

Building a Test Suite for Web Application Scanners

Elizabeth Fong Romain Gaucher Vadim Okun Paul E. Black
National Institute of Standards and Technology

Gaithersburg, MD 20899-8970
{ efong,romain.gaucher,vadim.okun,paul.black}@nist.gov

Eric Dalci
Cigital, Inc

Dulles, VA 20166
edalci@cigital.com

Abstract

This paper describes the design of a test suite for
thorough evaluation of web application scanners. Web
application scanners are automated, black-box testing
tools that examine web applications for security
vulnerabilities. For several common vulnerability
types, we classify defense mechanisms that can be
implemented to prevent corresponding attacks. We
combine the defense mechanisms into ''levels of
defense'' of increasing strength. This approach allows
us to develop an extensive test suite that can be easily
configured to switch on and off vulnerability types and
select a level of defense. We evaluate the test suite
experimentally using several web application scanners,
both open-source and proprietary. The experiments
suggest that the test suite is effective at distinguishing
the tools based on their vulnerability detection rate; in
addition, its use can suggest areas for tool
improvement.

Keywords: Black box testing; software assurance;
software security; web application; web application
scanners; vulnerability.

Disclaimer: Any commercial product mentioned is for
information only; it does not imply recommendation or
endorsement by NIST nor does it imply that the
products mentioned are necessarily the best available
for the purpose.

1. Motivation

New security vulnerabilities are discovered every day
in today’s system, networking, and application
software. In the recent years, web applications have

become primary targets of cyber-attacks. Analysis of
the National Vulnerability Database (NVD) [15]
maintained by the National Institute of Standards and
Technology (NIST) shows the rapid increase of
vulnerabilities that occur mostly in web-based
applications (Cross-Site Scripting (XSS), SQL
Injection, and File Inclusion) as percent of the total
vulnerabilities. This is shown in Figure 1 (updated
from [10]).

0

5

10

15

20

25

2000 2001 2002 2003 2004 2005 2006

%
 o

f t
ot

al
 v

ul
ne

ra
bi

lit
ie

s

File Inclusion SQL Injection XSS

Figure 1: File Inclusion, SQL injection, and XSS as percent
of total NVD vulnerabilities (as of January, 2007)

Web application security is a difficult task because
these applications are, by definition, exposed to the
general public, including malicious users.
Additionally, input to web applications comes through
HTTP requests. Correctly processing this input is
difficult. According to the OWASP Top 10, the
incorrect or missing input validation is the most
frequent vulnerability type in web applications [17].

Network firewalls, network vulnerability scanners, and
the use of Secure Socket Layer (SSL) do not, by
themselves, make a web site secure [11]. The Gartner

Group estimates that over 70% of attacks against a
company’s web site or web application come at the
application level, not the network or system layer [21].

One type of tools being employed to address these
application-level vulnerabilities is web application
scanners [10]. Briefly, web application scanners are
automated, black-box testing tools that examine web
applications for security vulnerabilities.

Web application scanners have reached a certain level
of maturity and are becoming widespread; they find a
myriad of vulnerabilities in web applications. Our goal,
as part of the NIST Software Assurance Metrics and
Tool Evaluation (SAMATE) project [23], is to enable
thorough testing of web application scanners. This will
help tool users understand tool capabilities and
stimulate tool improvement.

1.1. Definitions

Often, different terms are used to refer to the same
concept in security literature. Different authors may
use the same term to refer to different concepts. For
clarity we give our definitions.

A vulnerability is a property of system security
requirements, design, implementation, or operation that
could be accidentally triggered or intentionally
exploited and result in a security failure [16]. In our
model the source of any failure is a latent vulnerability.
If there is a failure, there must have been vulnerability.
Vulnerability is the result of one or more weaknesses
in requirements, design, implementation, or operation.

An exploit is a technique that takes advantage of a
vulnerability to cause a failure. An attack is a specific
application of an exploit [5]. In other words, an attack
is an action (or sequence of actions) that takes
advantage of vulnerability.

1.2. Web Application Scanners

A web application scanner is an automated program
that examines web applications for security
vulnerabilities [23]. In addition to searching for web
application specific vulnerabilities, the tools also look
for evidence of software coding errors, such as
unchecked input strings and buffer overflows.

There are many web application scanners available
today. Some commercial web application scanners are
AppScan [26], WebInspect [24], Hailstorm [6],
Acunetix WVS [2]. Some open source web application

scanners, such as Paros [7] and Pantera [18], are also
popular.

