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Abstract: 
 
The NIST SAMATE project conducted the first Static Analysis Tool Exposition 
(SATE) in 2008 to advance research in static analysis tools that find security 
defects in source code. The main goals of SATE were to enable empirical 
research based on large test sets and to encourage improvement and speed 
adoption of tools. The exposition was planned to be an annual event. 
 

Briefly, participating tool makers ran their tool on a set of programs. Researchers 
led by NIST performed a partial analysis of tool reports. The results and 
experiences were reported at the Static Analysis Workshop in Tucson, AZ, in 
June, 2008. The tool reports and analysis were made publicly available in 2009. 
 

This special publication consists of the following papers. “Review of the First 
Static Analysis Tool Exposition (SATE 2008),” by Vadim Okun, Romain 
Gaucher, and Paul E. Black, describes the SATE procedure, provides observations 
based on the data collected, and critiques the exposition, including the lessons 
learned that may help future expositions. Paul Anderson’s “Commentary on 
CodeSonar’s SATE Results” has comments by one of the participating tool 
makers. Steve Christey presents his experiences in analysis of tool reports and 
discusses the SATE issues in “Static Analysis Tool Exposition (SATE 2008) 
Lessons Learned: Considerations for Future Directions from the Perspective of a 
Third Party Analyst”. 

 

Keywords: 
Software security; static analysis tools; security weaknesses; vulnerability 

 
 
 
 
 
 
 
 
 
 
 
 
 
Any commercial product mentioned is for information only. It does not imply 
recommendation or endorsement by NIST nor does it imply that the products mentioned 
are necessarily the best available for the purpose. 
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Abstract 
The NIST SAMATE project conducted the first Static Analysis Tool Exposition (SATE) 
in 2008 to advance research in static analysis tools that find security defects in source 
code. The main goals of SATE were to enable empirical research based on large test sets 
and to encourage improvement and speed adoption of tools. The exposition was planned 
to be an annual event. 

Briefly, participating tool makers ran their tool on a set of programs. Researchers led by 
NIST performed a partial analysis of tool reports. The results and experiences were 
reported at the Static Analysis Workshop in Tucson, AZ, in June, 2008. The tool reports 
and analysis were made publicly available in 2009. 

This paper describes the SATE procedure, provides our observations based on the data 
collected, and critiques the exposition, including the lessons learned that may help future 
expositions. This paper also identifies several ways in which the released data and 
analysis are useful. First, the output from running many tools on production software can 
be used for empirical research. Second, the analysis of tool reports indicates weaknesses 
that exist in the software and that are reported by the tools. Finally, the analysis may also 
be used as a building block for a further study of the weaknesses and of static analysis. 

Disclaimer 

Certain instruments, software, materials, and organizations are identified in this paper to 
specify the exposition adequately. Such identification is not intended to imply 
recommendation or endorsement by NIST, nor is it intended to imply that the 
instruments, software, or materials are necessarily the best available for the purpose. 

 

                                                 
1 Romain Gaucher is currently with Cigital, Inc. When SATE was conducted, he was with NIST. 
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Cautions on Interpreting and Using the SATE Data 

SATE 2008 was the first such exposition that we conducted, and it taught us many 
valuable lessons. Most importantly, our analysis should NOT be used as a direct source 
for rating or choosing tools; this was never the goal of SATE. 

There is no metric or set of metrics that is considered by the research community to 
indicate all aspects of tool performance. We caution readers not to apply unjustified 
metrics based on the SATE data. 

Due to the variety and different nature of security weaknesses, defining clear and 
comprehensive analysis criteria is difficult. As SATE progressed, we realized that our 
analysis criteria were not adequate, so we adjusted the criteria during the analysis phase. 
As a result, the criteria were not applied consistently. For instance, we were inconsistent 
in marking the severity of the warnings where we disagreed with tool’s assessment. 

The test data and analysis procedure employed have serious limitations and may not 
indicate how these tools perform in practice. The results may not generalize to other 
software because the choice of test cases, as well as the size of test cases, can greatly 
influence tool performance. Also, we analyzed a small, non-random subset of tool 
warnings and in many cases did not associate warnings that refer to the same weakness. 

The tools were used in this exposition differently from their use in practice. In practice, 
users write special rules, suppress false positives, and write code in certain ways to 
minimize tool warnings. 

We did not consider the user interface, integration with the development environment, 
and many other aspects of the tools. In particular, the tool interface is important for a user 
to efficiently and correctly understand a weakness report. 

Participants ran their tools against the test sets in February 2008. The tools continue to 
progress rapidly, so some observations from the SATE data may already be obsolete. 

Because of the above limitations, SATE should not be interpreted as a tool testing 
exercise. The results should not be used to make conclusions regarding which tools are 
best for a particular application or the general benefit of using static analysis tools. In this 
paper, specifically Section 5, we suggest ways in which the SATE data might be used. 
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1 Introduction 
Static Analysis Tool Exposition (SATE) was designed to advance research in static 
analysis tools that find security-relevant defects in source code. Briefly, participating tool 
makers ran their tool on a set of programs. Researchers led by NIST performed a partial 
analysis of tool reports. The results and experiences were reported at the Static Analysis 
Workshop (SAW) [20]. The tool reports and analysis were made publicly available in 
2009. SATE had these goals: 

• To enable empirical research based on large test sets  
• To encourage improvement of tools  
• To speed adoption of the tools by objectively demonstrating their use on 

production software  

Our goal was not to evaluate nor choose the "best" tools. 

SATE was aimed at exploring the following characteristics of tools: relevance of 
warnings to security, their correctness, and prioritization. Due to the way SATE was 
organized, we considered the textual report produced by the tool, not its user interface. A 
tool’s user interface is very important for understanding weaknesses. There are many 
other factors in determining which tool (or tools) is appropriate in each situation 

SATE was focused on static analysis tools that examine source code to detect and report 
weaknesses that can lead to security vulnerabilities. Tools that examine other artifacts, 
like requirements, byte code or binary, and tools that dynamically execute code were not 
included. 

SATE was organized and led by the NIST SAMATE team [15]. The tool reports were 
analyzed by a small group of analysts, consisting, primarily, of the NIST and MITRE 
researchers. The supporting infrastructure for analysis was developed by the NIST 
researchers. Since the authors of this report were among the organizers and the analysts, 
we sometimes use the first person plural (we) to refer to analyst or organizer actions. 

In this paper, we use the following terminology. A vulnerability is a property of system 
security requirements, design, implementation, or operation that could be accidentally 
triggered or intentionally exploited and result in a security failure [18]. A vulnerability is 
the result of one or more weaknesses in requirements, design, implementation, or 
operation. A warning is an issue (usually, a weakness) identified by a tool. A (tool) 
report is the output from a single run of a tool on a test case. A tool report consists of 
warnings. 

Researchers have studied static analysis tools and collected test sets. Zheng et. al [23] 
analyzed the effectiveness of static analysis tools by looking at test and customer-
reported failures for three large-scale network service software systems. They concluded 
that static analysis tools are effective at identifying code-level defects. Several collections 
of test cases with known security flaws are available [11] [24] [12] [16]. Several 
assessments of open-source projects by static analysis tools have been reported recently 
[1] [5] [9]. A number of studies have compared different static analysis tools for finding 
security defects, e.g., [14] [11] [24] [10] [13] [4].  SATE is different in that many 
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participants ran their own tools on a set of open source programs. Also, SATE’s goal is to 
accumulate test data, not to compare tools. 

The rest of the paper is organized as follows. Section 2 describes the SATE 2008 
procedure. Since we made considerable changes and clarifications to the SATE procedure 
after it started, Section 2 also describes the procedure in its final form. See Section 4 for a 
discussion of some of the changes to the procedure and the reasons for making them. 
Appendix A contains the SATE plan that participants faced early on. 

Section 3 gives our observations based on the data collected. In particular, our 
observations on the difficulty of differentiating weakness instances are in Section 3.4. 
Section 4 is our review of the exposition. It describes reasons for our choices, changes to 
the procedure that we made, and also lists the limitations of the exposition. Section 5 
summarizes conclusions and outlines future plans. 

2 SATE Organization 
The exposition had two language tracks: C track and Java track. At the time of 
registration, participants specified which track(s) they wished to enter. We performed 
separate analysis and reporting for each track. Also at the time of registration, 
participants specified the version of the tool that they intended to run on the test set(s). 
We required the tool version to have a release or build date that is earlier than the date 
when they received the test set(s). 

2.1 Steps in the SATE procedure 

The following summarizes the steps in the SATE procedure. Deadlines are given in 
parentheses. 

• Step 1 Prepare 
o Step 1a Organizers choose test sets 
o Step 1b Tool makers sign up to participate (by 8 Feb 2008) 

• Step 2 Organizers provide test sets via SATE web site (15 Feb 2008) 
• Step 3 Participants run their tool on the test set(s) and return their report(s) (by 29 

Feb 2008) 
o Step 3a (optional) Participants return their review of their tool's report(s) 

(by 15 Mar 2008) 
• Step 4 Organizers analyze the reports, provide the analysis to the participants (by 

15 April 2008) 
o Step 4a (Optional) Participants return their corrections to the analysis (by 

29 April 2008) 
o Step 4b Participants receive an updated analysis (by 13 May 2008) 
o Step 4c Participants submit a report for SAW (by 30 May 2008) 

• Step 5 Report comparisons at SAW (June 2008) 
• Step 6 Publish results (Originally planned for Dec 2008, but delayed until June 

2009) 
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2.2 Test Sets 

We list the test cases we selected, along with some statistics for each test case, in Table 1. 
The last two columns give the number of files and the number of non-blank, non-
comment lines of code (LOC) for the test cases. The counts for C test cases include 
source (.c) and header (.h) files. The counts for the Java test cases include Java (.java) 
and JSP (.jsp) files. The counts do not include source files of other types: make files, 
shell scripts, Perl, PHP, and SQL. The lines of code were counted using SLOCCount by 
David A. Wheeler [22]. 

Test case Track Description Version # Files # LOC  
Naim C Console instant messenger 0.11.8.3.1 44 23,210 
Nagios C Host, service and network monitoring 2.10 73 65,133 
Lighttpd C Web server 1.4.18 144 38,306 
OpenNMS Java Network management system 1.2.9 1065 131,507 
MvnForum Java Forum 1.1 839 128,784 
DSpace Java Document management system 1.4.2 388 53,847 

Table 1 Test cases 

The links to the test case developer web sites, as well as links to download the versions 
analyzed, are available at the SATE web page [19]. 

2.3 Participants 

Table 2 lists, alphabetically, the participating tools and the tracks in which the tools were 
applied. Although our focus is on automated tools, one of the participants, Aspect 
Security, performed a human code review. Another participant, Veracode, performed a 
human review of its reports to remove anomalies such as high false positives in a 
particular weakness category. 

2.4 Tool Runs and Submissions 

Participants ran their tools and submitted reports following specified conditions. 

• Participants did not modify the code of the test cases. 
• For each test case, participants did one or more runs and submitted the report(s). 

See below for more details. 
• Except for Aspect Security and Veracode, the participants did not do any hand 

editing of tool reports. Aspect Security performed a manual review. Veracode 
performed a human quality review of its reports to remove anomalies such as high 
false positives in a particular weakness category.  This quality review did not add 
any new results. 

• Participants converted the reports to a common XML format. See Section 2.6.1 
for description of the format. 

• Participants specified the environment (including the operating system and 
version of compiler) in which they ran the tool. These details can be found in the 
SATE tool reports available at [19]. 
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Tool Version Tracks 
Aspect Security ASC2 2.0 Java 
Checkmarx CxSuite 2.4.3 Java 
Flawfinder3  1.27 C 
Fortify SCA  5.0.0.0267 C, Java 
Grammatech CodeSonar  3.0p0 C 
HP DevInspect45  5.0.5612.0 Java 
SofCheck Inspector for Java  2.1.2 Java 
University of Maryland FindBugs  1.3.1 Java 
Veracode SecurityReview6  As of 02/15/2008 C, Java 

Table 2 Participating tools 

Most participants submitted one tool report per test case for the track(s) that they 
participated in. HP DevInspect analyzed DSpace only. They were not able to setup 
analysis of the other Java test cases before the deadline. 

Fortify submitted additional runs of their tool with the –findbugs option. Due to lack of 
time we did not analyze the output from these runs. For MvnForum, Fortify used a 
custom rule, which was included in their submission. No other tool used custom rules. In 
all, we analyzed the output from 31 tool runs: 6 each from Fortify and Veracode (each 
participated in 2 tracks), 1 from HP DevInspect, and 3 each from the other 6 tools. 

Several participants also submitted the original reports from their tools, in addition to the 
reports in the SATE output format. During our analysis, we used some of the information 
(details of weakness paths) from some of the original reports to better understand the 
warnings. 

Grammatech CodeSonar uses rank (a combination of severity and likelihood) instead of 
severity. All warnings in their submitted reports had severity 1. We changed the severity 
field for some warning classes in the CodeSonar reports based on the weakness names. 

2.5 Analysis of Tool Reports 

For selected tool warnings, we analyzed up to three of the following characteristics. First, 
we associated together warnings that refer to the same weakness. (See Section 3.4 for a 
discussion of what constitutes a weakness.) Second, we assigned severity to warnings 
when we disagreed with the severity assigned by the tool. Often, we gave a lower 
severity to indicate that in our view, the warning was not relevant to security. Third, we 
analyzed correctness of the warnings. During the analysis phase, we marked the warnings 
as true or false positive. Later, we decided not to use the true/false positive markings. 
Instead, we marked as "confirmed" the warnings that we determined to be correctly 
reporting a weakness. We marked as "unconfirmed" the rest of the warnings that we 
analyzed or associated. In particular, this category includes the warnings that we analyzed 
                                                 
2 Performed a manual review, used only static analysis for SATE; ASC stands for Application Security 
Consultant – there is no actual product by that name 
3 Romain Gaucher ran David Wheeler’s Flawfinder 
4 A hybrid static/dynamic analysis tool, but used only static part of the tool for SATE 
5 Analyzed one test case - DSpace 
6 A service 
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but were not sure whether they were correct. We discuss the reasons for using confirmed 
and unconfirmed in Section 4.2. Also, we included our comments about warnings. 

2.5.1 Analysis Procedure 

We used both human and (partially) automated analyses. Humans analyzed warnings 
using the following procedure. First, an analyst searched for warnings. We focused our 
efforts on warnings with severity 1 or 2 (as reported by the tools). We analyzed some 
lower severity warnings, either because they were associated with higher severity 
warnings or because we found them interesting. An analyst usually concentrated his 
efforts on a specific test case, since the knowledge of the test case that he gained enabled 
him to analyze other warnings for the same test case faster. Similarly, an analyst often 
concentrated textually, e.g., choosing warnings near by in the same source file. An 
analyst also tended to concentrate on warnings of the same type. 

