. This can possibly result in more viruses being
able to easily spread and avoid detection in an environment with
weak security. Some handheld device security issues have been
previously addressed in [5, 6, 7, 13, 29].
4. Evolution of Virus Detectors: The evolution of virus
detectors has moved parallel with the release of viruses in a
reactionary manner [12]. As new viruses with new techniques

were identified, antivirus researchers rushed to include these new
tactics in their software [18, 26]. This evolution has produced a
learning curve, with virus authors and antivirus researchers as
both teacher and student. Antivirus companies need to develop
security solutions for these devices that defend against the types
of viruses seen in the past without having to go through the same
learning curve for a second time.

5. Software Testing: In this paper we use a black-box approach
to test the antivirus solutions for handheld devices. Black-box
testing is an approach that generates test data solely from the
application’s specification [16]. Since the software under test is
proprietary, we employ the end-user view of the software as our
specification. This specification is the detection of objects
infected with a virus. There are several techniques used to
generate test cases based on the specification of a software system
[30]. Two of these techniques are input space partitioning, and
random testing [30]. Partition testing uses domain analysis to
partition the input-output behavior space into subdomains such
that any two test points chosen in a subdomain generates the same
output value [20]. Random testing involves the selection of test
points in the input space based on some probability distribution
over the input space [16]. To generate the input data for our test
cases we used a combination of input space partitioning and
random selection of test points. Due to the limited access to the
full specification of the antivirus software, we informally apply
partition testing and random testing. We intuitively apply these
techniques using the results of previous studies in testing antivirus
software.

3. RELATED WORK
This research is motivated by the work done by Christodorescu
and Jha [1]. Their research proposed methods of testing malware
detectors based on program obfuscation [26]. They used
previously identified viruses to test the resilience of commercially
available antivirus software for PCs. Christodorescu and Jha
address two questions in their work; (1) the resistance of malware
detectors to obfuscations of known malware, (2) can a virus
author identify the algorithm used in a malware detector based on
obfuscations of the malware. The approach they used to answer
these questions involved: the generation of test cases using
program obfuscation, the development of a signature extraction
algorithm, and the application of their methodology to three
commercial virus scanners. The results of their work indicated
that the commercial virus scanners available for PCs are not
resilient to common obfuscation transformations. We use a
similar approach to test the virus detection ability for handheld
devices. Unlike the work by Christodorescu and Jha [1], we are
limited by the number of viruses available for handheld devices.
This limitation is based on the fact that virus authors have just
only started to write viruses targeting handheld devices. Our
experiments use similar transformations on the source code of the
malware to generate test cases.
Marx [14] presents a comprehensive set of guidelines for testing
anti-malware software in the “real world”. Marx claims that
many of the approaches used to test anti-malware software in
research do not translate into appropriate testing strategies for
small business and home office use. He further states that the
focus of testing for the real world should be to create tests that are
as exact as possible. That is, tests that focuses on on-demand, on-
access, disinfection and false positive testing of the anti-malware

68

software products. Although his article is targeted for data
security managers and professional testers, he outlines procedures
that should be taken when performing anti-virus software testing
in any environment. The work done by Marx [14] was used as a
reference guideline for this research. Other relevant research on
the subject of testing virus detectors can be found in [9, 11].

4. TESTING AND EVALUATION
In this section we present a formal model for the transformation
of viruses and show how this model is used to generate the test
cases for our study. Descriptions of each of the five test
categories are also given.

4.1 Formal Model of Virus Transformation
As previously stated, a virus is defined as a program that copies a
possibly evolved version of itself [26]. A virus v є V where V is
the set of all possible viruses, enters during its execution a
transformation stage R where one or more possibly evolved
copies of v written v’, are produced and copied to some location
(see equation(1)). Successful transformation occurs when v’ has
preserved the original intended execution behavior XB of v (see
equation (2)). Thus we have the following:

Ri (pj, v, s) ≡ pij (v, s) = v’ (1)

Ri is the currently running transformation instance. pij є P is the
specific type of transformation where P = {T, H, B, L, C}, for
example B means substitution (see section 4.2 for descriptions of
these values). i holds a value representing the number of
transformations that have occurred, the current value of i is the ith
transformation to have taken place. j holds the value representing
the number of times, jth occurrence, a specific transformation type
p has occurred, if p = H and j = 3 that means that the
transformation type H has been used in 3 transformations up to
this point. v is the virus to be transformed. s is an element that
provides p the details for a specific transformation. For example
if p = B then s may contain the line numbers to substitute and the
new lines to use for substitution (see section 4.2 for details of s
for each transformation type). v’ is the transformed version of v.
When Ri occurs, the operation is always independent from every
other occurrence of R. The virus v used as input by R is always
the same; it is the virus currently executing that invokes R. The
output of R, written v’, is always a possible evolution of v. The
number of v’s that is produced is equal to the value of i. In each
occurrence of R, the only input that may change is the
information held in s. Thus the output v’ of two occurrences of R
may be the same if s was unchanged in both operations and the
same transformation type p was used.

If (XB(v’) = XB(v)) Then Ri (pj, v, s) = Success

 Else Ri (pj, v, s) = Failure (2)

v’ can equivalently be written as vijk where k is the symbol for the
transformation type used in a specific transformation Ri. k is
added to differentiate the value of j for each transformation type
p. This is necessary to illustrate that there are multiple instances
of j, one for each transformation type p that is used. Each j has its
own value representing the j number of times p has been used.
Therefore, if j = 2 and k = C, we know that this is the second time
compression is used. Assume virus v has finished one execution
of itself. During this execution 5 transformations occurred. The
transformation types used were: 1 substitution of source code, 2

compressions, 1 insertion of trash source code and 1 label
renaming. Using the notation above, we can formalize this as
follows:

R1 (B1, v, s) ≡ B11 (v, s) = v11B

R2 (C1, v, s) ≡ C21 (v, s) = v21C

R3 (C2, v, s) ≡ C32 (v, s) = v32C

R4 (H1, v, s) ≡ H41 (v, s) = v41H

R5 (L1, v, s) ≡ L51 (v, s) = v51L

We can see from this notation that placing the outputs v’ in order
of creation is simple. The notation facilitates identifying each
virus v’ by order of creation and input transformation type. Note
that virus v21C and v32C may have been transformed the same or
differently from one another. This is, as previously noted,
dependent on the information held in s.

A virus detector written D, is a software program meant to detect
and remove viruses before infecting a computer system [26].
When detection is complete only one of two outcomes can result.
The detection was successful or there was a failure. A successful
detection implies the correct identification of a virus infected
object Ov. This implies that the object O is infected with a virus
v. That is, the sequence of bits representing v is contained within
the sequence of bits representing O. Thus v becomes a
subsequence of O. The object could be a file, an address in
memory, or some other information stored in a computer system.
All objects O are assumed non-viral before detection starts. We
express this idea as follows:

v is a subsequence of O iff O is infected with v (3)

if v is a subsequence of O then O transforms to Ov (4)

D(O) = Success implies v is a subsequence of O (5)

A failed detection produces one of two outcomes: a false positive,
FP, or a false negative, FN. A false positive occurs when a non
viral object is detected as being viral. A false negative occurs
when a virus infected object is not detected as being viral. A
small amount of false positives is tolerable, but false negatives
must be avoided always. Therefore:

D(O) = FP falsely implies v is a subsequence of O for some
virus v (6)

D(Ov) = FN D fails to recognize that v is a subsequence of O
for a specific virus v (7)

Note (7) assumes that the object is already infected with a virus
thus justifying the use of the symbol Ov.

4.2 Test Categories
The test cases generated, using a non-strict approach to input
space partitioning and random testing, can be classified in five
categories. These are transposition of source code, insertion of
trash source code, substitution of source code, label renaming and
compression of the virus executable. These categories were
chosen due to the facilitation each one gives virus detectors to
produce a false negative [1]. These categories are also
characteristic of polymorphism [18, 26] and metamorphism [26],
powerful techniques used by virus authors. Test case
implementations of each category are presented in section 5.2.

69

1. Transposition of Source Code: Transposition is the
rearrangement of statements in the source code. This makes the
virus look differently by reorganizing its physical appearance. It
still preserves the original intended execution behavior.
Transposition can be done randomly or in specific areas. The
whole body of the source code or only pieces of it can be
transposed as long as the original intended execution behavior is
preserved. Applying (1) we have:

 Ri (Tj, v, s) ≡ Tij (v, s) = vijT (8)

where p = T indicates transposition and s provides the line
numbers of the source code to transpose. Transposition can result
in changing the area of source code that is used as the signature
by virus detectors. This is a result of a change in the byte
sequence of the executable version of the virus. The transposition
can also result in an increase in the byte size of the virus
executable. This is due to the addition of commands that preserve
the original intended execution behavior. These changes make
transposition of source code a possible cause of a virus detector
producing a false negative.

2. Insertion of Trash Source Code: This category inserts new
code into the original source code. This new code consists of
instructions that do nothing to change, alter or affect the intended
behavior of the original source code. It does, in some cases,
change the byte size of the executable version of the virus. By
changing the byte size of the executable, some virus detectors
may produce a false negative more easily. This occurs in the case
where the detector uses the length of the entire virus as part of the
detection process. Thus a change in this length could result in the
detector misreading the virus. What the newly inserted code does
is inconsequential as long as it does not change the original
intended behavior of the source code. Using rule (1) trash source
code insertion is expressed as:

 Ri (Hj, v, s) ≡ Hij (v, s) = vijH (9)

where p = H denotes trash insertion. s holds the trash code to be
inserted and source code locations of where to insert them.
3. Substitution of Source Code: The removal of lines of source
code is replaced with different lines of code. The lines of code
used for replacement are not copied from other areas of the code
body. The replacement lines can be the same size as the original.
They can also be deliberately shortened or lengthened. This is
done to manipulate the overall byte size of the virus executable.
The lines that are to be replaced cannot be in an area that can
disrupt the original intended execution behavior. This implies
that this process cannot be random. Careful selection of lines to
replace can assure preservation of execution behavior. Applying
(1) produces as follows:

 Rj (Bj, v, s) ≡ Bij (v, s) = vijB (10)

p = B specifies substitution and s details which lines to replace
and the lines to replace them with. A virus detector can produce a
false negative under this category for one of two possible reasons.
First, the substituted lines can change the source code used as a
signature by the detector for a given virus. Second, as discussed
before, if the byte size is not preserved it could cause the detector
to identify it as benign. This occurs in cases where the length of
the virus is used in detection.

4. Label Renaming: This category involves the substitution of
label names in the source code for new names. A label is
synonymous with a procedure or function name in a high level
language. The label is a pointer to an address space where the
instructions to be executed are located. A label therefore points to
a set of instructions that are always executed when the label is
referenced. The new labels can be kept the same byte size as the
original one and also can be purposely changed to a different size.
In addition, the corresponding calls to these labels must be
updated to ensure original intended execution behavior. The label
names chosen for substitution should be those that reference
blocks of instructions essential to the virus execution such as:
finding a file to infect, opening a file for infection and infecting
the file. A virus detector can produce a false negative in this
category only when a signature includes a label or a call to a label
that has been modified. If no labels are included in the virus
signature and the length of the entire virus is not used for
detection, the possibility of a false negative is greatly reduced.
This category is expressed as follows from (1):

 Ri (Lj, v, s) ≡ Lij (v, s) = vijL (11)

where p = L signifies label renaming and s holds a list of the label
names to replace and the new names to replace them with.

5. Compression of a Virus Executable: This category is the
compression of the original virus executable. Compression is
done by a commercial product or private software belonging to
the virus author. The original intended execution behavior is
fully preserved. When a virus transforms it can evolve into a new
version of itself that is self compressed. This new version makes
no modifications to alter the execution as it is originally intended.
Virus detectors can produce a false negative under this category
by failing to match the virus signature. The compression may
create a new byte sequence in achieving an overall byte size
reduction. This in turn may cause the source code used for the
virus signature to be completely modified and thus detection is
almost impossible. Virus compression can be simply expressed as
follows:

 Ri (Cj, v, s) ≡ Cij (v, s) = vijC (12)

p = C represents compression and s holds the file name for the
compressed version.

5. TEST IMPLEMENTATION
As of the writing of this paper there were only two known viruses
for the Windows Mobile platform: WinCE.Duts.A and
Backdoor.Brador.A [21, 22]. Of these two viruses we were only
able to conduct testing with one of them, WinCE.Duts.A. Though
the source code for both of these is readily available to the public
[21, 22], Duts is the only one whose available source code can be
assembled and executed. The Duts virus consists of 531 lines of
source code. This virus was created as a proof of concept code by
virus author Ratter formerly of the virus writers group 29A. It
exposes some of the vulnerabilities already present in the
Windows Mobile platform. It is written in the ARM processor
assembly language.

5.1 Testing Environment
Four commercially available antivirus products for handheld
devices were tested: Norton, Avast!, Kaspersky, and

70

Airscanner.com. The handheld device used for testing was a
Toshiba 2032SP Pocket PC running Windows Mobile 2002
(version 3.0.11171, build 11178) with full phone functionality
provided by Sprint PCS. The central processing unit is the ARM
processor SA1110. The Operating System of the PC used was
Windows XP service pack 2. Before administering the test cases
a control test was given. The original virus was tested for
detection to assure each antivirus product properly identified it.
Each of the ten test cases were allowed to fully execute to assure
that infection of the system was occurring. Thus showing the
original intended execution behavior of the virus had been
preserved after modifications was made.

5.2 Description of Test Cases
The test cases were introduced to the handheld device via the
synchronization functionality from a PC. The version used here
was Microsoft ActiveSync version 3.7.1 build 4034. The
antivirus software performed a complete virus scan with every
test. Before testing commenced the antivirus software was
checked for updates from the software company’s website
including the latest virus signature database. Due to the page
limit of this paper we are unable to show the complete code
listing for the test cases. However, we show relevant segments of
code for several test cases.

1. Transposition of Source Code
Test Case 1.1: We took a set of blocks of source code and
inserted labels to each of these blocks. The area of the source
code chosen for this is the area where the actual file infection
takes place, thus assuring probable execution of the transposed
source code. Then with the use of branch statements each labeled
block branched to the next block in the set thus preserving the
original execution order. As a final step, all the blocks were
rearranged and taken out of its original physical order. The
following is an implementation of this starting at line 308 of the
virus source code:

Test Case 1.2: This involved manipulation of values held in
various registers at a given moment during the execution. In
assembly language, registers are used extensively to hold values

and addresses. The manipulation of these values was done via
addition and/or subtraction of a value in a particular register.
Moving the value to other registers was also used. The result
was an extended piece of source code that took a value, modified
it via 2 to 5 instructions and finished by placing back the original
value in the original register. This transformation preserved the
execution order of the virus and the intended values held in the
registers at a given instant in execution. The following is an
implementation starting at line 80 of the virus source code:

Original Source Code Modified Source Code

mov r0, r5
mov r1, r4
mov lr, pc
ldr pc, [r11, #-20]
cmp r0, #0
bne find_files_iterate

mov r0, r5
mov r1, r4
add r0, r0, #2
add r0, r0, #4
add r1, r1, #6
sub r0, r0, #6
sub r1, r1, #4
sub r1, r1, #2
mov r4, r1
mov r5, r0
mov lr, pc
ldr pc, [r11, #-20]
cmp r0, #0
bne find_files_iterate

2. Insertion of Trash Source Code
Test Case 2.1: This involved a copy of an original single line of
code. The line was pasted back into the source code immediately
following the original one. This did not change the behavior
because the line of source code chosen consists of the instruction
DCB which defines a byte with a string value. This insertion only
increased the byte size of the file by the size of the line of code.

