
A Basic CWE-121 Buffer Overflow Effectiveness Test Suite

Paul E. Black, Hsiao-Ming (Michael) Koo, and Thomas Irish
U.S. National Institute of Standards and Technology

paul.black@nist.gov michael.koo@nist.gov thomas.irish@nist.gov

Abstract

Phase 3 of MITRE’s Common Weakness Enumer-
ation (CWE) Compatibility and Effectiveness program
allows a customer to understand how effective a soft-
ware assurance tool is at finding weaknesses and what
code complexities it handles. Phase 3 is based on suites
of test programs, but gives no criteria about how many
programs are needed, their nature, how effectiveness is
defined, or other details. We recommend principles in
selecting a test suite for CWE effectiveness, and present
a basic effectiveness test suite in C for CWE-121 Stack-
based Buffer Overflow. For transparency we also docu-
ment our steps in developing such the test suite. Finally,
we suggest future work including code complexities.

1. Introduction

Some software assurance tools analyze source
code, byte code, or binaries and report weaknesses in
software. Their effectiveness depends on how their
trade-offs between precision, recall, discrimination,
programmer or analyst support, and many other factors
matches the user’s requirements.

The Common Weakness Enumeration (CWE) [1] is
an “encyclopedia” of over 600 types of software weak-
nesses. MITRE established a CWE Compatibility and
Effectiveness program, in which the “major aspect of
the CWE Effectiveness phase is: ... to provide a pub-
lic collection of test results that will allow a prospective
customer to understand which CWE identifiers your ca-
pability is effective in locating; and, to articulate what
types of complexity in software your capability is most
successful at dealing with when looking for CWE iden-
tifier labeled weaknesses.” [2]

The Software Assurance Metrics And Tool Eval-
uation (SAMATE) team at the U.S. National Institute
of Standards and Technology (NIST) volunteered to de-
velop an effectiveness test suite in one language, C, for
one CWE as a prototype. We would develop principles
and criteria at the same time. We chose buffer over-

flow as the weakness: it is reasonably well defined, it
still occurs often, and we have thousands of candidate
test cases. We considered several CWEs, but settled on
CWE-121 Stack-based Buffer Overflow. [3]

Section 2 summarizes our background work in col-
lecting and preparing candidate cases, some experi-
ments we ran, and the selection process. In Section 3
we propose principles and criteria to guide the develop-
ment of such test suites and present our test suite for ba-
sic CWE effectiveness. Section 4 notes issues that must
be addressed in a test suite for code complexity effec-
tiveness. In it we also suggest work to show that the
suite conforms to the informal notion of effectiveness.

2. Our Background Work

Although MITRE gave general goals of the CWE
Compatibility and Effectiveness program, they gave no
guidance on the size or nature of a test suite or even
how to measure “effectiveness.” Our approach was to
collect many candidate test cases, run many tools on
them, and develop criteria and principles informed by
tool behavior and comparison between cases.

The development of the basic test suite consisted
of three stages. In the first stage we collected and pre-
pared candidate test cases and acquired and installed
static analysis tools. The second stage was a few ex-
periments consisting of running the tools on different
configurations of the cases. Finally, we came up with
theoretical arguments informed and supported by anal-
ysis of the results to select a basic test suite.

2.1. Stage 1: Collect Candidate Cases

One of our first goals was to assemble many can-
didate test cases for CWE-121 in one place. We
drew from four main sources, detailed below, and 17
other test cases from the SAMATE Reference Dataset
(SRD) [4]. This resulted in 7338 test cases in 9962
source files, including six auxiliary files.

The Juliet 1.0 test suite “is a collection of C/C++
and Java programs with known flaws ... [covering] 181

LADC'2013, April 2-5, 2013, Rio de Janeiro, Brazil. 
ISBN 978-85-7669-274-4.

83



different kinds of flaws” [5]. Each test case had flawed
or “bad” code and one or more corresponding pieces of
“good” code, that is, the same code without the flaw.
For CWE-121, there were 2946 cases. To keep analysis
simpler, we split every case into two cases: one with
only the bad code and one with only the good code.
We also removed some unreachable code and condi-
tional compilation (#ifdef) commands. This yielded
5892 cases in 8516 files.