After choosing a particular warning, the analyst studied the relevant parts of the source 
code. If he formed an opinion, he marked correctness, severity, and/or added comments. 
If he was unsure about an interesting case, he may have investigated further by, for 
instance, extracting relevant code into a simple example and/or executing the code. Then 
the analyst proceeded to the next warning.  

Below are two common scenarios for an analyst’s work. 

Search → View list of warnings → Choose a warning to work on → View source code of 
the file → Return to the warning → Submit an evaluation 

Search → View list of warnings → Select several warnings → Associate the selected 
warnings 

Sometimes, an analyst may have returned to a warning that had already been analyzed, 
either because he changed his opinion after analyzing similar warnings or for other 
reasons. 

To save time, we used heuristics to partially automate the analysis of some similar 
warnings. For example, when we determined that a particular source file is executed 
during installation only, we downgraded severity of certain warning types referring to 
that source file. 

Additionally, a tool to automate the analysis of buffer warnings reported by Flawfinder 
was developed by one of the authors [6]. The tool determined source and destination 
buffers, identified the lines of code involving these buffers, and analyzed several types of 
actions on the buffers, including allocation, reallocation, computing buffer size, 
comparisons, and test for NULL after allocation. The tool then made a conclusion 
(sometimes incorrectly) about correctness of the warning. The conclusions were reviewed 
manually.  

2.5.2 Practical Analysis Aids 

To simplify querying of tool reports, we imported all reports into a relational database 
designed for this purpose. 
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To support human analysis of warnings, we developed a web interface which allows 
searching the warnings based on different search criteria, viewing individual warnings, 
marking a warning with human analysis which includes opinion of correctness, severity, 
and comments, studying relevant source code files, associating warnings that refer to the 
same weakness, etc. 

2.5.3 Optional Steps 

We asked participants to review their tool reports and provide their findings (optional 
step 3a in Section 2.1). SofCheck submitted a review of their tool’s warnings. 

We also asked participants to review our analysis of their tool warnings (optional step 4a 
in Section 2.1). Grammatech submitted a review of our analysis. Based on Grammatech’s 
comments, we re-examined our analysis for the relevant warnings and changed our 
conclusions for some of the warnings. 

2.5.4 Analysis Criteria 

This section describes the criteria that we used for associating warnings that refer to the 
same weakness and also for marking correctness and severity of the warnings. We 
marked severity of a warning whenever we disagreed with the tool. The limitations of the 
criteria are discussed in Section 4.2. 

Correctness and severity are orthogonal. Confirmed means that we determined that the 
warning correctly reports a weakness. Severity attempts to address security relevance. 

Criteria for analysis of correctness 

In our analysis we assumed that 

• A tool has (or should have) perfect knowledge of control/data flow that is 
explicitly in the code. 

o For example, if a tool reports an error caused by unfiltered input, but in 
fact the input is filtered correctly, mark it as false. 

o If the input is filtered, but the filtering is not complete, mark it as true. 
This is often the case for cross-site scripting weaknesses. 

o If a warning says that a function can be called with a bad parameter, but in 
the test case it is always called with safe values, mark the warning as false. 

• A tool does not know about context or environment and may assume the worst 
case. 

o For example, if a tool reports a weakness that is caused by unfiltered input 
from command line or from local files, mark it as true. The reason is that 
the test cases are general purpose software, and we did not provide any 
environmental information to the participants. 

Criteria for analysis of severity 

We used an ordinal scale of 1 to 5, with 1 - the highest severity. We assigned severity 4 
or 5 to warnings that were not likely to be security relevant. 
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We focused our analysis on issues with severity 1 and 2. We left the severity assigned by 
the tool when we agreed with the tool. We assigned severity to a warning when we 
disagreed with the tool. 

Specifically, we downgraded severity in these cases: 

• A warning applies to functionality which may or may not be used securely. If the 
tool does not analyze the use of the functionality in the specific case, but provides 
a generic warning, we downgrade the severity to 4 or 5. For example, we 
downgrade severity of general warnings about use of getenv. 

• A weakness is unlikely to be exploitable in the usage context. Note that the tool 
does not know about the environment, so it is correct in reporting such issues. 

o For example, if input comes from configuration file during installation, we 
downgrade severity. 

o We assume that regular users cannot be trusted, so we do not downgrade 
severity if input comes from a user with regular login credentials. 

• We believe that a class of weaknesses is less relevant to security. 

Correctness and severity criteria applied to XSS 

After analyzing different cross-site scripting (XSS) warnings, we realized that it is often 
very hard to show that an XSS warning is false (i.e., show that the filtering is complete). 
The following are the cases where an XSS warning can be shown to be false (based on 
our observations of the SATE test cases). 

• Typecasting – the input string is converted to a specific type, such as Boolean, 
integer, or other immutable and simple type. For example, Integer::parseInt 
method is considered safe since it returns a value with an integer type.  

• Enumerated type - a variable can have a limited set of possible values. 

We used the following criteria for assigning severity. 

• Severity 1 – no basic validation, e.g., the characters “<>” are not filtered. 

• Severity 2 – vulnerable to common attack vectors, e.g., there is no special 
characters replacement (CR, LF), no extensive charset checking. 

• Severity 3 – vulnerable to specific attacks, for example, exploiting the date 
format. 

• Severity 4 – needs specific credential to inject, for example, attack assumes that 
the administrator inserted malicious content into the database. 

• Severity 5 – not a security problem, for example, a tainted variable is never 
printed in XSS sensitive context, meaning, HTML, XML, CSS, JSON, etc. 

Criteria for associating warnings 

Tool warnings may refer to the same weakness. (The notion of distinct weaknesses may 
be unrealistic.  See Section 3.4 for a discussion.) In this case, we associated them, so that 
any analysis for one warning applied to every warning. 
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The following criteria apply to weaknesses that can be described using source-to-sink 
paths. A source is where user input can enter a program. A sink is where the input is 
used. 

• If two warnings have the same sink, but the sources are two different variables, do 
not associate these warnings. 

• If two warnings have the same source and sink, but paths are different, associate 
these warnings, unless the paths involve different filters. 

• If the tool reports only the sink, and two warnings refer to the same sink and use 
the same weakness name, associate these warnings, since we may have no way of  
knowing which variable they refer to. 

2.6 SATE Data Format 

All participants converted their tool output to the common SATE XML format. Section 
2.6.1 describes this tool output format. Section 2.6.2 describes the extension of the SATE 
format for storing our analysis of the warnings. Section 2.6.3 describes the format for 
storing the lists of associations of warnings. 

2.6.1 Tool Output Format 

In devising the tool output format, we tried to capture aspects reported textually by most 
tools. In the SATE tool output format, each warning includes: 

• Id - a simple counter. 
• (Optional) tool specific id. 
• One or more locations, where each location is line number and pathname. 
• Name (class) of the weakness, e.g., “buffer overflow”. 
• (Optional) CWE id, where applicable. 
• Weakness grade (assigned by the tool): 

o Severity on the scale 1 to 5, with 1 - the highest. 
o (Optional) probability that the problem is a true positive, from 0 to 1. 

• Output - original message from the tool about the weakness, either in plain text, 
HTML, or XML. 

• (Optional) An evaluation of the issue by a human; not considered to be part of 
tool output. Note that each of the following fields is optional. 

o Severity as assigned by the human; assigned by the human whenever the 
human disagrees with the severity assigned by tool. 

o Opinion of whether the warning is a false positive: 1 – false positive, 0 – 
true positive. 

o Comments. 

The XML schema file for the tool output format and an example are available at the 
SATE web page [19]. 

2.6.2 Evaluated Tool Output Format 

The evaluated tool output format, including our analysis of tool warnings, has several 
fields in addition to the tool output format above. Specifically, each warning has another 
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id (UID), which is unique across all tool reports. Also, the evaluation section has these 
additional optional fields: 

• Confirmed – “yes” means that the human determined that the warning is correctly 
reporting a weakness. 

• Stage – a number that roughly corresponds to the step of the SATE procedure, in 
which the evaluation was added: 

o Stage 3 – (optional) participants’ review of their own tool’s report. 
o Stage 4 – review by the SATE analysts. 
o Stage 5 – (optional) corrections by the participants. No participant 

submitted corrections in the xml format at that stage; however, 
Grammatech submitted a detailed document with corrections to our 
analysis of their tool’s warnings. 

o Stage 6 – updates by the SATE analysts. 
• Author – author of the evaluation. For each warning, the evaluations by SATE 

analysts were combined together and a generic name – “evaluators” - was used. 

Additionally, the evaluated tool output format allows for more than one evaluation 
section per warning. 

2.6.3 Association List Format 

The association list consists of sets of unique warning ids (UID), where each set 
represents a group of associated warnings. (See Section 3.4 for a discussion of the 
concept of unique weaknesses.)  There is one list per test case. Each set occupies a single 
line, which is a tab separated list of UIDs. For example, if we determined that UID 441, 
754, and 33201 refer to the same weakness, we associated them. They are represented as: 

441 754 33201 

3 Data and Observations 
This section describes our observations based on our analysis of the data collected. 

3.1 Warning Categories 

The tool outputs contain 104 different valid CWE ids; in addition, there are 126 weakness 
names for warnings that do not have a valid CWE id. In all, there are 291 different 
weakness names. This exceeds 104+126, since tools sometimes use different weakness 
names for the same CWE id. In order to simplify the presentation of data in this report, 
we placed warnings into categories based on the CWE id and the weakness name, as 
assigned by tools. 

Table 3 describes the weakness categories. The detailed list is part of the released data 
available at the SATE web page [19]. Some categories are individual weakness classes 
such as XSS; others are broad groups of weaknesses. We included categories based on 
their prevalence and severity. The categories are derived from [3], [21], and other 
taxonomies. We designed this list specifically for presenting the SATE data only and do 
not consider it to be a generally applicable classification. We use abbreviations of 
weakness category names (the second column of Table 3) in Sections 3.2 and 3.3. 
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Name Abbre-
viation 

Description Example types of 
weaknesses 

Cross-site 
scripting 
(XSS). 

xss The software does not sufficiently validate, 
filter, escape, and encode user-controllable 
input before it is placed in output that is used 
as a web page that is served to other users. 

Reflected XSS, 
stored XSS 

SQL 
injection 

sql-inj The software dynamically generates an SQL 
query based on user input, but it does not 
sufficiently prevent the input from modifying 
the intended structure of the query. 

Blind SQL injection, 
second order SQL 
injection 

Buffer errors buf Buffer overflows (reading or writing data 
beyond the bounds of allocated memory) and 
use of functions that lead to buffer overflows 

Buffer overflow and 
underflow, 
unchecked array 
indexing, improper 
null termination 

Numeric 
errors 

num-err Improper calculation or conversion of 
numbers 

Integer overflow, 
incorrect numeric 
conversion, divide by 
zero 

Command 
injection 

cmd-inj The software fails to adequately filter 
command (control plane) syntax from user-
controlled input (data plane) and then allows 
potentially injected commands to execute 
within its context. 

OS command 
injection 

Cross-site 
request 
forgery 
(CSRF) 

csrf The web application does not, or can not, 
sufficiently verify whether a well-formed, valid, 
consistent request was intentionally provided 
by the user who submitted the request. 

 

Race 
condition 

race The code requires that certain state not be 
modified between two operations, but a timing 
window exists in which the state can be 
modified by an unexpected actor or process. 

File system race 
condition, signal 
handling 

Information 
leak 

info-leak The intentional or unintentional disclosure of 
information to an actor that is not explicitly 
authorized to have access to that information 

Verbose error 
reporting, system 
information leak 

Broad categories 
Improper 
input 
validation 

input-val Absent or incorrect protection mechanism that 
fails to properly validate input 

Log forging, LDAP 
injection, resource 
injection, file injec-
tion, path manipula-
tion, HTTP response 
splitting, uncontrolled 
format string 

Security 
features 

sec-feat Security features, such as authentication, 
access control, confidentiality, cryptography, 
and privilege management 

Hard-coded 
password, insecure 
randomness, least 
privilege violation 

Improper 
error 
handling 

err-handl An application does not properly handle 
errors that occur during processing 

Incomplete, missing 
error handling, 
missing check 
against null 

Insufficient 
encapsula-
tion 

encaps The software does not sufficiently 
encapsulate critical data or functionality 

Trust boundary 
violation, leftover 
debug code 
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Name Abbre-
viation 

Description Example types of 
weaknesses 

API abuse api-
abuse 

The software uses an API in a manner 
contrary to its intended use 

Heap inspection, use 
of inherently 
dangerous function 

Time and 
state 

time-
state 

Improper management of time and state in an 
environment that supports simultaneous or 
near-simultaneous computation by multiple 
systems, processes, or threads 

Concurrency weak-
nesses, session 
management 
problems 

Quality 
problems 

quality Features that indicate that the software has 
not been carefully developed or maintained 

Null pointer dere-
ference, dead code, 
uninitialized variable, 
resource manage-
ment problems, incl. 
denial of service due 
to unreleased re-
sources, use after 
free, double unlock, 
memory leak 

Uncatego-
rized 

uncateg Other issues that we could not easily assign 
to any category 

 

Table 3 Weakness categories 

Some weakness categories in Table 3 are subcategories of other, broader, categories. 
First, Cross-site scripting (XSS), SQL injection, and Command injection are kinds of 
improper input validation. Second, Race condition is a kind of Time and state weakness 
category. Due to their prevalence, we decided to use separate categories for these 
weaknesses. 

When a weakness type had properties of more than one weakness category, we tried to 
assign it to the most closely related category. 

3.2 Test Case and Tool Properties 

In this section, we present the division of tool warnings by test case and by severity, as 
well as the division of reported tool warnings and confirmed tool warnings by weakness 
category. We then consider which of the SANS/CWE Top 25 weakness categories [17] 
are reported by tools. We also discuss some qualitative properties of test cases and tools. 
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Figure 1 Warnings by test case (total 47925) 
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Figure 1 presents the numbers of tool warnings by test case. Almost half of the total 
warnings were for OpenNMS. We attribute it to the fact that the version of OpenNMS 
chosen for analysis was written prior to a major security overhaul [7]. 

