
Dealing	with	Code	That	Is	
Opaque	to	Sta7c	Analysis	

Barton	P.	Miller†‡,	James	A.	Kupsch†‡,	
Elisa	Heymann†*,	Vamshi	Basupalli†‡	

NIST	Workshop	on	SoEware	Measures	and	Metrics	
to	Reduce	Security	VulnerabiliJes	

Gaithersburg,	MD	
July	12,	2016	

†Computer	Sciences	Department,	University	of	Wisconsin	
‡DHS	SoEware	Assurance	Marketplace	(SWAMP)	

*Autonomous	University	of	Barcelona	

Recent	Experience	

•  Reviewed	high	profile	vulnerabiliJes	
– Heartbleed	(CVE-2014-010)	
– glibc	DNS	resolver	(CVE-2015-7547)	

•  Obtained	vulnerable	source	code	
•  Ran	staJc	code	analysis	tools	on	each	
•  Tools	failed	to	find	the	bugs	
•  Bug	was	opaque	to	the	tools	

2	

Heartbleed	
At	it’s	heart	(sorry),	it’s	just	a	buffer	overflow…	
•  Failure	of	the	OpenSSL	library	to	validate	the	heartbeat	packet	

length	field	(as	compared	to	the	size	of	the	actual	message).	
•  Heartbeat	packets	are	contained	within	TLS	packets.	
•  The	heartbeat	protocol	is	supposed	to	echo	back	the	data	sent	in	the	

request	where	the	amount	is	given	by	the	payload	length.	
•  Since	the	length	field	is	not	checked,	memcpy	can	read	up	to	64KB	

of	memory.	

 memcpy(bp, pl, payload);
Length	field.	Supplied	by	
an	untrusted	source.	

Source.	Buffer	with	the	
heartbeat	record.	
Improperly	used.	

DesJnaJon.	Allocated,	
used,	and	freed.		OK.	

3	

TLS	Heartbeat	Protocol	

4	

type	 version	 len	 message	

type	 len	 payload	 padding	

Record	buffer	(allocated	by	malloc)		 ~16KB	

TLS	record	

Heartbeat	message	

Illegally	large	message	len	allows	reading	~64KB	

Len	is	the	number	of	bytes	
of	the	payload.	Should	be	
constrained	by	the	total	

message	length,	header	(3),	
and	minimal	padding	(16)	

Len	is	the	total	message	
length	in	bytes	

Valid	read	

5

Heartbleed	

Added	length	check	to	remediate:

 if (1+2+payload+16 > s->s3->rrec.length)
 return 0 // silently discard

And	none	of	the	current	tools	could	fine	the	
problem…why?	

2556 unsigned char *p = &s->s3->rrec.data[0], *pl;

2563 n2s(p, payload);
2564 pl = p;
2565
2566 if (s->msg_callback)
2567 s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT,
2568 &s->s3->rrec.data[0], s->s3->rrec.length,
2569 s, s->msg_callback_arg);
2570
2571 if (hbtype == TLS1_HB_REQUEST) {
2573 unsigned char *buffer, *bp;
2574 int r;

2580 buffer = OPENSSL_malloc(1+2+payload+padding);
2581 bp = buffer;

2584 *bp++ = TLS1_HB_RESPONSE;
2585 s2n(payload, bp);
2586 memcpy(bp, pl, payload);

Here’s	the	offending	code,	slightly	redacted	

6	

2556 unsigned char *p = &s->s3->rrec.data[0], *pl;

2563 n2s(p, payload);
2564 pl = p;
2565
2566 if (s->msg_callback)
2567 s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT,
2568 &s->s3->rrec.data[0], s->s3->rrec.length,
2569 s, s->msg_callback_arg);
2570
2571 if (hbtype == TLS1_HB_REQUEST) {
2573 unsigned char *buffer, *bp;
2574 int r;

2580 buffer = OPENSSL_malloc(1+2+payload+padding);
2581 bp = buffer;

2584 *bp++ = TLS1_HB_RESPONSE;
2585 s2n(payload, bp);
2586 memcpy(bp, pl, payload);

Here’s	the	offending	code,	slightly	redacted	

1.	Find	the	heartbeat	packet	in	
the	(untrusted)	user	request	

7	

2556 unsigned char *p = &s->s3->rrec.data[0], *pl;

2563 n2s(p, payload);
2564 pl = p;
2565
2566 if (s->msg_callback)
2567 s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT,
2568 &s->s3->rrec.data[0], s->s3->rrec.length,
2569 s, s->msg_callback_arg);
2570
2571 if (hbtype == TLS1_HB_REQUEST) {
2573 unsigned char *buffer, *bp;
2574 int r;

2580 buffer = OPENSSL_malloc(1+2+payload+padding);
2581 bp = buffer;

2584 *bp++ = TLS1_HB_RESPONSE;
2585 s2n(payload, bp);
2586 memcpy(bp, pl, payload);

Here’s	the	offending	code,	slightly	redacted	

2.	Extract	user-stated	payload	
length	of	the	heartbeat	packet	

8	

2556 unsigned char *p = &s->s3->rrec.data[0], *pl;

2563 n2s(p, payload);
2564 pl = p;
2565
2566 if (s->msg_callback)
2567 s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT,
2568 &s->s3->rrec.data[0], s->s3->rrec.length,
2569 s, s->msg_callback_arg);
2570
2571 if (hbtype == TLS1_HB_REQUEST) {
2573 unsigned char *buffer, *bp;
2574 int r;

2580 buffer = OPENSSL_malloc(1+2+payload+padding);
2581 bp = buffer;

2584 *bp++ = TLS1_HB_RESPONSE;
2585 s2n(payload, bp);
2586 memcpy(bp, pl, payload);

Here’s	the	offending	code,	slightly	redacted	

3.	pl	is	an	alias	to	the	heartbeat	
payload	start	address.	