Kendra Kratkiewicz developed 1140 cases for her
dissertation [6]. Each test case had four variations: one
buffer access which was within bounds, one access just
outside the buffer, one a few dozen bytes outside the
buffer, and finally one thousands of bytes outside.

From KDM Analytic’s test case generator service
we got about 17 000 cases with High, Medium, and
Simple complexities and 0 to 5 call levels. We selected
all the Simple complexities, a sampling from each High
and Medium complexity and call level, giving 500
cases. Only 249 overflowed stack-based buffers.

We also included 41 benchmark programs which
Fortify Software, Inc. donated in 2005 and 2006.

2.2. Other Sources of Candidate Cases

We believed these thousands of cases from three
different sources was enough to begin. If these proved
to be insufficient, there are many other sources.

The SRD has almost 600 buffer overflow cases
classified under CWEs 120, 123, or 131. We did not
use any of them since some may not be stack-based.

The SRD also has 28 moderate sized cases ex-
tracted [7] from applications, such as BIND and Send-
mail. We did not use these since they were much bigger.

2.3. Stage 2: Run Tools on Test Cases

While collecting cases, we identified and installed
a variety of tools. We chose flawfinder [8] and Cp-
pcheck [9] as baseline tools. We also were granted re-
search copies of several commercial tools.

Our next step was to run an experiment. Should
tools be run on each case separately, or can tools be run
on all cases combined into one program to save thou-
sands of tool start ups? Handling large amounts of code
is also more similar to production use. In theory there
should be no difference: a weakness is found or not. In
practice there are differences.

We adapted the approach taken for the Juliet test
cases. To compile test cases separately or all together,
we edited the test cases as needed, for instance, factor-
ing out a main() function, adding conditional compi-
lation statements around it, or removing it altogether.

The first production run for each tool used the
compile-time option to treat all cases as one big pro-
gram. We called this the Joint (J) run.

Second, we ran each tool against each test case sep-
arately. This should be the easiest for tools and should
minimize any interference between different parts of the
code. We called this the Individual (I) run.

Third, we made all typedef, function, and global
variable names unique and concatenated all the separate
files into one Massive (M) file of 28 Megabytes.

2.4. Experimental Notes and Observations

Only flawfinder produced exactly the same warn-
ings on the Individual (I), Joint (J), and Massive (M)
runs, because of minimal parsing; see Section 4.2. The
differences between warnings produced by any tool
were small. None of the runs were better predictors of a
tool’s performance on production software than others.

Run times varied significantly. Some tools ran I
faster than J, and some ran J up to four times faster than
I. One tool produced the same warnings for I and M
taking two hours for I and only five minutes for M!

Our conclusion is that future work may use either
Individual, Joint, or Massive runs, whichever is conve-
nient, and get essentially the same result. This suggests
that a single code complexity test case might contain
weakness sites within several different complexities to
reduce the amount of overhead and support.

We had two other observations. First, one tool
could not handle duplicate function names, even in dif-
ferent name spaces. Second, some tools have notable
size limits. Two tools could not handle J. We split J into
up to a dozen subsets for these. One tool produced hun-
dreds of warnings for M, but then ran out of memory.

2.5. Stage 3: Select Cases

With hundreds of thousands of results, we derived
guidance for test cases. Since the structure of cases
from each source was so different, we first examined
each source separately, narrowing down each to a few
of the basic or simplest bad cases. We chose groups of
cases, decided if they were more basic than others, then
articulated and codified objective measures correspond-
ing to our subjective judgments. We repeated this until
we had just a few cases from each source.

At one time we were left with some 15 test cases
from all sources. We compared these, eliminating sim-
ilar cases. In reviewing the remaining three, we de-
cided two features were not included, so we selected
two cases to cover those. Ultimately we did not need to
write any new cases; existing cases satisfied our criteria.