Figure 2 presents the numbers of tool warnings by severity as determined by the tool. 
Grammatech CodeSonar uses rank (a combination of severity and likelihood) instead of 
severity. All warnings in their submitted reports had severity 1. We changed the severity 
field for some warning classes in the CodeSonar reports based on the weakness names. 
The numbers in Figure 2 and elsewhere in the report reflect this change. 
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Figure 2 Warnings by severity (total 47925) 

Weakness 
category 

C track Java track 
All C Naim Nagios Lighttpd All Java OpenNMS MvnForum DSpace 

xss 0 0 0 0 2636 1748 471 417 
sql-inj 0 0 0 0 715 179 483 53 
buf 4525 674 2604 1247 0 0 0 0 
num-err 958 155 560 243 438 174 196 68 
cmd-inj 65 5 40 20 37 37 0 0 
csrf 0 0 0 0 146 8 136 2 
race 61 3 17 41 344 38 282 24 
info-leak 1862 4 766 1092 1290 653 296 341 
input-val 337 59 85 193 1851 670 303 878 
sec-feat 59 30 8 21 5175 4021 333 821 
quality 3030 431 1932 667 12019 8450 2380 1189 
err-handl 674 113 302 259 7885 3923 2725 1237 
encaps 0 0 0 0 1636 566 230 840 
api-abuse 413 259 112 42 529 430 11 88 
time-state 9 0 5 4 365 298 26 41 
uncateg 101 15 29 57 765 365 194 206 

Total 12094 1748 6460 3886 35831 21560 8066 6205 

Table 4 Reported warnings by weakness category 

Table 4 presents the numbers of reported tool warnings by weakness category for the C 
and Java tracks, as well as for individual test cases. The weakness categories are 
described in Table 3. Figure 3 plots the “All C” column of Table 4. Figure 4 plots the 
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“All Java” column. The figures do not show categories with no warnings for the 
corresponding track. 

For the C track, there were no xss, sql-inj, csrf, and encaps warnings. In fact, Nagios has 
a web interface, and we found at least one instance of xss in the file cgi/status.c. 
However, since it is uncommon to write web applications in C, the tools tend not to look 
for web application vulnerabilities in the C code. For the Java track, there were no buf 
warnings - most buffer errors are not possible in Java. 
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Figure 3 Reported warnings by weakness category - C track (total 12094) 
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Figure 4 Reported warnings by weakness category - Java track (total 35831) 

Table 5 presents the numbers of weaknesses confirmed by the analysts by weakness 
category for the C and Java tracks, as well as for individual test cases. Figure 5 plots the 
“All C” column of Table 5. Figure 6 plots the “All Java” column. The figures do not 
show categories with no confirmed weaknesses for the corresponding track. The numbers 
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reflect our focus on analyzing severity 1 and 2 warnings and also the concentration of our 
efforts on a few weakness categories. 

Weakness 
category 

C track Java track 
All C Naim Nagios Lighttpd All Java OpenNMS MvnForum DSpace 

xss 0 0 0 0 711 167 448 96 
sql-inj 0 0 0 0 57 40 6 11 
buf 167 11 150 6 0 0 0 0 
num-err 3 0 0 3 0 0 0 0 
cmd-inj 9 3 5 1 9 9 0 0 
csrf 0 0 0 0 138 1 136 1 
race 21 2 6 13 24 0 0 24 
info-leak 21 1 0 20 36 0 0 36 
input-val 4 1 1 2 219 12 173 34 
sec-feat 3 1 0 2 14 7 3 4 
quality 206 40 26 140 11 10 0 1 
err-handl 114 37 21 56 0 0 0 0 
encaps 0 0 0 0 3 0 2 1 
api-abuse 20 18 1 1 0 0 0 0 
time-state 0 0 0 0 7 0 7 0 
uncateg 4 1 0 3 0 0 0 0 

Total 572 115 210 247 1229 246 775 208 

Table 5 Confirmed weaknesses by weakness category 

The tools are capable of finding weaknesses in a variety of categories. These include not 
just XSS, SQL injection and other input validation problems, but also some classes of 
authentication errors (e.g., hard-coded password, insecure randomness, and least privilege 
violation) and information disclosure problems.  
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Figure 5 Confirmed weaknesses by weakness category - C track (total 572) 
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Figure 6 Confirmed weaknesses by weakness category - Java track (total 1229) 

The 2009 SANS/CWE Top 25 Most Dangerous Programming Errors [17] is a list, 
selected by a group of software security experts, of the most significant weaknesses that 
can lead to serious software vulnerabilities. They organized the weaknesses into three 
high-level categories. They also selected some related CWE ids (not a comprehensive 
list) for each of the Top 25 weaknesses. Table 6 presents the CWE id and name of the 
weakness, and also related CWE ids. 

CWE id Weakness name Related CWE ids 
Insecure Interaction Between Components 

20 Improper Input Validation 184 74 79 89 95  
116 Improper Encoding or Escaping of Output 74 78 79 88 89 93  

89 
Failure to Preserve SQL Query Structure (aka 'SQL 
Injection') 564 566 619 90  

79 
Failure to Preserve Web Page Structure (aka 'Cross-site 
Scripting') 692 82 85 87  

78 
Failure to Preserve OS Command Structure (aka 'OS 
Command Injection') 88 

319 Cleartext Transmission of Sensitive Information 312 614  
352 Cross-Site Request Forgery (CSRF) 346 441  
362 Race Condition 364 366 367 370 421  
209 Error Message Information Leak 204 210 538  

Risky Resource Management 

119 
Failure to Constrain Operations within the Bounds of a 
Memory Buffer 120 129 130 131 415 416  

642 External Control of Critical State Data 472 565  
73 External Control of File Name or Path 22 434 59 98  
426 Untrusted Search Path 427 428  

94 
Failure to Control Generation of Code (aka 'Code 
Injection') 470 95 96 98  

494 Download of Code Without Integrity Check 247 292 346 350  

404 Improper Resource Shutdown or Release 
14 226 262 299 401 415 
416 568 590  

665 Improper Initialization 453 454 456  

682 Incorrect Calculation 
131 135 190 193 369 467 
681  



NIST SP 500-279 - 21 - 

CWE id Weakness name Related CWE ids 
Porous Defenses 

285 Improper Access Control (Authorization) 425 749  
327 Use of a Broken or Risky Cryptographic Algorithm 320 329 331 338  
259 Hard-Coded Password 256 257 260 321  
732 Insecure Permission Assignment for Critical Resource 276 277 279  

330 Use of Insufficiently Random Values 
329 331 334 336 337 338 
341  

250 Execution with Unnecessary Privileges 272 273 653  
602 Client-Side Enforcement of Server-Side Security 20 642  

Table 6 SANS/CWE Top 25 Weaknesses 
 

CWE id 
Warnings reported by tools 
This CWE only Incl. related CWEs 

20 X X 
116  X 
89 X X 
79 X X 
78 X X 
319   
352 X X 
362 X X 
209 X X 
119 X X 
642  X 
73 X X 
426   
94  X 
494  X 
404 X X 
665  X 
682  X 
285   
327   
259 X X 
732  X 
330 X X 
250 X X 
602  X 

Table 7 Top 25 weaknesses reported by SATE tools 

Table 7 illustrates which of the Top 25 weaknesses are reported by automated tools in 
SATE. The first column indicates the CWE id, the second column has a check mark if 
any tool reported warnings with this CWE id, the third column has a check mark if any 
tool reported warnings with this or related CWE id. For example, no tool reported CWE 
id 116, but tools reported related CWE ids. Since Aspect Security did not mark most of 
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their warnings with CWE ids, the data in Table 7 is the same whether Aspect Security 
warnings are included or not. 

The tools reported 13 of the Top 25 CWE ids. When related CWE ids are included, the 
tools reported 21 of the 25 CWE ids. Since the list of related CWE ids is not 
comprehensive and only about 75% of tool warnings have a CWE id, this table may 
underestimate the proportion of the Top 25 weaknesses reported by tools. 

While some of the Top 25 weaknesses, such as Cleartext Transmission of Sensitive 
Information, are hard to find using static analysis tools, Table 7 suggests that the tools 
can help find weaknesses in most of the Top 25 weakness categories.  

The human review by Aspect Security highlights the differences and synergies between 
human and automated reporting and analysis. While human review is needed for some 
types of weaknesses (e.g., some authorization problems), tools can quickly find hundreds 
of weaknesses. Sometimes the human describes the cause of the problem at a high level, 
while the tool provides the specific vulnerable paths for the instances of the problem. An 
example is in Section 3.4.4. 

Overall, tools handled the code well, which is not an easy task for the test cases of this 
size. Some tools in the Java track had difficulty processing Java Server Pages (JSP) files, 
so they missed weaknesses in those files. 

Project developers’ programming style affects the ability of tools to detect problems and 
the ability of users to analyze the tool reports, as noted in [8]. This observation is 
supported by the SATE data. For example in Nagios, the return value of malloc, strdup, 
or other memory allocation functions is not checked for NULL immediately, instead, it is 
checked for NULL before each use. While this practice can produce quality code, the 
analysis has to account for all places where the variable is used. 

Using black lists to filter input is not adequate. This observation is supported by the 
following example from MvnForum, which uses two types of filtering: 

• For inserting data in HTML pages: 
o DisableHtmlTagFilter.filter (in 

myvietnam\src\net\myvietnam\mvncore\filter\DisableHtmlTagFilter.java) 
converts the special characters <>”& into their HTML entities. There is no 
check for special encoding. 

o urlResolver.encodeURL converts non-alphanumeric characters except ._- 
into the corresponding hex values. 

• For checking file names: checkGoodFileName throws an exception if it finds any 
of the following characters: <>&:\0/\*?|. 

Also, MvnForum sets Charset to UTF-8 using the meta tag in the JSP files. 

For example, UID 27926 reports line 79 in 
mvnforum/srcweb/mvnplugin/mvnforum/admin/editgroupinfosuccess.jsp: 

79 <td><b>&raquo;&nbsp;</b><a class="command" 
href="<%=urlResolver.encodeURL(request, response, "viewgroup?group=" 
+ ParamUtil.getParameterFilter(request, "group"))%>"><fmt:message 
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key="mvnforum.admin.success.return_to_view_group"/></a> (<fmt:message 
key="mvnforum.common.success.automatic"/>)</td> 

Function getParameterFilter applies DisableHtmlTagFilter.filter to its parameters. Since 
DisableHtmlTagFilter.filter converts only a few characters and there is no check for 
special encoding, we concluded that the warning is true and assigned it severity 2 (See 
the analysis criteria in Section 2.5.4). 

3.3 On our Analysis of Tool Warnings 

We analyzed (associated or marked as confirmed or unconfirmed) 5,899 warnings. This 
is about 12% of the total number of warnings (47,925). It is a non-random subset of tool 
warnings. In this section, we present data on what portions of test cases and weakness 
categories were analyzed. We also describe the effort that we spent on the analysis. 

Figure 7 presents, by test case and for all test cases, the percentage of warnings of 
severity 1 and 2 (as determined by the tools) that were analyzed. It also gives, on the bars, 
the numbers of warnings that were analyzed/not analyzed. As the figure shows, we 
analyzed almost all severity 1 and 2 warnings for all test cases, except OpenNMS. 

Figure 8 presents, by weakness category and for all categories, the percentage of 
warnings that were analyzed. It also gives, on the bars, the numbers of warnings that were 
analyzed/not analyzed. We use abbreviations of weakness category names from Table 3. 
As the figure shows, we analyzed a relatively large portion of xss, sql-inj, buf, cmd-inj, 
and csrf categories. These are among the most common categories of weaknesses. We 
were able to analyze almost all cmd-inj and csrf warnings because there were not a lot of 
them. 
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Figure 7 Severity 1, 2 warnings analyzed, by test case 

Six people analyzed the tool warnings (spending anywhere from a few hours to a few 
weeks). All analysts were competent software engineers with knowledge of security; 
however, most of the analysts were only casual users of static analysis tools. 1,743 of 
5,899 warnings (30%) were analyzed manually; the rest of the analysis was partially 
automated. 
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Figure 8 Warnings analyzed, by weakness category 

The SATE analysis interface recorded when an analyst chose to view a warning and 
when he submitted an evaluation for a warning. According to these records, the analysis 
time for an individual warning ranged from less than 1 minute to well over 30 minutes. 
On average, the analysts spent between 4 and 10 minutes per warning analyzed manually. 

We did not have a controlled environment for the analysis phase, so these numbers are 
approximate and may not reflect the actual time the analysts spent. Also, these numbers 
are not indicative of the time tool users can be expected to spend, because we used the 
tools differently and had different goals in our analysis. 

3.4 On Differentiating Weakness Instances 

We wanted to merge warnings that refer to the same weakness instance. Originally, we 
thought that each problem in the code had a unique manifestation, that it could be cleanly 
distinguished from other problems.  In particular, we assumed that each problem could be 
linked with one or two particular statements.  However, we found that the notion of one 
single distinct weakness instance is not reasonable in many cases.  We also found that 
some weaknesses did not have well-defined locations. 

The notion of distinct weakness instances breaks down when weaknesses are related as 
chains or composites and when data or control flows are intermingled.  The notion of 



NIST SP 500-279 - 25 - 

distinct instances is also questionable when there is a syndrome of a simple error repeated 
many times. 

3.4.1 Chains, Composites, and Hierarchies 

A single vulnerability may be the result of a chain of weaknesses or the composite effect 
of several weaknesses.  "A 'Chain' is a sequence of two or more separate weaknesses that 
can be closely linked together within software." [2]  For instance, an Integer Overflow 
CWE-190 in calculating size may lead to allocating a buffer that is smaller than needed, 
which can allow a Buffer Overflow CWE-120. Thus two warnings, one labeled as CWE-
190 and one as CWE-120, might refer to the same vulnerability. 

"A 'Composite' is a combination of two or more separate weaknesses that can create a 
vulnerability, but only if they all occur at the same time.  For example, Symlink 
Following (CWE-61) is only possible through a combination of several component 
weaknesses, including predictability (CWE-340), inadequate permissions (CWE-275), 
and race conditions (CWE-362)." [2] As before, a vulnerability might give rise to a 
warning of CWE-61 from one tool, a warning of CWE-340 from another tool, and CWE-
362 from a third tool. 

Another problem is that some weakness classes are refinements of other weaknesses.  In 
other words, some weaknesses can be organized into a hierarchy of superclasses and 
subclasses.  For instance, UID 33888 warns of a Failure to Preserve Web Page Structure 
(aka Cross-Site Scripting or XSS) CWE-79 weakness in OpenNMS.  But CWE-79 is a 
child or subclass of the more general Improper Input Validation CWE-20.  Similar to the 
first example, two warnings labeled CWE-79 and CWE-20 might refer to the same 
vulnerability. 

3.4.2 Intermingled Flows 

Many vulnerabilities involve multiple statements, such as a flow of tainted data or one 
statement that frees memory and a later statement that uses that memory (Use After Free 
CWE-416).  Because of shared routines, it is not uncommon for flows to be intermingled. 

A good example is in base/events.c in Nagios.  Code snippets appear in Figure 9. Two 
different functions, schedule_service_check() and schedule_host_check(), find an event 
(lines 1462 and 2603 respectively), remove the event's object from event_list, free the 
object, then call reschedule_event() to reschedule it.  Reschedule_event() calls 
add_event() to add a newly allocated object to the list.  The new event is added in its 
proper place (line 808) or added at the head with special code if necessary (line 819).  
This constitutes two uses of event_list after the object was freed. 