Test Case 2.2: In this test, the same instruction as in test case 2.1
was inserted right after five lines of source code. The five lines
were not in successive order and deliberately chosen to cover the
whole body of the source code. Each chosen line represented an
essential part of the execution sequence such as: finding a file to
infect and reading the stack pointer. The insertion did not affect
the intended execution of the code and increased the file’s byte
size by length of the insert line multiplied by five.

DCB " just looking "

Inserted after each of the following lines

Line 18 mov r11, sp
Line 64 ldr pc, [r11, #-24] ; find first file
Line 228 cmp r0, #0
Line 303 ldr r6, [r4, #0x28] ; gimme entrypoint rva
Line 361 mov lr, pc

Original Source Code Modified Source Code

ldr r8, [r0, #0xc]
add r3, r3, r8

 str r3, [r4, #0x28

sub r6, r6, r3
sub r6, r6, #8

mov r10, r0
ldr r0, [r10, #0x10]
add r0, r0, r7
ldr r1, [r4, #0x3c]
bl _align_

section19
 ldr r8, [r0, #0xc]
 add r3, r3, r8
 str r3, [r4, #0x28]
 bl section20

 section21
 mov r10, r0
 ldr r0, [r10, #0x10]
 add r0, r0, r7
 ldr r1, [r4, #0x3c]
 bl _align_
 bl section22

 section20
 sub r6, r6, r3
 sub r6, r6, #8

 bl section21

71

3. Substitution of Source Code
Test Case 3.1: Here we replaced line 514 of the virus source
code:

DCB "This is proof of concept code. Also, i wanted to make
avers happy."

With

DCB "This is foorp fo tpecnoc code. Also, i wanted to make
avers happy."

The substitution preserved the length of the original line while
making a modification to a subsection of it. This was done to
make a modification that did not affect the byte size of the virus.
This substitution did not affect the intended execution of the
virus. Finally, it is worth noting that the format of the two lines is
indeed identical with respect to spaces and character alignments.

Test Case 3.2: This test is similar to test case 3.1. We replaced
the same line 514 of the virus source code with an almost
identical one. This new line also had a modification to a
subsection of it. The modification was not the same as that of the
first test. This modification made the length of the line smaller
than the original and thus also decreased the overall byte size.
Also the character and space alignment was not preserved. The
following is the performed line substitution:

DCB “This is proof of concept code. Also, i wanted to make
avers happy."

Changed to

DCB “This is poc code. Also, i wanted to make avers
happy."

Test Case 3.3: Here we again substituted line 514 of the virus
source code with a new one. The new line of code was
maximally modified while still preserving the ability to assemble
the source code. The line used for replacement was the same
length as the original line but space and character alignment were
purposely not preserved. The following is the actual substitution:

DCB “This is proof of concept code. Also, i wanted to make
avers happy."

Changed to

DCB “dkfjvd dkfje dkfdsfg kd934,d kdick 3949rie jdkckdke
345r dlie4 vhg"

4. Label Renaming
The labels that were used for substitution were purposely kept the
same byte size and also made different sizes in the tests. Also the
corresponding calls or branches to these labels were also modified
to ensure original execution behavior. The label names chosen
for substitution referenced blocks of instructions essential to the
virus execution such as: finding a file to infect, opening a file for
infection and infecting the file.

Test Case 4.1: This test was a simple reversal of four label
names found throughout the source code. The byte size was
preserved. Also character alignment was preserved. Two of the
labels, appearing in lines 79 and 397 of the virus source code
were renamed as follows:

Line Number Original Source
Code

Modified Source
Code

79 find_next_file next_file_find

397 open_file file_open

Test Case 4.2: In this test, the label names were purposely made
longer thus increasing the byte size. In this test the character and
space alignment were not preserved. Two of these labels, located
at lines 79 and 482 of the virus source code were renamed as
follows:

Line
Number

Original
Source Code Modified Source Code

79 find_next_file next_file_to_find_for_use

482 ask_user user_ask_question_to_continue

5. Compression of a Virus Executable
Test Case 5.1: Compression of the virus executable was done by
compressing the executable version of the original virus using
commercially available software. The software PocketRAR [28]
was chosen for this task. This choice was made based on the
experience of using the software and there is a version available
for Windows Mobile. The compressed file was placed in the
handheld device and opened to view its contents. Then the virus
scan was performed. This was done to find out if the antivirus
software would not only detect the virus in compressed form but
also delete it or at a minimum keep it from executing.

6. TEST RESULTS
Table 1 shows results of applying the tests described above.
Column 1 is the test categories. Column 2 is the individual tests
in the order described in Section 5. Columns 3 through 6 contain
the individual tests results for the antivirus software used in the
test executions. The last row shows the false negative rate of each
of the software tested. A value of 0 represents detection failure,
thus the virus was not detected and deleted and was still capable
of execution. A value of 1 represents detection success and
deletion of the infected file. A value of 2 denotes successful
detection but not deletion, this value was added for the special
case of compression. Clearly a value of 0 is a false negative.

Norton had the highest false negative rate with Avast! having the
lowest. Not including scanning the original virus, a total number
of 40 tests were performed. Of these, 23 tests were successful
detections, leaving 17 as failures. This is an overall 42.5% false
negative rate, very high and unacceptable. In the test for
compression of source code, a special note should be taken
regarding the behavior of the virus. The compression software
apparently creates a temporary copy of the contents of a
compressed file when the files are viewed. The virus scan detects
and deletes this temporary copy, however, the original virus file
can still be executed from within the compressed file view. Thus
the compression software does not allow the antivirus to delete

72

the contents of a compressed file. We count this as a failure
because the virus is still in the handheld device, even though it
was detected, and can still be executed. Table 2 shows false
negative rates with columns 1 and 2 similar to Table 1, Columns
3 and 4 shows successful and failed detections, and Columns 5
and 6 show false negative rates by individual test and test
category.

Compression had the highest false negative rate followed by
transposition of source code and insertion of trash source code. In
the individual test results, the second test of trash insertion caused
all the antivirus software to produced false negatives. Yet the first
test only caused one false negative. This shows the insertion of
trash source code within actual lines of instruction code is enough
to cause the detector to incorrectly identify the file as viral. The
transposition test category, the first test caused the most false
negatives. The insertion of branch statements in the source code
results in a different physical appearance while maintaining the
same execution behavior proved to be very effective in avoiding
detection.

In the substitution of source code category the false negative
produced in test two hints that a slight decrease in the byte size of

the virus executable may cause the virus to go undetected. In test
three of the same category, we purposely made space and
character alignments different than the original line of source
code while keeping the byte size the same which caused some
false negatives to occur.

In the label renaming category preserving and purposely changing
the byte size of the labels did not affect the virus detectors. This
implies that changing the byte size may have the affect of
avoiding detection if the byte size reduction is done in certain
areas of the source code. Also one can infer that labels may not
be used by the virus signatures. When a byte size reduction
causes a false negative, the modified area might be of critical
importance to the detector deciding if the code is viral or not.
During the test case creation, we were not aware if the signature
used by a detector was modified. Many of the successful
detections could have occurred because the transformation did not
affect the virus signature. Overall, with a 42.5% false negative
rate, there is clearly room for improvement.

7. CONCLUSION
We have presented a technique of testing handhelds based on a
formal model of virus transformation. The results show multiple

Table 1 Virus scanner test results and false negative percentage by software

 Norton Avast! Kaspersky Airscanner.com

Original virus 1 1 1 1

Transposition Test 1.1 0 1 0 0

 Test 1.2 0 1 1 0

Trash Insertion Test 2.1 0 1 1 1

 Test 2.2 0 0 0 0

Substitution Test 3.1 1 1 1 1

 Test 3.2 0 1 1 1

 Test 3.3 1 1 0 0

Label Renaming Test 4.1 1 1 1 1

 Test 4.2 1 1 1 1

Compression Test 5.1 2 2 2 2

False Negative % 60% 20% 40% 50%

Table 2 False negative percentage by individual test and category

Successful
Detection

Failed
Detection

Per Test
False Negative %

Test Category
False Negative %

Transposition Test 1.1 1 3 75% 62.50%

 Test 1.2 2 2 50%

Trash Insertion Test 2.1 3 1 25% 62.50%

 Test 2.2 0 4 100%

Substitution Test 3.1 4 0 0% 25%

 Test 3.2 3 1 25%

 Test 3.3 2 2 50%

Label Renaming Test 4.1 4 0 0% 0%

 Test 4.2 4 0 0%

Compression Test 5.1 0 4 100% 100%

73

flaws in current virus detectors for handheld devices. The tests
led to high false negative rates for each antivirus product and an
extremely high overall false negative rate of 42.5%. These results
suggest that current virus detectors are purely simple signature
based detection. The formal model shows how detailed
traceability of the virus transformations can be done. Future work
includes the detailed study of false negative productions in any of
the given tests. Byte size changes, substitution and transposition
of source code and compression require further study to improve
virus detection under these conditions. Currently we have a great
archive of knowledge of viruses for PCs. This information can be
used to produce sophisticated virus scanners for handheld devices
given their limitations. Ideally, this will occur expeditiously and
preemptively to help avoid infections of future viruses for
handheld devices.

8. ACKNOWLEDGEMENTS
This was supported in part by the National Science Foundation
under Grant No. HRD-0317692. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements either expressed or implied by the above agencies.
The authors thank Gonzalo Argote-Garcia, Konstantin Beznosov
and Mihai Barbulescu for their contributions to this research.

9. REFERENCES
[1] Christodorescu M. and Jha S. Testing Malware Detectors.

International Symposium on Software Testing and Analysis
(ISSTA) 2004.

[2] Cohen F. A short course on computer viruses. Wiley
Professional Computing, 1994.

[3] Conry-Murray A. Behavior Blocking Stops Unknown
Malicious Code. Network Magazine, June 2002.

[4] Denning D. Cyberterrorism. Testimony before the Special
Oversight Panel of Terrorism Committee on Armed Services,
US House of Representatives, 23 May 2000.

[5] Fogie S. Pocket PC Abuse: To Protect and Destroy. Black
Hat USA 2004

[6] Foley S. and Dumigan R. Are Handheld Viruses a Threat?
Communications of the ACM, January 2001, Vol. 44, No. 1.

[7] Ford R. The Wrong Stuff?, IEEE Security & Privacy, 2004.
[8] Francia G. Embedded System Programming. Journal of

Computing Sciences in Colleges, Dec 2001, Vol. 17 Issue 2.
[9] Gordon S. and Howard F. Antivirus Software Testing for the

New Millennium. Proceedings of National Information
Systems Security Conference (NISSC) 2000.

[10] Gordon S. and Ford R. Cyberterrorism?. Symantec Security
Response White Paper, 2003.

[11] Gordon S. and Ford R. Real World Anti-Virus Product
Reviews and Evaluations - The current state of Affairs.
Proceedings of the 1996 National Information Systems
Security Conference.

[12] IBM Research. Virus Timeline.
http://www.research.ibm.com/antivirus/timeline.htm.

[13] Mackey D., Gossels J. and Johnson B.C. Securing your
handheld devices. The ISSA Journal, April 2004.

[14] Marx A. A guideline to anti-malware-software testing.
European Institute for Computer Anti-Virus Research
(EICAR) 2000 Best Paper Proceedings, pp.218-253.

[15] Messmer E. Behavior blocking repels new viruses.
NetworkWorldFusion, January 28, 2002.

[16] Myers G. J. The Art of Software Testing. John Wiley &
Sons, second edition, June 2004.

[17] Nachenberg C. Behavior Blocking: The Next Step in Anti-
Virus Protection. Security Focus, March 19, 2002.
http://www.securityfocus.com/infocus/1557.

[18] Nachenberg C. Computer Virus-Antivirus Coevolution.
Communications of the ACM, January 1997, Vol. 40 No. 1.

[19] National Vulnerability Database. http://nvd.nist.gov/.
[20] Ntafos S. C. On random and partition testing. In

Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis 1998
(ISSTA’98) pp. 42-48, Clearwater Beach FL, Mar 1998.
ACM Press.

[21] Peikari C., Fogie S. and Ratter/29A. Details Emerge on the
First Windows Mobile Virus,.
http://www.informit.com/articles/article.asp?p=337069.

[22] Peikari C., Fogie S., Ratter/29A and Read J. Reverse
Engineering the first Pocket PC Trojan.
http://www.samspublishing.com/articles/article.asp?p=34054
4.

[23] Schneider F. Enforceable Security Policies. ACM
Transactions on Information and System Security. Vol. 2,
No. 1, February 2000, pages 30-50

[24] Singh P. and Lakhotia A. Analysis and Detection of
Computer Viruses and Worms: An Annotated Bibliography.
ACM SIGPLAN Notices, February 2002.

[25] Symantec Antivirus Research Center.
http://securityresponse.symantec.com/avcenter/venc/data/sy
mbos.cabir.html

[26] Szor P. The Art of Computer Virus Research and Defense,
Addison-Wesley, 2005.

[27] Vahid F. and Givargis T. Embedded System Design a
Unified Hardware/Software Introduction. Wiley 2002.

[28] WinRAR, http://www.win-rar.com/.
[29] Wireless Handheld and Smartphone Security, Symantec

Security White Paper, http://www.symanctec.com.
[30] Zhu H., Hall P. A. V. and May J. H. R. Software Unit Test

Coverage and Adequacy. ACM Computing Surveys, 29(4),
pp. 366 – 427,1997. ACM Press

74

Eliminating Buffer Overflows,
Using the Compiler or a Standalone Tool

Thomas Plum
Plum Hall, Inc.

3 Waihona Box 44610
Kamuela, HI 96743 USA

+1-808-882-1255

tplum@plumhall.com

David M. Keaton

1630 30th Street #311
Boulder, CO 80301 USA

+1-303-782-1009

dmk@dmk.com

ABSTRACT

We present a set of methods (“SSCC”, for “safe, secure C/C++”)
to eliminate buffer overflows (including wild-pointer stores) in C
and C++, using a mixture of compile-time, link-time, and run-
time tests, plus some design-time restrictions. A prototype
implementation indicates that run-time overhead is much smaller
than previous methods. The SSCC methods do not require
changes to existing data layouts or object-code representation.

The SSCC methods are applicable to applications written for the
ISO/IEC 9899:1999 (“C99”) standard [5] and the 14882:2003
(C++) standard [6] (herein, the “Standards”), as well as most
commercially-popular extensions to those standards, and the
earlier ISO/IEC 9899:1990 (“C90”) standard (now essentially out-
of-print).

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification –
assertion checkers, class invariants, reliability;
D.3.4 [Programming Languages]: Processors – code generation,
compilers, optimization;

General Terms
Design, Economics, Reliability, Security, Standardization,
Languages, Verification.

