
Bringing Static Analysis to the
Masses:

S. Tucker Taft
October 2010

© 2010 SofCheck, Inc.

2

Outline of Presentation

Why arenʼt the masses using static analysis yet?
What can we do about it?
Integration into the development process

 Integration into the IDE
 Integration into the build process
 Integration into the compiler
 Integration into the language

The design of ParaSail
 Parallel Specification and Implementation Language

© 2010 SofCheck, Inc.

3

Why arenʼt the Masses using Static
Analysis yet?

 This very question asked 10 days ago on Linked-In Static
Code Analysis Group (by Steve Heffner)

 Many answers, many scapegoats:
 Blame the customers?

 Organizational laziness
 Insecure programmers

 Blame the marketers?
 Early versions oversold
 Current versions undersold
 “Static Analysis” is a boring name

 Blame the tools?
 Too slow
 Too much noise
 Difficult to incorporate into build process

 Blame the President?! (it is an election year after all)

© 2010 SofCheck, Inc.

4

 Make static analysis an integral part of the development
process rather than after-the-fact

 Provide “One Button” ease of use
 Run at a speed comparable to rest of build

 Incremental analysis
 Provide multiple depths of analysis

 Similar to compiler optimization levels

 Provide success/failure indicator which can determine
overall success/failure of build
 Analogous to gccʼs “warnings are errors” (-Werror)
 False positives must be easy enough to accommodate by

suppressing or making a benign change
 Get tools to agree on what is/is not a problem

What can we do about it?

© 2010 SofCheck, Inc.

5

Levels of Integration

 Integration into the IDE
 IDE plugin architecture should make this easier
 e.g. Eclipse panel combines compiler and analyzer messages
 Just check one box, or click on one menu item to produce static

analysis results

 Integration into the Compiler/Linker
 Use compilerʼs front end
 Avoids front end incompatibilities and quirks
 No need for separate configuration for target, subdirectories,

libraries, etc.
 Examples: Green Hills DoubleCheck and AdaCore CodePeer
 Static analysis can then be seen as Enhanced Compile-Time

Checking -- less threatening?

© 2010 SofCheck, Inc.

6

Ultimate Step:
Integration Into the Language

 Eiffel helped to popularize notion of integrating annotations
with language

 SPARK is example of this based on Ada
 JML and standard annotations like @notnull do this for Java
 But... These still rely on run-time checks and/or on separate

tools -- we want compile-time checking.
 Can we require compile-time enforcement of all user

annotations and all language-defined checks (e.g. array
indexing, null pointer, etc.) as part of the language definition?
 Java sticks “toe” in the water with initialization of local variables

© 2010 SofCheck, Inc.

7

Is It Time to Design a Language for Safe
and Secure Parallel Programming?

 What is New?
 Hardware is no longer getting any faster

 It is getting more parallel, and hence more difficult to program safely
 Safety and Security is now everyoneʼs concern

 Everything is networked
 Deep and Precise Static Analysis is coming of age

 We can do sophisticated things in the compiler/linker

 What is True?
 80+% of safety-critical systems are developed in C and C++, two

of the least safe languages invented in the last 40 years
 In 10 years, many chips will have 64+ cores
 Software has become the focus of more and more investment in

almost all industries (e.g. 40% of R&D for automobiles)

© 2010 SofCheck, Inc.

8

Designing A New Language

 ParaSail -- Parallel Specification and Implementation
Language

 Designed to make parallel programming safe and
convenient

 All checking is done at compile-time
 No run-time checking, no run-time exceptions
 No race conditions
 User-definable safety and security constraints

 Heavy duty static analysis done by the compiler
 Program fails to compile if compiler canʼt prove assertions

© 2010 SofCheck, Inc.

9

What makes ParaSail Interesting?

 Pervasive (implicit and explicit) parallelism
 Inherently safe:

 preconditions, postconditions, constraints, etc., integrated
throughout the syntax

 no global variables; no dangling references
 no run-time checks -- all checking at compile-time
 no run-time exceptions

 Small number of flexible concepts:
 Modules, Types, Objects, Operations

 User-defined literals, indexing, aggregates, physical
units checking

 Itʼs hot off the presses

© 2010 SofCheck, Inc.