One tool reported four warnings.  UID 43522 cites lines 2603 and 819. UID 43523 cites 
lines 2603 and 808.  UID 43524 cites lines 1462 and 819. UID 43525 cites lines 1462 and 
808.  See Figure 9 (b). Although these are not true instances of Use After Free CWE-416, 
the question persists: how many potential instances should be counted? There are two 
initial statements, two uses, and four paths all together.  It does not seem correct to count 
every path as a separate weakness in this case nor to consider it as just a single freakish 
two-headed weakness.  On the other hand, there is no symmetrical way to tease the flows 
apart into two distinct weaknesses. 
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Figure 9 Two memory free locations connected to two suspected uses constituting four paths and four 
warnings of Use After Free CWE-416. (a) Code snippets (b) Diagram: the ovals contain line 
numbers; arrows are labeled with warning UIDs. 

1503 - free 2644 - free 

808 - use 819 - use 

43525 
43523 43524 

43522 

    schedule_service_check(...){ 
        ... 
1462    for(temp_event=event_list_low;temp_event!=NULL; 
                           temp_event=temp_event->next){ 
            ... 
            }  
        ... 
        remove_event(temp_event,&event_list_low);  
1503    free(temp_event); 
        ... 
        reschedule_event(new_event,&event_list_low); 
 
 
 
    schedule_host_check(...){  
        ... 
2603    for(temp_event=event_list_low;temp_event!=NULL; 
                           temp_event=temp_event->next){ 
            ... 
            }  
        ... 
        remove_event(temp_event,&event_list_low);  
2644    free(temp_event); 
        ...  
        reschedule_event(new_event,&event_list_low); 
 
 
 
    reschedule_event(...,timed_event **event_list){  
        ... 
        add_event(event,event_list); 
 
 
    add_event(...,timed_event **event_list){ 
        first_event=*event_list; 
        ... 
 808    else if(event->run_time < first_event->run_time){ 
            ... 
        else{ 
            temp_event=*event_list; 
            while(temp_event!=NULL){ 
 819            if(temp_event->next==NULL){ 
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Another, more extreme case is UID 17182 which associates some 70 different warnings 
of Buffer Overflow CWE-120 in lighttpd, src/mod_dirlisting.c at line 638. 

638     strcpy(path, dir->ptr); 

The suspect statement is invoked indirectly from dozens of places. Careful analysis 
shows that buffer overflow is not possible.  If indeed the code needed to be fixed, it might 
be done at that single statement, in a few immediately calling functions, or changes might 
be needed at many of the warning locations. 

3.4.3 Repeated Error Syndrome 

Sometimes the same simple mistake is repeated over and over, analogous to a word 
misspelled the same way throughout a document.  Although there may be a weakness at 
every location where the error was repeated, there is some sense that it is a single 
syndrome, especially when the errors can be corrected with a single syntactic 
replacement or addition. 

For instance, UIDs 33888, 40681, and 42763 all warn of Cross-Site Scripting (XSS) 
CWE-79 in OpenNMS.  Cross-site scripting may occur when user input, such as a 
comment or even a name, is returned from the application to a user’s web browser.  If not 
properly sanitized, the comment may contain script code or commands, which are 
executed by the browser.  Since OpenNMS had not been written with security in mind, it 
is not surprising to see the same error in many places. 

3.4.4 Other Thoughts on Location 

Even when weaknesses can be clearly distinguished, many types of weaknesses are the 
result of several statements interacting.  For these it is not reasonable to say the weakness 
is at a single statement. An example is the just-cited UID 40681 warning of Cross-Site 
Scripting CWE-79.  It reports the following path in web/Util.java. 

   1.  src/web/src/org/opennms/web/Util.java (304)   
   2.  src/web/src/org/opennms/web/Util.java (304)   
   3.  src/web/src/org/opennms/web/Util.java (307)   
   4.  src/web/src/org/opennms/web/Util.java (307)   
   5.  src/web/src/org/opennms/web/Util.java (313)   
   6.  src/web/src/org/opennms/web/Util.java (345)   
   7.  src/web/src/org/opennms/web/Util.java (345)   
   8.  src/web/src/org/opennms/web/Util.java (271)   
   9.  src/web/src/org/opennms/web/Util.java (271)   
  10.  src/web/src/org/opennms/web/Util.java (251)   
  11.  src/web/src/org/opennms/web/Util.java (251)   
  12.  src/web/web/performance/chooseinterface.jsp (129)   
  13.  src/web/web/performance/chooseinterface.jsp (129)    

The first lines are in the function makeHiddenTags(): 

292     makeHiddenTags(...) { 
     ... 
304         Enumeration names = request.getParameterNames(); 
       ... 
307             String name = (String) names.nextElement(); 
        ... 
313                     buffer.append(name); 
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     ... 
345         return (buffer.toString()); 
        } 

UID 189 warns of CWE-79 in web/Util.java, too, but refers to line 292, and calls out 
specifically makeHiddenTags().  UIDs 190, 191, and 1927 refer to uses of 
makeHiddenTags(), in adhoc.jsp (line 100), chooseinterface.jsp (line 129), and 
choosereportanddate.jsp (line 147), respectively.  UIDs 40681 and 191 are clearly 
different warnings about the same instance.  But UID 189 is arguably the same instance 
as 40681, too, even though they do not refer to any of the same statements. 

Another complication in assigning a location to an instance is that some weaknesses refer 
to a region of code, not just statements in a flow.  Dead Code CWE-561 or Leftover 
Debug Code CWE-489 may relate to large pieces of code, not just a few statements or 
even a path. Improper Input Validation CWE-20 might be mitigated anywhere along the 
path that the input is accessible, not necessarily immediately after the input or before its 
first use. 

If a function is missing entirely, no statement or even group of statements is wrong.  
Unimplemented or Unsupported Feature in UI CWE-447 might point out some location 
in the user interface processing where the flow might be diverted, but again no existing 
statement is wrong. 

Even when particular statements are involved, it is not obvious what statement should be 
reported.  Certainly a path may be helpful, but typically a particular statement is indicated 
for summary or initial report purposes.  Should it be the source statement, where the data 
or state first appears?  The statement where a fault can occur?  The statement where it is 
best mitigated?  Likely the answer is different for different weaknesses and possibly 
depends on many details of the code and context. 

To summarize, a simple weakness can be attributed to one or two specific statements and 
associated with a specific CWE. In contrast, a non-simple weakness has one or more of 
these properties: 

• Can be associated with more than one CWE (e.g., chains and composites). 
• Can be attributed to many different statements. 
• Has intermingled flows. 

We estimate that only between 1/8 and 1/3 of all weaknesses are simple weaknesses. 

4 Critique of SATE 
This section explains the reasons for choices we made in organizing SATE, changes from 
our original plan, and lessons we learned from the exposition. These are grouped into 
three areas: test case selection, analysis of tool reports, and the data format. Finally, 
Section 4.4 presents our findings from a reanalysis of a small subset of warnings that we 
did to get an idea of the types and frequency of errors made in the initial analysis. 

                                                 
7 UIDs 189, 190, 191, and 192 were reported by Aspect Security as a single warning. In general, Aspect 
Security reported different warnings of the same kind as a single warning. For our analysis, we divided 
these into separate warnings. 



NIST SP 500-279 - 29 - 

4.1 Test Cases 

We chose C and Java due to their popularity and the many static analysis tools which 
support them. We looked for test cases of moderate size: thousands to hundreds of 
thousands lines of code. We believed that this was a reasonable compromise between 
representing real life software and our ability to analyze the tool output. We also looked 
for code that is representative of today’s state of practice. Since SATE is focused on 
security, we chose software with aspects relevant to security. 

The test cases have a number of properties that may or may not be representative of 
today’s software. First, all test cases are open source programs. Second, all three Java test 
cases, as well as Nagios, have a web interface. Web applications have exploitable, 
relevant errors; however, these types of errors are not the focus of some tools. 

Third, the code quality and design of all test cases were decent. However, some test cases 
were developed without much attention to security, although that is changing [7]. 

We chose stable versions of the software as test cases. Sometimes, that meant taking a 
version released a year or more prior. Some project developers told us that they would 
have preferred us to analyze the latest version instead. 

The stable version of OpenNMS was difficult for some participants to compile and run. 
Choosing a later version would have avoided this problem. Additionally, the version of 
OpenNMS chosen was written prior to a major security overhaul and had a very large 
number of security issues. It had many more warnings than the other test cases. 

4.2 Analysis of Tool Reports 

Originally, we planned to create a master reference list of security weaknesses found in 
the test cases and to compare each tool's security warnings against this master reference, 
thus marking all warnings as true positives or false positives. We planned to accomplish 
this by grouping (associating) tool warnings that refer to the same weakness and 
analyzing correctness of the warnings. The two main adjustments that we made, as 
detailed below, were (1) not producing the master reference list and (2) replacing the 
true/false markings with the confirmed/unconfirmed markings. 

For the following three reasons, we had to abandon the goal of producing a master list of 
security weaknesses. First, we received much more tool warnings than we anticipated. 
Second, we found that analyzing tool warnings (both analyzing correctness and 
determining when warnings refer to the same weakness) was more difficult than 
expected. Third, we had hoped for more resources to analyze the warnings. Therefore, we 
chose to analyze a small subset of tool warnings (mostly those assigned high severity by 
the tool) and did not associate many warnings that refer to the same weakness. 

Due to the variety and different nature of security weaknesses, defining clear and 
comprehensive analysis criteria is difficult. As SATE progressed, we realized that our 
analysis criteria were not adequate. We adjusted the criteria during the analysis phase, but 
did not have resources to go back and reanalyze all warnings. As a result, the criteria 
were not applied consistently. 

The determination of correctness turned out to be more complicated than simply a binary 
decision for these three reasons. First, there are warnings that are true, but are not useful. 
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An example is a warning that describes properties of a standard library function without 
regard to its use in the code. Second, there are warnings that require a very large amount 
of time to analyze for correctness exhaustively. Third, there are true warnings for which 
we do not see any relevance to security. Similarly, determining whether a weakness is 
relevant to security is often difficult. 

These limitations of analysis make computing rates of true and false positives from the 
analysis data meaningless and counter-productive. For these reasons, and also to 
minimize the chance of people making unsupported conclusions, after the analysis phase 
was completed, we decided not to use the true/false positive markings, but rather the 
confirmed/unconfirmed markings. “True” became “confirmed,” all other warnings that 
we analyzed or associated became “unconfirmed.” 

4.3 SATE Output Format 

In order to have a consistent analysis of output from different tools, we defined a 
common tool output format. Our goal was to preserve as much content from the original 
tool report as possible. 

In devising the tool output format, we tried to capture aspects reported textually by most 
tools. In particular, we included a field for CWE id and encouraged participants to 
include this information, because the CWE [3] provides a comprehensive set of weakness 
classes. A consistent weakness designation scheme is important for having a consistent 
view of different tools. Also, we included one or more code locations in order to 
represent a trace through the code. Some weaknesses, such as use of dangerous function, 
can be represented with a single location. Others are best explained by providing a 
control flow or data flow path. 

In retrospect, the SATE output format has several limitations. First, the format is not 
expressive enough; in particular, it cannot represent multiple traces. Often, the same 
weakness manifests itself via multiple paths through the code where, for example, the 
sink and the source and the affected variables may be the same. To help the user, a tool 
may combine such paths into a single warning. 

To better understand the warnings, we used some of the information (details of weakness 
paths) from Grammatech CodeSonar and Fortify SCA reports in their original formats. 
Other tools also use expressive output formats. This suggests that the SATE output 
format omits important information compared to the original tool output. 

Second, the format was not specified with sufficient detail making it necessary for us to 
spend a considerable time working with the participants in modifying the submitted tool 
reports so that the reports conform to the expected format. The problem areas included 
inconsistent weakness paths and incorrect conversions from the original tool formats. 

Third, the participants often had difficulty mapping their warning types to the CWE ids. 
This is due to a large number of (and complex relationships between) different weakness 
types. CWE has hundreds of entries organized into a hierarchy. Depending on 
perspective, some tool warnings may be mapped to different CWE entries (in particular, 
entries at different levels of the CWE hierarchy). Some tool warning types do not match 
any CWE entry precisely. 
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Finally, we did not provide enough guidance to the participants on mapping their tool’s 
severity classification to the severity field in the SATE format. 

4.4 Reanalysis Findings 

After the analysis phase was completed, we reanalyzed a small (and not statistically 
significant) subset of 30 SATE warnings. For this reanalysis, from each of the 6 test 
cases, we randomly chose 5 warnings that were marked as either true or false and were 
assigned severity 1 or 2. 

The goal of this reanalysis was to understand better the types and frequency of errors that 
we made during the original analysis (steps 3-5 of the SATE procedure). In particular, we 
looked for cases where we incorrectly marked a warning as true or false and where we 
failed to combine a warning with other warnings that refer to the same weakness. We 
used the same analysis criteria as during the original analysis.  We did not consider any 
severity annotations we made. 

The main data findings are as follows. 

1. We incorrectly marked 5 warnings (1/6) as true or false. Since this involved 
changes in both directions (2 from true to false, 3 from false to true), the change 
in the overall proportion of true and false positives is small. 

2. We failed to combine 13 warnings (about 2/5) with other warnings, with a large 
effect on simplistic overlap rates. 

Other significant observations include: 

1. The original analysis underestimated the tool overlap. 
2. We found additional evidence that analysis criteria (e.g., criteria for combining 

warnings) can impact the quantitative results. 

This reanalysis was one of the motivating factors for replacing true/false positive 
markings with confirmed/unconfirmed categories. 

5 Conclusions and Future Plans 
We conducted the Static Analysis Tool Exposition (SATE) in order to enable empirical 
research on large data sets and encourage improvement and adoption of tools. 
Participants ran their tools on 6 test cases - open source programs from 23k to 131k lines 
of code. Nine participants returned 31 tool reports with a total of 47,925 tool warnings. 
We analyzed approximately 12% of the tool warnings, mostly those rated high severity 
by tools. Several participants improved their tools based on their SATE experience. 

The released data is useful in several ways. First, the output from running many tools on 
production software is available for empirical research. Second, our analysis of tool 
reports indicates weaknesses that exist in the software and that are reported by the tools. 
The analysis may also be used as a building block for a further study of the weaknesses in 
the code and of static analysis. 

We observed that while human analysis is best for some types of weaknesses, tools find 
weaknesses in many important weakness categories and can quickly identify and describe 
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in detail many weakness instances. In particular, the tools can help find weaknesses in 
most of the SANS/CWE Top 25 weakness categories. 

We identified shortcomings in the SATE procedure, including test case selection, 
analysis of tool reports, and the data format. In particular, the tool interface is important 
in understanding most weaknesses – a simple format with line numbers and a few other 
fields is not enough. Also, binary true/false positive verdict on tool warnings is not 
enough. 