Keywords
Static analysis, dynamic analysis, buffer overflow, reliability,
code generation, compilers, optimization.

1. INTRODUCTION
Buffer overflows (in C and in C++) are the underlying cause of
many vulnerabilities, accounting for up to 50% of vulnerabilities
reported by CERT/CC[1]. Completely preventing these
weaknesses without sacrificing efficiency would contribute
positively to every software security assurance (SSA) approach
for C and C++. According to Robert Seacord [11], “vulnerability

reports continue to grow at an alarming rate ... To address the
growing number of both vulnerabilities and incidents, it is
increasingly apparent that the problem must be attacked at the
source by working to prevent the introduction of software
vulnerabilities during software development and ongoing
maintenance.”
Ruwase and Lam summarized the situation: “A considerable
amount of work has been performed on mitigating the buffer
overflow problem using either static analysis or dynamic
analysis.”[10] However, in SSCC we attack the buffer-overflow
problem using static analysis for issues that can be resolved at
compile-time (and link-time), plus some amount of dynamic
analysis using highly-optimized code sequences, for issues that
can only be resolved at run-time. Furthermore, certain design-
time restrictions can help eliminate buffer overflows, as described
later in this paper.
Modern compilers for C and C++ already perform significant
static analysis to understand program semantics for optimizations,
especially on vector and super-scalar hardware. Furthermore, in
well-written programs the array-bounds information is already
maintained in variables defined by the programmer. SSCC
provides a method for the compiler to track that bounds
information and verify (at compile-time, link-time, or run-time)
that fetch-and-store operations are proper.
Whenever possible, we have adopted terminology and concepts
that would be reasonably familiar to programmers and compiler
implementers. C and C++ are rife with concepts which are
intuitive to the programmer but complicated to represent in
abstract mathematical logic — and vice-versa. The programmer
who understands the concepts behind SSCC will be better
prepared to achieve the full safety/security goals of SSCC while
minimizing run-time overhead. (We do use the mathematical
notation for half-open interval [Lo,Toofar) in contrast to the
closed interval [Lo,Hi].)
The SSCC methods generate fatal diagnostic messages in any
case where buffer overflow cannot be definitively prevented.
However, the SSCC methods do not impose “style rules” or
portability considerations upon the compilation. Any particular
tool can enhance the basic SSCC methods.
SSCC also applies to the production of software for embedded
systems, but there are slightly different design criteria in that
arena. This paper primarily addresses the application of the
SSCC methods to hosted systems, such as applications written for
Linux, or Windows, or the Mac OS.

75

2. BACKGROUND
We use these definitions for some fundamental terms:

Bound of an array – the number of elements in the array.
Lo of an array – the address of the first element of the array.
Hi of an array – the address of the last element of the array.
Toofar of an array – the address of the “one-too-far” element of
the array, the element just past the Hi element.
Target-size (or Tsize) of an array – same as sizeof(array)
Once a pointer is associated with an object, the same terms are
defined for that pointer. For an array object, the Tsize of a
pointer into that object is the total number of bytes in the array
that is accessed by the pointer; i.e. the bound of the array times
the number of bytes in (or “sizeof”) each element. Furthermore,
the same definitions are applied to pointers to non-array objects,
consistent with the equivalence between a non-array and an array
whose Bound is 1. The terms Lo, Hi, and Toofar can also be
applied to integer subscript values when the context allows.
We use “variable” to designate named objects including sub-
objects declared with member names. We use “state of an object”
exclusively to refer to run-time state, and “attribute of a variable”
to designate the compile-time understanding of that state. One
simple example is the Nul attribute. On the two flow-control arcs
from “if (p!=0)”, p has the Nul attribute on the “false” outcome
arc and the not-Nul (Nnul) attribute on the “true” outcome arc.
Other attributes used in SSCC are as follows: Indir (Indirectable),
Ni (Not-indirectable), Qi (Maybe-indirectable, either Nul or
Indirectable), Lo (at Lo limit value), Hi (at Hi limit value), Toofar
(at Toofar limit value), Ntl (Not-too-low, greater-than-or-equal-to
Lo), Nth (Not-too-high, less-than-Toofar), Nullt (Null-
terminated), and Unk (Unknown). These attributes are not
mutually-exclusive. Besides the attributes of one variable, SSCC
makes frequent use of relationships between variables, as follows.

Table 1. Relationships between variables

int n IS_BOUND_OF(p) n provides the Bound of p

int n IS_LENGTH_OF(p) n provides Length of p (number of
elements before null-terminator)

int n IS_TSIZE_OF((p,q)) n provides Tsize of p and of q

char *p IS_HI_OF (a) p provides the Hi of a

char *p IS_LO_OF(a) p provides the Lo of a

char *p
IS_TOOFAR_OF(a)

p provides the Toofar of a

The notation above permits representation in the opposite order,
with the obvious meaning:
Table 2. Relationships between variables, opposite order

char *p BOUND_IS(n) n provides the Bound of p.

char *p LENGTH_IS(n) n provides the Length of p

char *p TSIZE_IS(n) n provides the Tsize of p

char a[] LO_IS(p) p provides the Lo of a

char a[] HI_IS(p) p provides the Hi of a

char a[] LO_IS(p)
TOOFAR_IS(q)

p provides the Lo of a, and
q provides the Toofar of a

Several of these attributes can be defined using other attributes;
e.g. the Bound of an array is equal to the Toofar minus the Lo.
(For pointers, C/C++ arithmetic divides difference by sizeof.)
A function’s returned value is an unnamed object whose attributes
and relationships are often important:

Table 3. Attributes and relationships involving returned value

int n IS_BOUND_OF(return) n provides the Bound of the
function’s returned pointer

int n IS_LENGTH_OF(return) n provides the Length of the
function’s returned pointer

int n IS_TSIZE_OF(return) n provides the Tsize of the
function’s returned pointer

char *p IS_HI_OF(return) p provides the Hi of the
function’s returned pointer

char * QI(return) f() { function f returns a Maybe-
Indirectable return value

These tables suggest a representation suitable for notation in
source code, but any equivalent representation will do.
Many details of the attributes and relationships used in the SSCC
methods will be obvious from the Standards; here we will focus
upon some details that might not be obvious. The attributes and
relationships are used to express pre-conditions and post-
conditions of operators and functions. Whereas some systems of
static analysis require manual annotation of pre- and post-
conditions, the SSCC methods are targeted at millions of lines of
existing code and therefore rely only on pre- and post-conditions
inferred automatically by the compiler. To emphasize the
distinction, we designate these pre-conditions as “Requirements”
and these post-conditions as “Guarantees”.
We illustrate the basic definitions with this code snippet:
 char a[] = "xyz";
 char *p = a;

The Lo of p is the address &a[0] (or equivalently, the index 0),
the Hi of p is &a[3] (or the index 3), and the Tsize of p is 4.
The compiler keeps track of a relationship between the pointer p
and the array to which it points. The relationship continues
through any pointer arithmetic (including increment or
decrement) operations on p, but is discontinued when an address
of a new object is stored into p.

3. COMPILE-TIME VERIFICATION
For a simple example of compile-time verification, consider the
following.
 struct spec_fd_t {int m;/*…*/} spec_fd[3];
 for (i = 0; i < 3; i++) {
 int limit = spec_fd[i].m; /*…*/
 }

The Bound of spec_fd is 3, the Hi is 2, and the Toofar is 3.
The number of iterations is less than or equal to the Bound; since
the subscript variable i starts at the Lo value, the subscript
remains suitable for spec_fd throughout the loop. The SSCC
methods rely upon recognition by the compiler of certain common
loop constucts such as this one.
If a loop manipulates a pointer passed as a parameter, the bound is
not provided by the declaration. The compiler can infer the

76

bounds Requirement of a pointer parameter from a loop involving
subscript or pointer arithmetic. If the loop performs fetch-or-store
up to and including the n-th element then n is the Hi; if the loop
stops just before fetch-or-store on the n-th element then n is the
Toofar; and similarly for a limiting address (pointer) value. Here
is a simple example:
 void f(char *q, int n) {
 p = q;
 for (int i=0; i<n; i++) {
 *p = ‘\n’;
 } /* … */

As written, the compiler infers from this loop that &q[n] (or just
n) is the Toofar of p (and q), because the n-th element is not
accessed. But if we add another line
 *p = ‘\0’;

after the loop-end, the compiler infers that n is the Hi. (To be
more precise, the Requirement is that n is “suitable” for the Hi,
i.e., that the “real” Hi of the actual object is greater than or equal
to the argument passed to this function. In order to create a
simple notation in keeping with the intuition of programmers and
implementers, we use the same terms, like “Hi”, to define a
“greater-than-or-equal-to” semantics for Requirements, and an
“exactly-equal” semantics for the Guarantee provided by a
defining declaration.)
A similar rule infers the Nullt (null-terminated) attribute from a
loop that searches for a null character; here is a simple example:
 while (*p++ != ‘\0’)
 ;

Note that in these examples, the specified attribute is both a
Requirement (pre-condition) and a Guarantee (post-condition).
This is usually adequately clear from the context, but a notation
for “Pre” and “Post” can be employed when needed. Also note
that the attributes and relationships stated for a returned value are
always Guarantees and not Requirements (obviously).
SSCC does not require whole-program analysis. Along with each
source file (and/or each object file, including object files in
libraries) there is a tabulation known as the bounds-data file,
specifying Requirements and Guarantees for each function. For
example, the bounds data file for memset specifies something
like this:
 memset(p, v, n IS_TSIZE_OF(p))

Having seen this Requirement on the arguments to memset, the
compiler can verify that the following invocation clearly meets
the Requirement, because the sizeof operator produces the
required Tsize:
 memset(&spec_fd[i], 0, sizeof(spec_fd[i]))

Let’s change the example, to pass an integer unknown to the
compiler:
 memset(&spec_fd[i], 0, some_fn())

The SSCC methods are unable to verify this at compile-time. In a
later section we describe the methods for run-time verification.
Here we define the Requirements for the basic pointer and array
operations in SSCC. The notation “p[0]” will designate an array
or pointer-into-array or pointer-to-non-array being accessed by
any equivalent form of indirection, including “*p” and “p-
>member” and “(*p).member”. The notation “p[i]” will

designate an array or pointer-into-array being accessed by any
form of indexed indirection, including “*(p+i)” and “*p++” and
“*++p” and the corresponding forms using minus instead of plus.
The notation “p+i” will designate any form of pointer arithmetic,
including “p++” and “++p” and the corresponding forms using
minus instead of plus.

• Fetch or store indirect via p[0]
Requires: p Indir (p is Indirectable)

• Fetch or store indirect via p[i]
Requires: p+i lies within [Lo,Hi],
i.e., lies within [Lo,Toofar)

• Calculate p+i
Requires: p+i lies within [Lo,Toofar]

The asymmetry between the Requirements for p[i] and p+i is
required by the Standards (see 6.5.6 Additive operators,
paragraphs 8 and 9, in [5]); the Toofar value is a valid result for
pointer arithmetic, but it cannot be used for fetch or store.

4. LINK-TIME VERIFICATION
After compilation of all source files in the application, the SSCC
linker verifies the compatibility of called functions with the
calling context, and of uses of external objects with their defining
instances, checking all Requirements against all Guarantees. In
C and C++, the defining instance of each array will provide
definite bounds for the array; moreover, the bounds are constants.
Therefore, any Requirements on bounds of external array objects
can be verified at link-time.
The discussion of the Requirements for the memset function
illustrates the possibility that a bounds-data file may provide
Requirements at the time the calling context is compiled.
However, two C or C++ source files can each provide calls to a
function in the other file, so no scheme of ordering of compilation
can guarantee a simple ordering. By requiring a complete
traversal of the bounds-data files at link-time, we eliminate
ordering-dependencies and verify that the bounds-data files reflect
the latest compilation of the corresponding source files.
SSCC specifies “type-compatible linkage for C programs”. This
is slightly different from an already-standardized feature of C++
known as “type-safe linkage”, which provides checking between
calling functions and called functions to verify that arguments and
parameters have (exactly) the same types.
“Type-compatible linkage” is a less restrictive linkage rule which
imposes only the C rules of “compatible types” having the “same
alignment and representation”. The difference is largely a matter
of portability. If int and long have the same alignment and
representation on a particular platform, and function f takes one
int parameter, and one object file invokes f with a long argument,
then type-safe linkage will report a mismatch of types, but type-
compatible linkage will accept the linkage on this particular
platform. But on a different platform on which int and long have
different alignment or representation, then both forms of linkage
will complain.
There are several reasons why type-compatible linkage is required
for the SSCC methods. First, standard C still permits the “old-
style” function definition and declaration, in which no type
information is available for compile-time checking; type-
compatible linkage ensures that values are passed correctly for

77

this platform. Second, function prototypes might differ between
the called and calling contexts, whether by “versioning” changes
over time, or by programmer carelessness. Third, C provides the
“varargs” calling convention, which is discussed later.
The use of type-compatible linkage is one of several options on an
SSCC platform for C. Another option is to require the exact
match, as required by the type-safe linkage of C++ (creating a
restrictive subset of C). Either linkage is adequate for the
requirements of SSCC for C.
Note that in C++ the type-safe linkage rules are also employed to
provide function overloading, which is not a feature of C (under
either linkage rule).
The type-compatible (or the type-safe) linkage might (or might
not) be implemented using name-mangling, a scheme by which a
sequence of types is converted by the compiler into a short
character string. (For a detailed example of name-mangling, see
[13].)
For purposes of traceability and verification, the bounds-data file
incorporates checksums for the associated source and object files,
to provide a definitive connection between the linked application
and the various constituent components.