10

Parallelism in ParaSail

 Parallel by default
 parameters are evaluated in parallel
 have to work harder to make code run sequentially

 Easy to create even more parallelism
 Process(X) || Process(Y) || Process(Z);

 Lock-based and lock-free concurrent objects
 Lock-based objects also support queued access
 User-defined delay and timed call based on queued access

 No global variables
 Can only access or update variable state via parameters

 Compiler prevents aliasing and unsafe access to non-
concurrent variables

© 2010 SofCheck, Inc.

11

Examples of ParaSail Parallelism

Z := F(U) + G(V); // F(U) and G(V) eval’ed in parallel

Process(A) || Process(B) || Process(C); // All 3 in parallel

for X => Root then X.Left || X.Right while X not null

 concurrent loop

 Process(X); // Process called on each node in parallel

end loop;

concurrent interface Box<Element is Assignable<>> is

 function Create() -> Box; // Creates an empty box

 procedure Put(M : locked var Box; E : Element);

 function Get(M : queued var Box) -> Element; // May wait

 function Get_Now(M : locked const Box) -> optional Element;

end interface Box;

type Item_Box is Box<Item>;

var My_Box : Item_Box := Create();

© 2010 SofCheck, Inc.

12

Annotations in ParaSail

 Preconditions, Postconditions, Constraints, etc. all use
same Hoare-like syntax: {X != 0}

 All assertions are checked at compile-time
 no run-time checks inserted
 no run-time exceptions to worry about

 Location of assertion determines whether is a:
 precondition (before “->”)
 postcondition (after “->”)
 assertion (between statements)
 constraint (in type definition)

© 2010 SofCheck, Inc.

13

Examples of ParaSail Annotations

interface Stack <Component is Assignable<>; Size_Type is Integer<>> is

 function Max_Stack_Size(S : Stack) -> Size_Type {Max_Stack_Size > 0};

 function Count(S : Stack) -> Size_Type
 {Count <= Max_Stack_Size(S)};

 function Create(Max : Size_Type {Max > 0}) -> Stack
 {Max_Stack_Size(Create) == Max and Count(Create) == 0};

 function Is_Empty(S : Stack) -> Boolean
 {Is_Empty == (Count(S) == 0)};

 function Is_Full(S : Stack) -> Boolean
 {Is_Full == (Count(S) == Max_Stack_Size(S))};

 procedure Push(S : ref var Stack {not Is_Full(S)}; X : Component)
 {Count(S') == Count(S) + 1};

 function Top(S : Stack {not Is_Empty(S)}) -> Component;

 procedure Pop(S : ref var Stack {not Is_Empty(S)})
 {Count(S') == Count(S) - 1};

end interface Stack;

© 2010 SofCheck, Inc.

14

More Annotation Examples
type Age is new Integer<0 .. 200>;
type Youth is Age {Youth <= 20};
type Senior is Age {Senior >= 50};

function GCD(X, Y : Integer {X > 0 and Y > 0}) -> Integer
 {GCD > 0 and GCD <= X and GCD <= Y and
 X mod GCD == 0 and Y mod GCD == 0} is
 var Result := X; {Result > 0 and X mod Result == 0}
 var Next := Y mod X; {Next <= Y and Y - Next mod Result == 0}

 while Next != 0 loop
 {Next > 0 and Next < Result and Result <= X}
 const Old_Result := Result;
 Result := Next; {Result < Old_Result}
 Next := Old_Result mod Result;
 {Result > 0 and Result <= Y and Old_Result - Next mod Result == 0}
 end loop;

 return Result;
end function GCD;

© 2010 SofCheck, Inc.

15

Overall ParaSail Model

 ParaSail has four basic concepts:
 Module

 has an Interface, and Classes that implement it
 interface M <Formal is Int<>> is ...

 Type
 is an instance of a Module
 type T is M <Actual>;

 Object
 is an instance of a Type
 var Obj : T := T::Create(...);

 Operation
 is defined in a Module, and
 operates on one or more Objects of specified Types.

© 2010 SofCheck, Inc.

16

User-defined Indexing, Literals, etc.