The tools’ philosophies about static analysis and reporting are often very different, so 
they produce substantially different warnings. For example, tools report weaknesses at 
different granularity levels. The SATE experience suggests that the notion that 
weaknesses occur as distinct, separate instances is not reasonable in most cases.  We also 
found that some weaknesses did not have well-defined locations. We hope that these and 
other lessons from SATE will help improve further similar studies. 

Due to complexity of the task and limited resources, our analysis of the tool reports is 
imperfect, including lapses in analyzing correctness of tool warnings. Also, in many 
cases, we did not associate warnings that refer to the same weakness. For these and other 
reasons, our analysis must not be used as a direct source for rating or choosing tools or 
even in making a decision whether or not to use tools. 

For the next SATE, analysis of tool reports must be improved. First, since complete 
analysis is impractical, a better scheme for choosing a representative subset of warnings 
for analysis is needed. Second, involving more people in the analysis of tool reports 
would allow us to cover more warnings as well as get different views on the more 
complex warnings. Since project developers know the most about their software, 
involving them in the analysis of tool reports may improve the accuracy of analysis and 
provide a different measure of tool utility, i.e., what warnings actually lead to fixes. 

The following are some additional ideas for making SATE easier for participants and 
more useful to the community. 

• Provide participants with a virtual machine image containing the test cases 
properly configured and ready for analysis by the tools. 

• Provide participants with a more precise definition of the SATE tool output 
format or scripts to check the output for format errors. 

• Select the latest, beta versions of the open source software as test cases instead of 
the stable earlier versions. 

• Include a track for another tool class, such as web application security scanners. 
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Appendix A SATE Plan (as of February 2008) 

Introduction  

Goals  

• To enable empirical research based on large test sets  
• To encourage improvement of tools  
• To speed adoption of the tools by objectively demonstrating their use on real 

software  

Our goal is not to choose the "best" tools: there are many other factors in determining 
which tool (or tools) is appropriate in each situation.  

Characteristics to be considered  

• Relevance of warnings to security  
• Correctness of warnings (true positive or false positive)  
• Prioritization of warnings (high, medium, ...)  

Note. A warning is an issue identified by a tool. A (Tool) report is the output from a 
single run of a tool on a test case. A tool report consists of warnings.  

Language tracks  

• The exposition consists of 2 language tracks:  
o C track  
o Java track  

• Participants can enter either track or both  
• Separate analysis and reporting for each track  

Call for participation  
We invite participation from makers of static analysis tools that find weaknesses relevant 
to security. We welcome commercial, research, and open source tools.  
If you would like to participate in the exposition, please email Vadim Okun 
(vadim.okun@nist.gov).  

Protocol  
Briefly, organizers provide test sets of programs to participants. Participants run their 
own tool on the test cases and return the tool reports. Organizers perform a limited 
analysis of the results and watch for interesting aspects. Participants and organizers report 
their experience running tools and their results during a workshop. Organizers make the 
test sets, tool reports, and results publicly available 6 months after the workshop.  
Here is the protocol in detail.  
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Step 1 Prepare  

Step 1a Organizers choose test sets  

• A test set for each language track  
• A test set consists of up to 3 open source programs (or program components)  
• Size of each program is at least several thousand lines of code  

o We anticipate some of the test cases to be tens or hundreds of thousands 
lines of code  

• Each program has aspects relevant to security  
• We expect programs to have various kinds of security defects  
• We expect the code to be representative of today's state of practice  
• Compilable on a Linux OS using a commonly available compiler  

Step 1b Tool makers sign up to participate (8 Feb 2008)  

• Participants specify which track(s) they wish to enter  
• For each track, participants specify the exact version(s) of the tool(s) that they 

will run on the test set. The version must have release or build date that is earlier 
than the date when they receive the test set.  

Step 2 Organizers provide test set(s) (15 Feb 2008)  

• Organizers will specify the method of distribution in advance  

Step 3 Participants run their tool on the test set(s) and return their report(s) 
(by 29 Feb 2008)  

• Participants cannot modify the code of the test cases, except possibly for 
comments (e.g. annotations).  

o If annotations were manually added, note this and send back the modified 
test case with annotations.  

• For each test case, participants can do one or more runs and submit the report(s)  
o participants are encouraged to do a run that uses the tool in default 

configuration.  
o participants may do custom runs (e.g., the tool is configured with custom 

rules). For a custom run, specify the affected settings (e.g., custom rules) 
in enough detail so that the run can be reproduced independently.  

• Participants specify the environment (including the OS, version of compiler, etc.) 
in which they ran the tool  

• Hand editing of the tool reports (e.g., manually removing false positives or adding 
true positives) is not allowed.  

• The reports are in common format (in XML). See Tool output format.  
• Participants can withdraw from any language track or from the exposition prior to 

this deadline. In that case, their intention to participate and decision to withdraw 
will not be disclosed.  
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Step 3a (optional) Participants return their review of their tool's report(s) (by 15 
Mar 2008)  

Step 4 Organizers analyze the reports (by 15 April 2008)  

• For each test case, combine all submitted reports and information from other 
analysis  

• Come up with a master reference list, that is, true positives, of security relevant 
weaknesses  

• Compare each tool's security warnings against the master reference: true 
positives, false positives  

• Participants receive the master reference list, comparison of their report with the 
master reference list, reports from other tools  

Note. We do not expect (and will emphasize this in our report) that the master reference 
list will be perfect. Participants are welcome to submit a critique of the master reference 
list, either items missing or incorrectly included.  

Step 4a (Optional) Participants return their corrections to the master reference list 
(by 29 April 2008)  

Step 4b Participants receive an updated master reference list and an updated 
comparison of their report with the master reference list (by 13 May 2008)  

Step 4c Participants submit a report for SAW (by 30 May 2008)  

• The participant's report presents experience running the tool, discussion of their 
tool's results, etc.  

• The report is a paper up to 10 pages long  

Step 5 Report Comparisons at SAW (June 2008)  

• Organizers report comparisons and any interesting observations.  
• Participants receive the detailed comparisons for all participating tools (see next 

step for what these include)  
• Participants report their experience running the tools and discuss their results  
• Discuss comments, suggestions, plans for the next exposition  

Step 5a Participants submit final version of report (from Step 4c) (by June 30 2008)  

• To be published as NIST special publication or NIST technical report  

Step 6 Publish Results (Dec 2008)  

• Organizers publish test sets, master reference list, and detailed comparisons, 
including  

o tool version and any configuration parameters (e.g., custom rule set) used  
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o verbatim textual report from the tool  
o warning by warning comparison with the master list  

Future plans  
We plan for the exposition to become an annual event. Our future plans include the 
following.  

• Multiple tracks for different domains  
• More languages  
• Other tool classes  

o Web Application Security Scanners  
o Binary analysis  

• Static analysis for other purposes  
• Consider metrics (program size, assurance level, size of security problem, etc.)  
• Consider inserting back doors in application  
• Interactive track: to measure the way the tool is used by the programmers  

Tool output format  
The tool output format is an annotation for the original tool report. We would like to 
preserve all content of the original tool report.  
Each warning includes  

• weakness id - a simple counter  
• (optional) tool specific unique id  
• one or more locations, including line number and pathname  
• name of the weakness  
• (optional) CWE id, where applicable  
• weakness grade  

o severity on the scale 1 to 5, with 1 - the highest  
o (optional) probability that the problem is a true positive, from 0 to 1  

• output - original message from the tool about the weakness, either in plain text, 
HTML, or XML  
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Commentary on CodeSonar’s SATE Results 
Paul Anderson, GrammaTech, Inc. 

 

This document provides a commentary on the results of running CodeSonar on the example C programs 
for the SATE experiment. These programs were: 

• Lighttpd-1.4.18 

• Nagios-2.10 

• Naim-0.11.8.3.1 

The following sections describe issues with the configuration and use of CodeSonar that may help with 
the interpretation of the results that it generated. 

Domain of Application 
CodeSonar is designed to be a general purpose tool for finding programming errors in C and C++ 
programs. It can be used to uncover security weaknesses, violations of safety-critical programming rules, 
inconsistencies, as well as generic programming errors. As such some of the warnings it reports have little 
impact on security, except in that they may indicate programmer confusion. One such warning class is 
Unused Value. This is reported when a variable is assigned a value, but that value is never used. It is very 
unlikely that such a weakness could be used to construct a security exploit, but this class of weaknesses is 
prohibited in much safety-critical code. 

Similar Warnings 
CodeSonar may report different instances of the same underlying flaw as multiple warnings. For example, 
warnings 483.629 through 483.631. The CodeSonar user interface treats these warnings as one in many 
respects, but in the report submitted to SATE, they are not aggregated. The warning IDs can be used to 
tell which warnings are treated as one. Given a warning with id x.y, all other warnings whose ID begins 
with x are considered identical. 

A second effect can also give rise to similar warnings. If there are multiple interprocedural paths from 
different callers to the same program point, then these warnings may seem the same because they are 
reported as terminating on the same line. The warnings reported on line 46 of buffer.c in project lighttpd 
are good examples of this. These may or may not be the same “bug”. The only way to effectively tell is 
by looking at the path to the point. This information is available through the CodeSonar user interface, but 
may not be evident from the report submitted to SATE. 

Rank 
CodeSonar associates a single rank attribute with each warning. This is designed to suggest an order in 
which a user ought to review the warnings. As such it is a combination of the severity of the problem and 
the confidence the tool has that the warning is a true positive. It is not meant to be a measure of the risk of 
the offending code. 

Malloc 
The default configuration of CodeSonar assumes that calls to memory-allocating functions, especially 
malloc can return NULL if the request cannot be satisfied. As a result, this gives rise to a large number of 
null pointer dereference and related warnings being issued in all of the applications. We consider these to 
be true positives because this is a genuine error condition that the code should handle. The error can occur 
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not only if the application runs out of memory, but also if the size requested is unreasonable or if there is 
excessive fragmentation on the heap. 

However some users may consider these warnings extraneous because their applications are deployed in 
environments where this condition is unlikely to occur, and the risk of harm if it does occur is low. There 
is a parameter to CodeSonar, named MALLOC_FAILURE_BEHAVIOR that can be used to disregard the 
possibility that the allocation can fail. In order to explore the effect of this, we ran the analysis again on 
all the projects with this parameter set to DOESNT_FAIL. 

Doing this generally has two effects on the results. First, the number of null pointer dereferences usually 
goes down. A second effect is that the number of redundant condition warnings goes up. This latter 
warning is issued when a condition is being checked that is known to be either always true or always 
false. A reduction in these usually indicates that the return value of malloc is being checked. 

Table 1. The change in the number of warnings reported for each project when the configuration parameter 
MALLOC_FAILURE_BEHAVIOR is changed from RETURN_NULL (the default) to DOESNT_FAIL. 

Program Null pointer dereference Redundant condition 
Lighttpd -167 +27 
Nagios -3 +117 
Naim -49 +32 

 

Table 1 above shows the effect on the number of each warning when this parameter is changed. In 
addition, the number of unreachable code warnings for nagios increased for the same reason. The number 
of other warnings did not change significantly. 

It is evident from this that both lighttpd and naim are not written to carefully consider what should happen 
when allocators fail. However, nagios is written to take account of this possibility. This indicates that the 
value of that parameter should be set differently depending on the different styles of programming. 

Use of Complex Macros 
The naim source code uses macros very heavily. For example, see the definition of HOOK_ADD in the 
file modutil.h. This code is written in a way that makes it difficult for CodeSonar to report meaningful 
information about the location of the warning. In order to be precise, CodeSonar runs the preprocessor on 
the code, which means that those constructs are modeled correctly. However, the entire expansion of the 
macro is to a single line in the code. This means that multiple warnings are reported for the same line, 
even though they are caused by different parts of the body of the macro. For example, the function 
fireio_hook_init in file fireio.c shows several warnings on line 902. Each warning corresponds to a 
separate program point in the expansion of the macro, but all those points end up being associated with 
the same line in the compilation unit. This makes them difficult to diagnose and categorize. 

CodeSonar provides an interface to help users understand what macros expand to. This can help diagnose 
warnings as illustrated below in Figure 1, but it has its limitations, especially for complex multi-line 
macros. 
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Figure 1. A screenshot from the CodeSonar user interface showing how the user can see how macros have 
been expanded. This is an excerpt from warning 794.988, on line 1299 of file utils.c. 
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Static Analysis Tool Exposition (SATE 2008) Lessons Learned: 
Considerations for Future Directions from the 

Perspective of a Third Party Analyst 
 

Steve Christey 
The MITRE Corporation 

coley@mitre.org 
 

Abstract 
 
In 2008, the NIST SAMATE project conducted a Static Analysis Tool Exposition (SATE) to 
understand the capabilities of software-based tools that automatically identify security 
weaknesses in source code.  Organizers selected real-world open source programs and used a 
simplified exchange format to obtain automatically-generated warnings from the tools of 
participating vendors.  These warnings were then collected into a single database.  Experienced 
analysts selected a subset of these warnings and manually evaluated the warnings for accuracy.  
Preliminary results were published in 2008 before the release of the final report and data set in 
2009. 
 
This paper highlights several important considerations for evaluating and understanding the 
capabilities of static analysis tools.  While SATE’s web-based interface demonstrates powerful 
features to assist in the evaluation, the lack of direct access to the tools can adversely impact the 
speed and accuracy of the human analysts.  Appropriate sampling techniques may need to be 
devised if there are not enough resources to evaluate all the warnings that have been generated.  
To consistently evaluate the warnings, clearly specified definitions of true positives and false 
positives are required, and there may be variation in how human analysts will interpret warnings.  
Quantitative and comparative methods should also account for differences in how security 
weaknesses are counted and described by the tools.  Finally, this paper provides specific 
suggestions for future efforts in the evaluation of security-related software analysis tools. 
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Introduction 
 
The first Static Analysis Tool Exposition (SATE1) was conducted in 2008, led by the NIST 
SAMATE team [1].  SATE 2008 has demonstrated the powerful capabilities of modern static 
analysis tools and provides valuable lessons for future analyses.  This paper captures some of the 
experiences of a third-party analyst, Steve Christey of MITRE, who supported the SAMATE 
team during the exposition.  The primary task was to evaluate the accuracy of security warnings 
that were generated by the participating tools. 
 
It is assumed that the reader is already familiar with the goals, organization, and execution of 
SATE 2008 as documented in “Review of the First Static Analysis Tool Exposition (SATE 
2008)” by Vadim Okun, Romain Gaucher, and Paul E. Black [2]. 
 
Throughout the text, references to the Common Weakness Enumeration (CWE) are included.  
Each CWE [3] identifier provides additional information for the given weakness. 