5. RUN-TIME VERIFICATION
We do not claim that the SSCC compile-time and link-time
verification will find all buffer overflows. There will be cases
where the compiler has identified the relevant bounds data but
cannot verify the values at compile time, requiring run-time
verification.
It is well known that run-time verification can be much more
efficient than slavishly performing a test at every reference.
Loop-limit values need to be tested only once, before starting the
loop. Optimizations of the code-hoisting variety can perform
verification earlier. Further optimizations are known; for
example, see Gupta [4].
Although the general subscript or pointer test implies two bounds,
lower and upper, in almost every case the attributes of the pointer
or subscript indicate monotonic progress in one direction.
Therefore in almost every case the pattern of assembler code
introduced into the run-time code sequence is one comparison
instruction followed by a conditional branch. Furthermore, the
conditional branch is almost never taken. Most modern platforms
provide methods either in the hardware itself or in the compiler
software whereby the optimization choices will avoid slowdowns
for the almost-never-taken branch.
SSCC provides “Keep On Running” modes for embedded (or
unattended) systems (including semantics known as “saturation”,
“modwrap”, and “zerobound”). For the purposes of the present
Workshop, however, we propose that run-time bounds-check
failures must produce either a breakpoint that causes interruption
of the running program and an opportunity to debug interactively,
or an immediate invocation of the standard abort() function.
(This choice between two behaviors is called an “abort constraint
handler”, described in more detail below.)
We created a prototype of the SSCC methods in order to estimate
the execution penalty for the run-time tests. Our tools were able
to compile, link, and execute seven of the SPEC benchmarks [12]:
164.gzip, 176.gcc, 181.mcf, 197.parser, 256.bzip2, and 300.twolf.
Simple static analysis identified declarations and loops that

provided bounds, as well as fetch-or-store expressions that
required bounds. We instrumented the SPEC benchmark
programs to count each execution of a fetch-or-store expression
that was not categorized as “compile-time”. We hand-estimated
the percentage of the counted expressions that should have been
recognized as compile-time by a full SSCC implementation, and
the percentage of tests which could be eliminated by the various
optimization methods described above. The detailed raw data and
calculated results from all the tests are provided on the SSCC
website [9]. The average estimated run-time overhead was less
than 2%, which is significantly better performance than results
from other comparable technologies. (For one comparison
example, Ruwase and Lam [10] report that by confining their
method only to strings, a run-time overhead less than 26% was
achieved in most of their samples.)
The SSCC method provides special semantics for “varargs”
functions, i.e. functions that accept a varying number of
arguments. The C and C++ standards define certain functions
which accept a varying number of arguments of heterogeneous
types, such as printf. The printf format string specifies
which argument types are expected. If at run-time the actual
arguments do not agree with the expected types, undefined
behavior results. This is a real vulnerability which has been
exploited by hackers, just as buffer overflows have been.
Furthermore, this vulnerability can be used to create subsequent
buffer overflows. In an SSCC implementation we require two
alternative forms of varargs library functions: one which provides
no run-time checking of argument types, and one which does
provide checking. If the compiler can see that the format-string
argument is a constant character string, then at compile-time the
compiler can determine whether the actual arguments match the
expected types. If successful, the compiler invokes the (faster)
alternative without run-time checking. If the compile-time match
fails, the compiler can issue a fatal diagnostic so the programmer
can fix the problem.
But in some cases it cannot be determined at compile-time
whether a varargs function’s actual arguments match the expected
types. In this situation, the SSCC compiler will add an extra
character string argument after the named arguments. The string
contains the type-compatible name-mangled list of the types of
the actual arguments passed in this function call. Then the called
function must also be compiled by the SSCC compiler, which
performs a little extra work in the called function as each
argument is extracted by the va_arg macro from the header
<stdarg.h>. If the type argument is a scalar type which
produces a one-byte encoding in the mangled name string (e.g.
double, which produces the single character ‘d’ in a typical
name-mangling), then an invocation such as
 p = va_arg(ap, double);

produces a translated invocation such as
 p = _va_arg1(ap, double, ‘d’);

The enhanced _va_arg1 macro tests that the next byte in the
argument mangled-name string is the character ‘d’,
incrementing the pointer after the test. (This is typically a
reasonably fast operation on most hardware: a test and a post-
increment.) If the argument has a type which produces a
multiple-byte encoding in the mangled name string (e.g. pointer-
to-int, which produces the string “Pi” in a typical name-
mangling), then an invocation such as

78

 p = va_arg(ap, int*);

produces a translated invocation such as
 p = _va_arg2(ap, double, ‘P’, ‘i’);

The _va_arg2 macro tests that the next two bytes in the
argument mangled-name string are the characters “Pi”,
incrementing the pointer after the test. (Further macros handle
more types with longer mangled names. In addition, C has some
special rules about varargs type-compatibility.)
The rules for creating the expected-type character, or string of
characters, for variable-argument functions permit more matches
than the strict type-safe rules of C++. The intent, as described for
type-compatible linkage, is to accept C and C++ programs which
work reliably in today’s environment, even if some portability
problem might be lurking (to be diagnosed if and when the
program is compiled on another platform or compiled with further
portability-checking options).
If the varargs argument mangled-name characters fail these type-
matching rules, an abort constraint handler is invoked (interactive
debugger breakpoint, or abort).

6. NEW LIBRARY FOR C
The C standards committee is currently working on one piece of
the security puzzle: WDTR 24731, a Technical Report for a new
C library [7]. Among other features, the new library provides
new APIs which permit, or encourage, the programmer to provide
bounds information for all array arguments. Furthermore, arrays-
of-characters created by these APIs are always null-terminated.
These functions validate their arguments and the bounds
requirements for the arrays they produce; these requirements are
known as the “runtime-constraints”. If a requirement is violated,
the function invokes a “constraint handler”. The behavior we
described above as the “abort constraint handler” is the default
behavior in Microsoft’s Visual Studio 2005 which provides a
complete implementation of the WDTR 24731 library [8].
The new library provides a new typedef for specifying the sizes of
arrays, called rsize_t, and an associated maximum value
named RSIZE_MAX. It is recommended that, for
implementations targeting machines with large address spaces,
RSIZE_MAX be defined as the smaller of the size of the largest
object supported or (SIZE_MAX >> 1), even if this limit is
smaller than the size of some legitimate, but very large, objects.
This way, if a negative number is (incorrectly) given as the size of
an array, after the (wraparound) conversion to an unsigned
number, it will be recognized as a violation of a runtime-
constraint. Before the introduction of RSIZE_MAX, this sort of
bug could cause the over-writing of large areas of memory.
The old APIs returned success-or-fail information in an
inconsistent variety of conventions that mingled successful
returned information with indications of failure. The new APIs
consistently return an indicator of “success-or-what-kind-of-
failure” using an integer type named errno_t.

Consider the strcpy_s function, which accepts the address
where the copied characters will be stored, plus an integer
specifying the size of that array.
 errno_t strcpy_s(char * restrict s1,
 rsize_t s1max,
 const char * restrict s2);

By the explicit provision of bounds information for the target
string, this API provides the opportunity to diagnose errors that
could have caused buffer overflows with the old strcpy API.

7. EXTENDING TO ALL PROGRAMS
To this point, we have described methods by which SSCC ensures
proper fetch-and-store accesses using only the variables defined
by the programmer. These methods will in some cases require a
fatal diagnostic for situations in which the compiler and linker
cannot determine whether a fetch or store introduces undefined
behavior. Examples include unusually complex instances of
aliased pointers, buffers created by malloc, and interprocedural
dependencies. The recent article by Ruwase and Lam [10] has
shown another method which can be applied to these most-
difficult cases. In this alternative, unverifiable fetch-or-store
operations can be checked by requiring that all potential fetched-
or-stored objects be entered into run-time tables (i.e. “dynamic
tables”).
By this method, hastily-written programs (“one-off jobs”) can be
compiled and executed with certainty that, whatever flaws they
might contain, they will not execute buffer overflows. In addition,
some large legacy applications (“dusty decks”), or portions
thereof, might not be worth top-to-bottom remediation to prevent
buffer overflows. Adding dynamic tables to the SSCC methods
permits a choice based upon cost-benefit considerations.

8. COMMERCIAL IMPLEMENTATION
In order for methods like SSCC to make a significant difference
in the reliability of the software infrastructure, we must get the
methods into the tools that working programmers are using to
build their applications. We suggest that there are two different
avenues to adoption; we refer to them as “remediation tools” and
“compiler tools”.
Remediation tools are intended to provide assistance when a
group has made the decision to spend resources on improving
some body of source code (typically hundreds of thousands, or
millions, of lines of code). Such decisions are typically prompted
by corporate IT management, software QA, corporate standards,
etc. There are several commercial software-quality tools which
serve this marketplace, including offerings from PolySpace,
Coverity, Fortify Software, Secure Software, Klocwork, and
others. All of these products provide some assistance with
preventing buffer overflows, but to our knowledge none of them
provide certification that all buffer overflows are detected and
prevented (which is the essential feature of the SSCC methods).
However, these products do much more than check for buffer
overflows; they detect bugs, catch other security problems, and
enforce corporate coding standards, etc. One or more of the
quality-tools producers could add the SSCC methods to their
remediation tools to provide assistance to projects attempting to
revise their source code to definitively eliminate buffer overflows.
Remediation tools can also perform a one-time conversion from
the old C library to the new library [7]. For each (“non-
deprecated”) function defined in the new library (such as
strcpy_s), there is a corresponding function that lacks some
indication of the bounds data of the target (such as strcpy); call
that the “corresponding deprecated function”. The set of all the
corresponding deprecated functions constitutes the “deprecated
functions”. For each invocation of a deprecated function in the

79

program being compiled, the bounds-data Requirements are well-
known from the Standards. If the remediation tool employing the
SSCC method is unable to determine a corresponding bounds-data
Guarantee, then a fatal diagnostic is issued and an expert needs to
study the problem. Otherwise, the source code invocation is re-
written by the remediation tool to an invocation of the
corresponding non-deprecated function, in which the bounds-data
Guarantee is explicitly passed as an argument. If the source-code
context tests the returned value from the deprecated function, then
the remediation tool rewrites the success-or-fail test into a test
against the “errno_t” returned value from the corresponding
non-deprecated function.

These various forms of large-scale remediation should be of
interest to the large consultancies that provide skilled talent to
clients worldwide, such as Accenture, Bearing Point, IBM
Business Consulting, McCabe, Watchfire, and EDS.

Compiler producers constitute a segment of the software
production supply chain, one that is quite different from the
quality-tools producers. Each hardware company typically
maintains some number of compiler groups, as do several of the
large software producers. There are several specialized compiler
producers. In addition, there is a significant community of
individuals and companies that support the open-source Gnu
Compiler Collection (gcc). Adding these various groups together,
we estimate that there are well over 100 compiler vendors. In
order to encourage adoption of the SSCC methods into working
compilers, we propose a general-purpose “SScfront” tool, to take
the output from the C/C++ preprocessor, perform the SSCC
methods (including reading from and writing to the SSCC
bounds-data files), and produce a transformed C source code to be
compiled by the platform-dependent compiler. Along with the
SScfront component, an SSCC “pre-linker” would also be
required, to read and process the full collection of bounds-data
files from all components of the application being compiled and
linked. If or when the SSCC methods become popular in the
marketplace, compiler producers can doubtless produce more
efficient and better integrated “all-in-one” solutions, just as the
initial “cfront” implementation of C++ was replaced by integrated
compiler solutions over a period of years.
A third market segment contains the component producers, which
provide specialized components to the compiler producers and
quality tools producers; see Figure 1 below.

Figure 1. Software Production Supply Chain

In general, component producers don’t want to make products that
would compete with their customers. A successful adoption
strategy for eliminating buffer overflows will need to take account
of the unique position of each market segment.
At some point, the compiler or quality tool implementing the
SSCC methods will be prepared to certify that the application is
free from buffer overflows. Because of the significant costs that
buffer overflows have imposed upon the market, certified absence
of buffer overflows should provide significant economic value in
several market segments.

After demonstrating utility in the marketplace, the SSCC methods
should be standardized, with permissions adequate for
incorporation into open-source as well as proprietary products.
We suggest, however, that too many technologies have been
introduced with an emphasis upon market share and insufficient
attention paid to requirements of security. We maintain sufficient
IPR protection for the SSCC methods to permit taking effective
action against “spoofers” that would weaken the expectations of
producers, users, and the public.

9. CONCLUSIONS

We itemize the novel features of the SSCC methods:

• Combine static-analysis methods with dynamic-analysis
methods, to create a hybrid solution;

• Define an extensive (non-orthogonal) set of attributes and
relationships that match the concepts intuitively used by
programmers in constructing professional programs, and
define their role in preventing buffer overflows;

• Automatically infer the Requirements on the interface of
each callable function;

• Supplement the compilation and linking mechanism by
producing and using bounds-data files which record
Requirements and Guarantees for the defined and undefined
symbols in one or more corresponding object files, as well as
checksum information;

• Verify C linkage using type-compatible linkage;

• Verify type-compatible behavior of varargs functions, using
a name-mangled string at run-time;

• Provide automated remediation of each input source file into
a source file which invokes non-deprecated functions in the
new C library.

The details involved in SSCC are extensive, but all work together
to achieve properties which can be stated simply: Bounds
information is kept in parallel with the source and object code,
and in particular kept in parallel with each callable function’s
interface. When a fetch or a store is performed, available bounds
information is used at compile time, link time, or run time, to
determine the validity of the fetch-or-store operation.

80

10. ACKNOWLEDGMENTS
Our thanks to the anonymous reviewers, and to Brian Brode,
Bruce Galler, David McNamara, Larry O’Brien, Roland Racko,
Robert Seacord, Itaru Shimoyama, Youichi Sugiyama, and Steph
Walli for their comments on various drafts of this material.

11. REFERENCES
[1] CERT/CC. See http://www.cert.org/stats/cert_stats.html for

current statistics.
[2] CERT/CC. US-CERT's Technical Cyber Security Alerts.

http://www.us-cert.gov/cas/techalerts/index.html
[3] Dor, N., Rodeh, M., and Sagiv, M. Cssv: Towards a realistic

tool for statically detecting all buffer overflows in c. In
Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation, pages
155–167, June 2003.
http://portal.acm.org/citation.cfm?doid=781131.781149

[4] Gupta, R. Optimizing array bounds checks using flow
analysis. ACM Letters on Programming Languages and
Systems, 2(1-4):135–150, March–December 1993.

[5] INCITS/ISO/IEC 9899-1999. Programming Languages — C,
Second Edition, 1999.

[6] INCITS/ISO/IEC 14882-2003. Programming Languages —
C++, Second Edition, 2003.

[7] ISO/IEC WDTR 24731. Specification for Secure C Library
Functions, 2004. (Options for ordering [5,6,7] are kept
updated at http://www.plumhall.com/990216ansi.html.)

[8] Lovell, M. Safe! Repel Attacks on Your Code with the Visual
Studio 2005 Safe C and C++ Libraries, MSDN Magazine,
May 2005,
http://msdn.microsoft.com/msdnmag/issues/05/05/SafeCand
C/default.aspx

[9] Plum Hall, Inc. The SSCC website.
http://www.plumhall.com/sscc.html (free, requires
registration).

[10] Ruwase, O., and Lam, M. A Practical Dynamic Buffer
Overflow Detector, In Proceedings of the Network and
Distributed System Security (NDSS) Symposium, pages 159–
169, February 2004.

[11] Seacord, R. Secure Coding in C and C++. Addison-Wesley,
2005. See http://www.cert.org/books/secure-coding for news
and errata.http://suif.stanford.edu/papers/tunji04.pdf

[12] System Performance Evaluation Corporation (SPEC).
SPEC CPU2000: Component CPU Integer (CINT2000),
2000. http://www.spec.org

[13] Williams, M. et al., “Itanium C++ ABI”.
http://www.codesourcery.com/cxx-abi/abi.html

81

A Secure Software Architecture Description Language
Jie Ren, Richard N. Taylor

Department of Informatics
University of California, Irvine

Irvine, CA 92697-3425
1-949-8242776

{jie, taylor }@ics.uci.edu

ABSTRACT
Security is becoming a more and more important concern for
software architecture and software components. Previous
modeling approaches provide insufficient support for an in-
depth treatment of security. This paper argues for a more
comprehensive treatment of an important security aspect, access
control, at the architecture level. Our approach models security
subject, resource, privilege, safeguard, and policy of
architectural constituents. The modeling language, Secure
xADL, is based on our existing modular and extensible
architecture description language. Our modeling is centered
around software connectors that provides a suitable vehicle to
model, capture, and enforce access control. Combined with
security contracts of components, connectors facilitate
describing the security characteristics of software architecture,
generating enabling infrastructure, and monitoring run-time
conformance. This paper presents the design of the language
and initial results of applying this approach. This research
contributes to deeper and more comprehensive modeling of
architectural security, and facilitates detecting architectural
vulnerabilities and assuring correct access control at an early
design stage.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Modules and interfaces.