A web application scanner explores an application by
crawling through its web pages and performs
penetration testing – an active analysis of a web
application by attacking. This involves generation of
probing inputs and subsequent evaluation of
application’s response. Web application scanners
perform different types of attack. For instance one type
of attack, called fuzzing, is submitting random inputs of
various sizes.

Web application scanners have their strengths and
limitations. Since a web application scanner cannot
examine source code, it is unlikely to detect specialized
vulnerabilities such as back doors. However, it is well
suited for detecting input validation problems.
Additionally, client-side code (JavaScript, etc.) is
available to the web application scanner and can
provide important information about the inner
workings of a web application.

While web application scanners can find many
vulnerability instances, they alone cannot provide
evidence that an application is secure. Web application
scanners are applied late in the software development
life cycle. Security must be designed and built in.
Different types of tools and best practices must be
applied throughout the development life cycle [14].

1.3. Testing Web Application Scanners

There are several benchmarks, with vulnerabilities of
different types, which can be used for evaluation of
web application scanners. Foundstone has a series of
“Hackme” web applications written in different
languages [12]. OWASP SiteGenerator Project [19]
enables the user to create web pages with
vulnerabilities and test them against a web scanner.
OWASP has also produced the WebGoat Project [20]
which embeds vulnerabilities in its web application.

A test suite must be useful for differentiating web
application scanners based on their vulnerability
detection capabilities. An appropriate choice of
vulnerability types, while very important, is not
sufficient for such a test suite. Vulnerabilities within
one type differ significantly in terms of difficulty of
exploiting them and types of attacks that are effective
against them. A web application scanner may be able
to find one SQL injection vulnerability, but fail to
detect another. The reason is that web application

developers implement different defense measures that
make attacks more difficult.

Therefore, for each type of vulnerability, a test suite
should attempt to implement multiple instances
ranging from easily exploitable (and thus easily
detectable by web application scanners) to the
unbreakable, that is, tests for false alarms. This range
includes the vulnerabilities hidden behind a series of
defense walls. None of the benchmarks cited earlier
follow this path in their implementation.

There are many different defenses. We structure and
organize them as follows. For several common
vulnerability types, we classify the defense
mechanisms that can be implemented to prevent
various attacks. We combine the defense mechanisms
into levels of defense of increasing strength. This
allows us to develop a test suite that can be easily
configured to select different levels of defense.
We explain the defense mechanisms and levels of
defense, and the related concept of attack, in Section 2.
We describe the test suite in Section 3. We present the
results of experimental evaluation of the test suite in
Section 4. Our conclusions and plans for future work
are in Section 5.

2. Interplay between Vulnerabilities,
Attacks and Defense Mechanisms

This section defines the most common vulnerability
types, describes attacks performed by malicious users
and web application scanners, and details the defense
mechanisms that prevent some attacks and make other
attacks more difficult. Finally, it combines the defense
mechanisms into levels of defense of increasing
strength.

2.1. Vulnerability Types

Researchers and practitioners identified different types
of web application vulnerabilities [17, 25]. Based on
our analysis of vulnerability reports in the NVD
(Figure 1), as well as the analysis in [8], the most
common web application vulnerabilities are:

• Cross-Site Scripting (XSS) - A web application

accepts user input (such as client-side scripts and
hyperlinks to an attacker’s site) and displays it
within its generated web pages without proper
validation.

• SQL Injection - Unvalidated input is used in an
argument to a function that calls an SQL query.

• File Inclusion - Unvalidated input is used in an
argument to file or stream functions.

2.2. Attacks

The following is an example of an attack that takes
advantage of SQL Injection vulnerability. Assume an
application contains an embedded SQL query that
retrieves user name for an integer value of the input
variable userid:

SELECT name FROM users WHERE userid =
value(userid);

Here, “value(userid)” is a pseudo-code for passing the
content of the variable userid into the SQL query. If
userid comes from user input (e.g., GET or POST
variable) without filtering, a malicious user can inject a
non integer value which contains SQL code, for
example:
1; UPDATE users SET password = ’foo’ WHERE
name LIKE ‘%admin%’

The resulting SQL query replaces the administrator
password.

Different attacks exploit different vulnerabilities. For a
particular defense, an attack A may fail, while its
variation, attack B, may succeed.

In order to clearly show the diversity of attack variants,
we give several injection strings that can be used to
probe for Cross-Site Scripting vulnerabilities.