Review Procedure 
 
During the review period, six people analyzed 5,899 warnings from a total of 47,925 warnings 
that were generated by all of the tools.  Over a period of several weeks, a MITRE analyst 
evaluated approximately 500 warnings, or 9% of the warnings that were evaluated.  Often, the 
warnings were annotated with comments that briefly explained the conclusion that was reached.  
Many of these 500 findings only produced a “not sure” assessment.  Note that the exact number 
is not being reported to discourage readers from improperly inferring a false-positive rate using 
data that has not been independently verified. 

                                                 
1 http://samate.nist.gov/index.php/SATE.html 
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Time Required for Warning Analysis 
 
The MITRE analyst required 1 to 30 minutes to analyze each warning, which was consistent with 
the experiences of other participants.  Ultimately, the effort took approximately 40 hours of 
labor, or 5 minutes per report, to evaluate the 500 warnings. 
 
If a rate of 5 minutes per warning is typical for an evaluation, then it could require approximately 
one staff year to analyze 25,000 warnings, or almost two staff years to analyze all of the 47,925 
warnings in SATE.  This was a problem because only six calendar weeks were scheduled for the 
evaluation.  It must be emphasized that the tools were not used directly, so the manual process 
likely had several inefficiencies.  In addition, it is not necessary to evaluate every warning in 
order to understand tool performance, which will be elaborated in later sections. 

Selection of Warnings to Evaluate 
 
With the large number of warnings generated by the tools, it was not possible for the SATE 
evaluators to review them all.  A later section outlines various approaches for the selection and 
prioritization of tool warnings.  The method for selecting warnings was not structured or formal, 
although there was an emphasis on the warnings with the highest severity.  However, sometimes 
tools would assign lower severities (e.g., one tool used severity-3 for format string 
vulnerabilities).  Some tools did not assign severities at all, and CodeSonar used a single rank 
that combined severity and confidence.  In scenarios in which a consumer may want to combine 
two or more tools, this variance in assessment of severity should be considered. 
 
Most of the MITRE analyst’s evaluations were conducted on the C code test cases, often 
focusing on a single source file or certain product functionality.  In other cases, warnings were 
selected based on the individual bug type, especially anything that seemed new or interesting.  In 
yet another method, the results from a single tool would be reviewed.  Focusing on a single tool 
made it easier to learn what types of weaknesses the tool would find and how much detail it used 
when explaining a warning. 
 
The web interface was used as the primary tool for navigation and analysis.  Two search modes 
from the web GUI were particularly useful: “Find other issues on the same line of code,” and 
“Find other issues with the same weakness type.”  Manual code review was occasionally 
performed.  Some of the most critical data was the backtrace information that was provided by 
some tools, in which a single warning listed the call tree and important sources of input.  As a 
result of the limited exchange format, this backtrace information was not always easy to read, so 
custom routines were developed to provide additional context that simplified analysis. 
 
Some tools provided less contextual information and appeared to have high false-positive rates, 
and as a result, these results would often be skipped.  This lack of contextual information shifted 
the workload from the tool to the human analyst.  This difficulty was most notable with 
Flawfinder [4].  Note that Flawfinder is an older-generation tool that does not use modern data 
flow analysis techniques, which can significantly reduce the number of false positives by 
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limiting results to externally controllable inputs.  Therefore, Flawfinder’s performance is not 
necessarily indicative of the state of the art. 
 

Definitions and Interpretation of True and False Positives 
 
The central question for much of the analysis was whether an individual warning was correct 
(“true positive”) or incorrect (“false positive”).  After the exposition was underway, the SATE 
evaluators realized that each analyst had different criteria for evaluating correctness.  It became 
necessary to provide clear definitions of true positives and false positives.  For example, consider 
a warning for a buffer overflow in a command line argument to an application that is only 
intended to be run by the administrator.  Even if two analysts determine that the warning is 
correct – i.e., that a long input could trigger the overflow – one analyst might evaluate the 
warning as a true positive, and another might treat it as a false positive.  The warning’s security 
relevance may be questionable, given the expected operational environment of the application. 
 
Other warnings might be technically correct, but only tangentially related to security even in 
privileged code, such as code quality or conformance to coding standards.  For example, the 
failure to use symbolic names in security-critical constants (CWE-5472) may be important for 
many people, but this weakness might be disregarded if the goal is to evaluate the current 
security posture of the application. 
 
Eventually, the evaluator team agreed to guidance for the evaluation of true positives and false 
positives. 
 
To determine if a bug report is a false positive: 

• Assume the tool should have perfect knowledge of all potential control and data flow 
paths. 

• It is a false positive if there are no possible conditions, as reflected in the source code, 
under which the claimed weakness could lead to a vulnerability. 

• Considerations of the software’s environment or configuration should not be a factor in 
the assessment. 

 
Using these criteria, an evaluator would label a warning as a true positive in cases in which the 
reported weakness was technically correct, even when the issue was of low severity or low 
utility.  As already noted, the criteria were not always followed consistently during the 
exposition. 
 
In addition to clearly vulnerable code, some unexpected constructs would also be labeled as true 
positives, such as: 

• Buffer overflow in a command-line argument to an unprivileged program 
• Off-by-one buffer overflow in which adjacent variables were not used after the overflow 

occurs 

                                                 
2 http://cwe.mitre.org/data/definitions/547.html 
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• Use of a dangerous function (e.g., strcpy) if the tool was simply stating that the 
function itself should be avoided 

• Missing default case in switch statement 
• Free of a NULL pointer 

 
Since more-consistent labeling of true and false positives only took place after the warning 
analysis period had begun, not all previously-evaluated results were reexamined, due to the scale 
of the effort.   Consequently, there are important inconsistencies in the data.  This is one reason 
why all analyst-assigned false positives were changed to “unconfirmed” in the final SATE 2008 
data. 
 

Role of Severity in Warning Evaluation 
 
The interpretation of severity was sometimes important for assessing whether a result was a true 
positive or a false positive. 
 
Sometimes when a true positive was assessed, an analyst would reduce the severity of the issue 
to reflect the common environment under which the program would be executed.  For example, a 
buffer overflow in a command-line argument to an unprivileged program would be reported by a 
tool as high severity (1 or 2), which could be lowered to 4 or 5, since a buffer overflow could be 
a problem if the program is invoked from a networked component, through privilege-granting 
routines such as sudo, or when the user does not have full access to a shell, such as a kiosk or 
hosted environment.  Another example is a bug that can only be triggered by an administrator 
who provides a malformed configuration file.  This practice was only adopted by SATE analysts 
after the review period had already begun. 
 
A more difficult distinction between low-severity findings and false positives occurred in the 
area of information leaks.  If a numeric process identifier (PID) is included in an error message 
through syslog, then this is not an issue if syslog is only recording to a log file that is only 
readable by the administrator.  Even if the file is readable by all local users, the PID is already 
available to unprivileged users through legitimate means, since most UNIX-based systems allow 
local, unprivileged users to list the processes of other users.  In this case, there is no leak.  
However, if syslog sends data across the network, then the PID is effectively private information, 
although the severity might be extremely low since this information might only be useful in 
exploits of other vulnerabilities that require knowledge of a PID.  At least one tool reported a 
logging message that included a file descriptor number, and in other cases, the address of a 
pointer was leaked.  It is difficult to envision an attack in which this knowledge would be useful, 
so these were generally marked as false positives.  With respect to logging, it was assumed that 
both sniffing attacks and reading of a log file were viable attacks. 
 

Other Factors 
 
Some tools provided a confidence value for each generated warning.  This value captured the 
likelihood that the warning was correct.  While the exchange format and web interface captured 
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this information, it was not a major consideration when interpreting the correctness of the 
reports. 
 
The evaluation of true and false positives could also depend on the analyst’s understanding of the 
application’s intended behavior.    For example, a tool might report a NULL pointer dereference 
in a C program in which the developer intentionally dereferenced NULL in order to force an 
immediate program exit.  In a separate well-known example [5] [6], OpenSSL intentionally 
avoided initializing a certain memory location in order to use it as an additional source of 
entropy for random number generation; this was flagged as a use of uninitialized data by an 
automated tool, causing the programmer to “fix” the problem in the Debian GNU/Linux 
distribution.  As a result, the entropy was reduced, and only a small number of possible 
encryption keys could ever be generated. 
 

Examples of False Positives 
 
Following are some interesting examples of false positives that were reported during SATE.  
Unfortunately, SATE warning IDs (UIDs) are not available for these examples. 
 

• Some coding constructs were labeled as input validation errors even when validation was 
performed or not needed. 

• Some functions contained potential vulnerabilities if called incorrectly, but all current 
callers invoked the functions safely. 

• In the lighttpd test case, the memory management routines would exit the entire program 
when malloc failed.  Sometimes a tool would recognize that these routines could return 
memory from malloc, but the tool would  generate a warning for a NULL pointer 
dereference in their callers.  

• Pointer aliasing sometimes caused initialized data to appear to be uninitialized. 
• Log information leaks were reported for memory addresses or file descriptor numbers. 

 

Difficulties in Interpretation of Warnings 
 
There were several factors that sometimes made warnings difficult to interpret and evaluate.  
Since the SATE analysts were knowledgeable about security, developers might also encounter 
similar problems when handling tool warnings. 
 

Efficiency Challenges in Results Interpretation 
 
Since the design of SATE relied on the database and web GUI instead of the native tool 
interfaces, analysts did not have access to capabilities that could have helped to interpret results, 
such as navigation and visualization, or linkage with an Integrated Development Environment 
(IDE).  The backtrace information is essential for interpreting warnings, but the support was 
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limited in the web interface.  So, SATE’s design probably led to increased labor and more 
ambiguous results. 
 
The source code browser in the web-based GUI did not always link to the proper location, which 
required manual lookups.  This became especially problematic with respect to callback functions.  
A single source code page might take several minutes to load, due to the large number of links 
and images for call trees. 
 
There was significant overhead while learning the underlying implementation of the test cases, 
which was not necessarily well-documented.  For example,  it required significant effort to 
understand how lighttpd’s memory management routines worked, but this could not be avoided 
because they were listed in a large number of results for high-severity issues such as buffer 
overflows.  Note that many of these problems were originally labeled as false positives or “not 
sure.” 
 
Many reports remained ambiguous, even accounting for the lack of direct access to the tools.  
Sometimes, analysts needed to know more about the test case's operating context than was 
readily available.  For example, one reported issue was a false positive on every platform but 
Solaris.  For Solaris, the correctness of the warning depended on whether the size of a particular 
data structure could exceed a certain number of bytes on any of various Solaris operating 
systems and hardware configurations.  This required investigation into low-level include files 
that was more comprehensive than most programmers would ever need to perform in normal 
operations.  Not surprisingly, this report took at least 30 minutes to analyze and only produced a 
“not sure” answer.  Such an analysis would not even be relevant if the tool was assuming an 
operating system other than Solaris. 

Errors and Disagreements in Interpretation 
 
In multiple cases, there was disagreement between the analyst and the tool vendor about whether 
the report was a true positive or a false positive.  This disagreement was not always resolved.  
Multiple vendors did not have enough time to provide comprehensive feedback. 
 
To evaluate each bug report, the analyst needs to fully understand the warning that has been 
generated by the tool.  In one case, analysts mislabeled several bug reports as false positives 
because they misinterpreted the tool’s description of the weakness that it had found.    Use of 
CWE names could help to reduce the risk of confusion, but CWE does not currently cover all 
issues that tools report, and some CWE entries have vague descriptions that could lead to 
misinterpretation and improper or unexpected mappings by the tool vendor. 
 
Other interpretation problems probably stemmed from the lack of access to a tool’s native 
interface and its navigation capabilities.   While supplementary tool output was used as much as 
possible, sometimes the evaluator would believe that the tool was reporting an issue in one part 
of a code expression, when in fact the tool was reporting an issue in another part of the 
expression.  For example, the analyst might believe that the tool was reporting a NULL pointer 
dereference for a pointer p when in fact the tool was concentrating on p->field.  In other 
cases, such as the statement sprintf(str, “%s%s”, var1, var2), the analyst might 
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believe that the tool was reporting a buffer overflow through var1 when in fact it was reporting 
it through var2. 
 
In other cases, the analyst made improper assumptions about which compile-time options were 
set, causing the analyst to analyze the wrong code within an #ifdef block. 
 

In the lighttpd test case, analysis sometimes required investigation of a backtrace of 20 or more 
code points that did not lead to a clear result.  These long flow paths were costly to investigate, 
likely prone to analyst error, and often produced only “not sure” evaluations.   Direct access to 
the tool environment would simplify navigation, but it might not always help the analyst to 
mentally build the logic chain to assess the accuracy of the bug report. 
 
Finally, to interpret some warnings, an analyst would require significant expertise of the test 
case’s environment that might not be readily available, even to the original developer.  For 
example, low-level operating system constructs in include files rarely need to be understood at 
the application layer, but byte-sizes and alignment can be critical in buffer overflow analysis. 

Context-Based Interpretation of Tool Warnings 
 
Analysts may reach different conclusions based on the context in which a warning is evaluated.   
The following coding constructs exemplify some of the warnings that led to inconsistent 
evaluations. 
 
Code such as the following was labeled as improper null termination (CWE-1703): 
 

n = sizeof(dst); 
strncpy(dst, src, n); 
dst[n-1] = ‘\0’; 

 
The tool in question identified the strncpy line as being improperly terminated.  With respect 
to this line, the finding was technically correct, since dst might not be terminated when the 
strncpy completes.  But since the next line ensures that null termination occurs, the warning 
was treated as a false positive. 
 
Another example is for a coding construct that could be labeled as an assignment instead of 
comparison (CWE-481): 
 
   if (res = ParseMessage(a, b)) { 
     printf("Command is %s\n", res[0]); 
   } 
 
This construct appears in many programs.  It could be treated as a false positive, since it is fairly 
clear that ParseMessage() is expected to return a non-NULL result when it succeeds, so the 
assignment is intentional.  However, some analysts might treat the warning as a true positive 
with very low severity, since it described an assignment within a conditional. 

                                                 
3 http://cwe.mitre.org/data/definitions/170.html 
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In other cases, a solid understanding of the developer’s intentions may be considered when 
evaluating a warning. 
 
Consider the labeling of stylistic preferences that may appear to be coding errors.  For example, 
the logic in the following segment produces an unreachable block, i.e., dead code (CWE-561): 
 

state = 1; 
if (SpecialCondition) { 
  state = 2; 
} 
if (state == 1) { 
  DoThis(); 
} 
else if (state == 2) { 
  DoThat(); 
} 
else { 
  error("How did I get here?"); 
} 

 
This coding construct could be argued as defensive programming to catch unexpected situations, 
or to improve readability of the code.  As a result, a tool warning might be treated as a false 
positive.  In a similar case, a programmer might intentionally leave an empty block in an “if-
then-else” conditional, using the block to contain comments that improve code readability.  The 
presence of an empty block might be flagged as a warning by some tools but treated as a false 
positive by an analyst. 
 