84



3. Test Suite Principles

What principles should guide the development of
a test suite for a different CWE or written in another
language? How many test cases do we need? What is
complex and should be left to the complexity test suite,
and what is simple or basic? We propose the following
fundamental principles for the whole test suite:

1. It is publicly available at no charge.
2. It consists of a small number of programs.
3. The programs are short.
4. They are based on reasonable criteria (theory) and

on empirical evidence of utility (experiment).

Here are the justifications. A publicly available
test suite may be debated and reviewed. A disadvan-
tage is that a tool may have specific code to do well
on the suite. We discuss this more in Section 4.1. By
“small number,” we mean five or ten—not hundreds. By
“short,” we mean no more than a page or two of code.
A small number of short programs allows the suite to be
understood through human review. Basing the test suite
on theory supported by experience improves the chance
that it truly measures effectiveness.

3.1. Principles for Test Cases in the Basic Suite

We propose the following principles. They elimi-
nate the need for extra analysis steps and use common
approaches. Some are specific to buffer overflows or
the C language, and some are more widely applicable.
Explanations follow each principles.

1. Use the simplest, common data type.
For instance, char arrays instead of struct

arrays. Use int instead of long double. Do
not put data in containers, such as struct or
union, which adds another layer of analysis.

2. Allocate data in a local scope.
Global data has more potential code interactions.

3. Allocate data through declarations, not code.
Using alloca() is uncommon.

4. Use constants or literals.
The code to construct data takes more analysis.

5. Use the simplest, common library function.
strcpy() for buffer overflow. For

strcat(), existing content must be consid-
ered as well as buffer size. For strncpy(), the
size-limiting parameter may prevent an overflow
that otherwise might occur. sprintf() fills a
buffer much like strcpy(), but its formatting
makes determining the output length harder.
memmove() is similar but uncommon.

6. Use minimal overflow or least violation.
Writing one beyond the allocated buffer has

slightly better discrimination than writing far be-
yond the buffer limit.

7. Eliminate unneeded variables, control structures,
indirection, aliasing, or index computation.

They are only needed to understand “what types
of complexity in software” can be dealt with.

3.2. A Proposed Basic CWE-121 Test Suite

We propose SRD [4] Test Suite 81 as a basic
CWE-121 Stack-based Buffer Overflow effectiveness
test suite. It consists of the following five small pro-
grams. Each file name is followed by the SRD ID, the
reason for the case, and the line(s) with the overflow.

• basic-00001-min.c 117
very simplest; all tools but flawfinder report it
buf[10] = ’A’;

• basic-00034-min.c 249
simplest case using pointer access
*(buf + 10) = ’A’;

• basic-00045-min.c 293
simplest strcpy() case
strcpy(buf, "AAAAAAAAAA");

• basic-00182-min.c 841
simplest case with input
fgets(buf, 11, f);

• stack overflow loop.c 1909
variable index; bad bounds check: <= not <
for (unsigned i=1;i<=10;++i) {

bStr[i] = (char)i + ’a’;

4. Questions and Future Work

There is still work to be done in grounding the basic
test suite better and developing a complexity test suite.

4.1. Grounding the Basic Test Suite

Research is needed to better understand the relation
between tool behavior on a small test suite, behavior in
production settings, and effect on software assurance.

Does order of functions matter? A massive file, de-
tailed in Section 2.3, with cases in different orders can
display if a tool has “warm up” or “fatigue” behavior,
for instance, after producing several the same warning,
a tool stops producing that warning. A tool may assume
the first instance of a function call is correct, and flag
subsequent instances as bad. A tool may treat functions
P and Q differently if they are adjacent compared with
when they are far apart.

85



A fixed test suite tends to create market pressure
for tool makers to waste resources adding case-specific
code or making rule changes. Creating obfuscated ver-
sions as needed may detect such short cuts, which will
greatly reduce the pressure on tool makers: nobody
wants to be caught “gaming” a test suite.

4.2. Developing a Complexity Test Suite

To complement the basic suite, we need a suite
whose results “articulate what types of complexity in
software your capability is most successful at” [2]. It is
not feasible to develop a test suite that diagnoses every
possible heuristic, trade-off, or design decision.