9	

2556 unsigned char *p = &s->s3->rrec.data[0], *pl;

2563 n2s(p, payload);
2564 pl = p;
2565
2566 if (s->msg_callback)
2567 s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT,
2568 &s->s3->rrec.data[0], s->s3->rrec.length,
2569 s, s->msg_callback_arg);
2570
2571 if (hbtype == TLS1_HB_REQUEST) {
2573 unsigned char *buffer, *bp;
2574 int r;

2580 buffer = OPENSSL_malloc(1+2+payload+padding);
2581 bp = buffer;

2584 *bp++ = TLS1_HB_RESPONSE;
2585 s2n(payload, bp);
2586 memcpy(bp, pl, payload);

Here’s	the	offending	code,	slightly	redacted	

4.	Length	of	TLS	packet	that	
contains	heartbeat	packet	

10	

2556 unsigned char *p = &s->s3->rrec.data[0], *pl;

2563 n2s(p, payload);
2564 pl = p;
2565
2566 if (s->msg_callback)
2567 s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT,
2568 &s->s3->rrec.data[0], s->s3->rrec.length,
2569 s, s->msg_callback_arg);
2570
2571 if (hbtype == TLS1_HB_REQUEST) {
2573 unsigned char *buffer, *bp;
2574 int r;

2580 buffer = OPENSSL_malloc(1+2+payload+padding);
2581 bp = buffer;

2584 *bp++ = TLS1_HB_RESPONSE;
2585 s2n(payload, bp);
2586 memcpy(bp, pl, payload);

Here’s	the	offending	code,	slightly	redacted	

5.	payload	length	should	be	≤	TLS	
record	length-19	

11	

2556 unsigned char *p = &s->s3->rrec.data[0], *pl;

2563 n2s(p, payload);
2564 pl = p;
2565
2566 if (s->msg_callback)
2567 s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT,
2568 &s->s3->rrec.data[0], s->s3->rrec.length,
2569 s, s->msg_callback_arg);
2570
2571 if (hbtype == TLS1_HB_REQUEST) {
2573 unsigned char *buffer, *bp;
2574 int r;

2580 buffer = OPENSSL_malloc(1+2+payload+padding);
2581 bp = buffer;

2584 *bp++ = TLS1_HB_RESPONSE;
2585 s2n(payload, bp);
2586 memcpy(bp, pl, payload);

Here’s	the	offending	code,	slightly	redacted	

6.	allocate	enough	memory	for	echo	
packet	(according	user	payload)	

12	

2556 unsigned char *p = &s->s3->rrec.data[0], *pl;

2563 n2s(p, payload);
2564 pl = p;
2565
2566 if (s->msg_callback)
2567 s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT,
2568 &s->s3->rrec.data[0], s->s3->rrec.length,
2569 s, s->msg_callback_arg);
2570
2571 if (hbtype == TLS1_HB_REQUEST) {
2573 unsigned char *buffer, *bp;
2574 int r;

2580 buffer = OPENSSL_malloc(1+2+payload+padding);
2581 bp = buffer;

2584 *bp++ = TLS1_HB_RESPONSE;
2585 s2n(payload, bp);
2586 memcpy(bp, pl, payload);

Here’s	the	offending	code,	slightly	redacted	

7.	Copy	heartbeat	data	based	on	the	
length	they	claimed.	Can	also	grab	

other	nearby	data.	

13	

2556 unsigned char *p = &s->s3->rrec.data[0], *pl;

2563 n2s(p, payload);
2564 pl = p;
2565
2566 if (s->msg_callback)
2567 s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT,
2568 &s->s3->rrec.data[0], s->s3->rrec.length,
2569 s, s->msg_callback_arg);
2570
2571 if (hbtype == TLS1_HB_REQUEST) {
2573 unsigned char *buffer, *bp;
2574 int r;

2580 buffer = OPENSSL_malloc(1+2+payload+padding);
2581 bp = buffer;

2584 *bp++ = TLS1_HB_RESPONSE;
2585 s2n(payload, bp);
2586 memcpy(bp, pl, payload);

Here’s	the	offending	code,	slightly	redacted	

Need	to	actually	know	that	payload	
length	is	not	trusted	(tainted)	data.	