Incorrectly-Derived True Positives 
 
Both tools and human analysts could declare a result to be a true positive, but for incorrect 
reasons.  This issue arose during feedback with tool vendors. 
 
A simple example of an incorrectly-derived true positive might be: 
 

home = "/home/www/l18n/"; 
input = GetWebParameter("lang"); 
if (! strcmp(input, "../") { 
  die("Bad! ../ in pathname"); } 
input = URLdecode(input); 
/* ignore the buffer overflow */ 
sprintf(fname, "%s%s.txt", home, input);  
ReadFileAndDumpToUser(fname); 

 
A tool might report this problem as a relative path traversal weakness (CWE-224), but its data 
flow analysis might not consider that there is a sanity check for a “../” sequence that would 
prevent one common attack against relative path traversal.  The core problem arises because the 
programmer validates the input before decoding it (CWE-179), or alternately, there is 
                                                 
4 http://cwe.mitre.org/data/definitions/22.html 
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insufficient input validation (CWE-20) that does not protect against additional variants of path 
traversal. 
 
While this is an esoteric problem, it might be possible to detect when tools accidentally produce 
the correct results.  The success of such an effort would depend on how well a tool explains how 
it obtained its findings. 

 

Causes of Naming Differences in Warnings 
 
In addition to the inconsistent interpretations of warnings, some differences could arise when 
tools used different weakness names, even when they were really describing the same underlying 
issue.  For this reason, there are probably many associations that were missed within SATE.  
Many tools mapped their warnings to CWE identifiers, but some tools did not.  Even the use of 
CWE did not fully resolve these differences. 
 
The differences in weakness names or descriptions would arise from: 
 

1) Presence of chains.  Some vulnerabilities occur when the introduction of one weakness 
directly leads to another, called a chain [7] in CWE.  One tool might report the first 
weakness, while another tool reports the second weakness.  These would appear to be 
different results when the tools are only reporting different aspects of the same problem.  
This happened in at least one case when one tool reported a failure to check the return 
value from a malloc call, and another tool reported the NULL pointer dereference that 
would result from that call.  The failure to detect chains can cause tool results to appear 
more diverse than they actually are, which makes it difficult to combine results from 
multiple tools. 

2) Presence of composites.   Some vulnerabilities might only occur when several 
weaknesses are present simultaneously, called a composite [7] in CWE.  Tools might 
report different parts of the composite.  For example, in a symbolic link following attack 
(CWE-59), one tool might report poor randomness in file names (CWE-330), whereas 
another might report a race condition between time-of-check and time-of-use (CWE-
367).  However, both of these weaknesses are needed to make a symbolic link following 
attack feasible.  For SATE, it is not clear how often tools were reporting different aspects 
of the same composite. 

3) Alternate perspectives.  Tools may have different perspectives when generating warnings, 
producing inconsistent results.  For example, one tool might categorize buffer overflows 
depending on whether they are heap-based or stack-based, while a separate tool might 
categorize overflows based on root causes such as improper trust in a length parameter, 
unchecked array indexing, and failure to check the length of the source buffer.  A bug 
report for a heap-based buffer overflow may well be the same as a bug report for an 
improperly trusted length parameter.  The SATE evaluation team explored ways to 
normalize this data, but there was limited success due to insufficient time. 

4) Varying levels of abstraction.  The level of abstraction can vary between tools.  For 
example, one tool might produce a bug report for a relative path traversal, whereas 
another tool might produce a bug report for its parent, path traversal.  Since CWE and 
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other weakness naming schemes are hierarchically organized, this difference probably 
occurs often.  However, the variance in abstraction was not investigated closely within 
SATE. 

5) Approximate CWE mappings.  In some cases, there might not be a one-to-one mapping 
between what the tool reports and the closest-matching CWE identifier.  For example, 
CWE distinguishes between integer overflows and integer underflows, whereas some 
tools do not make such a distinction.  An access of a C++ object after it has been deleted 
might be mapped to a use after free (CWE-416), which was the closest available CWE 
identifier in 20085. 

6) Mapping errors or inconsistencies.  Some mapping errors may be due to typos.  Others 
may occur because of the lack of clarity within CWE entries themselves.  For example, in 
Draft 5 (released December 2006), CWE-242 had the name “Dangerous Functions.”  In 
Draft 8 (released January 2008), the name was changed to “Use of Inherently Dangerous 
Function,” and in Draft 9 (released April 2008), a new entry CWE-676 was created to 
handle “Use of Potentially Dangerous Function.”  A tool might map the use of strcpy 
to CWE-242, when in Draft 9, the more appropriate map would be CWE-676 (since it is 
possible to use strcpy safely, albeit not necessarily recommended).  As CWE entries 
become more stable and more precisely described, these mapping inconsistencies should 
occur less frequently. 

 
Note that the CWE project is working to resolve these problems, such as developing analytical 
methods to normalize results.  The CWE team has published a working draft [8] that provides 
more details on challenges in weakness naming and mapping.  CWE has matured significantly 
since the initial SATE analysis, so it may be easier to develop guidance for mapping that also 
includes normalization of abstraction and possibly perspective. 

Chain/Perspective Example - Same code, 4 CWEs 
 
To further demonstrate how perspectives and chains may cause different warnings to be 
generated, consider the following pseudo-code: 
 

InputBuf = GetUntrustedBuffer(); 
height = GetUntrustedInteger(); 
width = GetUntrustedInteger(); 
SZ = 512; 
size = height * width; 
buf = malloc(size); 
memmove(buf, InputBuf, SZ); 

 
One chain in this example involves an integer overflow (CWE-1906) in the size calculation, 
which leads to less memory being allocated than expected, triggering a heap-based buffer 
overflow (CWE-122) in the memmove operation.  A different perspective of the overflow might 
label this as a failure to properly detect and handle a length parameter inconsistency (CWE-130). 
 

                                                 
5 In 2009, a more abstract identifier was created, “Use of a Resource after Expiration or Release” (CWE-672) 
6 http://cwe.mitre.org/data/definitions/190.html 
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A second chain exists because certain height and width values would cause malloc to return 
NULL due to out-of-memory conditions, but this return value is not checked (CWE-252).  As a 
result, the memmove triggers a NULL pointer dereference (CWE-476). 
 
In this example, there are five different CWEs that could be listed, but arguably there is only one 
bug (“trusting input for height/width”), two bugs based on vectors (“trusting height and trusting 
width”), a different set of two bugs based on type (“failure to prevent buffer overflow” and 
“NULL pointer dereference”), or five bugs (each distinct CWE). 
 
The variations in warning names and CWE mappings are likely to skew any comparison between 
tools in unpredictable ways, since tools can describe the same fundamental problem differently.  
SATE has provided some evidence that tools do not overlap significantly with respect to the 
issues they find, but chains and composites may be causing this overlap to be underestimated. 
 
 
 

Counting Differences in Warnings 
 
SATE revealed how raw results from tools should not be directly compared.  In some cases, two 
tools would detect the same problem in the same portion of the code, but generate different 
numbers of warnings.  This may have been due to different interpretations of the location of the 
bug, variations in detection techniques, or an intentional omission of results that had a high 
likelihood of being false positives.  The difference could be radical, in which one tool reported a 
single bug, and another reported 20 bugs.  This was especially the case in utility or API functions 
that were reachable via multiple vulnerable paths.  The counting problem is reflected to some 
degree in the associations that were recorded between warnings. 
 
Consider the following example code: 
 

char * CopyString(char *src) { 
  char *dst; 
  dst = malloc(512); 
  /* ignore NULL dereference */ 
  strcpy(dst, src); 
  return(dst); 
} 
 
void HandleInputs() { 
  char *p1, *p2; 
  p1 = GetUntrustedInput(“param1”); 
  p2 = GetUntrustedInput(“param2”); 
  p1 = CopyString(p1); 
  p2 = CopyString(p2); 
} 

 
One tool might flag a single bug report, the unbounded strcpy in the CopyString 
function.  A different tool might create two bug reports, one for each invocation of 
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CopyString.  This variation is likely to occur depending on whether a tool produces separate 
bug reports based on where input enters the program (the GetUntrustedInput calls) or 
where the error occurs (the strcpy call).  A tool that produces different warnings for each 
separate location of input may generate more results than other tools, which increases the amount 
of labor needed to evaluate the warnings.  Similar variations can occur when there is more than 
one control flow path that reaches the same erroneous code.  Better support for finding and 
recording associations would minimize the extra cost.  Ideally, different tools could produce 
results that are more consistent for counting. 
 
There were also differences with respect to abstraction that further complicate comparative 
analysis.  A manual review by a software security auditor might list high-level, systemic issues 
such as “lack of a centralized input validation mechanism."  Aspect Security, a SATE 
participant, often reported warnings at this systemic level.  The design-level omission of input 
validation could translate into numerous XSS or SQL injection errors that would be found by a 
code-auditing tool, causing the number of warnings to be radically different. 
 
In sum, code analysis tools should not be compared using raw numbers of warnings, unless the 
warnings are normalized to account for variations in quantity, names, and perspective. 

 

Example Warnings 
 
The following table contains some of the warnings that demonstrate the analytical questions and 
discrepancies that faced the SATE evaluators.  The warnings are identified by their UID in the 
SATE data set. 
 
UID Description 
26588 Chain: the tool reports a buffer overflow, which does not seem to be possible unless an 

integer overflow occurs in the call to malloc.  The tool may have reported a true positive 
for the wrong reason, but it is not clear if the integer overflow was considered. 

43048, 
46909 

Chain: one tool reports an unchecked error condition; a separate tool identifies the NULL 
pointer dereference that occurs when the error condition is not checked. 

33348 Chain: an unchecked return value could be flagged as a NULL pointer dereference by 
others. 

43023 The program intentionally checks for the existence of a file for better error-handling.  The 
affected file is expected to be under full control of the administrator, thus low severity. 

24929 An information leak is reported, but the leak is only a standard SSL error number. 
24443 An information leak in a logging function is reported, but arguably the information is not 

sensitive. 
43012 A “stat after open” weakness is labeled as a false positive, probably due to the perception 

that the issue is low severity or irrelevant. 
43765 The warning is labeled as a false positive, probably due to the perception that the tool’s 

claim of high severity is incorrect.  The severity label was incorrect, possibly due to a data 
conversion error when the vendor provided results in XML. 

42958, 
42965 

Variables appear to be uninitialized, but they are initialized indirectly through 
dereferencing of other variables. 

43308 A variable appears to be indirectly null-terminated.  The tool may have thought that 
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UID Description 
pointer arithmetic in a loop might lead to a boundary error. 

43932, 
43933 

An issue is classified as a memory leak by the tool, but it might be better described with 
the more-abstract CWE-404 (Improper Resource Shutdown or Release). 

42923 Naming confusion occurs due to abstraction.  An issue is labeled as a “leak” but the 
analyst labels it as a false positive, perhaps believing it is a memory leak.  The tool is 
actually reporting a file descriptor leak. 

44026 Separate problems occur in heavily-used macros – is this one bug or many?  Also see 
33346. 

44040 Different input paths generate separate warnings – is this one bug or many?  Also see 
44042 and 44043. 

44071 A NULL pointer dereference is reported, but this code would not be reached because 
another statement would trigger the dereference first.  It is still worth noting since fixing 
this NULL dereference would expose the weakness in the later statement. 

42908  The analyst may have been examining the wrong data/control flow path when evaluating 
the warning.  Also see 43522, 43013, and 43218. 

43367, 
43439 

The analyst may have been examining code that was excluded by the preprocessor, 
leading to a disputed evaluation. 

43992  The root cause of the issue is obscured due to macro expansion.  Also see 43999, 43426, 
43433, and 43450. 

 
To conduct a more extensive investigation into these types of interesting results, the SATE data 
could be examined for warnings that were labeled as “not sure,” or warnings that were labeled as 
both true and false positives. 
 

Strengths and Limitations of the SATE Web Interface 
 
There were several important features in the SATE web interface and the underlying database 
that simplified analysis. 
 
The common XML exchange format made it possible for analysts to view warnings from 
different tools within a single interface. 
 
Throughout the exposition, various modifications were made to the sorting and searching 
capabilities to provide important flexibility.  Some of the most effective aspects of the interface 
were: 

• View multiple tool results in a single interface 
• View comments for a single warning 
• Use a “bookmarking” feature for warnings that the analyst will revisit at a later time 
• Search by test case 
• Search for bug reports within “X” lines of code of the current bug 
• Search for bug reports with an uncertain evaluation status, such as a “true positive” 

assessment from one analyst and a “false positive” from another analyst 
• Search by severity 
• Search by CWE ID 
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• Search by tool vendor 
 
The web interface supported different modes for casual browsing versus focused searching.  The 
search for bugs within a certain distance of an existing bug was used heavily.  The interface was 
effective for labeling associations as well as evaluating all relevant bugs once the relevant 
portion of the code was understood by the analyst. 
 
Some additional improvements to the interface would simplify the analyst’s job.  Being able to 
apply the same evaluation to multiple weaknesses at once, instead of entering evaluations one-
by-one, would be more efficient when evaluating utility functions or other code that may have 
many callers.  Note that associations effectively provide this functionality, but not all multi-
weakness actions would necessarily involve associations.  The method for recording associations 
was also cumbersome. 
 
If the analyst fully understands a function, then it would be useful to conduct a search for any 
bugs within that function; the closest capability, searching within a specified number of lines of 
the location in code, was too coarse.  It would also be useful to search for any weaknesses within 
the entire call tree of a selected code point.  A search for similar CWEs, or potential 
chain/composite relationships, would help in finding associations.  Richer displays of search 
results would also be useful.  For example, when searching for bugs that do not have a 
conclusive evaluation, it would be useful to include the comments for each bug report that is 
listed, along with its status. 
 
The package that was used to display and navigate the source code was powerful and effective, 
although sometimes it had usability limitations.  For example, in large source files with many 
functions or callers, the web browser’s load time would be excessive, sometimes generating a 
large number of graphic images for call trees.  This experience was not shared by all analysts, 
however, so it might be a reflection of one particular mode of usage.  In other cases, the source 
file was not displayed with proper links to other locations in the code, forcing manual searches 
for the appropriate line of code.  This was most likely a bug in the source-navigation software 
itself. 
 
For long flow paths, it was sometimes difficult to navigate the source code interface.  The 
individual bug report often contained more detailed information from the tool that displayed the 
flow paths, but it did not always have the desired details. 
 
The web-based source code navigation feature was not closely integrated with the evaluation 
interface.  The analyst could move from the bug reports to the code, but not the other way 
around.  Closer integration would be extremely powerful, such as the ability to annotate the 
source code itself with all the relevant warnings.  While this capability is provided in the native 
interface for some tools, it would be useful to be able to view the results of multiple tools in this 
way. 
 