 User-defined indexing
 Any type with operator “[]” defined
 Indexing function returns ref to component of parameter

 User-defined literals
 Any type with operator “from_univ” defined from:

 Univ_Integer (42), Univ_Real (3.141592653589793)
 Univ_String (“Hitchhikerʼs Guide”), Univ_Character (ʻπʼ)
 Univ_Enumeration (#red)

 User-defined ordering
 Define single binary operator “=?” (pronounced “compare”)
 Returns #less, #equal, #greater, #unordered
 Implies “<=“, “<“, “==“, “!=“, “>”, “>=“, “in X..Y”, “not in X..Y”

© 2010 SofCheck, Inc.

17

More Examples of ParaSail
concurrent class Box <Element is Assignable<>> is
 var Content : optional mutable Element; // starts null and can change size
 exports
 function Create() -> Box is // Creates an empty box
 return (Content => null);
 end function Create;

 procedure Put(M : locked var Box; E : Element) is
 M.Content := E;
 end procedure Put;

 function Get(M : queued var Box) -> Element // May wait
 queued until Content not null is
 const Result := M.Content;
 M.Content := null;
 return Result;
 end function Get;

 function Get_Now(M : locked const Box) -> optional Element is
 return M.Content;
 end function Get_Now;
end class Box;

© 2010 SofCheck, Inc.

18

Clock Example
abstract concurrent interface Clock <Time_Type is Ordered<>> is

 function Now(C : Clock) -> Time_Type;

 procedure Delay_Until(C : queued Clock; Wakeup : Time_Type)

 {Now(C’) >= Wakeup}; // queued until Now(C) >= Wakeup

end interface Clock;

concurrent interface Real_Time_Clock<...> extends Clock<...> is

 function Create(...) -> Real_Time_Clock;

 ...

end interface Real_Time_Clock;

var My_Clock : Real_Time_Clock <...> := Create(...);

const Too_Late := Now(My_Clock) + Max_Wait;

select // multi-way parallel queued call

 const Data := Get(My_Box) => Process(Data);

 || Delay_Until(My_Clock, Wakeup => Too_Late) =>

 Put_Line(Out_Stream, “My_Box not filled in time”);

end select;

© 2010 SofCheck, Inc.

19

Walk Parse Tree in Parallel

type Node_Kind is Enum < [#leaf, #unary, #binary] >;

 ...

for X => Root while X not null loop

 case X.Kind of

 #leaf =>

 Process_Leaf(X);

 #unary =>

 Process_Unary(X) ||

 continue loop with X => X.Operand;

 #binary =>

 Process_Binary(X) ||

 continue loop with X => X.Left ||

 continue loop with X => X.Right;

 end case;

end loop;

© 2010 SofCheck, Inc.

20

Parallel N-Queens Solution

interface N_Queens <N : Univ_Integer := 8> is
 // Place N queens on an NxN checkerboard so that none of them can
 // "take" each other. Return vector of solutions, each solution being
 // an array of columns indexed by row indicating placement of queens.

 type Chess_Unit is new Integer<-N*2 .. N*2>;
 type Row is Chess_Unit {Row in 1..N};
 type Column is Chess_Unit {Column in 1..N};
 type Solution is Array<optional Column, Indexed_By => Row>;

 function Place_Queens() -> Vector<Solution>
 {for all S of Place_Queens: for all C of S: C not null};
end interface N_Queens;

© 2010 SofCheck, Inc.

21

Parallel N-Queens Solution
(contʼd)

class N_Queens is
 type Sum_Range is Chess_Unit {Sum_Range in 2..2*N};
 type Diff_Range is Chess_Unit {Diff_Range in (1-N) .. (N-1)};
 type Sum is Set<Sum_Range>;
 type Diff is Set<Diff_Range>;
 exports
 function Place_Queens() -> Vector<Solution>
 {for all S of Place_Queens: for all C of S: C not null}
 is
 var Solutions : concurrent Vector<Solution> := [];
 Outer_Loop
 for (C : Column := 1; Trial : Solution := [.. => null];
 Diag_Sum : Sum := []; Diag_Diff : Diff := []) loop
 // Iterate over the columns
 ...
 Solutions |= Trial;
 ...
 end loop Outer_Loop;
 return Solutions;
 end function Place_Queens;
end class N_Queens;

© 2010 SofCheck, Inc.