• <script>alert(‘XSS’);</script>
•
• <img style=”background:

expr/**/ession(‘alert(String.fromCharCode(88
,83,83))’)” src=”foo.png” />

• </a style="foo:expression(alert('xss'))">

When an attacker looks for XSS vulnerability in a web
application, he typically tries different variants of
attack in order to bypass the defenses used by the
target web application. Many more XSS attacks are
described in [13].

The CAPEC Project describes over 100 attack patterns
[9] with their associated mitigation techniques. An
attack pattern [5] is a general framework for carrying
out a particular type of attack, such as a method for
exploiting a buffer overflow or an interposition attack
that leverages certain kinds of architectural
weaknesses.

2.3. Defense Mechanisms

Developers must defend against attacks. For example,
to prevent the SQL injection attack described in
Section 2.2, the developer can use one of the relevant
defense mechanisms described in this section.

We classified common defense mechanisms that can be
used to make various attacks more difficult to succeed.
The following list presents, with examples, the defense
mechanisms implemented in our test suite.

• Typecasting - convert the input string to
specific type, such as integer, Boolean,
double.

Cast to integer transforms input value
“8<script>” into the integer 8

• Meta-character replacement - encode

characters from a blacklist.
“<” is replaced with "<" in HTML
documents. For XSS, replace these
characters: ‘, “, <, >, &, %, #, (,)

• Restricted input range - restrict the range of

integers, the type of an entry (only
alphanumeric), length of a string, etc.

For HTML injection, use a regular
expression such as [a-zA-Z0-9_]+ to
restrict the input to alphanumeric
characters and the underscore character.
The developer can either ignore the
whole string or remove all invalid
characters. For SQL queries use a data
binding such as for prepared statements.

• Restricted user management - use a

restricted account for performing data
manipulation, SQL queries, etc.

If user is not logged in, use a read-only
SQL account that only allows SELECT
and EXECUTE.

• Use of stronger function - use a stronger

function for performing a secure action.
Use SHA-256 instead of SHA-1 or MD5,
salt the passwords, HttpOnly in
cookies…

• Character encoding handling - canonicalize

resource names and other input that may
contain encoded characters.

Determine whether an input string
contains encoded characters that may be

interpreted as malicious content. Always
convert these encoded characters into a
“standard” representation before filtering.

• Information hiding – do not give internal

information such as errors, Session ID, etc. to
the user

2.4. Levels of Defense

Having different levels of defense for the application’s
core functions allows the application to have many
instances of different vulnerability types; the higher the
level, the harder it is to break the application. For
example, filters are a defense mechanism commonly
used for input and output validation. The simplest
filters may prevent only the crudest attacks, while more
comprehensive filters are very hard to bypass.

The following list presents the levels of defense
implemented in our test suite for the three selected
vulnerabilities. Each level includes the mechanisms of
the previous levels. Note that level 3 is not guaranteed
to be unbreakable.

Cross-Site Scripting

Level 0. No input filtering.
Level 1. Level 0 + Typecasting
Level 2. Level 1 + Meta-character replacement

Use PHP function htmlentities to escape
all special HTML characters and the
equivalent ones for other languages

Level 3. Level 2 + Use a special function which
checks for possible nested JavaScript

Level 4. Level 3 + Probing and decoding the input
string charset

SQL Injection

Level 0. No filtering of SQL query parameters
Level 1. Level 0 + Information hiding

Hide the MySQL errors
Level 2. Level 1 + Typecasting
Level 3. Level 2 + Meta-character replacement

Escape potential MySQL characters:
\x00, \n, \r, \, ', " and \x1a.

Level 4. Level 3 + Restrict the SQL user rights
Level 5. Level 4 + Using prepared statements

File Inclusion

Level 0. Include input file name concatenated with

‘.inc’
Level 1. Level 0 + Test that file exists on the server

(prevents inclusion of remote files)
Level 2. Level 1 + Meta-character replacement

Check that file name does not contain
special characters, such as /etc/..., /.../...,
so file is restricted to a certain directory.

Level 3. Level 2 + Test that file is in the Apache
DOCUMENT_ROOT

Such ordering may not be possible for some other
vulnerability types, such as session management
problems and weak hash functions. There, the level of
defense corresponds to the level of security in the
configuration, for example, the function used to hash
the session ID.

2.5. An Illustrative Example: File Inclusion

There are many variants of attack for file inclusion
vulnerability type: from server-side code execution to
content spoofing.

We describe a vulnerability involving the PHP include
function. Conceptually, a PHP page gets a portion of a
file name (e.g., file1 or /dir1/file1 or even
http://site.com/dir/file1) without a file extension via an
input parameter (POST or GET), appends an extension
“.inc” to it, and then evaluates the file.