A guiding taxonomy, such as in [10], will help
the test suite cover many code complexities. The suite
might also have tests to display any limits of code size.
Below are other facets to cover.

Consider code that can never be executed or that
does not appear in the executable, for instance be-
cause of conditional compilation or lines commented
out. Some users want warnings about unreachable code
since after changes, it may be executed. Others only
want to know about the actual behavior. The complex-
ity suite needs cases to help users understand how a tool
such these situations.

The following has a simple exploitable weakness.

(void)scanf(" %d", &j);
ar[j] = 7; // possible CWE-121

It is not exploitable if we add the guard
if (0<=j && j<=9) ar[j] = 7; Should
a tool report this as a weakness? The complexity test
suite needs tests to help one understand how a tool
treats exploitable or non-exploitable weaknesses.

Some tools do “fake” or minimal parsing [Chou,
personal communication]. To determine this, the suite
needs cases with small syntactic or semantic errors.

The complexity test suite needs cases without
weaknesses to show that “the rate of false positives is
less than 100 percent” as stated in CWE Effectiveness
Tool Requirements A.2.10.

5. Conclusions

For large test suites tools may be run on test cases
individually, all cases as one joined program, or com-
bined into a massive file with little difference in result.

We believe that the five test programs we proposed
in Section 3.2 constitute a useful suite in that running
a tool on them yields “test results that will allow a
prospective customer to understand which CWE iden-
tifiers [a tool] is effective in locating ...” We seek com-
ments and suggestions.

Acknowledgments

We thank the following for help using their tools
for this research: Red Lizard Software for Goanna,
Monoidics for INFER, and Klocwork for Klocwork
InsightTM. We thank Gabriel Fan and Christopher Long
for manipulating the thousands of test cases and running
tools on them. We also thank Vadim Okun and Yan Wu
for help acquiring, installing, and running tools.

Disclaimer

Certain trade names and company products are
mentioned in the text or identified. In no case does
such identification imply recommendation or endorse-
ment by the National Institute of Standards and Tech-
nology (NIST), nor does it imply that the products are
necessarily the best available for the purpose.

References

[1] “Common weakness enumeration,” The MITRE Corpo-
ration. http://cwe.mitre.org/.

[2] “CWE compatibility and effectiveness program,” The
MITRE Corporation. http://cwe.mitre.org/compatible/
program.html, Mar. 2010.

[3] “CWE-121: Stack-based Buffer Overflow,” The MITRE
Corporation. http://cwe.mitre.org/data/definitions/
121.html.

[4] “SAMATE reference dataset,” NIST. http://samate.nist
.gov/SRD.

[5] T. Boland and P. E. Black, “Juliet 1.1 C/C++ and Java
test suite,” IEEE Computer, vol. 45, no. 10, pp. 88–90,
Oct 2012.

[6] K. J. Kratkiewicz, “Evaluating static analysis tools for
detecting buffer overflows in C code,” Master’s thesis,
Harvard University, 2005.

[7] M. Zitser, R. P. Lippmann, and T. Leek, “Testing static
analysis tools using exploitable buffer overflows from
open source code,” in Proc. 12th Internt’l Symp. on
Foundations of Software Engineering. ACM SIGSOFT,
2004, pp. 97–106.

[8] P. Broadwell and E. Ong, “A comparison of static anal-
ysis and fault injection techniques for developing robust
system services,” http://citeseerx.ist.psu.edu/viewdoc/
summary?doi= 10.1.1.127.1508.

[9] D. J. Worth, C. Greenough, and L. S. Chin, “A survey
of C and C++ software tools for computational science,”
STFC Rutherford Appleton Laboratory, RAL-TR-2009-
028, Dec 2009.

[10] P. E. Black, M. Kass, M. Koo, and E. Fong, “Source
code security analysis tool functional specification ver-
sion 1.1,” NIST, Special Publication 500-268 v1.1,
February 2011.

86