22

Parallel N-Queens Solution
(contʼd)

 function Place_Queens() -> Vector<Solution> is
 var Solutions : concurrent Vector<Solution> := [];
 Outer_Loop
 for (C : Column := 1; Trial : Solution := [.. => null];
 Diag_Sum : Sum := []; Diag_Diff : Diff := []) loop // over the columns
 for R in Row concurrent loop // over the rows
 if Trial[R] is null and then
 (R+C) not in Diag_Sum and then (R-C) not in Diag_Diff then
 // Found a Row/Column combination that is not on any diagonal
 if C < N then // Keep going since haven't reached Nth column.
 continue loop Outer_Loop with (C => C+1,
 Trial => Trial | [R => C],
 Diag_Sum => Diag_Sum | (R+C),
 Diag_Diff => Diag_Diff | (R-C));
 else // All done, remember trial result.
 Solutions |= Trial;
 end if;
 end if;
 end loop;
 end loop Outer_Loop;
 return Solutions;
 end function Place_Queens;

© 2010 SofCheck, Inc.

23

How does ParaSail Compare to ...

C/C++ -- built-in safety; built-in parallelism
Ada -- eliminates race conditions, increases

parallelism, eliminates run-time checks,
simplifies language

Java -- eliminates race conditions, increases
parallelism, avoids garbage collection, no run-
time exceptions, compile-time checks against
security constraints

© 2010 SofCheck, Inc.

24

Some of the Open Issues in ParaSail

 If we eliminate pointers, what about “references”?
 if references, when and where?

 If no global variables, how best to provide access to
global “singleton” objects from environment
 such as “the” database or “the” user or “the” filesystem
 “Context” object with singletons as components passed to main

subprogram?

 How to standardize how “smart” compiler is at proving
assertions
 Open source algorithm?
 Detailed specification of inference and simplification rules?

© 2010 SofCheck, Inc.

25

Ultimate Test:
Physical Units Example

interface Float_With_Units
 <Base is Float<>; Name : Univ_String; Short_Hand : Univ_String;
 Unit_Dimensions : Array <Element_Type => Univ_Real,
 Index_Type => Dimension_Enum> := [.. => 0.0]; Scale : Univ_Real> is

 operator "from_univ"(Value : Univ_Real)
 {Value in Base::First*Scale .. Base::Last*Scale} -> Float_With_Units;

 operator "to_univ"(Value : Float_With_Units) -> Result : Univ_Real
 {Result in Base::First*Scale .. Base::Last*Scale};

 operator "+"(Left, Right : Float_With_Units) -> Result : Float_With_Units
 {[[Result]] == [[Left]] + [[Right]]};

 operator "=?"(Left, Right : Float_With_Units) -> Ordering;

 operator "*"(Left : Float_With_Units; Right : Right_Type is Float_With_Units<>)
 -> Result : Result_Type is Float_With_Units<Unit_Dimensions =>
 Unit_Dimensions + Right_Type.Unit_Dimensions>
 {[[Result]] == [[Left]] * [[Right]]};

 operator "/"(Left : Left_Type is ...
 end interface Float_With_Units;

 type Meters is Float_With_Units<Name => “centimeters”, Short_Hand => “cm”,
 Unit_Dimensions => [#m => 1.0, #k => 0.0, #s => 0.0], Scale => 0.01>;

© 2010 SofCheck, Inc.

26

Conclusions

 Static analysis hasnʼt reached the masses yet
 Integration into the development process is essential

 Ideally into the compiler/linker

 Integration into the language is the ultimate step -- it
becomes a non-optional part of the process

 When designing a new language, can unify and simplify
 Can focus on new issues

 pervasive parallelism
 integrated annotations enforced at compile-time

 Read the blog if you are interested...
http://parasail-programming-language.blogspot.com

© 2010 SofCheck, Inc.

27

11 Cypress Drive
Burlington, MA 01803-4907

Tucker Taft

tucker.taft@sofcheck.com

http://parasail-programming-language.blogspot.com

+1 (781) 750-8068 x220