The goal of the attacker is to supply a file of his
choosing.

For level of defense 0, there is no input validation. The
attacker can create a malicious script, e.g., badfile.inc,
on his server and pass an appropriate portion of its
URL, e.g., http://badsite.com/badfile, as an input
parameter. The server will execute the malicious script.

For level of defense 1, an attempt to include a remote
file fails. However, if the attacker has an account on
the same server, he can upload a malicious file on the
server and pass an appropriate portion of the file
pathname, e.g., /users/eve/badfile, as an input
parameter. Again, the server will execute the malicious
script.

For level of defense 2, path manipulation is prevented.
In addition, for level of defense 3, only files in the
Apache document root can be included. Therefore, the
above attacks fail.

3. The Test Suite

The test suite is an imitation of an online banking
application. A user can create an account with fake
social security number and other information. He can
also search the website and perform an imitation of
money transfers between accounts.

The application contains the following vulnerabilities:

• Cross-Site Scripting
• SQL Injection/ Blind SQL Injection
• File Inclusion
• Cookies poisoning
• Sessions Management problems
• Weak hash function
• Cross-Site Request Forgeries

For testing in the static configuration mode, the user
selects all, or only one, vulnerability type. In the
dynamic configuration mode, the tester reads a
configuration file and then the test suite is dynamically
modified. The dynamic configuration allows the user
to interactively change the level of defense and the
vulnerability type. The following configuration modes
are available:

• The interactivity of the website
• The type of vulnerability present in the

application (all or only a single vulnerability)
• The level of defense
• Whether the login page is bypassed by the

application itself (auto-login).
• Whether the application uses Ajax.

3.1. Test Suite Environment

Since the web is rich in the use of technologies, the test
suite includes many technologies commonly used in
the modern web applications. The test suite uses PHP,
MySQL, HTML, CSS, JavaScript, and Ajax.
According to [1], PHP is the most common server-side
scripting language. We chose these technologies
because they are the most commonly used technologies
for developing web applications.

Why did we include Ajax? Asynchronous JavaScript
and XML (Ajax) [3] is a development technique
utilizing the combination of JavaScript, XML,
XHTML, DOM, and XMLHTTPRequest for creating
interactive web applications. Basically, the
XMLHTTPRequest object is used in the JavaScript
code to perform asynchronous calls to the server. There

are several reasons for including this technology in our
test suite.

First, many “Web 2.0” developers feel secure and do
not perform enough input validation on the remote
scripts when the calls are hidden. However, nothing is
really hidden because everybody can access the
JavaScript source code.

Second, Ajax affected the ways in which people are
using the Internet, increasing interactivity and,
unfortunately, the number of vulnerabilities. We are in
the early days of Ajax worms [4].

Third, Ajax-based applications are harder for tools to
analyze than classical web applications because the
website crawlers (spiders) have to parse the JavaScript
code in order to retrieve the server-side script names.
In addition, retrieving the parameter names may
require execution of the JavaScript code. Therefore,
use of Ajax represents a challenging test for web
application scanners.

4. Experiments
We ran experiments in order to find out whether the
test suite described in Section 3 is useful for
differentiating tools based on detection capabilities.
For the experiments, we limited the tests to the top
three of OWASP Top Ten 2007 vulnerabilities [17]:

• Cross-Site Scripting
• SQL Injection / Blind SQL Injection
• File Inclusion

We used 4 commercial and open source web
application scanners to evaluate the test suite. We
designate them Tool A, B, C, and D.

Since some of the tools do not support password
authentication, we always configured the test
application to use auto-login. Additionally, we
configured it to use Ajax.

4.1. Test Procedure

The test procedure consists of the following steps:

1. Clean and initialize the test database.
2. Configure the test application by selecting a

specific vulnerability type and selecting a
level of defense.

3. Run a selected web application scanner to
evaluate the test suite.

4. Count and classify vulnerabilities in the tool
output from the test run.

We repeated these steps for every web application
scanner, selecting each individual vulnerability type
and testing with every level of defense we
implemented. We performed a total of 4 * 3 * 4 test
runs.

4.2. Results and Analysis

The results of the test runs are shown in Table 1 in the
Appendix. The tools did not detect any vulnerabilities
at level 2 or above, so we only present the data for
levels 0 and 1. The table contains the following data:

• Total number of vulnerabilities seeded in the
test suite.

• Number of detections, i.e., true vulnerabilities
reported by the tool.

