
© 2016 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Using Malware Analysis to
Reduce Design
Weaknesses

Carol Woody, Ph.D.
Technical Manager,
Cybersecurity Engineering

2
NIST Workshop
July 2016
© 2016 Carnegie Mellon University
Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

Notices
Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-
0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the
Software Engineering Institute at permission@sei.cmu.edu.

CERT® is a registered mark of Carnegie Mellon University.

DM-0003815

3
NIST Workshop
July 2016
© 2016 Carnegie Mellon University
Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

There is no such thing as perfect code
• Best in class code contains 2.5 defects per function point which

is < 600 defects per MLOC
• Very good code has an estimated 600-1000 defects per MLOC
• Average quality is 4.5 defects per function point which is

6000 defects per MLOC
(reference: Capers Jones, sqgne.org/presentations/2011-12/Jones-Sep-2011.pdf)

SEI research indicated an estimated 5% of the defects are
vulnerabilities

(reference: Woody, Carol; Ellison, Robert; & Nichols, William. Predicting Software Assurance
Using Quality and Reliability Measures. CMU/SEI-2014-TN-026. Software Engineering Institute,
Carnegie Mellon University. 2014. http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=428589

Software Realities

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=428589

4
NIST Workshop
July 2016
© 2016 Carnegie Mellon University
Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

Increased Software for Increased Functionality

5
NIST Workshop
July 2016
© 2016 Carnegie Mellon University
Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

Estimating Software Vulnerabilities
The Boeing 787 Dreamliner has 14 MLOC

• if we assume all of it is exceptional code, 8,400 defects remain in
the code and approximately 420 vulnerabilities

• more likely the code is average to very good, which could have up to
84,000 defects and 4,200 vulnerabilities

The F-22 has 1.7 MLOC
• defect range of 1,020 – 10,200
• range of vulnerabilities from 51 – 510.

The F-35 Lightning II has 24 MLOC
• 14,400 – 144,000 defects
• 720-7,200 vulnerabilities

Even more vulnerabilities if the code quality is poor!

6
NIST Workshop
July 2016
© 2016 Carnegie Mellon University
Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

Cybersecurity Is a Lifecycle Challenge

Mission thread
(Business process)

Design
Weaknesses

Coding
Weaknesses

Implementation
Weaknesses

940 Common Weaknesses
74,462
Common
Vulnerability
Enumerations
(CVE)CVE.Mitre.org CWE.Mitre.org 2014

7
NIST Workshop
July 2016
© 2016 Carnegie Mellon University
Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

Impact of Design Weaknesses

Source: http://cwe.mitre.org/ as of Feb 9, 2014

76%

24%

Top 25 CWEs
(Most Dangerous)

Design Weakness

Other Weakness

40%

60%

940 Total CWEs*

Design Weakness

Other Weakness

Causes for design weaknesses:
• Poor security requirements
• Limited understanding of the impact of security risk on mission success

8
NIST Workshop
July 2016
© 2016 Carnegie Mellon University
Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

Good quality will ensure proper implementation of specified results
• Effective code checking will identify improper implementations

of specifications (11 of SANS Top 25)
• Effective design reviews will identify missing requirements (12 of

SANS Top 25)
• if appropriate security results are considered in the development of

requirements
• if requirements are effectively translated into detail designs and

code specifications to support the required security results

(Reference: Woody, Carol; Ellison, Robert; & Nichols, William. Predicting Software Assurance Using
Quality and Reliability Measures. CMU/SEI-2014-TN-026. Software Engineering Institute, Carnegie
Mellon University. 2014. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=428589

Quality Processes Can Improve Security

Security requirements must be properly specified
Are controls that address known malware in the requirements?

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=428589

9
NIST Workshop
July 2016
© 2016 Carnegie Mellon University
Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

Why Isn’t Known Malware Addressed?

Problem:
Despite the reported attacks on critical systems, operational techniques
such as malware analysis are not used to inform early lifecycle activities,
such as security requirements engineering

• Operational techniques like malware analysis are typically used for patch
generation – there is no easy way to feed back into the development
process.

• Developers of security requirements tend to either start with a blank slate
or with large databases of candidate requirements and use cases based
on organizational policy.

• Creation and prioritization of security requirements is largely done without
the insights gained from analysis of prior attacks, especially those that are
specific to a particular domain.