General Terms
Design, Security, Access Control, Languages, Secure xADL

Keywords
Software architecture, secure software connector, security,
architectural access control

1. INTRODUCTION
Consider the example of spam emails. With more and more

proliferation of such emails (arguably now there is more spam
traffic than normal traffic), effectively handling them is
becoming a prominent security problem. Conceptually there are
several measures that can be taken to mitigate the issue. The
most radical route requires changing the email protocols, which

was invented a quarter century ago for a friendly, trustworthy,
and benign environment. Before such new protocols can be
developed and widely deployed, the more realistic solution lies
in “hardening” the existing facilities. If the administrators of the
email servers take the responsibility, they can drop mails from
known spammers, or delay mails from unknown senders, which
will deter spammers that do not resend their spam. Such
administrative changes, however, might have adversary effects
on normal email operations, since they could possibly change
the otherwise normal latency of emails. The users could also
adopt their own countermeasures. If their incoming mail servers
support spam control features, the users can configure the mail
servers and let them either drop the spasm or filter them to
special folders. Depending on how accurate the spam filters can
be, completely dropping the spam might not be the best choice
since the user will not be aware of the existence of possible
misclassifications. If the users’ email clients support spam
filters, which is the case for almost all modern clients, then the
users can adopt a client-only solution, relying on the client
filters to be properly trained for filtering spam emails, and
reviewing such emails for possible misclassifications. If the user
adopts both a server-filtering solution and a client-filtering
solution, then the user should be cautious about how these two
mechanisms interoperate with each other, since the
configuration results of one solution cannot be easily transferred
to another solution. This spam filtering example illustrates how
many components a modern security problem can touch and
how challenging it might be for the different defensive
mechanisms to cooperate and provide the desired functionalities
securely.

With rapidly advancing hardware technologies and
ubiquitous use of computerized applications, modern software is
facing challenges that it has not seen before. More and more
software is built from existing components. These components
may come from different sources. This complicates analysis and
composition, even if a dominant decomposition mechanism is
available. Additionally more and more software is running in a
networked environment. These network connections open
possibilities for malicious attacks that were not possible in the
past. These situations raise new challenges on how we develop
secure software.

Traditional security research has been focusing on how to
provide assurance on confidentiality, integrity, and availability.
However, with the exception of mobile code protection
mechanisms, the focus of past research is not how to develop
secure software that is made of components from different
sources. Previous research provides necessary infrastructures,
but a higher level perspective on how to utilize them to describe
and enforce security, especially for componentized software,
has not received sufficient attention from research communities
so far.

(c) 2005 Association for Computing Machinery. ACM acknowledges
that this contribution was authored or co-authored by an affiliate of the
U.S. Government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
SSATTM'05, 11/7-11/8/05, Long Beach, CA, USA.
(c) 2005 ACM 1-59593-307-7/05/11

82

Take a popular web server, Microsoft Internet Information
Server (IIS), as an example. The web server was first introduced
in 1995. It has gone through several version changes during the
following years, reaching Version 5.1 in 2001. Along this
course, it was the source of several vulnerabilities, some of
which were high profile and have caused serious damages [2]. A
major architectural change was introduced in 2003 for its
Version 6.0. This version is much safer than previous versions,
due to these architectural changes [32]. No major security
technologies were introduced with this version. Only existing
technologies were rearchitected for better security. This
rearchitecting effort suggests that more disciplined approaches
to utilize existing technologies can significantly improve the
security of a complex, componentized, and networked software
system.

Component-based software engineering and software
architecture provide the necessary higher-level perspective.
Security is an emergent property, so it is insufficient for a
component to be secure. For the whole system to be secure, all
relevant components must collaborate to ensure the security of
the system. An architecture model guides the comprehensive
development of security. Such high-level modeling enables
designers to locate potential vulnerabilities and install
appropriate countermeasures. It facilitates checking that security
is not compromised by individual components and enables
secure interactions between components. An architecture model
also allows selecting the most secure alternatives based on
existing components and supports continuous refinement for
further development.

Facing the new challenges of security for networked
componentized software and given the base provided by
existing software architecture research, we propose a software
architecture description language that focuses on access control.
The language enables a comprehensive treatment of security at
the architecture level, striving for assurance on correct access
control among architectural constituents.

Section 2 of this paper surveys related work. Section 3
outlines our approach, introducing the base architecture
description language and the modeling extensions necessary for
security development. Section 4 gives an example of applying
the approach to a coalition application. Section 5 summarizes
initial results of our research and outlines future work.

2. RELATED WORK
Since our work is focused on semantically rich secure

connectors, this section first surveys existing research on
connector-based software architectures. It also surveys security
modeling based on other design notations, such as UML.

2.1. Architectural Connectors
Architecture Description Languages (ADLs) provide the

foundation for architectural description and reasoning [18].
Most existing ADLs support descriptions of structural issues,
such as components, connectors, and configurations. Several
ADLs also support descriptions of behaviors [1, 17]. The
description of behaviors is either centered around components,
extending the standard “providing” and “requiring” interfaces,

or is attached to connectors, if the language supports connectors
as first class citizens [1]. These formalisms enable reasoning
about behaviors, such as avoidance and detection of deadlock.
Some early efforts have been invested on modeling and
checking security-related behaviors, such as access control [21],
encryption, and decryption [3].

Among the numerous ADLs proposed, some do not support
connectors as first class citizens [6, 17]. Interactions between
components are modeled through component specifications in
these modeling formalisms. This choice is in accordance with
component-based software engineering, where every entity is a
component and interactions between components are captured in
component interfaces. A component has a “provided” interface
that lists the functionality this component provides. It also has a
“required” interface that enumerates the functionalities it needs
in providing its functionality. Interactions between components
are modeled by matching a component’s “required” interface to
other components’ “provided” interfaces.

Embedding interaction semantics within components has
its appeal for component-based software engineering, where
components are the central units for assembly and deployment.
However, such a lack of first class connectors does not give the
important communication issue the status it deserves. This lack
blurs and complicates component descriptions, which makes
components less reusable in contexts that require different
interaction paradigms [5]. It also hinders capturing design
rationales and reusing implementations of communication
mechanisms, which is made possible by standalone connectors
[7]. We believe a first class connector that explicitly captures
communication mechanisms provides a necessary design
abstraction.

Several efforts are focused on understanding and
developing connectors in the context of ADLs. A taxonomy of
connectors is proposed in [19], where connectors are classified
by services (communication, coordination, conversion,
facilitation) and types (procedure call, event, data access,
linkage, stream, arbitrator, adaptor, and distributor). Techniques
to transform an existing connector to a new connector [27] and
to compose high-order connectors from existing connectors [16]
are also proposed.

However, these efforts are not completely satisfactory.
They suffer from the fact that they are general techniques. All of
them aim at providing general constructs and techniques to suit
a wide array of software systems, which leave them ignoring
specific needs that arise from different application properties.
For example, both the connector transformation technique [27]
and the connector composition technique [16] have been applied
to design secure applications, but the treatment of security does
not address the more comprehensive security requirements as
understood by security practitioners. Those requirements have
richer semantics. These semantics raise challenges, because the
general techniques must handle them in a semantically
compatible way instead of just decomposing the challenges into
semantically neutral “assembly languages.” These semantics
also provide opportunities, because they supply new contexts
and information that can be leveraged. Such extra constraints
are especially beneficial to the application of formal techniques,
because these additional conditions could reduce the possible
state space and lower the decidability and computational cost.

83

It is our position that a deeper treatment of security in the
connector technology is needed for a comprehensive solution to
the important software security problem. Such a treatment
should handle and leverage the richer semantics provided by
specific security properties, such as various encryption,
authentication, and authorization schemes, instead of equating
these security features with opaque abstract functions.

2.2. UML-based Security Modeling
UML is a standard design modeling language. There have

been several UML-based approaches for modeling security.
UMLsec [11] and SecureUML [15] are two UML profiles for
developing secure software They use standard UML extension
mechanisms (constraints, tagged values, and stereotypes) to
describe security properties.

Aspect-Oriented Modeling [23] models access control as
an aspect. The modeling technique uses template UML static
and collaboration diagrams to describe the aspect. The template
is instantiated when the security aspect is combined with the
primary functional model. This process is similar to the weaving
process of aspect-oriented programming. The work described in
[12] uses concern diagram as a vehicle to support general
architectural aspects. It collects relevant UML modeling
elements into UML package diagrams.

3. SECURE xADL
This section details the elements of the security modeling

approach we are taking. We first give an overview of our
existing architectural description language, and then we outline
the new modeling capabilities we propose to help assuring
correct architectural access control.

3.1. Overview of xADL
We extend our existing Architecture Description Language

(ADL), xADL 2.0 [4], to support new modeling concepts that
are necessary for architectural access control. xADL is an XML-
based extensible ADL. It has a set of core features, and it
supports modular extensions.

The core features of xADL support modeling both the
design-time and run-time architecture of software systems. The
most basic concepts of architectural modeling are components
and connectors. Components are loci of computation, and
connectors are loci of communication. xADL adopt these two
concepts, and extend them into design-time types and run-time
instances. Namely, in the design time, each component or
connector has a corresponding type, a componentType or a
connectorType. At run-time, each component or connector is
instantiated into one or more instances, componentInstances or
connectorInstances. This run-time instance/design-time
structure/design-time type relationship is very similar to the
corresponding relationship between the run-time objects, the
program objects, and the program class hierarchy.

Each component type or connector type can define its
signatures. The signatures define what components and
connectors provide and require. The signatures become
interfaces for individual components. Note that xADL itself

does not define the semantics of such signatures and interfaces.
It only provides the most basic syntactic support to designate the
locations of such semantics.

xADL also supports sub-architecture. A component type or
a connector type can have an internal sub architecture that
describes how the component type or the connector type can be
refined and implemented, with a set of components and
connectors that exist at a lower abstraction level. xADL allows
specifying the mapping between the signatures of the outer type
and the signatures of the inner types. This enables composing
more complex components or connectors from more basic ones.

xADL has been designed to be extensible. It provides an
infrastructure to introduce new modeling concepts, and has been
extended successfully to model software configuration
management and provide a mapping facility that links
component types and connector types to their implementations.

3.2. Modeling Architectural Security
xADL has provided an extensible foundation for modeling

architectural concerns. We extend it to model software security,
focusing on architectural access control. We adopt the same
modular and extensible approach utilized by the base xADL
language, starting from a set of core security concepts and
enabling future extensions. These extensions will eventually be
subject to the extent that is made possible by both theoretical
expressiveness and practical applicability.

3.2.1. Access Control
Our approach supports multiple security models that are

being widely used in practice. Our first efforts are directed at the
classic access control models [13], which is the dominant
security enforcement mechanism.

In the classic access control model [13], a system contains
a set of subjects that has permissions and a set of objects (also
called resources) on which these permissions can be exercised.
An access matrix specifies what permission a subject has on a
particular object. The rows of the matrix correspond to the
subjects, the columns correspond to the objects, and each cell
lists the allowed permissions that the subject has over the object.
The access matrix can be implemented directly, resulting in an
authorization table. More commonly, it is implemented as an
access control list (ACL), where the matrix is stored by column,
and each object has one column that specifies permissions each
subject possesses over the object. A less common
implementation is a capability system, where the access matrix
is stored by rows, and each subject has a row that specifies the
permissions (capabilities) that the subject has over all objects.

Other models, such as the more recent role-based access
control model [26] and the trust management model [33], can be
viewed as extensions to this basic access control model. The
role-based model introduces the concept of roles as an
indirection to organize the permissions assignments to subjects.
Instead of assigning permissions directly to subjects, the
permissions are assigned to roles. Such roles can be organized
into hierarchies, so a more senior role can possess additional
permissions in addition to the permissions it inherits from a
junior role. Each subject can selectively take multiple roles
when executing software, thus acquiring the related permissions.

84

The trust management model provides a decentralized approach
to manage subjects and delegate permissions. Since it is difficult
to set up a centrally managed repository of subjects in a
decentralized environment, trust management models use the
attributes of subjects to identify them, and each local subject can
check these attributes based on the information that is present at
the local subject. Because the subjects are independent of each
other, they can delegate permissions between them. Several
efforts have been made to provide a more unified view of these
models [25, 29]. For example, the role-based trust-management
framework [14] views the trust management relationship as the
containment relationship between independently defined roles.
Such a unified view provides the theoretical foundation for our
architectural treatment of access control models.

3.2.2. Subject, Resource, Privilege, Safeguard,
Policy

Inspired by such a unified view, we introduce the following
core concepts that are necessary to model access control at the
architecture level: subject, principal, resource, privilege,
safeguard, and policy. We extend the base xADL language with
these concepts to get a new language, Secure xADL. To the best
of our knowledge, this is the first effort to model these security
concepts directly in an architectural description language.

A subject is the user on whose behalf software executes.
Subject is a key concept in security, but it is missing from
traditional software architectures. Traditional software
architecture generally assumes that a) all of its components and
connectors execute under the same subject, b) this subject can
be determined at design time, c) it will not change during
runtime, either advertently or intentionally, and d) even if there
is a change, it has no impact on the software architecture. As a
result, there is no modeling facility to capture allowed subjects
of architectural components and connectors. Also, the allowed
subjects cannot be checked against actual subjects at execution
time to enforce security conformance. We extend the basic
component and connector constructs with the subject for which
they perform, thus enabling architectural design and analysis
based on different security subjects defined by software
architects.

A subject can take multiple principals. Essentially,
principals encapsulate the credentials a subject possess to
acquire permissions. In the classic access control model, the
principal is synonymous with subject, directly designating the
identity of the subject. In the role-based access control model, a
principal can be a role that the subject takes. And since a subject
can assume multiple roles, it can possess several principals. In
the trust management model, a principal can be the public key
credentials that a subject possesses. Principals provide
indirection and abstraction necessary for more advanced access
control models.

A resource is an entity whose access should be protected.
For example, a read-only file should not be modified, the
password database can only be changed by administrators, and a
privileged port can only be opened by the root user.
Traditionally such resources are passive, and they are accessed
by active software components operating for different subjects.
In a software architecture model, resources can also be active.
That is, the software components and connectors themselves are

resources whose access should be protected. Such an active
view is lacking in traditional architectural modeling. We feel
that explicitly enabling this view can give architects more
analysis and design powers to improve assurance.

Permissions describes a possible operation on an object.
Another important security feature that is missing from
traditional ADLs is privilege, which describe what permissions
a component possess depending on the executing subjects.
Current modeling approaches take a maximum privilege route,
where a component’s interfaces list all privileges that a
component possibly needs. This is a source for privilege
escalation vulnerabilities, where a less privileged component is
given more privileges than what it should be properly granted. A
more disciplined modeling of privileges is thus needed to avoid
such vulnerabilities. We model two types of privileges,
corresponding to the two types of resources. The first type
handles passive resources, such as which subject has read/write
access to which files. This has been extensively studied in
traditional resource access control literatures. The second type
handles active resources. These privileges include
architecturally important privileges, such as instantiation and
destruction of architectural constituents, connection of
components with connectors, execution, and reading and writing
of architecturally critical information. Little attention has been
paid to these privileges, and the limited treatment neglects the
creation and destruction of software components and
connectors [31].