The ability to save preferences or queries would make navigation more efficient. 
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Lessons Learned: Considerations for Future SATE Efforts 
 
For future SATE efforts, or for any project that seeks to understand the capabilities of static code 
analysis tools, the following lessons may be useful. 

Use Longer Review Periods 
 
The review period was too brief.  During the evaluation stage, the SATE evaluation team 
received more warnings than expected, so there was not enough time to evaluate all the warnings 
that were generated.  Important factors included the unexpected large number of warnings from 
the tools, and the amount of time required to analyze each individual warning.  In addition, tool 
vendors did not have enough time to provide detailed feedback or corrections to the original 
evaluations. 

Link Directly with Tools 
 
It is highly likely that using the native interfaces of the tools, instead of static web-based results, 
would improve the efficiency and accuracy of an analysis.  It would also create opportunities to 
conduct usability studies of the tools.  Such an effort would need to account for the overhead of 
learning the tool combined with licensing costs or restrictions. 

Select Warnings More Consistently 
 
Since this was an exploratory investigation and not a formal experiment, the variations across 
analysts for warning selection did not necessarily pose a problem.  However, because the sample 
was not random, this restricts the ability to conduct certain studies that would have been useful 
for fully understanding the strengths and limitations of the tools.  A later section will identify 
some approaches for improving warning selection. 

Provide Clear Criteria for True Positives and False Positives 
 
As described in a previous section, there was significant variation between analysts in the 
assessments of true and false positives, especially in the early stages of the exposition.  Future 
efforts should establish guidelines up front, discuss detailed scenarios, and hold regular review 
sessions to ensure consistency. 
 
Criteria should be established to determine if a “not sure” rating is a satisfactory result.  While 
the usage of “not sure” might be useful for developers who have a need to prioritize fixes, it is 
not necessarily appropriate for third-party analysts who seek to understand the capabilities of 
tools, or for consumers who want to have high confidence that software is free of all reported 
bugs.  Chess and West [9] have recommended three types of results: “Obviously exploitable,” 
“Ambiguous,” and “Obviously secure.”   These roughly align with the SATE values of “true 
positive,” “not sure,” and “false positive.”  One participating SATE vendor suggested that a 
“Don’t care” result could also be used; this concept is effectively captured within the SATE data, 
in which analysts declared warnings as true positives but reduced the severity to 5. 
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The criteria for evaluation of true and false positives may need to be adjusted when tools provide 
confidence values for individual warnings, especially if quantitative analysis is conducted. 

Improve Cross-Analyst Coordination 
 
The primary method of communication between analysts was e-mail.  It would be useful to 
develop an environment in which analysts could centrally share derived information as the 
investigation progresses.  This is especially important as analysts learn the design and coding 
practices of the test case.  In some cases, duplicate efforts were not detected until after the fact.  
For example, two SATE analysts separately performed some research into the memory 
management routines of lighttpd without being aware of each other’s efforts. 

Hold Regular Review Sessions 
 
The analyst team was geographically diverse.  Much of the interaction was through e-mail.  
Occasionally teleconferences would be conducted, but these were usually for deciding how to 
handle an important design question for the exposition.  Regularly-scheduled review sessions 
would help to ensure consistency, detect potential problems sooner, improve cross-analyst 
coordination, and share derived information. 

Conduct Qualitative Assessment of Analyst Disagreements 
 
It might be informative to perform a qualitative analysis of the types of analysis errors or 
disagreements that occur from humans versus automated tools.   A thorough study could 
compare the determinations from SATE analysts, tool vendors, and developers.  It could 
potentially expose opportunities for improvements in analyst training and in how tools present 
their warnings.  However, such a study would be resource-intensive.  Because of the large 
number of results that were produced, there were very few warnings that had multiple reviewers, 
so the SATE 2008 data set cannot be used to perform this analysis. 

Support Assessment of False Positives and False Negatives 
 
Based on feedback from attendees of various SATE-related talks before publication of this 
document, there is a strong desire to understand how tools perform with respect to false 
negatives, as well as false positives.  This should be seriously considered in future tool analysis 
methodologies.  As previously described, the SATE 2008 data cannot be used to determine false 
positive rates, because there were disagreements about the accuracy of some of the assessments.  
The data cannot be used to estimate false negative rates either, since only 12% of all generated 
warnings were evaluated.  There was some evidence of false negatives that may have been 
caused by the use of callbacks and pointer aliasing, but this was not examined closely. 
 
If future efforts can address the limitations of SATE 2008 with respect to data completeness, 
then the calculation of false positive rates might seem to be straightforward.  However, due to 
previously-discussed counting differences between tools, the raw rates might not be comparable.  
For example, a tool that generates a false positive for each of 20 different inputs would be over-
penalized with respect to another tool that combines those inputs into a single warning. 
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A multiple-tool evaluation may be a mechanism for estimating false negative rates for tools.  
This could be performed by examining warnings that are confirmed as true positives and 
determining which tools did not produce an equivalent warning.  When a tool does not report the 
same weakness, it can be treated as a false negative for that tool.  Automating the calculation of 
false negatives could be difficult, however, due to differences in perspective or abstraction, as 
described elsewhere.  Analysts would also need to decide whether a tool should be flagged for a 
false negative if it does not even claim to find the related type of weakness. 

Characterize Tool Overlap 
 
Using associations and other data, one could count how many tools found each individual 
weakness that was determined to be a true positive.  Overlap between tools could be visualized 
using mechanisms such as pie charts [10], although there are some limitations of this approach 
[11].  The pie chart could also be used to determine overall coverage of all the tools with respect 
to a set of weaknesses such as the CWE/SANS Top 25 [12] or the entire CWE itself.  The same 
underlying data could be used to identify capabilities that are unique to particular tools. 
 
For real-world test cases, there are currently several significant limitations to such an approach.  
As mentioned in other sections, the tool warnings often differ with respect to perspective, 
abstraction, counting, and mapping inconsistencies.  Also, such a study would require that all 
associations have been identified and all results have been evaluated, which would be labor-
intensive.  Finally, the test cases are not likely to have every type of weakness of interest, so the 
pie chart might not include all the weaknesses that each tool is capable of finding. 
 
Note that this usage of pie charts would not cover the false-positive or false-negative rates, which 
would be important decision factors for many consumers. 

Use Iterative Analyses or non-Default Configurations 
 
SATE 2008 used default configurations wherever possible.  However, some tools may provide 
capabilities in which rules could be tailored (e.g. to identify functions that perform correct input 
validation), or in which the analyst could label a warning as a false positive, which might cause 
related warnings to be omitted (e.g., if the false positive occurs in a frequently-invoked library 
function).  Thus, analysis could be iterative in nature.  Use of such capabilities, when available, 
might more closely reflect the real-world usage of these tools in day-to-day analysis.  However, 
it could pose special challenges for the interpretation of results, since the set of warnings might 
change with each iteration. 
 

Tool Capabilities that may Assist Future Evaluations 
 
The following capabilities would be very useful in conducting source code analysis.  They are 
not mutually exclusive.  Note that some of these capabilities may already be offered by some 
tools. 
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1) Offer separate tools based on two different capabilities: an “analyzer” that generates the 
results, and a weakness “browser” that can be used to review the results.  This would be 
useful for distributing the interpretation of results to multiple parties, while there is a 
centralized analyzer that generates the initial warnings.  One consideration for this is cost, 
since third-party analysts and security consultants might wish to use multiple tools. 

2) Adopt a common output format.  The simple format used by SATE was insufficient for 
conducting full analysis.  As of this writing, the raw output results from tools are 
typically in XML but use complex representations in which the information for a single 
tool result may be scattered throughout the XML document. 

3) Support an output mode that normalizes which level of abstraction is used for reporting 
individual results.  For example, “SQL Injection” and “XSS” could be used instead of 
“incorrect input validation” (which may be too general) or “XSS in Cascading Style 
Sheet definitions” (which may be too specific).  In normal operations, the tool could still 
use any abstraction that it chooses. 

4) Provide output modes that normalize the number of reports for each core problem.  For 
example, if a buffer overflow occurs in an API function, all tools could report that 
problem as a single issue, instead of listing each vulnerable call as a separate result.  
Tools with similar analytical capabilities (e.g. data flow analysis) might be able to 
identify such “choke points” in a predictable fashion. 

5) Use consistent severity metrics for results.  It may be possible to leverage external efforts 
such as the Common Weakness Scoring System (CWSS), although CWSS is still in the 
early stages of development [13]. 

6) Interpret or filter results based on the code’s execution context and environment.  This 
could be an important step for reducing the amount of warnings to review.  For example, 
the severity of results could be reduced automatically for non-setuid programs that read 
input from an environment variable or configuration file. 

7) Improve the explanations of weaknesses.  This may have been available in the native 
interfaces for some tools, but even with extensive backtraces and labeling, it can be 
difficult to understand how a tool reached a particular conclusion. 

8) Expand the support for third-party analysis.  Many tools are focused on integration within 
a development environment.  Third-party analysis may have different requirements. 

 
While it may not be easy for vendors to adopt any of these suggestions quickly, it will be 
difficult to fully understand tool capabilities in a cost-effective manner without industry-wide 
enhancements in how tool outputs are generated.  Ideally, there could be a balance between 
integration of results across multiple tools, along with the ability to navigate through the results 
from an individual tool. 
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Alternate Criteria for Test Case Selection and Analysis 
 
The following criteria might improve how test cases are selected and analyzed. 
 

Test Case Selection Options 
 
Depending on the nature of the tool analysis, future efforts could use different criteria for 
selecting test cases.  These criteria are not mutually exclusive. 
 

1) Select well-understood code.  This would reduce the “rampup” time needed to learn the 
application.  For example, lighttpd’s centralized memory management capability required 
some effort to understand, but this knowledge was required to properly evaluate many 
overflow-related reports by tools. 

2) Conduct a differential analysis.  One could select open source software with known 
vulnerabilities that were later fixed, and run the tools against both the earlier version and 
the fixed version.    By focusing on the weaknesses reported in the original version, the 
analyst could determine if the tool detected those weaknesses in the original version (true 
positives) and avoided reporting them in the later version (true negatives).  However, this 
can have a limited scale in terms of the number of weaknesses that are analyzed. 

3) Develop custom test cases.  One benefit of this approach is that the weaknesses are 
known ahead of time, thus reducing the need for true-positive analysis.  The test cases 
can also be tailored to represent the weaknesses of interest.  However, the code can be 
expensive to develop, and incidental weaknesses could arise due to unanticipated errors 
in the code.  Finally, it can be difficult to represent real-world complexity and variations 
in programming style. 

4) Use weakness seeding.  This technique is a hybrid of differential analysis and custom test 
case development.  Existing code could be modified or “seeded” to intentionally 
introduce weaknesses.  The analysis would only focus on the tool’s performance with 
respect to the seeded weaknesses.  This approach would preserve any inherent features of 
complexity in the code and may require less time to develop than custom test cases, but it 
still might have a limited scale. 

5) Select smaller applications.  While larger applications might have more complexity and 
demonstrate the ability of tools against large codebases, the reported weaknesses could be 
easier to evaluate due to fewer interactions and less complex code paths.  However, this 
would not expose any tool limitations that are related to code size, which is an important 
consideration for developers of large software systems. 

6) Select fewer test cases.  This could support the selection of applications with a reasonably 
large size, but since each test case can differ based on programming style, functionality, 
and the developer’s attention to security, there is a risk that the test cases will only 
contain a small or biased set of weaknesses. 

7) Conduct weakness-focused analyses.  Select which weaknesses are the most important, 
then analyze software that is likely to have them.  Configure the tools so that they only 
report those weaknesses.  This may be a viable option when there is a goal to reduce 
specific weaknesses or if there is limited time. 
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8) Use previously-developed test cases.  The SAMATE project has developed the SAMATE 
reference dataset [14] containing vulnerable code.  Other projects such as OWASP 
WebGoat [15] are fully-functional applications that have been developed with insecurity 
in mind.  However, it is likely that tool vendors have already tested their products against 
those test cases, so the tool performance may not be representative.  In addition, test case 
libraries typically contain small chunks of code without the complexity that is found in 
real-world programs. 

9) Include closed-source code.  While this might be more difficult to obtain, it is possible 
that open source code has different properties than closed source. 

 

Selection of Warnings within a Test Case 
 
If tools generate more warnings than the human analysts have time to process, then there are 
several ways of consistently deciding which warnings to evaluate. 
 

1) Random sampling.  This has a few important benefits.  It avoids any analyst bias, whether 
conscious or unconscious.  Also, the sample can be scaled to match the amount of labor 
that is available.  Finally, the confidence in the results could be estimated (assuming a 
well-understood statistical distribution, although this might not be knowable).  Depending 
on the sample size relative to the total number of findings, the sample might not be large 
enough to provide the desired confidence. 

2) Use tool-reported severity.  This was the main approach taken by SATE analysts, but it 
had a few limitations.  First, tools varied in how they labeled the severity of an issue, so 
associations were less likely to be discovered.  For example, one tool might label a 
format string vulnerability as high severity, while another tool would label it as medium 
severity, causing the latter tool’s report to be missed.  Integer overflows were given a 
severity of 2 by one tool and 3 by another.  Second, selection based on severity still 
resulted in so many warnings that the SATE team struggled to complete analysis by the 
deadline. 

3) Focus on selected source files or the most-exposed code.  This was periodically 
undertaken by some analysts for SATE.  This introduces an unknown bias, since the 
selected file may contain code that is only susceptible to a limited set of weaknesses.  It 
may not be feasible in a third-party analysis context, since the code would not be well-
understood. 

4) Select weakness-focused warnings.  Select a limited set of weaknesses that are the most 
important.  Then analyze the warnings related to those weaknesses.  This may be useful 
when analyzing the tools for specific capabilities, but not when trying to understand the 
general capabilities of those tools.  Differences in tool perspectives and abstraction, or the 
presence of chains and composites, might cause some related warnings to be missed 
because they do not have the expected weakness type. 
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Conclusions 
 
While SATE 2008 was not designed to compare the performance of participating tools, it was 
successful in understanding some of their capabilities in a wide variety of weaknesses.  SATE 
demonstrated that results from multiple tools can be combined into a single database from which 
further analysis is possible.  While the backtrace explanations were extremely useful, the 
evaluation might have been more efficient and less error-prone by closely integrating with the 
navigation and visualization capabilities of the tools. 
 
Future studies should plan for the possibility that the tools may generate more warnings than 
they can evaluate.  Consistent criteria for warning selection are needed to address any analytical 
resource limitations in a way that produces cleaner data.  It is important to use a clear definition 
of true positives and false positives from the beginning, although there may still be subtle 
difficulties in producing consistent evaluations.  Finally, if any comparative analysis is to be 
performed, warnings will need to be normalized to account for tool-specific differences in how 
warnings are reported and quantified. 
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