Proposed Solution:
Malware vulnerabilities annotated with use cases and domain specific
considerations will allow improve inclusion in requirements

10
NIST Workshop
July 2016
© 2016 Carnegie Mellon University
Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

Malware-analysis Driven Use Case Creation

Malware already analyzed by domain expert (CWE, CAPEC)
Is it exploiting a design weakness?
If yes, additional information needed (see example in backup
slides)
• Determination that requirements were overlooked
• Identification of misuse
• Creation of requirements use case that addresses the misuse
• Augment with impact analysis and domain critical criteria

11
NIST Workshop
July 2016
© 2016 Carnegie Mellon University
Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

Pilot Research Findings

• Structured mechanisms to include data from known malware
attacks into requirements and architecture processes are
nonexistent.

• When designs ignore these types of attacks, important
security controls are omitted.

• Even projects that do some form of threat modeling fail to
systematically consider prior successful exploits.

• Evidence indicates that projects with detailed data about
successful prior attacks are more likely to appropriately
create critical mitigations.

Mead, N.R., Morales, J. A., Alice, G. P., “A Method and Case Study for Using Malware Analysis to
Improve Security Requirements”, International Journal of Secure Software Engineering, IGI
Publishing, 6(1), pp.1-23, January-March 2015

12
NIST Workshop
July 2016
© 2016 Carnegie Mellon University
Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

Recommendation

Extend existing malware resources for each design weakness
resulting from missing requirements to add the associated
malware exploit analysis, malware misuse case, mitigation use
case(s), and overlooked security requirement(s) needed for
including them in requirements and design

Identification of the key application domains where the missing
requirement is being exploited (e.g. mobile, cyber-physical, Web
interfaces, Autonomy, etc.) will assist designers in making
appropriate priority selections

© 2016 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

Case Study Example from
Pilot Project

14
NIST Workshop
July 2016
© 2016 Carnegie Mellon University
Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

Case Study - Vulnerability

DroidCleaner
• Trojan malware

• Claims to perform an Android tune-up.
• Sends premium rate SMS messages.
• Uploads data from the Android External Storage area to hacker’s servers.

15
NIST Workshop
July 2016
© 2016 Carnegie Mellon University
Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

Case Study – Exploitation Scenario
• Trojan

• Social Engineering to trick user into installing DroidCleaner:
• Install software
• Grant access to external storage, internet access

• K-9 Mail configured to store email in External Storage
• DroidCleaner uploads External Storage to hacker server.
• Hacker examines contents. Email contents disclosed:

16
NIST Workshop
July 2016
© 2016 Carnegie Mellon University
Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

Case Study – Misuse Case

Gain Access to Email Contents

User

Save Email Contents

Android

Access Email

Manage access

Hacker

Gain access to email contents

Compromise phone security

Grant Access to File

<<include>>

<<extend>>

Download email contents Access Email<<extend>>

<<include>>

17
NIST Workshop
July 2016
© 2016 Carnegie Mellon University
Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

Case Study – New Requirement
Requirement Number: 1

Requirement

1.1 Email contents shall be protected from unauthorized access.
Email contents shall be stored in an area only available to the
application (Android Internal Storage default configuration) – and/or –
protected through encryption which cannot be decrypted using data
available in Android External Storage.
1.2 Processes with access to External Storage shall not have the
ability to view K-9 Mail contents in clear text.
If external storage is selected, a warning message or mitigation, such
as encryption is recommended.

Category Data Protection

Priority High

Cost Medium

Misuse Case MUC2

Rationale
Due to the high risk of data theft malware on Android, it is not safe to
assume data kept on the phone is private, therefore the email contents
must be kept in a form which cannot be read even if the Hacker has
access to the storage location.

18
NIST Workshop
July 2016
© 2016 Carnegie Mellon University
Distribution Statement A: Approved for Public
Release; Distribution is Unlimited

Contact Information

Carol Woody, Ph.D.

cwoody@cert.org

Web Resources (CERT/SEI)

http://www.cert.org/cybersecurity-
engineering/

http://www.sei.cmu.edu/

mailto:cwoody@cert.org
http://www.cert.org/cybersecurity-engineering/
http://www.sei.cmu.edu/

	Using Malware Analysis to Reduce Design Weaknesses��Carol Woody, Ph.D.�Technical Manager, �Cybersecurity Engineering
	Notices
	Software Realities
	Slide Number 4
	Estimating Software Vulnerabilities
	Cybersecurity Is a Lifecycle Challenge
	Impact of Design Weaknesses
	Quality Processes Can Improve Security
	Why Isn’t Known Malware Addressed?
	Malware-analysis Driven Use Case Creation
	Pilot Research Findings
	Recommendation
	Case Study Example from Pilot Project
	Case Study - Vulnerability
	Case Study – Exploitation Scenario
	Case Study – Misuse Case
	Case Study – New Requirement
	Contact Information