A corresponding notion is safeguard, which are
permissions that are required to access the interfaces of the
protected components and connectors. A safeguard attached to a
component or a connector specifies what privileges other
components and connectors should possess before they can
access the protected component or connector.

A policy ties all above mentioned concepts together. It
specifies what privileges a subject should have to access
resources protected by safeguards. It is the foundation for
making access control decisions. There have been numerous
studies on security policies [8, 20, 30]. Since our focus is on a
more practical and extensible modeling of software security at
the architectural level, our priorities in modeling policy are not
theoretical foundations, expressive power, or computational
complexity. Instead, we focus on the applicability of such policy
modeling.

Towards this goal, we feel the eXtensible Access Control
Markup Language (XACML) [22] can serve as the basis for our
architectural security policy modeling. The language is based on
XML, which makes it a natural fit for our own XML-based
ADL. The language is extensible. Currently it has a core that
specifies the classic access control model, and a profile for role-
based access control. A profile for trust management is also in
development. This modular approach makes the language
evolvable, just like our own xADL modular approach. The
extensibility allows us to adopt it without loss of future
expressiveness. Finally, the language has been equipped with a
formal semantics [9]. While this semantics is an add-on artifact
of the language, it does illustrate the possibility to analyze the
language more formally, and opens possibilities for applying
relevant theoretical results about expressiveness, safety, and
computational complexity to the language.

85

3.2.3. Contexts of Architectural Access Control
In traditional access control, context has been used to

designate factors involved in decision making that are not part
of the subject-operation-object tuple. The most prominent
example is time, which has been extensively used to express
temporal access control constraints [10].

Likewise, from an architectural modeling viewpoint, when
components and connectors are making security decisions, the
decisions might be based on entities other than the decision
maker and the protected resource. We use context to designate
those relationships involved in architectural access control.
More specifically, the context can include 1) the nearby
components and connectors of the component and the
connector, 2) the explicitly modeled sub-architecture that
contains the component and the connector, 3) the type of the
component and the connector, and 4) the global architecture.
Modeling the security context makes the architectural security
implications more explicit, and any architectural changes that
impact security become more apparent.

Such context should be integrated in the policy modeling.
XACML provides the concept of policy combination, which
combines several policies into an integrated policy set. Different
policy combination algorithms, such as permit-override and
deny-override, are provided as part of the standard, and we
extend them with structure-override and type-override, which
gives the structure and the type final authority on granting
permissions. The XACML framework, combined with our
explicit modeling of architectural context, supplies necessary
flexibility in modeling architecture security.

3.2.4. Components: supply security contract
A security contract specifies permissions an architectural

constituent possesses to access other constituents and the
permissions other constituents should possess to access the
constituent. A contract is expressed through the privileges and
safeguards of an architectural constituent.

For component types, the above modeling constructs are
modeled as extensions to the base xADL types. The extended
security modeling constructs describe the subject the component
type acts for, the principals this component type can take, and
the privileges the component type possesses.

The base xADL component type supplies interface
signatures, which describe the basic functionality of components
of this type. These signatures comprise of the active resources
that should be protected. Thus, each interface signature is
augmented with safeguards that specify the necessary privileges
an accessing component should possess before the interfaces can
be accessed.

3.2.5. Connectors: regulate and enforce contract
Connectors play a key role in our approach. They regulate

and enforce the security contract specified by components.

Connectors can decide what subjects the connected
components are executing for. For example, in a normal SSL
connector, the server authenticates itself to the client, thus the
client knows the executing subject of the server. A stronger SSL
connector can also require client authentication, thus both the

server component and the client component know the executing
subjects of each other.

Connectors also regulate whether components have
sufficient privileges to communicate through the connectors.
For example, a connector can use the privileges information of
connected components to decide whether a component
executing under a certain subject can deliver a request to the
serving component. This regulation is subject to the policy
specification of the connector. A detailed example is given in
Section 4.

Connectors also have potentials to provide secure
interaction between insecure components. Since many
components in component-based software engineering can only
be used “as is” and many of them do not have corresponding
security descriptions, a connector is a suitable place to assure
appropriate security. A connector decides what communications
are secure and thus allowed, what communications are
dangerous and thus rejected, and what communications are
potentially insecure thus require close monitoring.

Using connectors to regulate and enforce a security
contract and leveraging advanced connector capabilities will
facilitate supporting multiple security models [28]. These
advanced connector capabilities include the reflective
architectural derivation of connectors from component
specifications, composing connectors from existing connectors
[24], and replacing one connector with another connector.

3.2.6. Syntax of Secure xADL
Figure 1 depicts the core syntax of Secure xADL. The

xADL ConnectorType is extended to a SecureConnectorType
that has various descriptions for subject, principals, privileges,
and policy. The policy is written in the XACML language.
Similar extensions are made to other xADL constructs such as
component types, structures, and instances.

<complexType name=”SecurityPropertyType">
 <sequence>
 <element name="subject"
 type="Subject"/>
 <element name="principal"
 type="Principals"/>
 <element name="privilege"
 type="Privileges"/>
 <element ref="xacml:PolicySet"/>
 </sequence>
<complexType>
<complexType name="SecureConnectorType">
 <complexContent>
 <extension base="ConnectorType">
 <sequence>
 <element mame="security"
 type="SecurityPropertyType"/>
 <sequence>
 <extension>
 <complexContent>
</complexType>
<!-- similar constructs for component,
structure, and instance -->

Figure 1, Secure xADL schema

86

4. A CASE STUDY: COALITION
Architectural modeling is instrumental for architects to

design architecture and evaluate different alternatives for
possibly competing goals. With the modeling capability
introduced by Secure xADL and the regulation power enabled
by secure connectors, architects are better equipped for such
design and analysis on security.

In this section, we illustrate the use of the secure software
architecture description language with a coalition application.
We present two architectures, each has its own software and
security characteristics. We also describe how to specify related
architectural policies.

The coalition application allows two parties to share data
with each other. However, these two parties do not necessarily
fully trust each other, thus the data shared should be subjective
to the control of each party. The software architecture is written
in the C2 architecture style. In this style, the components send
and receive requests and notifications at their top and bottom
interfaces, and the connectors forward messages (requests and
notifications) between their top interfaces and bottom interfaces.
The two parties participating in this application are US and
France.

4.1. The Original Architecture

Figure 2, Original Coalition

Figure 2 illustrates the original coalition architecture, using
our Archipelago architecture editor [4]. In this architecture, US
and France each has its own process. US is on the left side, and
France is on the right. The squares are components. The regular
rectangles are connectors. The US Radar Filter Connector sends
all notifications downward. The US to US Filter Component
forwards all such notifications to the US Filter and Command &
Control Connector. However, US does not want France to
receive all the notifications. Thus it employs a US to French
Filter Component to filter out sensitive messages, and send
those safe messages through US Distributed Fred Connector,

which connects to the French Local Fred Connector to deliver
those safe messages. (A Fred connector broadcast messages to
all Fred connectors in the same connectors group.) The France
side essentially has the same architecture, using a French to US
Filter Component to filter out sensitive messages and send out
safe messages.

The advantage of this architecture is that it maintains a
clear trust boundary between US and France. Since only the US
to French Filter and the French to US Filter come across trust
boundaries, they should be the focus of further security
inspection. This architecture does have several shortcomings.
First, it is rather complex, This architecture uses 4 Fred
connectors (US Local, US Distributed, French Local, and
French Distirbuted) and 2 components (US to French Filter,
French to US Filter) to implement secure data routing such that
sensitive data only goes to appropriate receivers. Second, it
lacks conceptual integrity. It essentially uses filter components
to perform data routing, which is a job more suitable for
connectors. Third, it lacks reusability, since each filter
component has its own internal logic, and they must be
implemented separately.

4.2. An Alternative Architecture with a Secure
Connector

Figure 3, Coalition with a Secure Connector

An alternative architecture uses two secure connectors, a
US to France Connector and a France to US Connector. Both
are based on the same connector type. The US to France Secure
Connector connects to both the US Filter and Command &
Control Connector and the French Filter and Command &
Control Connector. When it receives data from the US Radar
Filter Connector, it always route it to the US Filter and
Command & Control Connector. And if it detects that it is also
connected to the French Filter and Command & Control
Connector, and the data is releasable to the French side, then it
also routes messages to the French Filter and Command &
Control Connector. The France to US Secure Connector adopts
the same logic. This architecture simplifies the complexity and

87

promotes understanding and reuse. Only two secure connectors
are used. These connectors perform a single task of secure
message routing, and they can be used in other cases by
adopting a different policy. A shortcoming of this architecture is
that the secure connectors can see all traffic, thus they are
obvious targets for penetration, and their breach leads to secret
leak. An architect should balance all such tradeoffs.

4.3. The Architectural Policies
Our approach bases the architectural access control

decisions on security policies of architectural constituents.
Different architectural constituents can execute different
policies. For example, an individual constituent can execute its
own local policy, while the architecture might adopt a global
policy. There are also different types of policies about
instantiating, connecting, and messaging to assure proper
architectural access control.

<connector id="UStoFranceConnector">
 <security type="SecurityPropertyType">
 <subject>US</subject>
 <Policy RuleCombiningAlgId=
 "permit-overrides">
 <Rule Effect="Permit">
 <Target>
 <Subject>
 <AttributeValue>
 USToFranceConnector
 <SubjectAttributeDesignator
 AttributeId="subject-id"/>
 <Resource>
 <AttributeValue>RouteMessage
 <ResourceAttributeDesignator
 AttributeId="resource-id"/>
 <Action>
 <AttributeValue>RouteMessage
 <ActionAttributeDesignator
 AttributeId="action-id"/>
 <Condition
 FunctionId="string-equal">
 <AttributeValue>Aircraft Carrier
 <Apply>
 <AttributeSelector
 RequestContextPath =
 "//context:ResourceContent/
 security:routeMessage/
 messages:namedProperty
 [messages:name='type']/
 messages:value/text()"/>
 </Apply>
 <Rule RuleId="DenyEverythingElse"
 Effect="Deny"/>

Figure 4, Message Routing Policy

Figure 4 specifies part of the local message routing policy
of the US to France Secure connector. The policy is written in
Secure xADL, which adopts XACML as its policy sub-
language. (The XML syntax is greatly abbreviated, and
indentation is used to signify the markup structure.) The
connector executes as the US subject, because it is executing in
the US side of the coalition application. The policy has two
rules. The last rule denies every request, and the first rule
permitss one request. With the permit-overrides rule combining

algorithm, this policy essentially allows the explicitly permitted
operation and denies all other operations. Such a secure-by-
default policy follows the best security practice.

The rule applies when a US subject (the subject for which
the connector acts) requests a RouteMessage action on a
RouteMessage resource. The resource is of active resource,
which is the capability of routing messages from one interface
of a connector to another. The condition of the rule uses the
XPath language to specify a content-based routing policy. It
permits routing a message whose “type” value is “Aircraft
carrier”. What is not shown in Figure 4 is the destination of the
message, which only applies to messages directed to France.

5. CONCLUSION
Component-based software operating in a modern

networked environment presents new challenges that have not
been fully addressed by traditional security research. Recent
advancement on software architecture shed light on high-level
structure and communication issues, but has paid insufficient
attention to security.

We argue that architectural access control is necessary to
advance existing knowledge and meet the new challenges. We
extend component specifications with core security concepts:
subject, principal, resource, privilege, safeguard, and policy.
Component compositions are handled by connectors, which
regulate the desired access control property. We propose a
secure architecture description language, based on our xADL
language. This language can describe the security properties of
software architecture, specify intended access control policy,
and facilitate security design and analysis at the architecture
level. We illustrate our approach through an application sharing
data among coalition forces, demonstrating how architectural
access control can be described and enforced.

The contributions of this research lie in that 1) we address
the security problem from an architectural viewpoint. Our use of
an architecture model can guide the design and analysis of
secure software systems and help security assurance from an
early development stage; 2) we provide a secure software
architecture description language for describing architectural
access control, arguably the most important aspect of security;
3) the language enables specifying security contracts of
components and connectors, laying the foundations for secure
composition and operation.

This research is still on-going work. Our future work
includes 1) exploring the formal semantics of the language and
developing an algorithm that can check whether an architecture
meets the access control policies specified in various
architectural constituents; 2) developing a set of tools (visual
editing and implementation generation) to support developing
with the architectural security modeling; 3) implementing the
necessary run-time support for executing and monitoring the
security policies. These development activities will extend our
existing development environment, ArchStudio [4].

6. ACKNOWLEDGEMENTS
This work was supported in part by the National Science

Foundation award 0205724.

88

7. REFERENCES
[1] Allen, R. and Garlan, D., A Formal Basis for
Architectural Connection. ACM Transactions on Software
Engineering and Methodology., 1997. 6(3): p. 213-249.
[2] Berghel, H., The Code Red Worm. Communications of
the ACM, 2001. 44(12): p. 15-19.
[3] Bidan, C. and Issarny, V. Security Benefits from
Software Architecture. in Proceedings of 2nd International
Conference on Coordination Languages and Models, p.64-80,
1997.
[4] Dashofy, E.M., Andr, Hoek, v.d., and Taylor, R.N., A
Comprehensive Approach for the Development of Modular
Software Architecture Description Languages. ACM
Transactions on Software Engineering and Methodology, 2005.
14(2): p. 199--245.
[5] DeLine, R., Avoiding Packaging Mismatch with
Flexible Packaging. IEEE Transactions on Software
Engineering, 2001. 27(2): p. 124-143.
[6] Deng, Y., Wang, J., Tsai, J.J.P., and Beznosov, K., An
Approach for Modeling and Analysis of Security System
Architectures. IEEE Transactions on Knowledge and Data
Engineering, 2003. 15(5): p. 1099-1119.
[7] Ducasse, S. and Richner, T. Executable Connectors:
Towards Reusable Design Elements. in Proceedings of 6th
European conference held jointly with the 5th ACM SIGSOFT
international symposium on Foundations of software
engineering, p.483-499, 1997.
[8] Halpern, J.Y. and Weissman, V. Using First-Order
Logic to Reason About Policies. in Proceedings of 16th IEEE
Computer Security Foundations Workshop, p.187-201, 2003.
[9] Humenn, P., The Formal Semantics of Xacml. 2003,
Syracuse University.
[10] Joshi, J.B.D., Bertino, E., and Ghafoor, A., An
Analysis of Expressiveness and Design Issues for the
Generalized Temporal Role-Based Access Control Model.
Dependable and Secure Computing, IEEE Transactions on,
2005. 2(2): p. 157-175.
[11] Jürjens, J. Umlsec: Extending Uml for Secure Systems
Development. in Proceedings of UML '02: Proceedings of the
5th International Conference on The Unified Modeling
Language, p.412--425, 2002.
[12] Katara, M. and Katz, S. Architectural Views of
Aspects. in Proceedings of Proceedings of the 2nd international
conference on Aspect-oriented software development, p.1-10,
2003.
[13] Lampson, B.W., A Note on the Confinement Problem.
Communications of the ACM, 1973. 16(10): p. 613-15.
[14] Li, N. and Mitchell, J.C. Rt: A Role-Based Trust-
Managemant Framework. in Proceedings of DARPA
Information Survivability Conference & Exposition III, p.201-
212, 2003.
[15] Lodderstedt, T., Basin, D.A., J, and Doser, r.
Secureuml: A Uml-Based Modeling Language for Model-Driven
Security. in Proceedings of UML '02: Proceedings of the 5th
International Conference on The Unified Modeling Language,
p.426--441, 2002.
[16] Lopes, A., Wermelinger, M., and Fiadeiro, J.L.,
Higher-Order Architectural Connectors. ACM Transactions on
Software Engineering and Methodology, 2003. 12(1): p. 64-104.