• Number of false positives. A false positive is
a report of a vulnerability instance by a tool
where no vulnerability is present.

Web application scanners usually report many attacks
for each vulnerability instance. In the experiments, we
count only unique vulnerability instances.

There was only one case where an instance of
vulnerability was misclassified by a tool.

For each level of defense, there are 21 seeded
vulnerability instances: 8 XSS, 2 file inclusion, and 11
SQL injection vulnerabilities.

In Figures 2 and 3, we present the following metrics
for the tools:

• Detection rate – the number of vulnerabilities
detected by the tool divided by the total
number of seeded vulnerabilities.

• False positive rate – the number of false
positives divided by the sum of the number of
false positives and the number of detected
vulnerabilities.

As shown in Fig. 2, there is a noticeable decrease in the
tools’ detection ability as level of defense increases.
This suggests that, first, the levels of defense indeed
have increasing strength and, second, the test suite is
effective at distinguishing tools based on their
vulnerability detection rate across different levels of
defense.

Fig. 3 shows false positive rates for the tools. Tool A
had no false positives. Tool C had very high false
positive rate. With an increase in level of defense, false
positive rate increased for tools B and C, but it
decreased for tool D.

0

5

10

15

20

25

30

35

A B C D
Tools

D
et

ec
tio

n
ra

te
 (%

)

Level 0 Level 1

Figure 2: Detection rates for different levels of defense

0

20

40

60

80

100

A B C D
Tools

Fa
ls

e
po

si
tiv

e
ra

te
 (%

)

Level 0 Level 1

Figure 3: False positive rates for different levels of defense

5. Conclusion and Future Work

We described the design of a test suite for web
application scanners. The design is based on a novel
idea of combining different defense mechanisms into
levels of defense of increasing strength. Our
experiments suggest that the test suite is effective for
distinguishing tools based on their vulnerability
detection rates.

Tools in the experiments were unable to detect any
vulnerability at level 2 or above. These levels use
strong defense mechanisms, so they are difficult to
overcome even for a sophisticated human attacker.

Our plans for future work include developing several
other test suites, using different web technologies, for
evaluation of web application scanners. We also plan
to define more levels of defense to enable more fine
grained evaluation of web applications.

6. Acknowledgement
We thank Will Guthrie for many helpful suggestions
on this paper, Stephano Di Paola and Anurag Agarwal
for their technical review.

References

[1] 4th language in the TPCI, March 2007
http://www.tiobe.com/tpci.htm
[2] Acunetix Web Vulnerability Scanner,
http://www.acunetix.com/
[3] Ajax Technologies,
http://adaptivepath.com/publications/essays/archives/0
00385.php
[4] Ajax Worms,
http://www.whitehatsec.com/downloads/WHXSSThrea
ts.pdf
[5] Sean Barnum, Amit Sethi, Attack Pattern Glossary,
in Build Security In.
https://buildsecurityin.us-
cert.gov/daisy/bsi/articles/knowledge/attack/590.pdf
[6] Cenzic Hailstorm
http://www.cenzic.com/products_services/cenzic_hails
torm.php
[7] Chinotec Technology Company, Paros for Web
Application Security Assessment,
http://parosproxy.org/index.shtml
[8] Steve Christey, ''Vulnerability Type Distributions
in CVE,'' http://cwe.mitre.org/documents/vuln-
trends.html, Oct. 2006
[9] Common Attack Pattern Enumeration and
Classification (CAPEC)
http://capec.mitre.org/
[10] E. Fong and V. Okun, “Web Application
Scanners: Definitions and Functions,” in Proceedings
of HICSS-40 Conference, Jan 3-6, 2007, Hawaii, USA.
[11] Jeremiah Grossman, The Five Myths of Web
Application Security, WhiteHat Security, Inc, 2005.
[12] Shanit Gupta, Foundstone Hacme Bank v. 2.0
Software Security Training Application, April 2006,
http://www.foundstone.com/resources/whitepapers/hac
mebank_userguide2.pdf

http://www.tiobe.com/tpci.htm
http://www.acunetix.com/
http://adaptivepath.com/publications/essays/archives/000385.php
http://adaptivepath.com/publications/essays/archives/000385.php
http://www.whitehatsec.com/downloads/WHXSSThreats.pdf
http://www.whitehatsec.com/downloads/WHXSSThreats.pdf
http://www.cenzic.com/products_services/cenzic_hailstorm.php
http://www.cenzic.com/products_services/cenzic_hailstorm.php
http://parosproxy.org/index.shtml
http://www.foundstone.com/resources/whitepapers/hacmebank_userguide2.pdf
http://www.foundstone.com/resources/whitepapers/hacmebank_userguide2.pdf