14	

Heartbleed	
	Conceptually,	this	is	just	an	exercise	in	taint	analysis.	We	need	to	following	
the	original	enclosing	TLS	packet	from	a	socket,	marking	it	as	tainted.	
Before	disclosure:	
–  No	tools	we	tried	found	the	bug	
–  No	tools	we	know	of	found	the	bug	

	Coverity	“fixed”	their	tool	by	noJng	that	extracJng	the	integer	payload	
length	from	a	network	byte-order	uses	a	byte-swap	instrucJon	on	a	liqle	
endian	machine,	and	such	a	swap	instrucJon	is	rare	enough	that	this	is	a	
sign	that	the	data	comes	from	the	network.	

	GrammaTech	could	do	the	taint	analysis	starJng	at	socket	buffers,	but	
didn’t	do	it	because	it	was	too	slow	in	pracJce.		When	they	turned	it	on	
for	the	right	sec.on	of	code,	it	found	the	problem.	

15	

Difficul7es	for	SCA	Tools	

•  Legacy	languages	inherent	features	
– Raw	memory	access	
– Lack	of	type	safety	
– Manual	resource	management	
– Pointers	and	pointer	arithmeJc	

•  Code	complexity	
–  IndirecJon	
– Large	program	state	
– Complex	control	flow	

16	

Why	SCA	Tool	Fail	to	Report	

•  Not	deducing	accurate	set	of	values	or	properJes	
(tainted,	iniJalized,	not	null,	…)	for	variables	

•  Not	deducing	correlaJon	between	variables	
•  Using	heurisJcs	to	determine	likely	values	or	
properJes	

•  Uncertain	results	not	reported	to	reduce	false	
posiJves	

•  Confidence	score	may	point	to	opaque	code,	if	
there	is	a	report	

•  For	non-reports,	no	way	to	convey	confidence	
17	

Dynamic	Analysis	Tools	

•  Dynamic	analysis	did	find	Heartbleed	(single	fuzzed	
packet	could	expose	the	vulnerability)	

•  We	do	not	know	of	any	dynamic	analysis	tools	that	
found	found	glibc	DNS	vulnerability	

•  DifficulJes:	
– GeneraJng	correct	bad	input	sequence	
–  Input	data	space	is	large	
–  Input	data	sequence	is	complex	

18	

Goal:	Less	Opaque	Code	for	SCA	

•  Two	approaches	
– New	code:	

•  Use	modern	languages	to	prevents	some	defects	
–  D,	Rust,	modern	C++	

•  Use	(more)	analyzable	subset	of	language	
– MISRA	
–  Checked	C	
–  C++	Core	Guidelines,	GSL	(guideline	support	library),	and	SCA	

– Legacy	code	(and	to	a	lesser	extent	new	code):	
•  IdenJfy	parts	that	are	opaque	
•  Current	metrics	do	not	idenJfy	opaque	code	

19	

Common	Metrics	

•  Metric	Types	
–  Simple	counts:	

•  Lexical	elements:	lines	of	code,	comments,	…	
•  SyntacJc	elements:	parameters,	types,	operators,	…	
•  Per	funcJon,	file,	or	code	base	

–  Calculated	metrics:	
•  Examples:	CyclomaJc,	Halsted	
•  Per	funcJon	

–  RelaJonships	between	funcJons,	classes,	…	
•  Examples:	Coupling,	Cohesion,	Connascence	
•  Per	pair	of	funcJons,	classes,	…	

•  In	our	experience,	these	metrics	did	not	correlate	with	
weaknesses	or	staJc	analyzability	

•  Focus:	cost	to	develop,	maintain,	test,	enhance,	…		

20	

Proposal:	Opaqueness	Metric	

•  Develop	tools	that	idenJfy	program	complexity	in	
terms	of	opaqueness	to	analyzability	by	SCA	tools	
–  SemanJc	complexity	of	code	that	reaches	a	tool's	ability	to	
report	due	to	reaching	limits	of	the	analysis	algorithm's	

•  Decidability	
•  ImplementaJon	

–  Score	regions	of	the	source	code	with	an	opaqueness	score	
– Also	include	raJonale	for	poorly	scoring	regions	

•  Provide	prescripJve	advice	to	transform	the	code	to	
be	less	opaque	to	SCA	(more	easily	and	correctly	
analyzable)	

21	

SCA	Tool	Providers	Path	Forward	

•  Best	semanJc	code	analysis	is	in	commercial	tools	
•  SCA	tools	already	have	much	of	the	informaJon	

– Know	where	assumpJons	are	made	
– LocaJon	of	assumpJons	are	accurate	
– Should	be	accurate	for	users	of	the	tool	

•  LimitaJons	
–  Inherently	not	in	their	interest,	reporJng	limitaJons	is	
bad	for	markeJng	

– Specific	to	the	types	of	problems	the	tool	finds	and	the	
power	of	the	tool	

22	

Broader	Path	Forward:	Develop	Tool	

– Start	with	exisJng	open	source	analysis	framework	
•  Clang	StaJc	Analyzer	
•  Gcc	

– Fund	open	source	tool	based	on	framework	to	score	
the	source	code	based	on	its	opaqueness	to	staJc	
analysis	

– Develop	prescripJve	guidance	on	transforming	source	
to	make	code	less	opaque	

23	

Ques7ons	

24	