[17] Magee, J. and Kramer, J. Dynamic Structure in
Software Architectures. in Proceedings of Proceedings of the 4th
ACM SIGSOFT symposium on Foundations of software
engineering, p.3-14, 1996.
[18] Medvidovic, N. and Taylor, R.N., A Classification
and Comparison Framework for Software Architecture
Description Languages. Software Engineering, IEEE
Transactions on, 2000. 26(1): p. 70-93.
[19] Mehta, N.R., Medvidovic, N., and Phadke, S. Towards
a Taxonomy of Software Connectors. in Proceedings of 22nd
International Conference on Software Engineering, p.178-187,
2000.
[20] Minsky, N.H. and Ungureanu, V. Unified Support for
Heterogeneous Security Policies in Distributed Systems. in
Proceedings of 7th USENIX Security Symposium, p.131-42,
1998.
[21] Moriconi, M., Qian, X., Riemenschneider, R.A., and
Gong, L. Secure Software Architectures. in Proceedings of 1997
IEEE Symposium on Security and Privacy, p.84-93, 1997.
[22] OASIS, Extensible Access Control Markup Language
(Xacml), http://docs.oasis-open.org/xacml/2.0/access_control-
xacml-2.0-core-spec-os.pdf
[23] Ray, I., France, R., Li, N., and Georg, G., An Aspect-
Based Approach to Modeling Access Control Concerns.
Information and Software Technology, 2004. 46(9): p. 575-587.
[24] Ren, J., Taylor, R., Dourish, P., and Redmiles, D.
Towards an Architectural Treatment of Software Security: A
Connector-Centric Approach. in Proceedings of Workshop on
Software Engineering for Secure Systems, 2005.
[25] Sandhu, R. and Munawer, Q. How to Do
Discretionary Access Control Using Roles. in Proceedings of
3rd ACM Workshop on Role-based Access Control, p.47-54,
1998.
[26] Sandhu, R.S., Coyne, E.J., Feinstein, H.L., and
Youman, C.E., Role-Based Access Control Models. Computer,
1996. 29(2): p. 38-47.
[27] Spitznagel, B. and Garlan, D. A Compositional
Approach for Constructing Connectors. in Proceedings of 2nd
Working IEEE/IFIP Conference on Software Architecture,
p.148-157, 2001.
[28] Tisato, F., Savigni, A., Cazzola, W., and Sosio, A.
Architectural Reflection. Realising Software Architectures Via
Reflective Activities. in Proceedings of 2nd International
Workshop on Engineering Distributed Objects, p.102-15, 2000.
[29] Tripunitara, M.V. and Li, N. Comparing the
Expressive Power of Access Control Models. in Proceedings of
Proceedings of the 11th ACM conference on Computer and
communications security, p.62-71, 2004.
[30] Wijesekera, D. and Jajodia, S., A Propositional Policy
Algebra for Access Control. ACM Transactions on Information
and System Security, 2003. 6(2): p. 286-325.
[31] Win, B.D., Engineering Application-Level Security
through Aspect-Oriented Software Development. 2004.
[32] Wing, J.M., A Call to Action: Look Beyond the
Horizon. Security & Privacy Magazine, IEEE, 2003. 1(6): p. 62-
67.
[33] Winslett, M. An Introduction to Trust Negotiation. in
Proceedings of 1st International Conference on Trust
Management, p.275-283, 2003.

89

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

Prioritization of Threats Using the k/m Algebra
Supreeth Venkataraman Warren Harrison

 Portland State University Portland State University
 1900 SW 4

th
 Ave 1900 SW 4

th
 Ave

 Portland, OR-97201 Portland, OR-97201
 (503) 705-9127 (503) 725-3108

 supreetv@cs.pdx.edu warren@cs.pdx.edu

ABSTRACT
We present in this paper a new methodology for

prioritizing threats rated with ordinal scale values

while preserving the meaning of ordinal values and

respecting the rules that govern ordinal scales. Our

approach is quite novel because we present a formal

algebraic system called the k/m algebra to derive the

equivalence classes into which threats will be placed

and define an operation called k/m dominance which

orders the equivalence classes. The operations of our

algebra always respect the rules that govern ordinal

scales and preserve the meaning of ordinal values. We

also describe and present the results from a

preliminary case study where we applied our k/m

algebra to prioritize threats ranked using data from an

existing threat modeling system.

Categories and Subject Descriptors
 D.2.8 [Software Engineering] Metrics – for threat

modeling in computer security D.4.6 [Security and

Protection]

General Terms
Security, Measurement

Keywords
Information assurance, Security metrics, threat

modeling, threat prioritization.

1. INTRODUCTION
In today’s information age, the need for information

assurance has never been greater. With every passing

day in the twenty first century, issues of computer

security are taking on great importance in all forms of

software development.

“(c)2005 Association for Computing Machinery.

ACM acknowledges that this contribution was authored or

co-authored by an affiliate of the U.S. Government. As such,

the Government retains a nonexclusive, royalty-free right to

publish or reproduce this article, or to allow others to do so,

for Government purposes only.”

SSATTM'05, 11/7-11/8/05, Long Beach, CA, USA.

(c) 2005 ACM 1-59593-307-7/05/11

In the past, issues of development and meeting

deadlines often were given priority over security

issues, and computer security itself was viewed as a

“bolt-on”, something that could be added to a software

system outside of development if security issues

became visible.

Whenever such issues arose, the usual solution was to

add fixes or patches to existing systems. The problem

with such fixes is that they result in an expensive

patchwork that does not seamlessly integrate with the

existing system. Present day perspectives on software

development have gradually begun to view security as

an integral component of software, and many experts

have stressed the importance of integrating security

features into software applications from the very

beginning of the software development lifecycle [1, 2,

7, 12].

Unlike traditional software bugs, security

vulnerabilities are exploited by thinking adversaries.

In order to thwart such adversaries, many

organizations have begun to model threats from an

attacker’s point of view during the design phase and

prioritize them using various risk analysis techniques

[7, 9, 11]. This process is generally called threat

modeling and includes methodologies like CERT’s

OCTAVE[1] and Microsoft’s STRIDE/DREAD

methodology [7, 11]. Threat modeling is now viewed

as an integral part of information assurance design in

software.

Threat modeling involves categorizing threats using a

scheme such as Microsoft’s STRIDE [7], and

assessing each threat’s relative risk using a technique

such as Microsoft’s DREAD. This allows mitigation

efforts to be prioritized using a given threat’s overall

risk in relation to the overall risk of other threats the

system may face.

A threat’s level of overall risk is based on multiple

attributes such as the threat’s severity, its likelihood of

occurring, etc. Each of these attributes is rated on a

relative scale such as “High”, Medium” or “Low”, or

more often, a relative numeric scale such as “1”, “2”

or “3”. Customarily, the overall risk is determined by

performing some sort of mathematical transformation

on the attribute values such as a sum, product or mean.

The result of the transformation is used to assign a

90

given threat to an equivalence class representing one

or more combination of attribute values. A given

threat’s relative mitigation priority is based on the

relative ordering of the equivalence class to which it is

assigned.

The problem with such approaches is that

mathematical transformations such as addition and

multiplication are impermissible on ordinal values,

such as those commonly used to assess individual

threat attributes [4, 5, 6]. This raises serious issues

involving the propriety of current techniques for

assigning threats to equivalence classes.

The motivation behind this paper is to explore a

solution to the problem of assigning threats to ordinal

equivalence classes in such a way that we preserve the

meaning of the individual threat attribute ratings and

also obey the rules that govern ordinal values.

We have developed a new algebraic system in order to

facilitate the combination of various ordinal threat

attribute values. We propose this system as a potential

general solution to the threat prioritization problem.

This paper presents our algebraic system and the

results of a preliminary case study that we undertook

to validate our algebra.

All operations in our algebra strictly obey the rules of

the ordinal scale. In order to determine the validity of

our approach, we applied our algebra to threats ranked

with Microsoft’s DREAD threat ranking system [7].

We discovered that our prioritization produced a

significantly different ordering than the one produced

by DREAD. This is a very promising and exciting

result and gives us the motivation to conduct further

research on validating the k/m algebra by applying it

to other prioritization schemes. As of this writing, we

are not aware of any other threat prioritization system

that works on threats rated using an ordinal scale

while preserving the meaning of the rankings and

respecting the rules that govern the ordinal scale.

The rest of the paper is organized as follows. Section 2

presents a brief description of the ordinal scale from

measurement theory. Section 3 describes our k/m

algebra and the operations allowed, Section 4

describes a preliminary case study we undertook of

applying the k/m algebra to threats ranked with

DREAD and the results, and section 5 describes future

work.

2. THE ORDINAL SCALE
This section provides a brief description of ordinal

scales as defined by Stevens in 1946 and described by

Finkelstein in 1984 [5].

There are four basic measurement scales in

measurement theory, the nominal scale, the ordinal

scale, the interval scale, and the ratio scale. Each of

these scales are used for different purposes and each

have different permissible mathematical

transformations or relations that may be applied to

them [4, 5, 6].

The ordinal scale as defined by Stevens is used to rank

data with respect to some attribute [4, 5, 6]. Ordinal

scales are used for ranking entities based on whether

they have “more” or “less” of the attribute in question

than another entity. There is no notion of “unit

distance” between objects in an ordinal scale [6]. Thus

we cannot say that “the distance between 4 and 8 is

the same as the distance between 8 and 12” as we can

in interval and ratio scales which are necessary for

transformations such as sums and products.

Consequently, relationships such as “3 units more” or

“2 units less” are meaningless without a unit distance,

and thus are also confined to interval and ratio scales.

The only permissible relationships on ordinal scales

are equality (Vulnerabilities a and b have the same

criticality) and the “is more than” and “is less than”

relations [5]. For example, “Vulnerability a is more

critical than vulnerability b”.

Because of the lack of a unit distance, medians are

meaningful on an ordinal scale but not means [4]. If

vulnerability a has a rating of 8 and vulnerability b has

rating of 4 on an ordinal scale, it is meaningful to say

that “Vulnerability a is more critical than vulnerability

b” but it is not meaningful to say something like

“Vulnerability a is twice as critical as vulnerability b”

or “The average vulnerability of a and b is 6.”

Most threat and risk prioritization schemes that we

have seen such as DREAD [7] and Failure Mode and

Effects Analysis (FMEA) [10] use ordinal values to

rate a threat or failure mode’s attributes. In order to

derive the overall risk, the attributes of a failure mode

or threat are subjected to impermissible mathematical

transformations like means and sums (DREAD) or

products (FMEA). This breaks the rules that govern

ordinal scales, and when looked at strictly from the

viewpoint of ordinal scales, renders the result quite

meaningless.

Researchers like Kmenta [8], and Bowles [3] have

pointed out these mathematical problems with respect

to FMEA and have recommended ways to solve this

problem by using pareto ranking procedures [3], or

probability and expected cost [8]. Fenton [4] notes that

some of the most basic rules and observations

governing measurement scales have been ignored in

many software measurement studies.

We have developed a new formal method for the

treatment of this problem. We call our system the k/m

algebra and all the operations of our algebra obey the

rules of the ordinal scale. This approach is novel

because we are not aware of any other methodology

that is used to summarize threats with multiple

ordinally rated attributes while preserving the meaning

of ordinal ranks and also respecting the rules that

govern the ordinal scales.

91

3. THE K/M ALGEBRA
This section introduces our new algebra (from now on

called the k/m algebra) and defines the objects and

operations allowed by this system. For the purposes of

this paper we have viewed this algebra as acting on

threats and have defined it accordingly. However, the

system is general enough that it can be used for

combining any group of entities rated with ordinal

attributes without any modifications.

3.1 Overview
The k/m algebraic system facilitates ordering n threats

with m attributes each of which are assigned one of k

ordinal values. All k/m operations respect the rules

that govern ordinal scales as defined by Stevens in

1946. [5].

The k/m algebra defines the equivalence classes into

which a specific threat can be placed. In the k/m

algebra, the equivalence classes are called k/m objects.

The ordering of these equivalence classes is

determined by the generic k/m algebra operation

called the k/m dominance operation. The following

subsections define the equivalence classes in the k/m

algebra, constructing the equivalence classes, and the

k/m dominance operation.

Assumption: For ease of discussion, it has been

assumed that an threat’s m attributes associated with

one of k ordinal values are represented as a m-tuple T

= (r1 ,.. ,rm) .

3.2 The k/m object
A k/m object O is an equivalence class denoted as a

collection of k numbers o1...ok ,the sum of which

equals m. The value of each oi in a k/m object is the

frequency of occurrence of i in every T that is a

member of this equivalence class. The following

example illustrates a k/m object.

Note: In this example and all the others that follow, it

has been assumed that entities have four attributes (m

= 4) and there are three ordinal ratings 1 – 3 (k = 3).

Example: Let R be a m-tuple representing a mulit-

attribute entity (i.e., a threat) as follows : T = (1, 2, 3,

3). The equivalence class into which we place T can

be determined as follows.

In this case k = 3 and m = 4. Hence the k/m object

will be comprised of 3 numbers o1...o3 , whose sum

equal 4. From T, we observe that there are two 3’s,

one 2, and one 1. To construct a k/m object for T, we

place the frequency of occurrence of 3 into o1 , the

frequency of occurrence of 2 into o2 and the

frequency of occurrence of 1 into o3. Thus, the k/m

object representing T’s equivalence class is 211.

3.3 The k/m dominance operation

Notation: >k/m (xa, xb)

Definition: The k/m dominance operation is defined

by the following rule. xa and xb are k/m objects

Example:

a. Let xa = 211 and xb = 013. From the

definition of k/m dominance, xa k/m

dominates xb. Thus, >k/m (211, 013) ⇒ true.

b. Let xa = 211 and xb = 310. From the

definition of k/m dominance, xb k/m

dominates xa. Thus, >k/m (211, 310)

⇒ false.

The k/m dominance operation is used for ordering the

equivalence classes which are k/m objects.

3.4 Equivalence classes and

prioritization
Threats are placed into different equivalence classes

based on their attributes’ ordinal ratings. Placing

threats into equivalence classes avoids the problem of

partially ordered sets during prioritization which

forces us into ad hoc “equivalent but different”

orderings that can result in inconsistent prioritization.