[13] Robert Hansen, Cross Site Scripting Cheating
Sheet, http://ha.ckers.org/xss.html
[14] G. McGraw, ''Software Security: Building
Security In'', Addison-Wesley Software Security
Series, 2006
[15] National Vulnerability Database (NVD),
http://nvd.nist.gov/
[16] National Institute of Standards and Technology
(NIST), “Engineering Principles for Information
Technology Security (A Baseline for Achieving
Security)”, NIST SP 800-27, Revision A, June 2004,
http://csrc.nist.gov/publications/nistpubs/
[17] OWASP, Top Ten Project,
http://www.owasp.org/index.php/OWASP_Top_Ten_P
roject
[18] OWASP, Pantera Web Assessment Studio Project,
http://www.owasp.org/index.php/Category:OWASP_P
antera_Web_Assessment_Studio_Project
[19] OWASP Site Generator Project,
http://www.owasp.org/index.php/Owasp_SiteGenerato
r
[20] OWASP, WebGoat Project,
http://www.owasp.org/software/webgoat.html.
[21] Prescatore, John, Gartner, quoted in
Computerworld, Feb 25, 2005.
http://www.computerworld.com/printhis/2005/0,4814,
99981,00.html
[22] SAMATE Reference Dataset,
http://samate.nist.gov/SRD/
[23] SAMATE project Web Application Scanners,
http://samate.nist.gov/index.php/Web_Application_Vu
lnerability_Scanners
[24] SpiDynamics, WebInspect
http://www.spidynamics.com/products/webinspect/ind
ex.html
[25] Web Application Security Consortium, WASC,
“Threat Classification,”
http://www.webappsec.org/projects/threat/
[26] Watchfire, AppScan
http://www.watchfire.com/products/appscan/default.as
px

Appendix

Table 1. Number of detections and false positives for
three vulnerability types

Vuln.
type

Def.
level

Tool Detections False
pos.

Total
vuln.

A 2 0
B 1 0
C 1 5

0

D 1 1

8

A 2 0
B 1 0
C 1 5

XSS

1

D 1 0

8

A 1 0
B 1 0
C 1 5

0

D 1 0

2

A 1 0
B 0 0
C 0 5

File
incl.

1

D 1 0

2

A 4 0
B 5 1
C 1 9

0

D 1 1

11

A 0 0
B 1 1
C 0 17

SQL
Inj.

1

D 1 1

11

http://ha.ckers.org/xss.html
http://nvd.nist.gov/
http://csrc.nist.gov/publications/nistpubs/
http://www.owasp.org/index.php/OWASP_Top_Ten_Project
http://www.owasp.org/index.php/OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Pantera_Web_Assessment_Studio_Project
http://www.owasp.org/index.php/Category:OWASP_Pantera_Web_Assessment_Studio_Project
http://www.owasp.org/index.php/Owasp_SiteGenerator
http://www.owasp.org/index.php/Owasp_SiteGenerator
http://www.owasp.org/software/webgoat.html
http://www.computerworld.com/printhis/2005/0,4814,99981,00.html
http://www.computerworld.com/printhis/2005/0,4814,99981,00.html
http://samate.nist.gov/index.php/Web_Application_Vulnerability_Scanners
http://samate.nist.gov/index.php/Web_Application_Vulnerability_Scanners
http://www.spidynamics.com/products/webinspect/index.html
http://www.spidynamics.com/products/webinspect/index.html
http://www.webappsec.org/projects/threat/
http://www.watchfire.com/products/appscan/default.aspx
http://www.watchfire.com/products/appscan/default.aspx

	Building a Test Suite for Web Application Scanners
	National Institute of Standards and Technology
	Dulles, VA 20166
	Abstract

	1. Motivation
	1.1. Definitions
	1.3. Testing Web Application Scanners

	2. Interplay between Vulnerabilities, Attacks and Defense Mechanisms
	2.1. Vulnerability Types
	2.2. Attacks
	2.3. Defense Mechanisms
	2.4. Levels of Defense
	Cross-Site Scripting
	SQL Injection
	File Inclusion
	2.5. An Illustrative Example: File Inclusion

	3. The Test Suite
	4. Experiments
	4.1. Test Procedure
	4.2. Results and Analysis

	5. Conclusion and Future Work
	6. Acknowledgement
	References