By placing threats into equivalence classes such as

k/m objects or classes with names like “High”,

“Medium”, and “Low”, we ensure that we have a total

ordering of the threats via these equivalence classes or

categories since the equivalence classes are ordered

and not the threats within those equivalence classes. If

threats T1 and T2 are determined to be equally

dangerous, then they are both placed into the same

equivalence class.

No two equivalence classes have the same priority,

and the k/m dominance operation in section 3.2 is the

axiom that defines the strict ordering of equivalence

classes. The concept of ordering equivalence classes is

certainly not new. Mostly the equivalent classes are

implicit. Let us look at some common cases beginning

with Microsoft’s DREAD ordering system [7]. The

initial DREAD system proposed used a 10 point

ranking (see section 4.1), and the average of the ranks

of each threat’s attributes was computed and used as

the overall risk value. Many threats can have the same

overall risk value. Thus each such value is an

equivalence class. Since the minimum ranking is 1 and

the maximum ranking 10, the overall risk can range

from 1 through 10. Assuming an accuracy of one

decimal place, there can be 91 equivalence classes {1,

1.1, 1.2, …, 9.9, 10}. Determining the ordering of

these equivalence classes is trivial. This is an example

92

of a system of implicit equivalent classes. A later

version of DREAD [9] using a 3 point scale

recommends adding the values of each threat’s

attributes, and placing threats into categories called

“High”, “Medium”, and “Low” based on their values.

In this case, the equivalence classes are quite explicit.

Again, ordering the equivalence classes is trivial.

In our system, the equivalence classes are k/m objects

and each k/m object is derived based on the frequency

of occurrence of ordinal rankings in threat data. If k =

3, and m = 4 then we can have the following

equivalence classes from the rules of k/m object

construction, {310, 202, 220, 121, 211, 004, 013, 301,

400, 130, 022, 031, 103, 112}. The ordering of these

equivalence classes is determined by the k/m

dominance operation.

We have thus presented a system in which we do not

have to resort to impermissible mathematical

transformations like addition and multiplication to

derive the equivalence classes into which threats can

then be placed, and have also presented a scheme for

ordering these equivalence classes.

4. CASE STUDY – DREAD
This section describes a case study that we undertook

in order to explore the ramifications of our k/m

algebra by applying it to existing threat prioritization

methodologies. We chose Microsoft’s DREAD

methodology for ranking and prioritizing threats as

our target methodology.

We first provide an overview of DREAD and then

describe the process of applying the k/m algebra to the

threats. We discovered that the ordering of threats

obtained by using the k/m algebra was significantly

different from the ordering obtained by using

DREAD’s ordering mechanism which makes us

believe that further research is needed into the k/m

algebra rankings and an empirical study needs to be

undertaken in order to determine if the ordering given

by the k/m algebra is better than the ordering given by

current methodologies.

4.1 DREAD – an overview
The following brief discussion is derived from

“Writing Secure Code” by Howard and LeBlanc [7].

DREAD is a risk calculating mechanism used by

Microsoft as part of their threat modeling process.

DREAD operates hand in hand with the STRIDE

mechanism which categorizes threats. DREAD is an

acronym each letter of which stands for a threat

attribute. Each of the attributes are ranked using one of

10 criticality ratings with 1 being the lowest rating and

10 being the highest (catastrophic) rating. The

attributes are

Damage Potential - How much damage will

be done if the threat is exploited by an

attacker ?

Reproducibility - How easy is it for an

attacker to exploit the threat?

Exploitability - How much skill does an

attacker need to have in order to exploit this

threat?

Affected Users - How many users will be

affected if this threat is exploited and an

attack were mounted?

Discoverability - How easy is it for an

attacker to discover this threat in order to

mount an attack?

Once all of the threat’s attributes have been ranked,

the mean of the five attribute ratings are taken and this

value is the perceived overall risk or equivalence class

of the threat. Once this process is done for all

identified threats, the threats are sorted by the overall

risk value in descending order for priority

determination. The astute reader will have observed

that the DREAD ratings are ordinal in nature, and

applying the mean operation on ordinal values breaks

the rules that govern ordinal values.

Swiderski and Snyder [11] recommend that the

DREAD ratings be on a narrower range (1-3) so that

each rating can have a simpler definition. Meier and

others [9] use a 1-3 rating for DREAD and perform

addition on the ordinal values instead of taking the

mean. Each threat in this scheme is handled as

follows. The threat’s attribute ranks are added up to

give each threat an overall value ranging from 5 – 15.

Threats are then grouped into three equivalence

classes or categories called “High” (12-15), “Medium”

(8 – 11), and “Low” (5 – 7). This scheme once again

breaks the rules of the ordinal scale since the

impermissible addition transformation is used.

We present two examples using our k/m algebra, one

using the 10 point DREAD ranking system and the

other using the 3 point DREAD ranking system. Table

1 shows 6 threats each of which have been assigned

DREAD ratings using the 10 point system. The threats

in table 1 are taken from [7]. In order to derive the 1-3

ratings to use in the second study, we assumed the

mapping shown in table 2. Table 3 shows the same

threats assigned DREAD ratings using the 3 point

system by using the mapping in table 2.

Using the 10 point DREAD system, the threats are

prioritized as {[T1], [T2], [T4], [T3], [T6], [T5]}, and

using the 3 point DREAD system, the threats are

prioritized as {[T1, T2, T3, T4], [T5, T6]}.

93

Table 1: DREAD data ranked using the 10 point

scale

Threat

ID

D R E A D Overall

Risk

T1 8 10 7 10 10 9

T2 7 7 7 10 10 8.2

T3 6 6 7 9 10 7.6

T4 10 5 5 10 10 8

T5 10 2 2 1 10 5

T6 10 2 2 8 10 6.4

Table 2: Mapping from a 10 point scale to a 3 point

scale

DREAD 10 point scale DREAD 3 point scale

1 - 3 1

4 - 7 2

8 – 10 3

Table 3: DREAD data ranked using the 3 point

scale

Threat

ID

D R E A D Sum Overall

rating

T1 3 3 2 3 3 14 High

T2 2 2 2 3 3 12 High

T3 2 2 2 3 3 12 High

T4 3 2 2 3 3 13 High

T5 3 1 1 1 3 9 Medium

T6 3 1 1 3 3 11 Medium

4.2 Applying the k/m algebra to

threats ranked using DREAD
The first step in applying the k/m algebra to the threats

in table 1 and table 3 is to assign an equivalence class

or k/m object to each threat. For the data in table 1, m

= 5 and k = 10. For the data in table 3, m = 5 and k =

3. We assume that we are given the threat data as 5-

tuples. For example the data for threat T1 from table 1

would be represented as T1= (8,10,7,10,10). From

section 3.2, the corresponding k/m object for T1 would

be 3111000000. Table 4 shows all the threats from

table 1 mapped into k/m objects, and table 5 shows all

the threats from table 3 mapped into k/m objects.

We now apply the k/m dominance operation from

section 3.3 to the k/m objects in tables 4 and 5 in order

to get the two prioritization orders for the equivalence

classes.

Table 4: Mapping threats attributes to k/m objects

using a 10 point scale

Threat Data k/m object

T1=(8, 10, 7, 10, 10) 3 0 1 1 0 0 0 0 0 0

T2=(7, 7, 7, 10, 10) 2 0 0 3 0 0 0 0 0 0

T3=(6, 6, 7, 9, 10) 1 1 0 1 2 0 0 0 0 0

T4=(10, 5, 5, 10, 10) 3 0 0 0 0 2 0 0 0 0

T5=(10, 2, 2, 1, 10) 2 0 0 0 0 0 0 0 2 1

T6=(10, 2, 2, 8, 10) 2 0 1 0 0 0 0 0 2 0

Table 5: Mapping threat attributes to k/m objects

using a 3 point scale

The prioritization order for the threats in table 4 is

{[T1], [T4], [T2], [T6], [T5], [T3]}, and the prioritization

order for the threats in table 5 is {[T1], [T4], [T6], [T2,

T3], [T5]}.

Observe that in both examples, the k/m dominance

operation produced significantly different

prioritization orders when compared to the

prioritization orders produced by the corresponding

DREAD systems. We feel that this result is

significant.

The fact that our k/m algebra, using scale-permissible

transformations resulted in a different prioritization

order of threats than techniques using scale-

impermissible transformations is a very interesting

result. One explanation, of course, is that our

prioritization is indeed incorrect, and using scale-

permissible transformations is counterproductive (of

course, this begs the question as to which of the 10-

point or 3-point DREAD prioritizations is the correct

one). However, an alternate explanation is that our

prioritization is superior to both the 10-point and 3-

point DREAD prioritizations, and by using scale-

permissible transformations, we have not added to any

information that was in the original analysis.

Further research is needed to validate our approach.

As a result of this finding, we have decided to

undertake further research in order to find out the

significance in difference in the orderings produced.

Our ultimate goal is to be able to determine with

certainty the answer to the question “Does our k/m

algebra produce a better prioritization of threats when

compared to existing methodologies?”

Threat Data k/m object

T1=(3, 3, 2, 3, 3) 4 1 0

T2=(2, 2, 2, 3, 3) 2 3 0

T3=(2, 2, 2, 3, 3) 2 3 0

T4=(3, 2, 2, 3, 3) 3 2 0

T5=(3, 1, 1, 1, 3) 2 0 3

T6=(3, 1, 1, 3, 3) 3 0 2

94

5. FUTURE WORK
In order to further validate our k/m algebra and

achieve our goal as stated in the previous section, we

intend to apply our algebra to large datasets of

DREAD data and also to other security risk analysis

techniques and determine empirically whether our

ranking scheme is better at prioritizing threats than

existing methodologies.

Since our ordering scheme works on any entity with

multiple ordinally rated attributes, we are also

considering extending our research and experimenting

with our algebra on standard techniques like Failure

Modes and Effects Analysis (FMEA) which also use

ordinally rated attributes for failure modes [10] and

comparing the results. In order to prioritize large

datasets of threats quickly, we are also developing a

software environment that will facilitate threat model

analysis and automatically perform the prioritization.

6. CONCLUSION
We described a new methodology, the k/m algebra for

prioritizing threats during threat modeling of software

applications. We showed that our k/m algebra

performed the prioritization of threats while fully

respecting the rules that govern ordinal values unlike

existing methodologies. We also presented

experimental evidence that the prioritization order

produced by our algebra was significantly different

from the order that was produced by an existing

methodology. This result is very promising and

exciting since we have arrived at a different threat

prioritization ordering by using our k/m algebra

without having to resort to impermissible

mathematical transformations on ordinal data.

7. REFERENCES
[1] Alberts, C. and Dorofee, A. Managing

Information Security Risks: The OCTAVE

Approach, Addison-Wesley Professional, July

2002

[2] Anderson, R.J. Security Engineering: A Guide to

Building Dependable Distributed Systems ,

Wiley, January 2001

[3] Bowles, J.B., The new SAE FMECA standard,

Proceedings of the Annual Reliability and

Maintainability Symposium, 19-22 Jan. 1998 pp.

48 – 53

[4] Fenton, N, "Software Measurement: A Necessary

Scientific Basis", IEEE Transactions on Software

Engineering, Vol. 20, No. 3, March 1994.

[5] Finkelstein, L. and M. Leaning. A review of

fundamental concepts of measurement,

Measurement Vol 2, Issue 1, pp. 25--34.

[6] Harrison, W. Software Measurement: A

Decision-Process Approach. Advances in

Computers 39: 1994, pp. 51-105

[7] Howard, M., and LeBlanc, D. Writing Secure

Code, Second Edition, Microsoft Press ,

December 2002

[8] Kmenta, S., Ishii,K. “Scenario-Based FMEA: A

Life Cycle Cost Perspective”, Proceedings.

ASME Design Engineering Technical Conf.

Baltimore, MD, 2000

[9] Meier, J.D., Mackman, A., Dunner, M.,

Vasireddy, S., Escamilla, R. and Murukan, A.

Improving Web Application Security: Threats

and Countermeasures, Microsoft Corporation,

June 2003

[10] Procedures for Performing Failure Mode Effects

and Criticality Analysis, US MIL_STD_1629

Nov. 1974, US MIL_STD_1629A Nov. 1980, US

MIL_STD_1629A/Notice 2, Nov. 1984.

[11] Swiderski, S., and Snyder, W. Threat Modeling,

Microsoft Press, July 2004

95

	sp0213.pdf
	Summary
	Workshop CALL FOR PAPERS (SSATTM'05)
	Workshop Program
	Where do Software Security Assurance Tools Add Value – David
	SAMATE Reference Dataset “Target Practice”
	Introduction

	allpapers-acm.pdf
	unlocked_WhereDoSSAToolsAddValue-revised-copyright.pdf
	INTRODUCTION
	BACKGROUND Œ THE ASSURANCE PROBLEM
	Lifecycle of a Secure Product
	Common Criteria Evaluation & Practical Security

	CLASSIFICATION OF ASSURANCE TOOLS AND TECHNOLOGIES
	POTENTIAL BENEFITS
	Tools employed in development
	For evaluators
	Functional requirements
	Evolution of the CC Evaluation Scheme

	CONCLUSIONS & FUTURE WORK
	Applicability of Tools

	REFERENCES
	Varieties of assurance
	Future Work

	ACKNOWLEDGMENTS

	Kratkiewicz-LippmannLongbeach-Workshop3.pdf
	INTRODUCTION
	2. BUFFER OVERFLOW TAXONOMY
	3. TEST SUITE
	4. EXAMPLE TEST CASE USAGE
	5. RESULTS AND ANALYSIS
	6. Detailed Tool Diagnostics
	7. CONCLUSIONS
	8. ACKNOWLEDGMENTS
	9. REFERENCES

	Morales-Clarke-Deng-final.pdf
	1. INTRODUCTION
	2. BACKGROUND
	3. RELATED WORK
	4. TESTING AND EVALUATION
	4.1 Formal Model of Virus Transformation
	4.2 Test Categories
	5. TEST IMPLEMENTATION
	5.1 Testing Environment
	5.2 Description of Test Cases
	1. Transposition of Source Code
	2. Insertion of Trash Source Code
	3. Substitution of Source Code
	4. Label Renaming
	
	5. Compression of a Virus Executable

	6. TEST RESULTS
	7. CONCLUSION
	8. ACKNOWLEDGEMENTS
	9. REFERENCES

	Ren.pdf
	INTRODUCTION
	RELATED WORK
	Architectural Connectors
	UML-based Security Modeling

	SECURE xADL
	Overview of xADL
	Modeling Architectural Security
	Access Control
	Subject, Resource, Privilege, Safeguard, Policy
	Contexts of Architectural Access Control
	Components: supply security contract
	Connectors: regulate and enforce contract
	Syntax of Secure xADL

	A CASE STUDY: COALITION
	The Original Architecture
	An Alternative Architecture with a Secure Connector
	The Architectural Policies

	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

	copyright: Copyright (c) 2005, Association for Computing Machinery. ACM acknowledges that this contribution was authored or
co-authored by an affiliate of the U.S. Government. As such, the Government retains a nonexclusive, royalty-free
right to publish or reproduce this article, or to allow others to do so, for Government purposes only.
SSATTM'05, 11/7-11/8/05, Long Beach, CA, USA.
(c) 2005 ACM 1-59593-307-7/05/11

